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Preface

Books are individual and idiosyncratic. In trying to understand what makes a good
book, there is a limited amount that one can learn from other books; but at least one
can read their prefaces, in hope of help.

Our own research shows that authors use prefaces for many different reasons.

Prefaces can be explanations of the role and the contents of the book, as in Chung
[49] or Revuz [223] or Nummelin [202]; this can be combined with what is almost an
apology for bothering the reader, as in Billingsley [25] or Cinlar [40]; prefaces can
describe the mathematics, as in Orey [208], or the importance of the applications,
as in Tong [267] or Asmussen [10], or the way in which the book works as a text,
as in Brockwell and Davis [32] or Revuz [223]; they can be the only available outlet
for thanking those who made the task of writing possible, as in almost all of the
above (although we particularly like the familial gratitude of Resnick [222] and the
dedication of Simmons [240]); they can combine all these roles, and many more.

This preface is no different. Let us begin with those we hope will use the book.

Who wants this stuff anyway?

This book is about Markov chains on general state spaces: sequences @, evolving
randomly in time which remember their past trajectory only through its most recent
value. We develop their theoretical structure and we describe their application.

The theory of general state space chains has matured over the past twenty years
in ways which make it very much more accessible, very much more complete, and (we
at least think) rather beautiful to learn and use. We have tried to convey all of this,
and to convey it at a level that is no more difficult than the corresponding countable
space theory.

The easiest reader for us to envisage is the long-suffering graduate student, who
is expected, in many disciplines, to take a course on countable space Markov chains.

Such a graduate student should be able to read almost all of the general space
theory in this book without any mathematical background deeper than that needed
for studying chains on countable spaces, provided only that the fear of seeing an in-
tegral rather than a summation sign can be overcome. Very little measure theory or
analysis is required: virtually no more in most places than must be used to define
transition probabilities. The remarkable Nummelin-Athreya-Ney regeneration tech-
nique, together with coupling methods, allows simple renewal approaches to almost
all of the hard results.

Courses on countable space Markov chains abound, not only in statistics and
mathematics departments, but in engineering schools, operations research groups and
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even business schools. This book can serve as the text in most of these environments
for a one-semester course on more general space applied Markov chain theory, pro-
vided that some of the deeper limit results are omitted and (in the interests of a
fourteen week semester) the class is directed only to a subset of the examples, con-
centrating as best suits their discipline on time series analysis, control and systems
models or operations research models.

The prerequisite texts for such a course are certainly at no deeper level than
Chung [50], Breiman [31], or Billingsley [25] for measure theory and stochastic pro-
cesses, and Simmons [240] or Rudin [233] for topology and analysis.

Be warned: we have not provided numerous illustrative unworked examples for the
student to cut teeth on. But we have developed a rather large number of thoroughly
worked examples, ensuring applications are well understood; and the literature is
littered with variations for teaching purposes, many of which we reference explicitly.

This regular interplay between theory and detailed consideration of application
to specific models is one thread that guides the development of this book, as it guides
the rapidly growing usage of Markov models on general spaces by many practitioners.

The second group of readers we envisage consists of exactly those practitioners,
in several disparate areas, for all of whom we have tried to provide a set of research
and development tools: for engineers in control theory, through a discussion of linear
and non-linear state space systems; for statisticians and probabilists in the related
areas of time series analysis; for researchers in systems analysis, through networking
models for which these techniques are becoming increasingly fruitful; and for applied
probabilists, interested in queueing and storage models and related analyses.

We have tried from the beginning to convey the applied value of the theory
rather than let it develop in a vauum. The practitioner will find detailed examples
of transition probabilities for real models. These models are classified systematically
into the various structural classes as we define them. The impact of the theory on the
models is developed in detail, not just to give examples of that theory but because
the models themselves are important and there are relatively few places outside the
research journals where their analysis is collected.

Of course, there is only so much that a general theory of Markov chains can
provide to all of these areas. The contribution is in general qualitative, not quanti-
tative. And in our experience, the critical qualitative aspects are those of stability of
the models. Classification of a model as stable in some sense is the first fundamental
operation underlying other, more model-specific, analyses. It is, we think, astonish-
ing how powerful and accurate such a classification can become when using only the
apparently blunt instruments of a general Markovian theory: we hope the strength of
the results described here is equally visible to the reader as to the authors, for this
is why we have chosen stability analysis as the cord binding together the theory and
the applications of Markov chains.

We have adopted two novel approaches in writing this book. The reader will
find key theorems announced at the beginning of all but the discursive chapters; if
these are understood then the more detailed theory in the body of the chapter will
be better motivated, and applications made more straightforward. And at the end
of the book we have constructed, at the risk of repetition, “mud maps” showing the
crucial equivalences between forms of stability, and giving a glossary of the models we
evaluate. We trust both of these innovations will help to make the material accessible
to the full range of readers we have considered.
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What’s it all about?

We deal here with Markov chains. Despite the initial attempts by Doob and Chung
[68, 49] to reserve this term for systems evolving on countable spaces with both
discrete and continuous time parameters, usage seems to have decreed (see for example
Revuz [223]) that Markov chains move in discrete time, on whatever space they wish;
and such are the systems we describe here.

Typically, our systems evolve on quite general spaces. Many models of practical
systems are like this; or at least, they evolve on IR¥ or some subset thereof, and
thus are not amenable to countable space analysis, such as is found in Chung [49],
or Cinlar [40], and which is all that is found in most of the many other texts on the
theory and application of Markov chains.

We undertook this project for two main reasons. Firstly, we felt there was a lack of
accessible descriptions of such systems with any strong applied flavor; and secondly, in
our view the theory is now at a point where it can be used properly in its own right,
rather than practitioners needing to adopt countable space approximations, either
because they found the general space theory to be inadequate or the mathematical
requirements on them to be excessive.

The theoretical side of the book has some famous progenitors. The foundations
of a theory of general state space Markov chains are described in the remarkable book
of Doob [68], and although the theory is much more refined now, this is still the best
source of much basic material; the next generation of results is elegantly developed
in the little treatise of Orey [208]; the most current treatments are contained in the
densely packed goldmine of material of Nummelin [202], to whom we owe much, and
in the deep but rather different and perhaps more mathematical treatise by Revuz
[223], which goes in directions different from those we pursue.

None of these treatments pretend to have particularly strong leanings towards ap-
plications. To be sure, some recent books, such as that on applied probability models
by Asmussen [10] or that on non-linear systems by Tong [267], come at the problem
from the other end. They provide quite substantial discussions of those specific aspects
of general Markov chain theory they require, but purely as tools for the applications
they have to hand.

Our aim has been to merge these approaches, and to do so in a way which will
be accessible to theoreticians and to practitioners both.

So what else is new?

In the preface to the second edition [49] of his classic treatise on countable space
Markov chains, Chung, writing in 1966, asserted that the general space context still
had had “little impact” on the the study of countable space chains, and that this
“state of mutual detachment” should not be suffered to continue. Admittedly, he was
writing of continuous time processes, but the remark is equally apt for discrete time
models of the period. We hope that it will be apparent in this book that the general
space theory has not only caught up with its countable counterpart in the areas we
describe, but has indeed added considerably to the ways in which the simpler systems
are approached.
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There are several themes in this book which instance both the maturity and the
novelty of the general space model, and which we feel deserve mention, even in the
restricted level of technicality available in a preface. These are, specifically,

(i) the use of the splitting technique, which provides an approach to general state
space chains through regeneration methods;

(ii) the use of “Foster-Lyapunov” drift criteria, both in improving the theory and in
enabling the classification of individual chains;

(iii) the delineation of appropriate continuity conditions to link the general theory
with the properties of chains on, in particular, Euclidean space; and

(iv) the development of control model approaches, enabling analysis of models from
their deterministic counterparts.

These are not distinct themes: they interweave to a surprising extent in the mathe-
matics and its implementation.

The key factor is undoubtedly the existence and consequences of the Nummelin
splitting technique of Chapter 5, whereby it is shown that if a chain {&,} on a quite
general space satisfies the simple “p-irreducibility” condition (which requires that for
some measure (@, there is at least positive probability from any initial point z that
one of the @, lies in any set of positive p-measure; see Chapter 4), then one can
induce an artificial “regeneration time” in the chain, allowing all of the mechanisms
of discrete time renewal theory to be brought to bear.

Part I is largely devoted to developing this theme and related concepts, and their
practical implementation.

The splitting method enables essentially all of the results known for countable
space to be replicated for general spaces. Although that by itself is a major achieve-
ment, it also has the side benefit that it forces concentration on the aspects of the
theory that depend, not on a countable space which gives regeneration at every step,
but on a single regeneration point. Part IT develops the use of the splitting method,
amongst other approaches, in providing a full analogue of the positive recurrence/null
recurrence/transience trichotomy central in the exposition of countable space chains,
together with consequences of this trichotomy.

In developing such structures, the theory of general space chains has merely
caught up with its denumerable progenitor. Somewhat surprisingly, in considering
asymptotic results for positive recurrent chains, as we do in Part I1I, the concentration
on a single regenerative state leads to stronger ergodic theorems (in terms of total
variation convergence), better rates of convergence results, and a more uniform set
of equivalent conditions for the strong stability regime known as positive recurrence
than is typically realised for countable space chains.

The outcomes of this splitting technique approach are possibly best exemplified
in the case of so-called “geometrically ergodic” chains.

Let 7¢ be the hitting time on any set C: that is, the first time that the chain &,
returns to C; and let P"(z, A) = P(®, € A | &9 = z) denote the probability that the
chain is in a set A at time n given it starts at time zero in state z, or the “n-step
transition probabilities”, of the chain. One of the goals of Part II and Part III is to
link conditions under which the chain returns quickly to “small” sets C' (such as finite
or compact sets) , measured in terms of moments of 7¢, with conditions under which
the probabilities P"(x, A) converge to limiting distributions.
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Here is a taste of what can be achieved. We will eventually show, in Chapter 15,
the following elegant result:

The following conditions are all equivalent for a @-irreducible “aperiodic” (see
Chapter 5) chain:

(A) For some one “small” set C, the return time distributions have geometric tails;
that is, for some r > 1
sup E[r"¢] < oo;
zel

(B) For some one “small” set C, the transition probabilities converge geometrically
quickly; that is, for some M < oo, P®(C) > 0 and pc < 1

sup [P"(z,C) — P*(C)| < Mp¢;
zeC

(C) For some one “small” set C, there is “geometric drift” towards C; that is, for
some function V > 1 and some 8 > 0

[ P@dyviy) < (1 - HV() + 1o(@)

Each of these implies that there is a limiting probability measure 7, a constant R < 0o
and some uniform rate p < 1 such that

sup | [ P(a,dy) () — [ w(d) 1 ()| < RV ()"

lfl<v

where the function V is as in (C).

This set of equivalences also displays a second theme of this book: not only do
we stress the relatively well-known equivalence of hitting time properties and limiting
results, as between (A) and (B), but we also develop the equivalence of these with
the one-step “Foster-Lyapunov” drift conditions as in (C), which we systematically
derive for various types of stability.

As well as their mathematical elegance, these results have great pragmatic value.
The condition (C) can be checked directly from P for specific models, giving a powerful
applied tool to be used in classifying specific models. Although such drift conditions
have been exploited in many continuous space applications areas for over a decade,
much of the formulation in this book is new.

The “small” sets in these equivalences are vague: this is of course only the preface!
It would be nice if they were compact sets, for example; and the continuity conditions
we develop, starting in Chapter 6, ensure this, and much beside.

There is a further mathematical unity, and novelty, to much of our presentation,
especially in the application of results to linear and non-linear systems on IR¥. We
formulate many of our concepts first for deterministic analogues of the stochastic
systems, and we show how the insight from such deterministic modeling flows into
appropriate criteria for stochastic modeling. These ideas are taken from control the-
ory, and forms of control of the deterministic system and stability of its stochastic
generalization run in tandem. The duality between the deterministic and stochastic
conditions is indeed almost exact, provided one is dealing with ¢-irreducible Markov
models; and the continuity conditions above interact with these ideas in ensuring that
the “stochasticization” of the deterministic models gives such ¢-irreducible chains.



Breiman [31] notes that he once wrote a preface so long that he never finished
his book. It is tempting to keep on, and rewrite here all the high points of the book.

We will resist such temptation. For other highlights we refer the reader instead
to the introductions to each chapter: in them we have displayed the main results in
the chapter, to whet the appetite and to guide the different classes of user. Do not be
fooled: there are many other results besides the highlights inside. We hope you will
find them as elegant and as useful as we do.

‘Who do we owe?

Like most authors we owe our debts, professional and personal. A preface is a good
place to acknowledge them.

The alphabetically and chronologically younger author began studying Markov
chains at McGill University in Montréal. John Taylor introduced him to the beauty
of probability. The excellent teaching of Michael Kaplan provided a first contact with
Markov chains and a unique perspective on the structure of stochastic models.

He is especially happy to have the chance to thank Peter Caines for planting
him in one of the most fantastic cities in North America, and for the friendship and
academic environment that he subsequently provided.

In applying these results, very considerable input and insight has been provided
by Lei Guo of Academia Sinica in Beijing and Doug Down of the University of Illinois.
Some of the material on control theory and on queues in particular owes much to their
collaboration in the original derivations.

He is now especially fortunate to work in close proximity to P.R. Kumar, who has
been a consistent inspiration, particularly through his work on queueing networks and
adaptive control. Others who have helped him, by corresponding on current research,
by sharing enlightenment about a new application, or by developing new theoretical
ideas, include Venkat Anantharam, A. Ganesh, Peter Glynn, Wolfgang Kliemann,
Laurent Praly, John Sadowsky, Karl Sigman, and Victor Solo.

The alphabetically later and older author has a correspondingly longer list of
influences who have led to his abiding interest in this subject. Five stand out: Chip
Heathcote and Eugene Seneta at the Australian National University, who first taught
the enjoyment of Markov chains; David Kendall at Cambridge, whose own funda-
mental work exemplifies the power, the beauty and the need to seek the underlying
simplicity of such processes; Joe Gani, whose unflagging enthusiasm and support for
the interaction of real theory and real problems has been an example for many years;
and probably most significantly for the developments in this book, David Vere-Jones,
who has shown an uncanny knack for asking exactly the right questions at times when
just enough was known to be able to develop answers to them.

It was also a pleasure and a piece of good fortune for him to work with the Finnish
school of Esa Nummelin, Pekka Tuominen and Elja Arjas just as the splitting tech-
nique was uncovered, and a large amount of the material in this book can actually be
traced to the month surrounding the First Tuusula Summer School in 1976. Applying
the methods over the years with David Pollard, Paul Feigin, Sid Resnick and Peter
Brockwell has also been both illuminating and enjoyable; whilst the ongoing stimu-
lation and encouragement to look at new areas given by Wojtek Szpankowski, Floske
Spieksma, Chris Adam and Kerrie Mengersen has been invaluable in maintaining
enthusiasm and energy in finishing this book.
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By sheer coincidence both of us have held Postdoctoral Fellowships at the Aus-
tralian National University, albeit at somewhat different times. Both of us started
much of our own work in this field under that system, and we gratefully acknowledge
those most useful positions, even now that they are long past.

More recently, the support of our institutions has been invaluable. Bond Univer-
sity facilitated our embryonic work together, whilst the Coordinated Sciences Labo-
ratory of the University of Illinois and the Department of Statistics at Colorado State
University have been enjoyable environments in which to do the actual writing.

Support from the National Science Foundation is gratefully acknowledged: grants
ECS 8910088 and DMS 9205687 enabled us to meet regularly, helped to fund our
students in related research, and partially supported the completion of the book.

Writing a book from multiple locations involves multiple meetings at every avail-
able opportunity. We appreciated the support of Peter Caines in Montréal, Bozenna
and Tyrone Duncan at the University of Kansas, Will Gersch in Hawaii, Gotz Ker-
sting and Heinrich Hering in Germany, for assisting in our meeting regularly and
helping with far-flung facilities.

Peter Brockwell, Kung-Sik Chan, Richard Davis, Doug Down, Kerrie Mengersen,
Rayadurgam Ravikanth, and Pekka Tuominen, and most significantly Vladimir
Kalashnikov and Floske Spieksma, read fragments or reams of manuscript as we
produced them, and we gratefully acknowledge their advice, comments, corrections
and encouragement. It is traditional, and in this case as accurate as usual, to say that
any remaining infelicities are there despite their best efforts.

Rayadurgam Ravikanth produced the sample path graphs for us; Bob MacFarlane
drew the remaining illustrations; and Francie Bridges produced much of the bibliog-
raphy and some of the text. The vast bulk of the material we have done ourselves:
our debt to Donald Knuth and the developers of IATEX is clear and immense, as is
our debt to Deepa Ramaswamy, Molly Shor, Rich Sutton and all those others who
have kept software, email and remote telematic facilities running smoothly.

Lastly, we are grateful to Brad Dickinson and Eduardo Sontag, and to Zvi Ruder
and Nicholas Pinfield and the Engineering and Control Series staff at Springer, for
their patience, encouragement and help.

And finally ...

And finally, like all authors whether they say so in the preface or not, we have received
support beyond the call of duty from our families. Writing a book of this magnitude
has taken much time that should have been spent with them, and they have been
unfailingly supportive of the enterprise, and remarkably patient and tolerant in the
face of our quite unreasonable exclusion of other interests.

They have lived with family holidays where we scribbled proto-books in restau-
rants and tripped over deer whilst discussing Doeblin decompositions; they have en-
dured sundry absences and visitations, with no idea of which was worse; they have
seen come and go a series of deadlines with all of the structure of a renewal process.

They are delighted that we are finished, although we feel they have not yet
adjusted to the fact that a similar development of the continuous time theory clearly
needs to be written next.

So to Belinda, Sydney and Sophie; to Catherine and Marianne: with thanks for
the patience, support and understanding, this book is dedicated to you.



Table of Contents

Preface . . . . . . o e v
I COMMUNICATION and REGENERATION 1
1 Heuristics . . . . . . . o e e e e 3
1.1 A Range of Markovian Environments . . . . . . . ... ... ...... 3
1.2 Basic Models in Practice . . . . . . . . ... ... oo 6
1.3 Stochastic Stability For Markov Models . . . . . ... ... ... ... 15
1.4 Commentary . . . . . . . . . ittt e e e e e 21
2 Markov Models . . . . . . ..o e 23
2.1 Markov Models In Time Series . . . . . ... ... .. ... ...... 24
2.2 Nonlinear State Space Models . . . . . . . .. ... .. ... ... 29
2.3 Models In Control And Systems Theory . . . ... ... ........ 37
2.4 Markov Models With Regeneration Times . . . . . .. ... ... ... 42
2.5 Commentary . . . . . . . .. e e e e 53
3 Transition Probabilities . . . . . ... ... oo o o000 55
3.1 Defining a Markovian Process . . . . . . ... .. ... ... ...... 56
3.2 Foundations on a Countable Space . . . ... ... ... ... ..... 58
3.3 Specific Transition Matrices . . . . . . . . . . ... .. ... ...... 61
3.4 Foundations for General State Space Chains . . . . .. ... ... ... 66
3.5 Building Transition Kernels For Specific Models . . . . . . . ... ... 74
3.6 Commentary . . . . . .. .. ..o 80
4 TIrreducibility . . . . . ..o 82
4.1 Communication and Irreducibility: Countable Spaces . . . . . . . . .. 83
4.2 p-Irreducibility . . . ... oL 88
4.3 1p-Irreducibility For Random Walk Models . . . . . .. ... ... ... 94
4.4 1p-Irreducible Linear Models . . . . . . . ... ... .. ... ... 96
4.5 Commentary . . . . . . . ..o e e 101
5 Pseudo-atoms . . . ... ..o 103
5.1 Splitting ¢-Irreducible Chains . . . . . . .. ... ... ... ... .. 104
5.2 Small Sets . . . . . . . oL 109
5.3 Small Sets for Specific Models . . . . . . ... ... ... ... ..... 113

5.4 CyclicBehavior . . . . . . ..o oo 117



I1

10

11

Table of Contents XIII

5.5 Petite Sets and Sampled Chains . . . . . .. ... ... ......... 122
5.6 Commentary . . . . . . . ... i e e e 128
Topology and Continuity . . . . . . . . ... .. oo 130
6.1 Feller Properties and Forms of Stability . .. ... ........... 132
6.2 T-chains . . . . . . . . . . . e 137
6.3 Continuous Components For Specific Models . . . .. ... ... ... 141
6.4 e-Chains . . . . . . . . . . . e e e e 147
6.5 Commentary . . . . . . . .. . e e 151
The Nonlinear State Space Model . . . . . . ... ... .. ... ..... 153
7.1 Forward Accessibility and Continuous Components . . . . . . .. ... 154
7.2 Minimal Sets and Irreducibility . . . . . .. .. ..., 161
7.3 Periodicity for nonlinear state space models . . . . . . ... ... ... 164
7.4 Forward Accessible Examples . . . . .. .. .. ... ... 168
7.5 Equicontinuity and the nonlinear state space model . . . . . . .. ... 170
7.6 Commentary . . . . . . . . . . i e e e e e 172

STABILITY STRUCTURES 175
Transience and Recurrence . . . . .. . ... ... ... .. ... ...... 177
8.1 Classifying chains on countable spaces . . . . ... .. ... ... ... 179
8.2 Classifying 9-irreducible chains . . . . . . .. ... ... ... 183
8.3 Recurrence and transience relationships . . . ... .. ... ... ... 188
8.4 C(lassification using drift criteria . . . . . .. ... ... L. 193
8.5 Classifying random walk on IR . . . . . ... ... ... oL 198
8.6 Commentary . . . . . . . . . ... 203
Harris and Topological Recurrence . . . . . . .. . ... ... ... ..... 204
9.1 Harris recurrence . . . . . . . . . . i i i i e e e e e e e e e 206
9.2 Non-evanescent and recurrent chains . . . . . ... ... ........ 211
9.3 Topologically recurrent and transient states . . . . .. ... ... ... 213
9.4 Criteria for stability on a topological space . . . . .. ... ... ... 218
9.5 Stochastic comparison and increment analysis . . . . . ... ... ... 224
9.6 Commentary . . . . . . . . . ..o 232
The Existence of m . . . . . . . . .. 234
10.1 Stationarity and Invariance . . . . ... ... ... ... 235
10.2 The existence of 7: chains with atoms . . . . . .. ... ... .. ... 239
10.3 Invariant measures: countable space models . . . . . . ... ... ... 241
10.4 The existence of m: 1)-irreducible chains . . . . . . . ... ... ... 245
10.5 Invariant Measures: General Models . . . . . . ... . ... ... ... 251
10.6 Commentary . . . . . . . o . .o e 257
Drift and Regularity . . . . . . . . .. .o o 260
11.1 Regular chains . . . . . . .. ... L 262
11.2 Drift, hitting times and deterministic models . . . . . ... ... ... 264
11.3 Drift criteria for regularity . . . . . . . . ... L oL 267

11.4 Using the regularity criteria . . . . . . . . . .. ... ... ... 275



X1V Table of Contents

11.5 Evaluating non-positivity . . . . . .. ... ... .. oL 281
11.6 Commentary . . . . . . . . . oo i i e e e e 287
12 Invariance and Tightness . . . . . .. . ... .. ... ... ... ... ... 290
12.1 Chains bounded in probability . . . . ... ... ... ... ... .. 291
12.2 Generalized sampling and invariant measures . . . .. ... ... ... 294
12.3 The existence of a o-finite invariant measure . . .. ... . ... ... 299
12.4 Invariant Measures for e-Chains . . . . . . . . .. .. . ... ... ... 301
12.5 Establishing boundedness in probability . . . . . ... ... ... ... 306
12.6 Commentary . . . . . . . . . oL e e e e e e 310
III CONVERGENCE 311
13 Ergodicity . . . . . . o e e 313
13.1 Ergodic chains on countable spaces . . . . . . . . .. ... ... ... 316
13.2 Renewal and regeneration . . . . . ... .. ... ... ... ..., 320
13.3 Ergodicity of positive Harris chains . . . . . . ... .. ... ... .. 326
13.4 Sums of transition probabilities . . . . . . .. ..o o000 oL 329
13.5 Commentary . . . . . . . o . . 332
14 f-Ergodicity and f-Regularity . . ... ... ... ... .. ... 334
14.1 f-Properties: chains with atoms . . . . . . . . .. ... ... ... ... 336
14.2 f-Regularity and drift . . . . . . . ... Lo oo 340
14.3 f-Ergodicity for general chains . . . . .. ... ... ... . ...... 346
14.4 f-Ergodicity of specificmodels . . . . . ... ... o000 350
14.5 A Key Renewal Theorem . . . . ... ... ... ... ......... 351
14.6 Commentary . . . . . . . . . ... Lo e e e 356
15 Geometric Ergodicity . . . . . . . . . . 358
15.1 Geometric properties: chains with atoms . . . . . . . . ... ... ... 360
15.2 Kendall sets and drift criteria . . . . . . . .. ... oo 367
15.3 f-Geometric regularity of @ and " . . . .. ... ... ... 375
15.4 f-Geometric ergodicity for general chains . . . . ... ... ... ... 379
15.5 Simple random walk and linear models . . . . . . .. ... ... ... 383
15.6 Commentary . . . . . . . . . oo e e e 385
16 V-Uniform Ergodicity . . . . . . . . .. ... ... o o 387
16.1 Operator nOrm CONVErgence . . . . . . . « « c v v v v v v v v v v v oo 390
16.2 Uniform ergodicity . . . . . . . . . . . .o Lo e 395
16.3 Geometric ergodicity and increment analysis . . .. . ... ... ... 401
16.4 Models from queueing theory . . . .. .. ... ... ... ..., 405
16.5 Autoregressive and state space models . . . . . ... ... ... 408
16.6 Commentary . . . . . . . . . ... o e e 412
17 Sample Paths and Limit Theorems . . ... .. ... ... ... ...... 415
17.1 Invariant o-Fields and the LLN . . . . . . . ... ... ... ... ... 417
17.2 Ergodic Theorems for Chains Possessing an Atom . . ... ... ... 422
17.3 General Harris Chains . . . . . .. ... .. ... . 0. 426

17.4 The Functional CLT . . . . . . . . . . . . . . . i i . 436



Table of Contents XV

17.5 Criteria for the CLT and the LIL . . . . . .. ... ... ........ 443
17.6 Applications . . . . . . . . .. Lo 446
177 Commentary . . . . . . . o oo e e e 449
18 Positivity . . . . . .o 451
18.1 Null recurrent chains . . . . . . .. . . . ... ... .. 453
18.2 Characterizing positivity using P* . . . . . . . ... ... ... ... 457
18.3 Positivity and T-chains . . . . . . . . . .. ... 0oL 460
18.4 Positivity and e-Chains . . . . . . . . . . .. .. ... ... ..., 462
18.5 The LLN for e-Chains . . . . . . . .. . . . . ... .. ... ...... 466
18.6 Commentary . . . . . . . . . L e e e e 468
19 Generalized Classification Criteria . . . . . . . . . ... .. ... ...... 470
19.1 State-dependent drifts . . . . . . . ... ... ... L L., 471
19.2 History-dependent drift criteria . . . . . . . .. .. ... ... .. ... 479
19.3 Mixed drift conditions . . . . . . . . .. ... ... L oo 486
19.4 Commentary . . . . . . . o . ot e e e e e e 495
IV APPENDICES 497
A Mud Maps . . . . . . . i i e e e e e e e e 500
A.1 Recurrence versus transience . . . .. . .. . ... ...t ... 500
A.2 Positivity versus nullity . . . . .. ... o o oL oL 502
A.3 Convergence Properties . . . ... ... ... ... .. ... ... 504
B Testing for Stability . . . . .. .. ... ... . oo 506
B.1 A Glossary of Drift Conditions . . . . . ... ... ... ........ 506
B.2 The scalar SETAR Model: a complete classification . . . . . . .. ... 508
C A Glossary of Model Assumptions . . . . .. . ... ... ... ....... 511
C.1 Regenerative Models . . . . . ... ... ... ... . . 511
C.2 State Space Models . . . . . . . . . ... ... ... 514
D Some Mathematical Background . . . . ... ... ... ... 520
D.1 Some Measure Theory . . . ... ... . ... ... ... ..o.... 520
D.2 Some Probability Theory . . ... ... .. ... ... ......... 523
D.3 Some Topology . . . . . . . . . . . 524
D.4 Some Real Analysis. . . . . . . .. .. . .. .. ... . ... 525
D.5 Some Convergence Concepts for Measures . . . . . ... ... ..... 526
D.6 Some Martingale Theory . . . . . . .. . . ... ... ... ... 528
D.7 Some Results on Sequences and Numbers . . . . ... ... ... ... 531
References . . . . . . . . . . . . e e e 533
Index . . . . . . . e e e 544



List of Figures

1.1
1.2
1.3
1.4
1.5
1.6

1.7

21
2.2
2.3
2.4
2.5
2.6

2.7
2.8
2.9
2.10
2.11
2.12

4.1

16.1

B.1

Deterministic linear model on IR?> . . . . ... ... ..........
Linear state space model on IR? with Gaussian noise . . . . . . .. ..
Random walk paths with increment distribution I' = N(0,1) . .. ..
Random walk paths with increment distribution I' = N(—0.2,1)
Random walk paths with increment distribution I' = N(0.2,1)

Random walk paths stopped at zero, with increment distribution I' =
N(=0.2,1) . . o o e e e

Random walk paths stopped at zero, with increment distribution I" =
N(H0.2,1) . . o e

Linear model path with @ = 0.85, increment distribution N (0, 1)
Linear model path with o = 1.05, increment distribution N (0, 1)
Simple bilinear model path with F(z,w) = (0.707T + w)z +w . . . . .
The gumleaf attractor . . . . . . . ... .. o oo o oo
The gumleaf attractor perturbed by noise . . . . ... ... ... ...

Dependent parameter bilinear model paths with o = 0.933, W ~
N(0,0.14) and Zy ~ N(0,0.01) . .. .. ... ... .. ... ... ...

Disturbance W for the SAC model: N(0,0.01) Gaussian white noise .
Output Y of the SAC model with « = 0.99, 0, = 0.1, and 0, =0.2 . .
Output Y of the SAC model with o = 0.99, 0, = 0.1, and 0, = 1.1 . .
A typical sample path of the single server queue . . . ... ... ...
Storage system path with a/f=2,r=1 .. ... ... ... .....
Storage system path with /=05, r=1 ... ... ... ......

Block decomposition of P into communicating classes . . . ... ...

The output of the simple adaptive control model when the control Uy, is
set equal to zero. The resulting process is equivalent to the dependent
parameter bilinear model with o = 0.99, Wy ~ N(0,0.01) and Zj ~
N(0,0.04) . . . o e e e

The SETAR model: stability classification of (6(1),8(M))-space. The
model is regular in the shaded “interior” area (11.36), and transient in
the unshaded “exterior” (9.48), (9.49) and (9.52). The boundaries are
in the figures below. . . . . . ... ... L oo



List of Figures XVII

B.2 The SETAR model: stability classification of (¢(1), (M ))-space in the
regions (A(M) = 1;60(1) < 1) and (§(M) < 1;0(1) = 1). The model
is regular in the shaded “interior” areas, which are clockwise (11.38),
(11.37) and (11.39); transient in the unshaded “exterior” (9.51), (9.50);
and null recurrent on the “margins” described clockwise by (11.45),
(11.46) and (11.47)-(1148). . . o oo 509
B.3 The SETAR model: stability classification of (¢(1), (M ))-space in the
region (A(M)6(1) = 1;6(1) < 0). The model is regular in the shaded
“interior” area (11.40); transient in the unshaded “exterior” (9.53);
and null recurrent on the “margin” described by (11.49). . ... ... 509



Part 1
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REGENERATION






1

Heuristics

This book is about Markovian models, and particularly about the structure and
stability of such models. We develop a theoretical basis by studying Markov chains in
very general contexts; and we develop, as systematically as we can, the applications
of this theory to applied models in systems engineering, in operations research, and
in time series.

A Markov chain is, for us, a collection of random variables & = {®,, : n € T},
where T is a countable time-set. It is customary to write 7" as Z :={0,1,...}, and
we will do this henceforth.

Heuristically, the critical aspect of a Markov model, as opposed to any other set
of random variables, is that it is forgetful of all but its most immediate past. The
precise meaning of this requirement for the evolution of a Markov model in time, that
the future of the process is independent of the past given only its present value, and
the construction of such a model in a rigorous way, is taken up in Chapter 3. Until
then it is enough to indicate that for a process @, evolving on a space X and governed
by an overall probability law P, to be a time-homogeneous Markov chain, there must
be a set of “transition probabilities” {P"(x, A),z € X, A C X} for appropriate sets A
such that for times n,m in Z

P(¢n+m €A | @jaj <m;®P, = 33) = Pn(xaA); (1'1)

that is, P"(x, A) denotes the probability that a chain at z will be in the set A after n
steps, or transitions. The independence of P" on the values of #;, 5 < m, is the Markov
property, and the independence of P" and m is the time-homogeneity property.

We now show that systems which are amenable to modeling by discrete time
Markov chains with this structure occur frequently, especially if we take the state
space of the process to be rather general, since then we can allow auxiliary information
on the past to be incorporated to ensure the Markov property is appropriate.

1.1 A Range of Markovian Environments

The following examples illustrate this breadth of application of Markov models, and
a little of the reason why stability is a central requirement for such models.

(a) The cruise control system on a modern motor vehicle monitors, at each time
point k, a vector { X} of inputs: speed, fuel flow, and the like (see Kuo [147]). It
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calculates a control value Uy which adjusts the throttle, causing a change in the
values of the environmental variables X} 1 which in turn causes Uy to change
again. The multidimensional process @ = {Xj, Uy} is often a Markov chain
(see Section 2.3.2), with new values overriding those of the past, and with the
next value governed by the present value. All of this is subject to measurement
error, and the process can never be other than stochastic: stability for this
chain consists in ensuring that the environmental variables do not deviate too
far, within the limits imposed by randomness, from the pre-set goals of the
control algorithm.

(b) A queue at an airport evolves through the random arrival of customers and the
service times they bring. The numbers in the queue, and the time the cus-
tomer has to wait, are critical parameters for customer satisfaction, for waiting
room design, for counter staffing (see Asmussen [10]). Under appropriate con-
ditions (see Section 2.4.2), variables observed at arrival times (either the queue
numbers, or a combination of such numbers and aspects of the remaining or
currently uncompleted service times) can be represented as a Markov chain,
and the question of stability is central to ensuring that the queue remains at a
viable level. Techniques arising from the analysis of such models have led to the
now familiar single-line multi-server counters actually used in airports, banks
and similar facilities, rather than the previous multi-line systems.

(¢) The exchange rate X, between two currencies can be and is represented as a
function of its past several values X,,_1,..., X, _x, modified by the volatility of
the market which is incorporated as a disturbance term W,, (see Krugman and
Miller [142] for models of such fluctuations). The autoregressive model

k
X, = Z Othn_j + W,
j=1

central in time series analysis (see Section 2.1) captures the essential concept of
such a system. By considering the whole k-length vector @, = (X,, ..., Xn—k+1),
Markovian methods can be brought to the analysis of such time-series models.
Stability here involves relatively small fluctuations around a norm; and as we
will see, if we do not have such stability, then typically we will have instability
of the grossest kind, with the exchange rate heading to infinity.

(d) Storage models are fundamental in engineering, insurance and business. In engi-
neering one considers a dam, with input of random amounts at random times,
and a steady withdrawal of water for irrigation or power usage. This model has
a Markovian representation (see Section 2.4.3 and Section 2.4.4). In insurance,
there is a steady inflow of premiums, and random outputs of claims at random
times. This model is also a storage process, but with the input and output re-
versed when compared to the engineering version, and also has a Markovian
representation (see Asmussen [10]). In business, the inventory of a firm will act
in a manner between these two models, with regular but sometimes also large ir-
regular withdrawals, and irregular ordering or replacements, usually triggered by
levels of stock reaching threshold values (for an early but still relevant overview
see Prabhu [220]). This also has, given appropriate assumptions, a Markovian
representation. For all of these, stability is essentially the requirement that the
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chain stays in “reasonable values”: the stock does not overfill the warehouse,
the dam does not overflow, the claims do not swamp the premiums.

(e) The growth of populations is modeled by Markov chains, of many varieties. Small
homogeneous populations are branching processes (see Athreya and Ney [11]);
more coarse analysis of large populations by time series models allows, as in (c),
a Markovian representation (see Brockwell and Davis [32]); even the detailed
and intricate cycle of the Canadian lynx seem to fit a Markovian model [188],
[267]. Of these, only the third is stable in the sense of this book: the others
either die out (which is, trivially, stability but a rather uninteresting form); or,
as with human populations, expand (at least within the model) forever.

(f) Markov chains are currently enjoying wide popularity through their use as a
tool in simulation: Gibbs sampling, and its extension to Markov chain Monte
Carlo methods of simulation, which utilise the fact that many distributions
can be constructed as invariant or limiting distributions (in the sense of (1.16)
below), has had great impact on a number of areas (see, as just one example,
[211]). In particular, the calculation of posterior Bayesian distributions has been
revolutionized through this route [244, 262, 264], and the behavior of prior
and posterior distributions on very general spaces such as spaces of likelihood
measures themselves can be approached in this way (see [75]): there is no doubt
that at this degree of generality, techniques such as we develop in this book are
critical.

(g) There are Markov models in all areas of human endeavor. The degree of word
usage by famous authors admits a Markovian representation (see, amongst oth-
ers, Gani and Saunders [85]). Did Shakespeare have an unlimited vocabulary?
This can be phrased as a question of stability: if he wrote forever, would the size
of the vocabulary used grow in an unlimited way? The record levels in sport
are Markovian (see Resnick [222]). The spread of surnames may be modeled
as Markovian (see [56]). The employment structure in a firm has a Markovian
representation (see Bartholomew and Forbes [15]). This range of examples does
not imply all human experience is Markovian: it does indicate that if enough
variables are incorporated in the definition of “immediate past”, a forgetfulness
of all but that past is a reasonable approximation, and one which we can handle.

(h) Perhaps even more importantly, at the current level of technological development,
telecommunications and computer networks have inherent Markovian represen-
tations (see Kelly [127] for a very wide range of applications, both actual and po-
tential, and Gray [89] for applications to coding and information theory). They
may be composed of sundry connected queueing processes, with jobs completed
at nodes, and messages routed between them; to summarize the past one may
need a state space which is the product of many subspaces, including countable
subspaces, representing numbers in queues and buffers, uncountable subspaces,
representing unfinished service times or routing times, or numerous trivial 0-1
subspaces representing available slots or wait-states or busy servers. But by a
suitable choice of state-space, and (as always) a choice of appropriate assump-
tions, the methods we give in this book become tools to analyze the stability of
the system.
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Simple spaces do not describe these systems in general. Integer or real-valued models
are sufficient only to analyze the simplest models in almost all of these contexts.

The methods and descriptions in this book are for chains which take their values
in a virtually arbitrary space X. We do not restrict ourselves to countable spaces, nor
even to Euclidean space IR", although we do give specific formulations of much of our
theory in both these special cases, to aid both understanding and application.

One of the key factors that allows this generality is that, for the models we
consider, there is no great loss of power in going from a simple to a quite general
space. The reader interested in any of the areas of application above should therefore
find that the structural and stability results for general Markov chains are potentially
tools of great value, no matter what the situation, no matter how simple or complex
the model considered.

1.2 Basic Models in Practice

1.2.1 The Markovian assumption

The simplest Markov models occur when the variables @,,, n € Z, are independent.
However, a collection of random variables which is independent certainly fails to
capture the essence of Markov models, which are designed to represent systems which
do have a past, even though they depend on that past only through knowledge of
the most recent information on their trajectory.

As we have seen in Section 1.1, the seemingly simple Markovian assumption allows
a surprisingly wide variety of phenomena to be represented as Markov chains. It is
this which accounts for the central place that Markov models hold in the stochastic
process literature. For once some limited independence of the past is allowed, then
there is the possibility of reformulating many models so the dependence is as simple
as in (1.1).

There are two standard paradigms for allowing us to construct Markovian repre-
sentations, even if the initial phenomenon appears to be non-Markovian.

In the first, the dependence of some model of interest Y = {Y,} on its past
values may be non-Markovian but still be based only on a finite “memory”. This
means that the system depends on the past only through the previous k + 1 values,
in the probabilistic sense that

PYnym € A|Y;,j<n)=PYqm€A|Y;,j=nn—1,...,n—k). (1.2)
Merely by reformulating the model through defining the vectors
b, = {Yna e aYn—k}

and setting ¢ = {P,,,n > 0} (taking obvious care in defining {Pg, ..., P, 1}), we can
define from Y a Markov chain . The motion in the first coordinate of @ reflects that
of Y, and in the other coordinates is trivial to identify, since ¥, becomes Y(;;1)_1,
and so forth; and hence Y can be analyzed by Markov chain methods.

Such state space representations, despite their somewhat artificial nature in some
cases, are an increasingly important tool in deterministic and stochastic systems the-
ory, and in linear and nonlinear time series analysis.
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As the second paradigm for constructing a Markov model representing a non-
Markovian system, we look for so-called embedded regeneration points. These are
times at which the system forgets its past in a probabilistic sense: the system viewed
at such time points is Markovian even if the overall process is not.

Consider as one such model a storage system, or dam, which fills and empties.
This is rarely Markovian: for instance, knowledge of the time since the last input,
or the size of previous inputs still being drawn down, will give information on the
current level of the dam or even the time to the next input. But at that very special
sequence of times when the dam is empty and an input actually occurs, the process
may well “forget the past”, or “regenerate”: appropriate conditions for this are that
the times between inputs and the size of each input are independent. For then one
cannot forecast the time to the next input when at an input time, and the current
emptiness of the dam means that there is no information about past input levels
available at such times. The dam content, viewed at these special times, can then be
analyzed as a Markov chain.

“Regenerative models” for which such “embedded Markov chains” occur are com-
mon in operations research, and in particular in the analysis of queueing and network
models.

State space models and regeneration time representations have become increas-
ingly important in the literature of time series, signal processing, control theory, and
operations research, and not least because of the possibility they provide for analysis
through the tools of Markov chain theory. In the remainder of this opening chapter,
we will introduce a number of these models in their simplest form, in order to provide
a concrete basis for further development.

1.2.2 State space and deterministic control models

One theme throughout this book will be the analysis of stochastic models through
consideration of the underlying deterministic motion of specific (non-random) real-
izations of the input driving the model.

Such an approach draws on both control theory, for the deterministic analysis; and
Markov chain theory, for the translation to the stochastic analogue of the deterministic
chain.

We introduce both of these ideas heuristically in this section.

Deterministic control models In the theory of deterministic systems and control
systems we find the simplest possible Markov chains: ones such that the next position
of the chain is determined completely as a function of the previous position.

Consider the deterministic linear system on IR", whose “state trajectory” x =
{zk, k € Z} is defined inductively as

Th+1 = F.’L‘k (13)

where F' is an n X n matrix.

Clearly, this is a multi-dimensional Markovian model: even if we know all of the
values of {zx, k < m} then we will still predict 41 in the same way, with the same
(exact) accuracy, based solely on (1.3) which uses only knowledge of z,.

In Figure 1.1 we show sample paths corresponding to the choice of F' as F' =
I + AA with T equal to a 2 x 2 identity matrix, A = (:1?'%0?2) and A = 0.02. It is
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Y
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X

Fig. 1.1. Deterministic linear model on IR?

instructive to realize that two very different types of behavior can follow from related
choices of the matrix F. In Figure 1.1 the trajectory spirals in, and is intuitively
“stable”; but if we read the model in the other direction, the trajectory spirals out,
and this is exactly the result of using F~! in (1.3).

Thus, although this model is one without any built-in randomness or stochastic
behavior, questions of stability of the model are still basic: the first choice of F' gives
a stable model, the second choice of F~! gives an unstable model.

A straightforward generalization of the linear system of (1.3) is the linear control
model. From the outward version of the trajectory in Figure 1.1, it is clearly possible
for the process determined by F' to be out of control in an intuitively obvious sense.
In practice, one might observe the value of the process, and influence it either by
adding on a modifying “control value” either independently of the current position of
the process or directly based on the current value. Now the state trajectory x = {xy}
on IR" is defined inductively not only as a function of its past, but also of such a
(deterministic) control sequence u = {u} taking values in, say, IRP.

Formally, we can describe the linear control model by the postulates (LCM1) and
(LCM2) below.

If the control value uy1; depends at most on the sequence z;,j < k through zy,
then it is clear that the LCM(F,G) model is itself Markovian.

However, the interest in the linear control model in our context comes from the
fact that it is helpful in studying an associated Markov chain called the linear state
space model. This is simply (1.4) with a certain random choice for the sequence {uy},
with ugy1 independent of z;,5 <k, and we describe this next.
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Deterministic linear control model

Suppose x = {z}} is a process on IR” and u = {u, } is a process on IR?,
for which z( is arbitrary and for k£ > 1

(LCM1)  there exists an n X n matrix F' and an n X p matrix G
such that for each k € Z,

ZTpt1 = Fzp + Gug1; (1.4)
(LCM2)  the sequence {uy} on IRP is chosen deterministically.

Then x is called the linear control model driven by F,G, or the
LCM(F,G) model.

The linear state space model In developing a stochastic version of a control
system, an obvious generalization is to assume that the next position of the chain is
determined as a function of the previous position, but in some way which still allows
for uncertainty in its new position, such as by a random choice of the “control” at
each step. Formally, we can describe such a model by

Linear State Space Model

Suppose X = {X}} is a stochastic process for which

(LSS1) There exists an n X n matrix F and an n X p matrix
G such that for each k € Z,, the random variables X and
W), take values in IR™ and IRP, respectively, and satisfy in-
ductively for k € Z,

X1 = FXp + GWiyq

where X is arbitrary;

(LSS2)  The random variables {W}} are independent and iden-
tically distributed (i.i.d), and are independent of Xy, with
common distribution I"(A) = P(W; € A) having finite mean
and variance.

Then X is called the linear state space model driven by F,G, or the
LSS(F,G) model, with associated control model LCM(F,G).
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Fig. 1.2. Linear state space model on IR? with Gaussian noise

Such linear models with random “noise” or “innovation” are related to both the
simple deterministic model (1.3) and also the linear control model (1.4).

There are obviously two components to the evolution of a state space model.
The matrix F' controls the motion in one way, but its action is modulated by the
regular input of random fluctuations which involve both the underlying variable with
distribution I', and its adjustment through G. In Figure 1.2 we show sample paths
corresponding to the choice of F as Figure 1.1 and G = (5%), with I" taken as a
bivariate Normal, or Gaussian, distribution N (0, 1). This indicates that the addition
of the noise variables W can lead to types of behavior very different to that of the
deterministic model, even with the same choice of the function F'.

Such models describe the movements of airplanes, of industrial and engineering
equipment, and even (somewhat idealistically) of economies and financial systems [4,
39]. Stability in these contexts is then understood in terms of return to level flight, or
small and (in practical terms) insignificant deviations from set engineering standards,
or minor inflation or exchange-rate variation. Because of the random nature of the
noise we cannot expect totally unvarying systems; what we seek to preclude are
explosive or wildly fluctuating operations.

We will see that, in wide generality, if the linear control model LCM(F,G) is
stable in a deterministic way, and if we have a “reasonable” distribution I" for our
random control sequences, then the linear state space LSS(F,G) model is also stable
in a stochastic sense.

In Chapter 2 we will describe models which build substantially on these simple
structures, and which illustrate the development of Markovian structures for linear
and nonlinear state space model theory.

We now leave state space models, and turn to the simplest examples of another
class of models, which may be thought of collectively as models with a regenerative
structure.
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1.2.3 The gamblers ruin and the random walk

Unrestricted random walk At the roots of traditional probability theory lies the
problem of the gambler’s ruin.

One has a gaming house in which one plays successive games; at each time-point,
there is a playing of a game, and an amount won or lost: and the successive totals of
the amounts won or lost represent the fluctuations in the fortune of the gambler.

It is common, and realistic, to assume that as long as the gambler plays the same
game each time, then the winnings Wy, at each time k are i.i.d.

Now write the total winnings (or losings) at time k as @. By this construction,

Ppr1 = P + Wi (1.5)

It is obvious that @ = {®y : k € Z} is a Markov chain, taking values in the real
line IR = (—o0, 00); the independence of the {W;} guarantees the Markovian nature
of the chain &.

In this context, stability (as far as the gambling house is concerned) requires that
@ eventually reaches (—oo,0]; a greater degree of stability is achieved from the same
perspective if the time to reach (—oo,0] has finite mean. Inevitably, of course, this
stability is also the gambler’s ruin.

Such a chain, defined by taking successive sums of i.i.d. random variables, provides
a model for very many different systems, and is known as random walk.

Random Walk on the Real Line

Suppose that @ = {Py;k € Z,} is a collection of random variables
defined by choosing an arbitrary distribution for @y and setting for k €
Y/

(RW1)
P11 =D + Wit

where the Wy, are i.i.d. random variables taking values in IR
with
I'(=00,y] = P(Wn < y). (1.6)

Then & is called random walk on IR.

In Figure 1.3 , Figure 1.4 and Figure 1.5 we give sets of three sample paths of random
walks with different distributions for I': all start at the same value but we choose for
the winnings on each game

(i) W having a Gaussian N(0, 1) distribution, so the game is fair;



12 1. Heuristics

Y

Fig. 1.3. Random walk paths with increment distribution I" = N (0, 1)

Ao

Fig.1.4. Random walk paths with increment distribution I' = N(—0.2,1)
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Y

Fig.1.5. Random walk paths with increment distribution I" = N(0.2,1)

(ii) W having a Gaussian N(—0.2,1) distribution, so the game is not fair, with the
house winning one unit on average each five plays;

(iii) W having a Gaussian N(0.2,1) distribution, so the game modeled is, perhaps,
one of “skill” where the player actually wins on average one unit per five games
against the house.

The sample paths clearly indicate that ruin is rather more likely under case (ii)
than under case (iii) or case (i): but when is ruin certain? And how long does it take
if it is certain?

These are questions involving the stability of the random walk model, or at least
that modification of the random walk which we now define.

Random walk on a half-line Although they come from different backgrounds,
it is immediately obvious that the random walk defined by (RW1) is a particularly
simple form of the linear state space model, in one dimension and with a trivial form
of the matrix pair F,G in (LSS1). However, the models traditionally built on the
random walk follow a somewhat different path than those which have their roots in
deterministic linear systems theory.

Perhaps the most widely applied variation on the random walk model, which
immediately moves away from a linear structure, is the random walk on a half-line.
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Y

Fig.1.6. Random walk paths stopped at zero, with increment distribution I' = N(—0.2,1)

Random Walk on a Half Line

Suppose @ = {Py; k € Z. } is defined by choosing an arbitrary distribu-
tion for @4 and taking

(RWHL1)
Pry1 = [P+ Wiga] " (1.7)

where [@f + Wyy1]" := max(0, P + Wi41) and again the
Wi are ii.d. random variables taking values in IR with
I'(=o0,y] = P(W <)

Then & is called random walk on a half-line.

This chain follows the paths of a random walk, but is held at zero when the underlying
random walk becomes non-positive, leaving zero again only when the next positive
value occurs in the sequence {Wy}.

In Figure 1.6 and Figure 1.7 we again give sets of sample paths of random walks
on the half line [0, 00), corresponding to those of the unrestricted random walk in the
previous section. The difference in the proportion of paths which hit, or return to,
the state {0} is again clear.

We shall see in Chapter 2 that random walk on a half line is both a model for
storage systems and a model for queueing systems. For all such applications there
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Y

Fig.1.7. Random walk paths stopped at zero, with increment distribution I' = N(+0.2,1)

are similar concerns and concepts of the structure and the stability of the models:
we need to know whether a dam overflows, whether a queue ever empties, whether
a computer network jams. In the next section we give a first heuristic description of
the ways in which such stability questions might be formalized.

1.3 Stochastic Stability For Markov Models

What is “stability”?

It is a word with many meanings in many contexts. We have chosen to use it
partly because of its very diffuseness and lack of technical meaning: in the stochastic
process sense it is not well-defined, it is not constraining, and it will, we hope, serve
to cover a range of similar but far from identical “stable” behaviors of the models we
consider, most of which have (relatively) tightly defined technical meanings.

Stability is certainly a basic concept. In setting up models for real phenomena
evolving in time, one ideally hopes to gain a detailed quantitative description of the
evolution of the process based on the underlying assumptions incorporated in the
model. Logically prior to such detailed analyses are those questions of the structure
and stability of the model which require qualitative rather than quantitative answers,
but which are equally fundamental to an understanding of the behavior of the model.
This is clear even from the behavior of the sample paths of the models considered in
the section above: as parameters change, sample paths vary from reasonably “stable”
(in an intuitive sense) behavior, to quite “unstable” behavior, with processes taking
larger or more widely fluctuating values as time progresses.

Investigation of specific models will, of course, often require quite specific tools:
but the stability and the general structure of a model can in surprisingly wide-ranging
circumstances be established from the concepts developed purely from the Markovian
nature of the model.
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We discuss in this section, again somewhat heuristically (or at least with minimal
technicality: some “quotation-marked” terms will be properly defined later), various
general stability concepts for Markov chains. Some of these are traditional in the
Markov chain literature, and some we take from dynamical or stochastic systems
theory, which is concerned with precisely these same questions under rather different
conditions on the model structures.

1.3.1 Communication and recurrence as stability

We will systematically develop a series of increasingly strong levels of communication
and recurrence behavior within the state space of a Markov chain, which provide one
unified framework within which we can discuss stability.
To give an initial introduction, we need only the concept of the hitting time from
a point to a set: let
T4:=inf(n > 1: P, € A)

denote the first time a chain reaches the set A. This will be infinite for those paths
where the set A is never reached.

In one sense the least restrictive form of stability we might require is that the
chain does not in reality consist of two chains: that is, that the collection of sets which
we can reach from different starting points is not different. This leads us to first define
and study

(I) @-irreducibility for a general space chain, which we approach by requiring that
the space supports a measure ¢ with the property that for every starting point
zeX

©(A) >0=Py(t4 <o0) >0

where P, denotes the probability of events conditional on the chain beginning with
Sp() =T.

This condition ensures that all “reasonable sized” sets, as measured by ¢, can be
reached from every possible starting point.

For a countable space chain ¢-irreducibility is just the concept of irreducibility
commonly used [40, 49], with ¢ taken as counting measure.

For a state space model ¢-irreducibility is related to the idea that we are able to
“steer” the system to every other state in IR™. The linear control LCM(F,G) model
is called controllable if for any initial states zg and any other z* € X, there exists
m € Zy and a sequence of control variables (u],...u},) € IRP such that z,, = z*
when (uy,...un) = (u7,...u},). If this does not hold then for some starting points
we are in one part of the space forever; from others we are in another part of the
space. Controllability, and analogously irreducibility, preclude this.

Thus under irreducibility we do not have systems so unstable in their starting po-
sition that, given a small change of initial position, they might change so dramatically
that they have no possibility of reaching the same set of states.

A study of the wide-ranging consequences of such an assumption of irreducibility
will occupy much of Part I of this book: the definition above will be shown to produce
remarkable solidity of behavior.

The next level of stability is a requirement, not only that there should be a
possibility of reaching like states from unlike starting points, but that reaching such
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sets of states should be guaranteed eventually. This leads us to define and study
concepts of

(ITI) recurrence, for which we might ask as a first step that there is a measure ¢
guaranteeing that for every starting point z € X

©(A) >0=Py(ra <o0) =1, (1.8)
and then, as a further strengthening, that for every starting point z € X

w(A) >0 = Eg[ra] < o0. (1.9)

These conditions ensure that reasonable sized sets are reached with probability one,
as in (1.8), or even in a finite mean time as in (1.9). Part II of this book is devoted to
the study of such ideas, and to showing that for irreducible chains, even on a general
state space, there are solidarity results which show that either such uniform (in z)
stability properties hold, or the chain is unstable in a well-defined way: there is no
middle ground, no “partially stable” behavior available.

For deterministic models, the recurrence concepts in (II) are obviously the same.
For stochastic models they are definitely different. For “suitable” chains on spaces
with appropriate topologies (the T-chains introduced in Chapter 6), the first will
turn out to be entirely equivalent to requiring that “evanescence”, defined by

o0
{® — oo} = (| {® € Oy, infinitely often}* (1.10)

n=0

for a countable collection of open precompact sets {O,}, has zero probability for all
starting points; the second is similarly equivalent, for the same “suitable” chains, to
requiring that for any € > 0 and any x there is a compact set C such that

lim inf P*(z,C) >1—¢ (1.11)
k—o0
which is tightness [24] of the transition probabilities of the chain.

All these conditions have the heuristic interpretation that the chain returns to
the “center” of the space in a recurring way: when (1.9) holds then this recurrence is
faster than if we only have (1.8), but in both cases the chain does not just drift off
(or evanesce) away from the center of the state space.

In such circumstances we might hope to find, further, a long-term version of
stability in terms of the convergence of the distributions of the chain as time goes by.
This is the third level of stability we consider. We define and study

(III) the limiting, or ergodic, behavior of the chain: and it emerges that in the
stronger recurrent situation described by (1.9) there is an “invariant regime”
described by a measure 7 such that if the chain starts in this regime (that is, if
&y has distribution 7) then it remains in the regime, and moreover if the chain
starts in some other regime then it converges in a strong probabilistic sense
with 7 as a limiting distribution.

In Part IIT we largely confine ourselves to such ergodic chains, and find both theoret-
ical and pragmatic results ensuring that a given chain is at this level of stability. For
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whilst the construction of solidarity results, as in Parts I and II, provides a vital un-
derpinning to the use of Markov chain theory, it is the consequences of that stability,
in the form of powerful ergodic results, that makes the concepts of very much more
than academic interest.

Let us provide motivation for such endeavors by describing, with a little more
formality, just how solid the solidarity results are, and how strong the consequent
ergodic theorems are. We will show, in Chapter 13, the following;:

Theorem 1.3.1 The following four conditions are equivalent:

(1) The chain admits a unique probability measure w satisfying the invariant equations

7(A) = / w(dz)P(z, 4), A€ B(X); (1.12)

(ii) There ezists some “small” set C € B(X) and M¢ < oo such that

sup E;[1¢] < Mc; (1.13)
zeC

(iii) There ezists some “small” set C, some b < oo and some non-negative “test
function” V, finite p-almost everywhere, satisfying

/P(w,dy)V(y) <V(z)—1+blg(z), z € X; (1.14)

(iv) There exists some “small” set C € B(X) and some P*>°(C) > 0 such that as
n— 00
lim inf sup |P"(z,C) — P*(C)| =0 (1.15)

Any of these conditions implies, for “aperiodic” chains,

sup |P"(z,A) —w(A)| — 0, n — 00, (1.16)
AeB(X)

for every x € X for which V(x) < oo, where V' is any function satisfying (1.14).

Thus “local recurrence” in terms of return times, as in (1.13) or “local convergence”
as in (1.15) guarantees the uniform limits in (1.16); both are equivalent to the mere
existence of the invariant probability measure 7; and moreover we have in (1.14) an
exact test based only on properties of P for checking stability of this type.

Each of (i)-(iv) is a type of stability: the beauty of this result lies in the fact
that they are completely equivalent. Moreover, for this irreducible form of Marko-
vian system, it is further possible in the “stable” situation of this theorem to develop
asymptotic results, which ensure convergence not only of the distributions of the
chain, but also of very general (and not necessarily bounded) functions of the chain
(Chapter 14); to develop global rates of convergence to these limiting values (Chap-
ter 15 and Chapter 16); and to link these to Laws of Large Numbers or Central Limit
Theorems (Chapter 17).

Together with these consequents of stability, we also provide a systematic ap-
proach for establishing stability in specific models in order to utilize these concepts.
The extension of the so-called “Foster-Lyapunov” criteria as in (1.14) to all aspects
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of stability, and application of these criteria in complex models, is a key feature of
our approach to stochastic stability.

These concepts are largely classical in the theory of countable state space Markov
chains. The extensions we give to general spaces, as described above, are neither so
well-known nor, in some cases, previously known at all.

The heuristic discussion of this section will take considerable formal justification,
but the end-product will be a rigorous approach to the stability and structure of
Markov chains.

1.3.2 A dynamical system approach to stability

Just as there are a number of ways to come to specific models such as the random
walk, there are other ways to approach stability, and the recurrence approach based on
ideas from countable space stochastic models is merely one. Another such is through
deterministic dynamical systems.

We now consider some traditional definitions of stability for a deterministic sys-
tem, such as that described by the linear model (1.3) or the linear control model
LCM(F.G).

One route is through the concepts of a (semi) dynamical system: this is a triple
(T, X,d) where (X,d) is a metric space, and T: X — X is, typically, assumed to
be continuous. A basic concern in dynamical systems is the structure of the orbit
{Tkw :k € Z,}, where x € X is an initial condition so that Tz := z, and we define
inductively TF+'z := T*(Tx) for k > 1.

There are several possible dynamical systems associated with a given Markov
chain.

The dynamical system which arises most naturally if X has sufficient structure is
based directly on the transition probability operators P¥. If 4 is an initial distribution
for the chain (that is, if ®¢ has distribution x), one might look at the trajectory of
distributions {xP* : k > 0}, and consider this as a dynamical system (P, M,d) with
M the space of Borel probability measures on a topological state space X, d a suitable
metric on M, and with the operator P defined as in (1.1) acting as P: M — M
through the relation

uP() = [ u(do)P(a, ), weM.

In this sense the Markov transition function P can be viewed as a deterministic
map from M to itself, and P will induce such a dynamical system if it is suitably
continuous. This interpretation can be achieved if the chain is on a suitably behaved
space and has the Feller property that Pf(z):= [ P(z,dy)f(y) is continuous for
every bounded continuous f, and then d becomes a weak convergence metric (see
Chapter 6).

As in the stronger recurrence ideas in (II) and (III) in Section 1.3.1, in discussing
the stability of @, we are usually interested in the behavior of the terms P*, k > 0,
when k becomes large. Our hope is that this sequence will be bounded in some sense,
or converge to some fixed probability 7 € M, as indeed it does in (1.16).

Four traditional formulations of stability for a dynamical system, which give a
framework for such questions, are
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(i) Lagrange stability: for each z € X, the orbit starting at = is a precompact subset
of X. For the system (P, M,d) with d the weak convergence metric, this is
exactly tightness of the distributions of the chain, as defined in (1.11);

(ii) Stability in the sense of Lyapunov: for each initial condition z € X,

: k k.\

g}ggzglgd(T y, T"z) =0,
where d denotes the metric on X. This is again the requirement that the long
term behavior of the system is not overly sensitive to a change in the initial
conditions;

(iii) Asymptotic stability: there exists some fixed point z* so that T*z* = z* for all
k, with trajectories {z)} starting near z* staying near and converging to z*
as k — oo. For the system (P, M,d) the existence of a fixed point is exactly
equivalent to the existence of a solution to the invariant equations (1.12);

(iv) Global asymptotic stability: the system is stable in the sense of Lyapunov and
for some fixed 2* € X and every initial condition x € X,
lim d(T*z,z*) = 0. (1.17)
k—o0

This is comparable to the result of Theorem 1.3.1 for the dynamical system

(P,M,d).

Lagrange stability requires that any limiting measure arising from the sequence {uP*}
will be a probability measure, rather as in (1.16).

Stability in the sense of Lyapunov is most closely related to irreducibility, al-
though rather than placing a global requirement on every initial condition in the
state space, stability in the sense of Lyapunov only requires that two initial con-
ditions which are sufficiently close will then have comparable long term behavior.
Stability in the sense of Lyapunov says nothing about the actual boundedness of the
orbit {T*z}, since it is simply continuity of the maps {T*}, uniformly in & > 0. An
example of a system on IR which is stable in the sense of Lyapunov is the simple
recursion zx4+1 = zx + 1, £ > 0. Although distinct trajectories stay close together if
their initial conditions are similarly close, we would not consider this system stable
in most other senses of the word.

The connections between the probabilistic recurrence approach and the dynamical
systems approach become very strong in the case where the chain is both Feller and
@-irreducible, and when the irreducibility measure ¢ is related to the topology by the
requirement that the support of ¢ contains an open set.

In this case, by combining the results of Chapter 6 and Chapter 18, we get for
suitable spaces

Theorem 1.3.2 For a p-irreducible “aperiodic” Feller chain with supp ¢ containing
an open set, the dynamical system (P, M,d) is globally asymptotically stable if and
only if the distributions { P*(z, -)} are tight as in (1.11); and then the uniform ergodic
limit (1.16) holds.

This result follows, not from dynamical systems theory, but by showing that such a
chain satisfies the conditions of Theorem 1.3.1; these Feller chains are an especially
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useful subset of the “suitable” chains for which tightness is equivalent to the properties
described in Theorem 1.3.1, and then, of course, (1.16) gives a result rather stronger
than (1.17).

Embedding a Markov chain in a dynamical system through its transition proba-
bilities does not bring much direct benefit, since results on dynamical systems in this
level of generality are relatively weak. The approach does, however, give insights into
ways of thinking of Markov chain stability, and a second heuristic to guide the types
of results we should seek.

1.4 Commentary

This book does not address models where the time-set is continuous (when @ is
usually called a Markov process), despite the sometimes close relationship between
discrete and continuous time models: see Chung [49] or Anderson [5] for the classical
countable space approach.

On general spaces in continuous time, there are a totally different set of questions
that are often seen as central: these are exemplified in Sharpe [237], although the
interested reader should also see Meyn and Tweedie [180, 181, 179] for recent results
which are much closer in spirit to, and rely heavily on, the countable time approach
followed in this book.

There has also been considerable recent work over the past two decades on the
subject of more generally indexed Markov models (such as Markov random fields,
where T is multi-dimensional), and these are also not in this book. In our development
Markov chains always evolve through time as a scalar, discrete quantity.

The question of what to call a Markovian model, and whether to concentrate on
the denumerability of the space or the time parameter in using the word “chain”,
seems to have been resolved in the direction we take here. Doob [68] and Chung [49]
reserve the term chain for systems evolving on countable spaces with both discrete
and continuous time parameters, but usage seems to be that it is the time-set that
gives the “chaining”. Revuz [223], in his Notes, gives excellent reasons for this.

The examples we begin with here are rather elementary, but equally they are
completely basic, and represent the twin strands of application we will develop: the
first, from deterministic to stochastic models via a “stochasticization” within the same
functional framework has analogies with the approach of Stroock and Varadhan in
their analysis of diffusion processes (see [260, 259, 102]), whilst the second, from basic
independent random variables to sums and other functionals traces its roots back too
far to be discussed here. Both these models are close to identical at this simple level.
We give more diverse examples in Chapter 2.

We will typically use X and X,, to denote state space models, or their values at
time n, in accordance with rather long established conventions. We will then typically
use lower case letters to denote the values of related deterministic models. Regener-
ative models such as random walk are, on the other hand, typically denoted by the
symbols ¢ and ®,,, which we also use for generic chains.

The three concepts described in (I)-(IIT) may seem to give a rather limited number
of possible versions of “stability”. Indeed, in the various generalizations of determin-
istic dynamical systems theory to stochastic models which have been developed in the
past three decades (see for example Kushner [149] or Khas’minskii [134]) there have
been many other forms of stability considered. All of them are, however, qualitatively
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similar, and fall broadly within the regimes we describe, even though they differ in
detail.

It will become apparent in the course of our development of the theory of irre-
ducible chains that in fact, under fairly mild conditions, the number of different types
of behavior is indeed limited to precisely those sketched above in (I)-(III). Our aim is
to unify many of the partial approaches to stability and structural analysis, to indi-
cate how they are in many cases equivalent, and to develop both criteria for stability
to hold for individual models, and limit theorems indicating the value of achieving
such stability.

With this rather optimistic statement, we move forward to consider some of the
specific models whose structure we will elucidate as examples of our general results.
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Markov Models

The results presented in this book have been written in the desire that practitioners
will use them. We have tried therefore to illustrate the use of the theory in a systematic
and accessible way, and so this book concentrates not only on the theory of general
space Markov chains, but on the application of that theory in considerable detail.

We will apply the results which we develop across a range of specific applications:
typically, after developing a theoretical construct, we apply it to models of increasing
complexity in the areas of systems and control theory, both linear and nonlinear,
both scalar and vector-valued; traditional “applied probability” or operations research
models, such as random walks, storage and queueing models, and other regenerative
schemes; and models which are in both domains, such as classical and recent time-
series models.

These are not given merely as “examples” of the theory: in many cases, the
application is difficult and deep of itself, whilst applications across such a diversity
of areas have often driven the definition of general properties and the links between
them. Our goal has been to develop the analysis of applications on a step by step
basis as the theory becomes richer throughout the book.

To motivate the general concepts, then, and to introduce the various areas of
application, we leave until Chapter 3 the normal and necessary foundations of the
subject, and first introduce a cross-section of the models for which we shall be devel-
oping those foundations.

These models are still described in a somewhat heuristic way. The full mathemat-
ical description of their dynamics must await the development in the next chapter of
the concepts of transition probabilities, and the reader may on occasion benefit by
moving to some of those descriptions in parallel with the outlines here.

It is also worth observing immediately that the descriptive definitions here are
from time to time supplemented by other assumptions in order to achieve specific
results: these assumptions, and those in this chapter and the last, are collected for
ease of reference in Appendix C.

As the definitions are developed, it will be apparent immediately that very many
of these models have a random additive component, such as the i.i.d. sequence {W,}
in both the linear state space model and the random walk model. Such a component
goes by various names, such as error, noise, innovation, disturbance or increment
sequence, across the various model areas we consider. We shall use the nomenclature
relevant to the context of each model.
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We will save considerable repetitive definition if we adopt a global convention
immediately to cover these sequences.

Error, Noise, Innovation, Disturbance and Increments

Suppose W = {W,} is labeled as an error, noise, innovation, distur-
bance or increment sequence. Then this has the interpretation that the
random variables {W,, } are independent and identically distributed, with
distribution identical to that of a generic variable denoted W.

We will systematically denote the probability law of such a variable W
by I'.

It will also be apparent that many models are defined inductively from their own
past in combination with such innovation sequences. In order to commence the in-
duction, initial values are needed. We adopt a second convention immediately to avoid
repetition in defining our models.

Initialization

Unless specifically defined otherwise, the initial state {®y} of a Markov
model will be taken as independent of the error, noise, innovation, dis-
turbance or increments process, and will have an arbitrary distribution.

2.1 Markov Models In Time Series

The theory of time series has been developed to model a set of observations developing
in time: in this sense, the fundamental starting point for time series and for more
general Markov models is virtually identical. However, whilst the Markov theory
immediately assumes a short-term dependence structure on the variables at each time
point, time series theory concentrates rather on the parametric form of dependence
between the variables.

The time series literature has historically concentrated on linear models (that is,
those for which past disturbances and observations are combined to form the present
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observation through some linear transformation) although recently there has been
greater emphasis on nonlinear models. We first survey a number of general classes of
linear models and turn to some recent nonlinear time series models in Section 2.2.

It is traditional to denote time series models as a sequence X = {X,, : n € Z, },
and we shall follow this tradition.

2.1.1 Simple linear models

The first class of models we discuss has direct links with deterministic linear mod-
els, state space models and the random walk models we have already introduced in
Chapter 1.

We begin with the simplest possible “time series” model, the scalar autoregression
of order one, or AR(1) model on R'.

Simple Linear Model

The process X = {X,,,n € Z.} is called the simple linear model, or
AR(1) model if

(SLM1) for each n € Z, X, and W), are random variables on
IR, satisfying
Xn+1 = OéXn + Wn+1,

for some « € IR;

(SLM2)  the random variables {W),} are an error sequence with
distribution I" on IR.

The simple linear model is trivially Markovian: the independence of X, i from
Xn—1,Xn—2,... given X,, = z follows from the construction rule (SLM1), since the
value of W;, does not depend on any of {X,_1, X, _2...} from (SLM2).

The simple linear model can be viewed in one sense as an extension of the random
walk model, where now we take some proportion or multiple of the previous value,
not necessarily equal to the previous value, and again add a new random amount
(the “noise” or “error”) onto this scaled random value. Equally, it can be viewed as
the simplest special case of the linear state space model LSS(F,G), in the scalar case
with F = a and G = 1.

In Figure 2.1 and Figure 2.2 we give sets of sample paths of linear models with
different values of the parameter «.

The choice of this parameter critically determines the behavior of the chain. If
|a| < 1 then the sample paths remain bounded in ways which we describe in detail in
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Y

Fig. 2.1. Linear model path with a = 0.85, increment distribution N (0, 1)

Y

Fig. 2.2. Linear model path with a = 1.05, increment distribution N (0, 1)
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later chapters, and the process X is inherently “stable”: in fact, ergodic in the sense
of Section 1.3.1 (IIT) and Theorem 1.3.1, for reasonable distributions I'. But if |a| > 1
then X is unstable, in a well-defined way: in fact, evanescent with probability one, in
the sense of Section 1.3.1 (II), if the noise distribution I" is again reasonable.

2.1.2 Linear autoregressions and ARMA models

In the development of time series theory, simple linear models are usually analyzed
as a subset of the class of autoregressive models, which depend in a linear manner on
their past history for a fixed number k£ > 1 of steps in the past.

Autoregressive Model

A process Y = {Y,,} is called a (scalar) autoregression of order k, or
AR(k) model, if it satisfies, for each set of initial values (Yp,...,Y_g11),

(AR1) for each n € Z,,Y, and W, are random variables on IR
satisfying inductively for n > 1

Yo=aiYn 1+, o+ ...+ Yy + W,
for some aq,...,a; € R;

(AR2) the sequence W is an error sequence on IR.

The collection Y = {Y,} is generally not Markovian if £ > 1, since information on
the past (or at least the past in terms of the variables Y,,_1,Y,,_o,..., Y, _k) provides
information on the current value Y;, of the process. But by the device mentioned in
Section 1.2.1, of constructing the multivariate sequence

Xn = (Yna .. aYn—k—i—l)T

and setting X = {X,,,n > 0}, we define X as a Markov chain whose first component
has exactly the sample paths of the autoregressive process. Note that the general
convention that Xy has an arbitrary distribution implies that the first & variables
(Yo,...,Y g+1) are also considered arbitrary.

The autoregressive model can then be viewed as a specific version of the vector-
valued linear state space model LSS(F,G). For by (AR1),

al e “ e ak 1

0 0
X, = N | X 4| | W (2.1)
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The same technique for producing a Markov model can be used for any linear model
which admits a finite dimensional description. In particular, we take the following
general model:

Autoregressive-Moving Average Models

The process Y = {Y,,} is called an autoregressive-moving average process
of order (k,£), or ARMA(k, £) model, if it satisfies, for each set of initial
values (YE)a s 7Y7k—|—17 WOa s 1W7£—|—1)a

(ARMA1) for each n € Z, Y,, and W,, are random variables
on IR, satisfying, inductively for n > 1,

Yo = aiYp it aYy ot oYy

+Wo + B1Whn—1 + BeWyo + ... + BWyy,
for some ay,...,a,61,...,0c € IR;

(ARMA2)  the sequence W is an error sequence on IR.

In this case more care must be taken to obtain a suitable Markovian description of
the process. One approach is to take

Xn = (Y'Ila s 7YTL—IC+17 Wna s ’Wn—e-l-l)—r

Although the resulting state process X is Markovian, the dimension of this realization
may be overly large for effective analysis. A realization of lower dimension may be
obtained by defining the stochastic process Z inductively by

Ip=01Zp 1+ 0asZp o+ ...+ apZp_r+ Wy (22)

When the initial conditions are defined appropriately, it is a matter of simple algebra
and an inductive argument to show that

Yon=2n+P1Zn-1+ oZn—o+ ...+ BeZn s,

Hence the probabilistic structure of the ARMA (k, £) process is completely determined
by the Markov chain {(Zy,..., Zn_k1+1)" : n € Z} which takes values in IR.

The behavior of the general ARMA (k, £) model can thus be placed in the Marko-
vian context, and we will develop the stability theory of this, and more complex
versions of this model, in the sequel.
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2.2 Nonlinear State Space Models

In discrete time, a general (semi) dynamical system on IR is defined, as in Section 1.3.2,
through a recursion of the form

Tny1 = F(zy), neZy (2.3)

for some continuous function F:IR — IR. Hence the simple linear model defined in
(SLM1) may be interpreted as a linear dynamical system perturbed by the “noise”
sequence W.

The theory of time series is in this sense closely related to the general theory of
dynamical systems: it has developed essentially as that subset of stochastic dynamical
systems theory for which the relationships between the variables are linear, and even
with the nonlinear models from the time series literature which we consider below,
there is still a large emphasis on linear substructures.

The theory of dynamical systems, in contrast to time series theory, has grown from
a deterministic base, considering initially the type of linear relationship in (1.3) with
which we started our examples in Section 1.2, but progressing to models allowing a
very general (but still deterministic) relationship between the variables in the present
and in the past, as in (2.3). It is in the more recent development that “noise” variables,
allowing the system to be random in some part of its evolution, have been introduced.

Nonlinear state space models are stochastic versions of dynamical systems where
a Markovian realization of the model is both feasible and explicit: thus they satisfy a
generalization of (2.3) such as

Xnt1 = F(Xn, Wni1), keZ, (2.4)

where W is a noise sequence and the function F:IR"™ x IR? — IR" is smooth (C*):
that is, all derivatives of F' exist and are continuous.

2.2.1 Scalar nonlinear models

We begin with the simpler version of (2.4) in which the random variables are scalar.
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Scalar Nonlinear State Space Model

The chain X = {X,,} is called a scalar nonlinear state space model on
R driven by F, or SNSS(F') model, if it satisfies

(SNSS1) for each n > 0, X,, and W,, are random variables on
IR, satisfying, inductively for n > 1,

Xn = F(Xpn_1,Whp),
for some smooth (C*°) function F : IR x R — IR;

(SNSS2)  the sequence W is a disturbance sequence on IR, whose
marginal distribution I" possesses a density +,, supported on
an open set O,.

The independence of X1 from X, _1, Xp—o,... given X,, = z follows from the rules
(SNSS1) and (SNSS2), and ensures as previously that X is a Markov chain.

As with the linear control model (LCM1) associated with the linear state space
model (LSS1), we will analyze nonlinear state space models through the associated
deterministic “control models”. Define the sequence of maps {Fj: IR x RFSR: k>
0} inductively by setting Fo(z) = z, Fi (zo,u1) = F(zo,u1) and for k£ > 1

Fy(xzo,u1,...,ux) = F(Fr_1(zo,u1, ..., up—1), Ug). (2.5)
We call the deterministic system with trajectories
Ty = Fi(zo,u,-..,ug),  k€Zy (2.6)

the associated control model CM(F') for the SNSS(F') model, provided the determinis-
tic control sequence {uy,...,ux, k € Z} lies in the set O,,, which we call the control
set for the scalar nonlinear state space model.

To make these definitions more concrete we define two particular classes of scalar
nonlinear models with specific structure which we shall use as examples on a number
of occasions.

The first of these is the bilinear model, so called because it is linear in each of its
input variables, namely the immediate past of the process and a noise component,
whenever the other is fixed: but their joint action is multiplicative as well as additive.
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Fig. 2.3. Simple bilinear model path with F(z,w) = (0.707 + w)z + w

Simple Bilinear Model

The chain X = {X,} is called the simple bilinear model if it satisfies

(SBL1) for each n > 0, X,, and W,, are random variables on IR,
satisfying for n > 1,

Xp =0X, 1 +0X, AW, +W,

where 6 and b are scalars, and the sequence W is an error
sequence on IR.

The bilinear process is thus a SNSS(F') model with F' given by
F(z,w) = 0z + brxw + w, (2.7)

where the control set O,, C IR depends upon the specific distribution of W.
In Figure 2.3 we give a sample path of a scalar nonlinear model with

F(z,w) = (0.707 + w)z + w

and with I" = N(0, ). This is the simple bilinear model with § = 0.707 and b = 1.
One can see from this simulation that the behavior of this model is quite different
from that of any linear model.
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The second specific nonlinear model we shall analyze is the scalar first-order
SETAR model. This is piecewise linear in contiguous regions of IR, and thus while it
may serve as an approximation to a completely nonlinear process, we shall see that
much of its analysis is still tractable because of the linearity of its component parts.

SETAR Models

The chain X = {X,,} is called a scalar self-exciting threshold autoregres-
sion (SETAR) model if it satisfies

(SETAR1) for each 1 < 57 < M, X,, and W,(j) are random
variables on IR, satisfying, inductively for n > 1,

Xn = ¢(.7) + e(j)Xn—l + Wn(]), Tj—1 < Xp1 < Tj,

where —oco =19 < r; < --- < rpy = oo and {Wy(j)} forms
an i.i.d. zero-mean error sequence for each j, independent of

{Whn(2)} for i # j.

Because of lack of continuity, the SETAR models do not fall into the class of nonlinear
state space models, although they can often be analyzed using essentially the same
methods. The SETAR model will prove to be a useful example on which to test
the various stability criteria we develop, and the overall outcome of that analysis is
gathered together in Section B.2.

2.2.2 Multi-dimensional nonlinear models

Many nonlinear processes cannot be modeled by a scalar Markovian model such
as the SNSS(F') model. The more general multi-dimensional model is defined quite
analogously.
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Nonlinear State Space Models

Suppose X = {X}}, where

(NSS1) for each k > 0 X and Wy, are random variables on IR",
IR? respectively, satisfying inductively for & > 1,

Xy = F(Xp—1,Wy),

for some smooth (C*°) function F:X x O, — X, where X is
an open subset of IR", and O,, is an open subset of IR?;

(NSS2)  the random variables {W}} are a disturbance sequence
on IR?, whose marginal distribution I" possesses a density 7,
which is supported on an open set O,,.

Then X is called a nonlinear state space model driven by F', or NSS(F')
model, with control set O,,.

The general nonlinear state space model can often be analyzed by the same methods
that are used for the scalar SNSS(F') model, under appropriate conditions on the
disturbance process W and the function F.

It is a central observation of such analysis that the structure of the NSS(F')
model (and of course its scalar counterpart) is governed under suitable conditions by
an associated deterministic control model, defined analogously to the linear control
model and the linear state space model.

The Associated Control Model CM(F')

(CM1) The deterministic system
T = Fi(zo,u1,...,uk), k€ Zy, (2.8)

where the sequence of maps {Fy : X x O — X : k > 0}
is defined by (2.5), is called the associated control system
for the NSS(F') model and is denoted CM(F) provided the
deterministic control sequence {ui,...,ux,k € Z;} lies in
the control set O, C IRP.
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The general ARMA model may be generalized to obtain a class of nonlinear models,
all of which may be “Markovianized”, as in the linear case.

Nonlinear Autoregressive-Moving Average Models

The process Y = {Y,} is called a nonlinear autoregressive-moving av-
erage process of order (k,£) if the values Yy, ..., Yy 1 are arbitrary and

(NARMA1) for each n > 0, Y, and W,, are random variables on
IR, satisfying, inductively for n > k,

Y, =:(;(Yhfl,Y%AQ,...,Yh_k,pVﬁ,VVﬁgl,Ethg,...,VVh_g)
where the function G: IRFT+! — IR is smooth (C*);

(NARMA2)  the sequence W is an error sequence on IR.

As in the linear case, we may define
_ W W T
Xn - (Y;la"'aY;L—k—l—la Ny===y n—£+1)

to obtain a Markovian realization of the process Y. The process X is Markovian, with
state space X = R*¥**, and has the general form of an NSS(F) model, with

X, =F(Xn1,W,), nezZ,. (2.9)

2.2.3 The gumleaf attractor

The gumleaf attractor is an example of a nonlinear model such as those which fre-
quently occur in the analysis of control algorithms for nonlinear systems, some of
which are briefly described below in Section 2.3. In an investigation of the patholo-
gies which can reveal themselves in adaptive control, a specific control methodology
which is described in Section 2.3.2, Mareels and Bitmead [161] found that the closed
loop system dynamics in an adaptive control application can be described by the

simple recursion
1 1

Up = — + s n e Z_|_.
Un—1 Un—2
Here v, is a “closed loop system gain” which is a simple function of the output of the
system which is to be controlled. By setting ,, = (J) = (,." ) we obtain a nonlinear

state space model with
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Fig. 2.4. The gumleaf attractor

o))

_ (=) _ pf®he1) _ (Ve 7
xn_(x%)_p@g_l)_( (2.10)

If F is required to be continuous then the state space X in this example must be taken
as two dimensional Euclidean space IR? minus the z and y axes, and any other initial
conditions which might result in a zero value for z2 or a:I;L for some n.

A typical sample path of this model is given in Figure 2.4. In this figure 40,000
consecutive sample points of {z,} have been indicated by points to illustrate the
qualitative behavior of the model. Because of its similarity to some Australian flora,
the authors call the resulting plot the gumleaf attractor. Ydstie in [285] also finds that
such chaotic behavior can easily occur in adaptive systems.

One way that noise can enter the model (2.10) is directly through the first com-

so that

ponent z% to give

X a_ —1/X2 , +1/Xb W,
i (Xf%) (X2_1> ( et "o (21

where W is i.i.d..

The special case where for each n the disturbance W), is uniformly distributed on
[—%, %] is illustrated in Figure 2.5. As in the previous figure, we have plotted 40,000
values of the sequence X which takes values in IR?. Note that the qualitative behavior
of the process remains similar to the noise-free model, although some of the detailed
behavior is “smeared out” by the noise.

The analysis of general models of this type is a regular feature in what follows,
and in Chapter 7 we give a detailed analysis of the path structure that might be
expected under suitable assumptions on the noise and the associated deterministic

model.
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Fig. 2.5. The gumleaf attractor perturbed by noise

2.2.4 The dependent parameter bilinear model

As a simple example of a multidimensional nonlinear state space model, we will
consider the following dependent parameter bilinear model, which is closely related to
the simple bilinear model introduced above. To allow for dependence in the parameter
process, we construct a two dimensional process so that the Markov assumption will
remain valid.

The Dependent Parameter Bilinear Model

The process ¢ = (g) is called the dependent parameter bilinear model if
it satisfies

(DBL1) For some |a| < 1land allk € Z,,

Y1 = 0pYp+ Wi (2.12)

Ok+1 = b+ Zgi1, (2.13)

(DBL2)  The joint process (Z, W) is a disturbance sequence on
IR2, Z and W are mutually independent, and the distribu-
tions I3, and I, of W, Z respectively possess densities which
are lower semicontinuous. It is assumed that W has a finite
second moment, and that E[log(1 + |Z])] < oo.
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Fig. 2.6. Dependent parameter bilinear model paths with o = 0.933, W}, ~ N(0,0.14) and
Zj, ~ N(0,0.01)

This is described by a two dimensional NSS(F') model, where the function F' is of the

form
F((), (7)) = (;;fj:vzv) (2.14)

As usual, the control set O,, C IR? depends upon the specific distribution of W and
Z.

A plot of the joint process (5) is given in Figure 2.6. In this simulation we have
a =0.933, Wy ~ N(0,0.14) and Zj ~ N(0,0.01).

The dark line is a plot of the parameter process @, and the lighter, more explosive
path is the resulting output Y. One feature of this model is that the output oscillates
rapidly when 6, takes on large negative values, which occurs in this simulation for
time values between 80 and 100.

2.3 Models In Control And Systems Theory

2.3.1 Choosing controls

In Section 2.2, we defined deterministic control systems, such as (2.5), associated
with Markovian state space models. We now begin with a general control system,
which might model the dynamics of an aircraft, a cruise control in an automobile, or
a controlled chemical reaction, and seek ways to choose a control to make the system
attain a desired level of performance.

Such control laws typically involve feedback; that is, the input at a given time
is chosen based upon present output measurements, or other features of the system
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which are available at the time that the control is computed. Once such a control law
has been selected, the dynamics of the controlled system can be complex. Fortunately,
with most control laws, there is a representation (the “closed loop” system equations)
which gives rise to a Markovian state process @ describing the variables of interest
in the system. This additional structure can greatly simplify the analysis of control
systems.

We can extend the AR models of time series to an ARX (autoregressive with
exzogenous variables) system model defined for £ > 1 by

Yie + o1 (k) Ye—1 + - 4 any (k) Yien, = Br(k)Ug—1 + -+ + By (k) Ug—ny + Wi (2.15)

where we assume for this discussion that the output process Y, the input process (or
exogenous variable sequence) U, and the disturbance process W are all scalar-valued,
and initial conditions are assigned at k£ = 0.

Let us also assume that we have random coefficients o;(k),3;(k) rather than
fixed coefficients at each time point k. In such a case we may have to estimate the
coefficients in order to choose the exogenous input U.

The objective in the design of the control sequence U is specific to the particular
application. However, it is often possible to set up the problem so that the goal
becomes a problem of regulation: that is, to make the output as small as possible.
Given the stochastic nature of systems, this is typically expressed using the concepts
of sample mean square stabilizing sequences and minimum variance control laws.

We call the input sequence U sample mean square stabilizing if the input-output

process satisfies
N

1
lim sup — Z[Y,f + UP] < o0 a.s.
for every initial condition. The control law is then said to be minimum variance if it
is sample mean square stabilizing, and the sample path average

. 1 <,
ll]Ivn_>Solép N kgl Y (2.16)
is minimized over all control laws with the property that, for each k, the input Uy is
a function of Yj,...,Y,, and the initial conditions.
Such controls are often called “causal”, and for causal controls there is some
possibility of a Markovian representation. We now specialize this general framework to
a situation where a Markovian analysis through state space representation is possible.

2.3.2 Adaptive control

In adaptive control, the parameters {«;(k),B;(k)} are not known a priori, but are
partially observed through the input-output process. Typically, a parameter estima-
tion algorithm, such as recursive least squares, is used to estimate the parameters
on-line in implementations. The control law at time & is computed based upon these
estimates and past output measurements.

As an example, consider the system model given in equation (2.15) with all of
the parameters taken to be independent of &, and let

0 = (_ala"'a_anu :815"'7/8H2)
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denote the time invariant parameter vector. Suppose for the moment that the param-
eter 0 is known. If we set

¢l—cr—1 = (Yk—la Tt aYk—'nla Uk—17 ) Uk—n2)7

and if we define for each k the control Uy as the solution to

¢ 0 =0, (2.17)

then this will result in Y, = W, for all k. This control law obviously minimizes the
performance criterion (2.16) and hence is a minimum variance control law if it is
sample mean square stabilizing.

It is also possible to obtain a minimum variance control law, even when @ is
not available directly for the computation of the control Ug. One such algorithm
(developed in [87]) has a recursive form given by first estimating the parameters
through the following stochastic gradient algorithm:

~

0, = 01 + 1t k1Y%
(2.18)

Tk i1+ ||kl

the new control Uy, is then defined as the solution to the equation

p 0, = 0.

With X, € X:=IR, x R¥™*m2) defined as

we see that X is of the form Xy = F(Xj, Wg41), where F: X x IR — X is a rational
function, and hence X is a Markov chain.

To illustrate the results in stochastic adaptive control obtainable from the theory
of Markov chains, we will consider here and in subsequent chapters the following
ARX(1) random parameter, or state space, model.
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Simple Adaptive Control Model
The simple adaptive control model is a triple Y, U, @ where

(SAC1) the output sequence Y and parameter sequence 8 are
defined inductively for any input sequence U by

Yiti = Y, +Up+ Wiy (2.19)
Ok+r1 = by + Zgy1, k>1 (2.20)

where « is a scalar with |a| < 1;

(SAC2)  the bivariate disturbance process (v is Gaussian and

satisfies
el = (o)
E[(772) (Zks Wi)] = (UOZ 0%))5”—/67 n>1;

(SAC3) the input process satisfies Uy € Vi, k € Z,, where
Vi = o{Yy,...,Y;}. That is, the input Uy at time k is a
function of past and present output values.

The time varying parameter process @ here is not observed directly but is partially
observed through the input and output processes U and Y.

The ultimate goal with such a model is to find a mean square stabilizing, minimum
variance control law. If the parameter sequence 8 were completely observed then this
goal could be easily achieved by setting Uy, = —0;Y} for each k € Z, as in (2.17).

Since @ is only partially observed, we instead obtain recursive estimates of the
parameter process and choose a control law based upon these estimates. To do this
we note that by viewing € as a state process, as defined in [39], then because of the
assumptions made on (W, Z), the conditional expectation

O == E[0k | k]

is computable using the Kalman filter (see [165, 156]) provided the initial distribution
of (Uo, Yy, 60) for (2.19), (2.20) is Gaussian.

In this scalar case, the Kalman filter estimates are obtained recursively by the
pair of equations

Ze(Yis1 — 0y — Up)Ys,
EkYk? =+ 0'121)

ék+1 = aék+a
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2 02 Xy

Sy = Y Tuwk
k1 oz AR

When a =1, 0y, =1 and o, = 0, so that 8, = 8 for all k, these equations define the
recursive least squares estimates of 6y, similar to the gradient algorithm described in
(2.18).

Defining the parameter estimation error at time n by én =0, — én, we have that
0 = 0x — E[0x | Vi), and Xy, = E[6? | Vx] whenever 6 is distributed N (0, Xp) and Yy
and X are constant (see [172] for more details).

We use the resulting parameter estimates {0 : k > 0} to compute the “certainty
equivalence” adaptive minimum variance control U, = —ékYk, k € Z,. With this
choice of control law, we can define the closed loop system equations.

Closed Loop System Equations

The closed loop system equations are

ék—kl = Ozék - ()éZkYk+1Yk(ZkYk2 + 0'121))_1 + Zk—|—1 (2.21)
Yir1 = 0pYp+ Wi (2.22)
Tir1 = o2+ 2R D (Y2 +02), k>1 (2.23)

where the triple Xy, éo, Y} is given as an initial condition.

The closed loop system gives rise to a nonlinear state space model of the form (NSS1).
It follows then that the triple

Dy = (Zk,ék,yk)—r, ke Z+, (224:)

is a Markov chain with state space X = [02, %2‘] x TR%. Although the state space
is not open, as required in (NSS1), when necessary we can restrict the chain to the
interior of X to apply the general results which will be developed for the nonlinear
state space model.

As we develop the general theory of Markov processes we will return to this
example to obtain fairly detailed properties of the closed loop system described by
(2.21)-(2.23).

In Chapter 16 we characterize the mean square performance (2.16): when the
parameter o2 which defines the parameter variation is strictly less than unity, the
limit supremum is in fact a limit in this example, and this limit is independent of the
initial conditions of the system.

This limit, which is the expectation of Yy with respect to an invariant measure,
cannot be calculated exactly due to the complexity of the closed loop system equa-
tions.
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Fig. 2.7. Disturbance W for the SAC model: N(0,0.01) Gaussian white noise

Using invariance, however, we may obtain explicit bounds on the limit, and give
a characterization of the performance of the closed loop system which this limit
describes. Such characterizations are helpful in understanding how the performance
varies as a function of the disturbance intensity W and the parameter estimation
error 6.

In Figure 2.8 and Figure 2.9 we have illustrated two typical sample paths of the
output process Y, identical but for the different values of o, chosen.

The disturbance process W in both instances is i.i.d. N(0,0.01); that is, g, = 0.1.
A typical sample path of W is given in Figure 2.7.

In both simulations we take a = 0.99. In the “stable” case in Figure 2.8, we have
0, = 0.2. In this case the output Y is barely distinguishable from the noise W. In
the second simulation, where o, = 1.1, we see in Figure 2.9 that the output exhibits
occasional large bursts due to the more unpredictable behavior of the parameter
process.

2.4 Markov Models With Regeneration Times

The processes in the previous section were Markovian largely through choosing a
sufficiently large product space to allow augmentation by variables in the finite past.
The chains we now consider are typically Markovian using the second paradigm
in Section 1.2.1, namely by choosing specific regeneration times at which the past is
forgotten. For more details of such models see Feller [76, 77] or Asmussen [10].

2.4.1 The forward recurrence time chain

A chain which is a special form of the random walk chain in Section 1.2.3 is the renewal
process. Such chains will be fundamental in our later analysis of the structure of even
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Fig. 2.8. Output Y of the SAC model with a = 0.99, ¢, = 0.1, and ¢, = 0.2
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Fig. 2.9. Output Y of the SAC model with a = 0.99, 0, = 0.1, and 0, = 1.1
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the most general of Markov chains, and here we describe the specific case where the
state space is countable.

Let {Y1,Y5,...} be a sequence of independent and identical random variables,
with distribution function p concentrated, not on the positive and negative integers,
but rather on Z,. It is customary to assume that p(0) = 0. Let Yy be a further
independent random variable, with the distribution of Yy being a, also concentrated
on Z,. The random variables

n
Zn=) Y
1=0

form an increasing sequence taking values in Z, and are called a delayed renewal
process, with a being the delay in the first variable: if @ = p then the sequence {Z,}
is merely referred to as a renewal process.

As with the two-sided random walk, Z, is a Markov chain: not a particularly
interesting one in some respects, since it is evanescent in the sense of Section 1.3.1 (II),
but with associated structure which we will use frequently, especially in Part III.

With this notation we have P(Zy = n) = a(n) and by considering the value of Z;
and the independence of Yy and Y7, we find

P(Z1=n) =) a(j)p(n — j).
j=0

To describe the n-step dynamics of the process {Z,} we need convolution notation.

Convolutions

We write a * b for the convolution of two sequences a and b given by

n n

axb(n):= Zb(j)a(n —-J) = Za(j)b(n —J)

J=0 J=0

and a** for the k** convolution of @ with itself.

By decomposing successively over the values of the first n variables Zy,..., Z,_1 and
using the independence of the increments Y; we have that

P(Zy=n)=a % pk* (n).

Two chains with appropriate regeneration associated with the renewal process are the
forward recurrence time chain, sometimes called the residual lifetime process, and the
backward recurrence time chain, sometimes called the age process.
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Forward and backward recurrence time chains

If {Z,} is a discrete time renewal process, then the forward recurrence
time chain V* =V*(n),n € Z,, is given by

(RT1) V*(n):=inf(Z, —n: Zy, >n), n >0

and the backward recurrence time chain V- =V~ (n),n € Z,, is given
by

(RT2) V™ (n):=inf(n—Z, : Zy, < n), n > 0.

The dynamics of motion for VT and V™~ are particularly simple.

If Vt(n) = k for k > 1 then, in a purely deterministic fashion, one time unit
later the forward recurrence time to the next renewal has come down to k& — 1. If
V*(n) =1 then a renewal occurs at n + 1: therefore the time to the next renewal has
the distribution p of an arbitrary Yj, and this is the distribution also of V*(n + 1) .
For the backward chain, the motion is reversed: the chain increases by one, or ages,
with the conditional probability of a renewal failing to take place, and drops to zero
with the conditional probability that a renewal occurs. We define the laws of these
chains formally in Section 3.3.1.

The regeneration property at each renewal epoch ensures that both V™ and V—
are Markov chains; and, unlike the renewal process itself, these chains are stable under
straightforward conditions, as we shall see.

Renewal theory is traditionally of great importance in countable space Markov
chain theory: the same is true in general spaces, as will become especially apparent in
Part III. We only use those aspects which we require in what follows, but for a much
fuller treatment of renewal and regeneration see Kingman [136] or Lindvall [155].

2.4.2 The GI/G/1, GI/M/1 and M/G/1 queues

The theory of queueing systems provides an explicit and widely used example of the
random walk models introduced in Section 1.2.3, and we will develop the application
of Markov chain and process theory to such models, and related storage and dam
models, as another of the central examples of this book.

These models indicate for the first time the need, in many physical processes,
to take care in choosing the timepoints at which the process is analyzed: at some
“regeneration” time-points, the process may be “Markovian”, whilst at others there
may be a memory of the past influencing the future.

In the modeling of queues, to use a Markov chain approach we can make cer-
tain distributional assumptions (and specifically assumptions that some variables are
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exponential) to generate regeneration times at which the Markovian forgetfulness
property holds. We develop such models in some detail, as they are fundamental
examples of the use of regeneration in utilizing the Markovian assumption.

Let us first consider a general queueing model to illustrate why such assumptions
may be needed.

Queueing Model Assumptions

Suppose the following assumptions hold.

(Q1) Customers arrive into a service operation at timepoints
To = 0, Ty + 11, Ty + T1 + 15, ... where the interarrival
times T;, ¢ > 1, are independent and identically distributed
random variables, distributed as a random variable 7" with
G(—o0,t] =P(T < t).

(Q2) The n'* customer brings a job requiring service S, where
the service times are independent of each other and of the
interarrival times, and are distributed as a variable S with
distribution H(—o0,t] = P(S < t).

(Q3) There is one server and customers are served in order of
arrival.

Then the system is called a GI/G/1 queue.

The notation and many of the techniques here were introduced by Kendall [128, 129]:
GI for general independent input, G for general service time distributions, and 1 for a
single server system. There are many ways of analyzing this system: see Asmussen [10]
or Cohen [54] for comprehensive treatments.

Let N(t) be the number of customers in the queue at time ¢, including the cus-
tomers being served. This is clearly a process in continuous time. A typical sample
path for {N(¢),t > 0}, under the assumption that the first customer arrives at ¢t = 0,
is shown in Figure 2.10, where we denote by T, the arrival times

T =T +--+T, i>1 (2.25)
and by S; the sums of service times
Si=So+-+58;, i>0. (2.26)

Note that, in the sample path illustrated, because the queue empties at S5, due to
T3 > S5, the point z = T3 + S3 is not S5, and the point T + Sy is not S}, and so on.
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Fig. 2.10. A typical sample path of the single server queue

Although the process {N(t¢)} occurs in continuous time, one key to its analysis
through Markov chain theory is the use of embedded Markov chains.

Consider the random variable N,, = N(T},—), which counts customers immedi-
ately before each arrival. By convention we will set Ny = 0 unless otherwise indicated.
We will show that under appropriate circumstances for k > —j

P(Nn+1 =7+ k | N, =7, Nn—laNn—Qa-'- aNO) = Pk, (227)

regardless of the values of {N,_1,..., Ny}. This will establish the Markovian nature
of the process, and indeed will indicate that it is a random walk on Z .

Since we consider N(t) immediately before every arrival time, N, can only
increase from N,, by one unit at most; hence, equation (2.27) holds trivially for & > 1.

For N, 41 to increase by one unit we need there to be no departures in the time
period T}, — T},, and obviously this happens if the job in progress at Ty, is still in
progress at Ty, ;.

It is here that some assumption on the service times will be crucial. For it is easy
to show, as we now sketch, that for a general GI/G/1 queue the probability of the
remaining service of the job in progress taking any specific length of time depends,
typically, on when the job began. In general, the past history {N,_1,...,Np} will
provide information on when the customer began service, and this in turn provides
information on how long the customer will continue to be served.

To see this, consider, for example, a trajectory such as that up to (7{—) on
Figure 2.10, where {N,, = 1, N,,_1 = 0,---}. This tells us that the current job began
exactly at the arrival time 77, _,, so that (as at (75—))

P(Npy1=2| Ny =1,Ny 1 =0) =P(Sp_2>Tpi1+Tn | Snz>T,).  (2.28)

However, a history such as {N,, = 1, N,,_1 = 1, N,,_2 = 0}, such as occurs up to (T%—)
on Figure 2.10, shows that the current job began within the interval (7},,7),_;), and
so for some z < T), (given by T¢ — z on Figure 2.10), the behavior at (T;—) has the
probability

P(Nn—H =2 | N,=1,N, 1 =1,N, o = 0) = P(Sn >Thy1+ 2 | Sp > Z) (229)

It is clear that for most distributions H of the service times S;, if we know T,41 =1
and T, =t' > 2
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P(Sp>t+2|8Sy>2)#P(Sy>t+t'| S, >t); (2.30)

so N = {N,} is not a Markov chain, since from equation (2.28) and equation (2.29)
the different information in the events {N,, = 1,N,,_; = 0} and {N,, = 1,N,,_; =
1, Np—2 = 0} (which only differ in the past rather than the present position) leads to
different probabilities of transition.

There is one case where this does not happen. If both sides of (2.30) are identical
so that the time until completion of service is quite independent of the time already
taken, then the extra information from the past is of no value.

This leads us to define a specific class of models for which N is Markovian.

GI/M/1 Assumption

(Q4) If the distribution H(—oo0,t] of service times is exponential
with
H(—oco,f] =1—e "  t>0

then the queue is called a GI/M/1 queue.

Here the M stands for Markovian, as opposed to the previous “general” assumption.
If we can now make assumption (Q4) that we have a GI/M/1 queue, then the
well-known “loss of memory” property of the exponential shows that, for any %, z,

P(Sp,>t+2z|S,>2) = e_“(t+z)/e_“z = e M,

In this way, the independence and identical distribution structure of the service times
show that, no matter which previous customer was being served, and when their
service started, there will be some z such that

P(Np+1=7+1|Ny=34Np-1,...) = P(S>T+2z|85>2)
(2.31)
= [Ce M G(dt)

independent of the value of z in any given realization, as claimed in equation (2.27).

This same reasoning can be used to show that, if we know N, = j, then for
0 <1 <j,wewill find N1 =1 provided j — %+ 1 customers legve in the interarrival
time (7},,7; ;). This corresponds to (j — i + 1) jobs being completed in this period,
and the (j —i+ 1) job continuing past the end of the period. The probability of this
happening, using the forgetfulness of the exponential, is independent of the amount of
time the service is in place at time 7, has already consumed, and thus N is Markovian.

A similar construction holds for the chain N* = {N;} defined by taking the
number in the queue immediately after the n'” service time is completed. This will be
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a Markov chain provided the number of arrivals in each service time is independent
of the times of the arrivals prior to the beginning of that service time. As above, we
have such a property if the inter-arrival time distribution is exponential, leading us
to distinguish the class of M/G/1 queues, where again the M stands for a Markovian
inter-arrival assumption.

M/G/1 Assumption

(Q5) If the distribution G(—o0,t] of inter-arrival times is expo-
nential with

G(—oo,t] =1—e M >0

then the queue is called an M/G/1 queue.

The actual probabilities governing the motion of these queueing models will be de-
veloped in Chapter 3.

2.4.3 The Moran dam

The theory of storage systems provides another of the central examples of this book,
and is closely related to the queueing models above.

The storage process example is one where, although the time of events happening
(that is, inputs occurring) is random, between those times there is a deterministic
motion which leads to a Markovian representation at the input times which always
form regeneration points.

A simple model for storage (the “Moran dam” [189, 10]) has the following ele-
ments. We assume there is a sequence of input times To =0, To+ 11, To+T1+T5 . . .,
at which there is input into a storage system, and that the inter-arrival times T;,
1 > 1, are independent and identically distributed random variables, distributed as a
random variable T with G(—o0,t] = P(T < t).

At the n'® input time, the amount of input S, has a distribution H(—o0,t] =
P(S, < t); the input amounts are independent of each other and of the interarrival
times. Between inputs, there is steady withdrawal from the storage system, at a rate
r: so that in a time period [z, z + t], the stored contents drop by an amount rt since
there is no input.

When a path of the contents process reaches zero, the process continues to take
the value zero until it is replenished by a positive input.

This model is a simplified version of the way in which a dam works; it is also a
model for an inventory, or for any other similar storage system.
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The basic storage process operates in continuous time: to render it Markovian we
analyze it at specific timepoints when it (probabilistically) regenerates, as follows.

Simple Storage Models

(SSM1)  For each n > 0 let S,, and T}, be independent random
variables on IR with distributions H and G as above.

(SSM2)  Define the random variables
an—f—l = [én + S5 — Jn]+

where the variables J, are independent and identically dis-
tributed, with

P(Jp < z) = G(—o00,z/r] (2.32)
for some r > 0.
Then the chain ¢ = {&,,} represents the contents of a storage system at

the times {7,,—} immediately before each input, and is called the simple
storage model.

The independence of Sy, 1 from S,_1,Sp—2,... and the construction rules (SSM1)
and (SSM2) ensure as before that {®,} is a Markov chain: in fact, it is a specific
example of the random walk on a half line defined by (RWHL1), in the special case
where

Wy =8,—Jn, neZ,.

It is an important observation here that, in general, the process sampled at other
time points (say, at regular time points) is not a Markov system, since it is crucial in
calculating the probabilities of the future trajectory to know how much earlier than
the chosen time-point the last input point occurred: by choosing to examine the chain
embedded at precisely those pre-input times, we lose the memory of the past. This
was discussed in more detail in Section 2.4.2.

We define the mean input by o = [;° 2 H(dz) and the mean output between
inputs by 8 = [;° rz G(dz). In Figure 2.11 and Figure 2.12 we give two sample paths
of storage models with different values of the parameter ratio a/3. The behavior of
the sample paths is quite different for different values of this ratio, which will turn
out to be the crucial quantity in assessing the stability of these models.
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Fig. 2.11. Storage system path with o/ =2,r =1
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Fig. 2.12. Storage system path with a/8 =0.5,r =1
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2.4.4 Content-dependent release rules

As with time-series models or state space systems, the linearity in the Moran storage
model is clearly a first approximation to a more sophisticated system.

There are two directions in which this can be taken without losing the Markovian
nature of the model.

Again assume there is a sequence of input timepoints Ty = 0, Ty + 11, To +
T1 4+ 15 ..., and that the interarrival times 73, 1 > 1, are independent and identically
distributed random variables, with distribution G.

Then one might assume that, if the contents at the n'® input time are given
by &, = z, the amount of input S,(z) has a distribution given by H,(—o0,t] =
P(S,(z) < t) dependent on z; the input amounts remain independent of each other
and of the interarrival times.

Alternatively, one might assume that between inputs, there is withdrawal from
the storage system, at a rate r(x) which also depends on the level z at the moment
of withdrawal. This assumption leads to the conclusion that, if there are no inputs,
the deterministic time to reach the empty state from a level z is

R) = [ @Iy (2.33)

Usually we assume R(z) to be finite for all z. Since R is strictly increasing the inverse
function R=1(¢) is well-defined for all ¢, and it follows that the drop in level in a time
period t with no input is given by

Ju(t) =z — q(z,t)

where

q(z,t) = RY(R(z) — t).

This enables us to use the same type of random walk calculation as for the Moran
dam.

As before, when a path of this storage process reaches zero, the process continues
to take the value zero until it is replenished by a positive input.

It is again necessary to analyze such a model at the times immediately before
each input in order to ensure a Markovian model. The assumptions we might use for
such a model are



2.5 Commentary 53

Content-Dependent Storage Models

(CSM1) For each n > 0 let S, (z) and T,, be independent ran-
dom variables on IR with distributions H, and G as above.

(CSM2)  Define the random variables
(pn—l—l - [(pn - Jn + Sn(én - Jn)]+

where the variables J,, are independently distributed, with

PUn <y | B0 =2) = [G@P(L(H <y) (230

Then the chain ¢ = {&,} represents the contents of the
storage system at the times {7},—} immediately before each
input, and is called the content-dependent storage model.

Such models are studied in [96, 34]. In considering the connections between queueing
and storage models, it is then immediately useful to realize that this is also a model of
the waiting times in a model where the service time varies with the level of demand,
as studied in [38].

2.5 Commentary

We have skimmed the Markovian models in the areas in which we are interested, trying
to tread the thin line between accessibility and triviality. The research literature
abounds with variations on the models we present here, and many of them would
benefit by a more thorough approach along Markovian lines.

For many more models with time series applications, the reader should see Brock-
well and Davis [32], especially Chapter 12; Granger and Anderson for bilinear models
[88]; and for nonlinear models see Tong [267], who considers models similar to those
we have introduced from a Markovian viewpoint, and in particular discusses the bi-
linear and SETAR models. Linear and bilinear models are also developed by Duflo
in [69], with a view towards stability similar to ours. For a development of general
linear systems theory the reader is referred to Caines [39] for a controls perspective,
or Aoki [6] for a view towards time series analysis.

Bilinear models have received a great deal of attention in recent years in both time
series and systems theory. The dependent parameter bilinear model defined by (2.13,
2.12) is called a doubly stochastic autoregressive process of order 1, or DSAR(1), in
Tjpstheim [265]. Realization theory for related models is developed in Guégan [90] and
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Mittnik [186], and the papers Pourahmadi [219], Brandt [28], Meyn and Guo [177],
and Karlsen [123] provide various stability conditions for bilinear models.

The idea of analyzing the nonlinear state space model by examining an associated
control model goes back to Stroock and Varadhan [260] and Kunita [144, 145] in
continuous time. In control and systems models, linear state space models have always
played a central role, while nonlinear models have taken a much more significant role
over the past decade: see Kumar and Varaiya [143], Duflo [69], and Caines [39] for
a development of both linear adaptive control models, and (nonlinear) controlled
Markov chains.

The embedded regeneration time approach has been enormously significant since
its introduction by Kendall in [128, 129]. There are many more sophisticated variations
than those we shall analyze available in the literature. A good recent reference is
Asmussen [10], whilst Cohen [54] is encyclopedic.

The interested reader will find that, although we restrict ourselves to these rel-
atively less complicated models in illustrating the value of Markov chain modeling,
virtually all of our general techniques apply across more complex systems. As one
example, note that the stability of models which are state-dependent, such as the
content-dependent storage model of Section 2.4.4, has only recently received attention
[38], but using the methods developed in later chapters it is possible to characterize
it in considerable detail [178, 180, 181].

The storage models described here can also be thought of, virtually by renaming
the terms, as models for state-dependent inventories, insurance models, and models of
the residual service in a GI/G/1 queue. To see the last of these, consider the amount of
service brought by each customer as the input to the “store” of work to be processed,
and note that the server works through this store of work at a constant rate.

The residual service can be, however, a somewhat minor quantity in a queueing
model, and in Section 3.5.4 below we develop a more complex model which is a better
representation of the dynamics of the GI/G/1 queue.

Added in Second Printing In the last two years there has been a virtual explosion
in the use of general state space Markov chains in simulation methods, and especially
in Markov chain Monte Carlo methods which include Hastings-Metropolis and Gibbs
sampling techniques, which were touched on in Chapter 1.1(f). Any future edition will
need to add these to the collection of models here and examine them in more detail:
the interested reader might look at the recent results [44, 191, 245, 246, 225, 166, 224,
which all provide examples of the type of chains studied in this book.
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Transition Probabilities

As with all stochastic processes, there are two directions from which to approach the
formal definition of a Markov chain.

The first is via the process itself, by constructing (perhaps by heuristic arguments
at first, as in the descriptions in Chapter 2) the sample path behavior and the dynam-
ics of movement in time through the state space on which the chain lives. In some of
our examples, such as models for queueing processes or models for controlled stochas-
tic systems, this is the approach taken. From this structural definition of a Markov
chain, we can then proceed to define the probability laws governing the evolution of
the chain.

The second approach is via those very probability laws. We define them to have
the structure appropriate to a Markov chain, and then we must show that there is
indeed a process, properly defined, which is described by the probability laws initially
constructed. In effect, this is what we have done with the forward recurrence time
chain in Section 2.4.1.

From a practitioner’s viewpoint there may be little difference between the ap-
proaches. In many books on stochastic processes, such as Cinlar [40] or Karlin and
Taylor [122], the two approaches are used, as they usually can be, almost interchange-
ably; and advanced monographs such as Nummelin [202] also often assume some of
the foundational aspects touched on here to be well-understood.

Since one of our goals in this book is to provide a guide to modern general space
Markov chain theory and methods for practitioners, we give in this chapter only
a sketch of the full mathematical construction which provides the underpinning of
Markov chain theory.

However, we also have as another, and perhaps somewhat contradictory, goal the
provision of a thorough and rigorous exposition of results on general spaces, and for
these it is necessary to develop both notation and concepts with some care, even if
some of the more technical results are omitted.

Our approach has therefore been to develop the technical detail in so far as it
is relevant to specific Markov models, and where necessary, especially in techniques
which are rather more measure theoretic or general stochastic process theoretic in
nature, to refer the reader to the classic texts of Doob [68], and Chung [49], or the
more recent exposition of Markov chain theory by Revuz [223] for the foundations we
need. Whilst such an approach renders this chapter slightly less than self-contained,
it is our hope that the gaps in these foundations will be either accepted or easily filled
by such external sources.
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Our main goals in this chapter are thus

(i) to demonstrate that the dynamics of a Markov chain {®,} can be completely
defined by its one step “transition probabilities”

P(z,A) =P(®, € A | Pp_1 =2x),
which are well-defined for appropriate initial points z and sets A;

(ii) to develop the functional forms of these transition probabilities for many of the
specific models in Chapter 2, based in some cases on heuristic analysis of the
chain and in other cases on development of the probability laws; and

(iii) to develop some formal concepts of hitting times on sets, and the “Strong Markov
Property” for these and related stopping times, which will enable us to address
issues of stability and structure in subsequent chapters.

We shall start first with the formal concept of a Markov chain as a stochastic process,
and move then to the development of the transition laws governing the motion of the
chain; and complete the cycle by showing that if one starts from a set of possible
transition laws then it is possible to move from these to a chain which is well defined
and governed by these laws.

3.1 Defining a Markovian Process

A Markov chain & = {®y,P1,...} is a particular type of stochastic process taking, at
times n € Z, values @, in a state space X.

We need to know and use a little of the language of stochastic processes. A
discrete time stochastic process @ on a state space is, for our purposes, a collection
@ = (P, P1,...) of random variables, with each @; taking values in X; these random
variables are assumed measurable individually with respect to some given o-field
B(X), and we shall in general denote elements of X by letters z,y, z, ... and elements
of B(X) by A,B,C.

When thinking of the process as an entity, we regard values of the whole chain
@ itself (called sample paths or realizations) as lying in the sequence or path space
formed by a countable product 2 = X*° = [[2,X;, where each X; is a copy of X
equipped with a copy of B(X). For @ to be defined as a random variable in its own
right, {2 will be equipped with a o-field F, and for each state z € X, thought of as an
initial condition in the sample path, there will be a probability measure P, such that
the probability of the event {® € A} is well-defined for any set A € F; the initial
condition requires, of course, that P,(®y = z) = 1.

The triple {2, F,P;} thus defines a stochastic process since 2 = {wg,w1,... :
w; € X} has the product structure to enable the projections w, at time n to be well
defined realizations of the random variables &,,.

Many of the models we consider (such as random walk or state space models)
have stochastic motion based on a separately defined sequence of underlying variables,
namely a noise or disturbance or innovation sequence W. We will slightly abuse
notation by using P(W € A) to denote the probability of the event {W € A} without
specifically defining the space on which W exists, or the initial condition of the chain:
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this could be part of the space on which the chain @ is defined or it could be separate.
No confusion should result from this usage.

Prior to discussing specific details of the probability laws governing the motion
of a chain @, we need first to be a little more explicit about the structure of the state
space X on which it takes its values. We consider, systematically, three types of state
spaces in this book:

State Space Definitions

(i) The state space X is called countable if X is discrete, with a finite
or countable number of elements, and with B(X) the o-field of all
subsets of X.

(ii) The state space X is called general if it is equipped with a countably
generated o-field B(X).

(iii) The state space X is called topological if it is equipped with a locally
compact, separable, metrizable topology with B(X) as the Borel o-
field.

It may on the face of it seem odd to introduce quite general spaces before rather than
after topological (or more structured) spaces.

This is however quite deliberate, since (perhaps surprisingly) we rarely find the
extra structure actually increasing the ease of approach. From our point of view, we
introduce topological spaces largely because specific applied models evolve on such
spaces, and for such spaces we will give specific interpretations of our general results,
rather than extending specific topological results to more general contexts.

For example, after framing general properties of sets, we identify these general
properties as holding for compact or open sets if the chain is on a topological space;
or after framing general properties of @, we develop the consequences of these when
@ is suitably continuous with respect to the topology considered.

The first formal introduction of such topological concepts is given in Chapter 6,
and is exemplified by an analysis of linear and nonlinear state space models in Chap-
ter 7. Prior to this we concentrate on countable and general spaces: for purposes of
exposition, our approach will often involve the description of behavior on a countable
space, followed by the development of analogous behavior on a general space, and
completed by specialization of results, where suitable, to more structured topological
spaces in due course.

For some readers, countable space models will be familiar: nonetheless, by de-
veloping the results first in this context, and then the analogues for the less familiar
general space processes on a systematic basis we intend to make the general context
more accessible. By then specializing where appropriate to topological spaces, we
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trust the results will be found more applicable for, say, those models which evolve on
multi-dimensional Euclidean space IR¥, or one of its subsets.

There is one caveat to be made in giving this description. One of the major
observations for Markov chains is that in many cases, the full force of a countable
space is not needed: we merely require one “accessible atom” in the space, such as
we might have with the state {0} in the storage models in Section 2.4.1. To avoid
repetition we will often assume, especially later in the book, not the full countable
space structure but just the existence of one such point: the results then carry over
with only notational changes to the countable case.

In formalizing the concept of a Markov chain we pursue this pattern now, first
developing the countable space foundations and then moving on to the slightly more
complex basis for general space chains.

3.2 Foundations on a Countable Space

3.2.1 The initial distribution and the transition matrix

A discrete time Markov chain @ on a countable state space is a collection & =
{®y,P1,...} of random variables, with each ®; taking values in the countable set X.
In this countable state space setting, B(X) will denote the set of all subsets of X.

We assume that for any initial distribution p for the chain, there exists a proba-
bility measure which denotes the law of @ on ({2, F), where F is the product o-field
on the sample space {2 := X*°. However, since we have to work with several initial
conditions simultaneously, we need to build up a probability space for each initial
distribution.

For a given initial probability distribution y on B(X), we construct the probability
distribution P, on F so that P,(®¢ = z¢) = pu(zo) and for any A € F,

Pu® € A| Dy =) =Py (P € A) (3.1)

where P, is the probability distribution on F which is obtained when the initial
distribution is the point mass d,, at zo.

The defining characteristic of a Markov chain is that its future trajectories depend
on its present and its past only through the current value.

To commence to formalize this, we first consider only the laws governing a tra-
jectory of fixed length n > 1. The random variables {®y...®P,}, thought of as a
sequence, take values in the space X"*! = Xy x - -+ x X, the (n 4 1)-fold product of
copies X; of the countable space X, equipped with the product o-field B(X"*!) which
consists again of all subsets of X" t1,

The conditional probability

P (@1 = T1,...,Pp = Tp) 1= Py (D1 = 71,...,Pp = T0), (3.2)

defined for any sequence {xo, ..., z,} € X"! and zo € X, and the initial probability
distribution p on B(X) completely determine the distributions of {®y, ..., &,}.
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Definition of a Countable Space Markov Chain

The process ¢ = (g, D1, ...), taking values in the path space (2, F,P),
is a Markov chain if for every n, and any sequence of states {zg, z1 ...z},

P'u(éo = .’I,'(),@l = .771,@2 =Z2y... ,@n = .’I,'n)
(3.3)
= M(‘TO)Pl‘o(@l = xl)le (@1 = .'L'Q) e Pl‘n—l (@1 = .’L‘n)

The probability y is called the initial distribution of the chain.

The process @ is a time-homogeneous Markov chain if the probabilities
P, (P4 = acj+1.) depend only on the values of z;, ;41 and are independent
of the timepoints j.

By extending this in the obvious way from events in X" to events in X* we have that
the initial distribution, followed by the probabilities of transitions from one step to
the next, completely define the probabilistic motion of the chain.

If @ is a time-homogeneous Markov chain, we write

P(z,y) == Py(P1 = y);
then the definition (3.3) can be written

PH(QSO = .’E(),QSl = .Tl,...,@n = .’IIn)

(3.4)
= w(zo) P(z0, 1) P(71,72) -+ - P(Tp—1,Tn),
or equivalently, in terms of the conditional probabilities of the process @,
P,u(¢n—|—1 = Tp+1 | QSn = Tpy.-- ,@0 = .’E()) = P(.’,Cn, .Tn+1). (35)

Equation (3.5) incorporates both the “loss of memory” of Markov chains and the
“time-homogeneity” embodied in our definitions. It is possible to mimic this definition,
asking that the Py;(®1 = z;11) depend on the time j at which the transition takes
place; but the theory for such inhomogeneous chains is neither so ripe nor so clean
as for the chains we study, and we restrict ourselves solely to the time-homogeneous
case in this book.

For a given model we will almost always define the probability P,, for a fixed
zo by defining the one-step transition probabilities for the process, and building the
overall distribution using (3.4).

This is done using a Markov transition matriz.
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Transition Probability Matrix

The matrix P = {P(z,y),z,y € X} is called a Markov transition matriz
if
P(.%‘,y) >0, Z P(:E,Z) =1, z,y € X (36)
zeX

We define the usual matrix iterates P" = {P"(z,v),z,y € X} by setting P® = I, the
identity matrix, and then taking inductively

P'(z,z) = Z P(z,y)P" (y, 2). (3.7)
yeX

In the next section we show how to take an initial distribution x4 and a transition
matrix P and construct a distribution P, so that the conditional distributions of the
process may be computed as in (3.1), and so that for any z, y,

Pu(@n =y | $o=1z) = P"(z,y) (3.8)
For this reason, P" is called the n-step transition matriz. For A C X, we also put

P*(z,A) := Z P"(z,y).
yeA

3.2.2 Developing & from the transition matrix

To define a Markov chain from a transition function we first consider only the laws
governing a trajectory of fixed length n > 1. The random variables {®,...,®P,},
thought of as a sequence, take values in the space X"t = Xy x --- x X, equipped
with the o-field B(X"*!) which consists of all subsets of X" 1.

Define the distributions P, of @ inductively by setting, for each fixed z € X

Pw(¢0 == LE) =1
ch(qsl = y) = P("an)
Px(¢2 = zadsl = y) = P(.T,y)P(y,Z)

and so on. It is then straightforward, but a little lengthy, to check that for each fixed
z, this gives a consistent set of definitions of probabilities P? on (X", B(X")), and
these distributions can be built up to an overall probability measure P, for each z on
the set 2 = []2, X; with o-field F = V;2, B(X;), defined in the usual way. Once we
prescribe an initial measure p governing the random variable @y, we can define the
overall measure by
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(P E€A) =" pu(x)Py(® € A)
T€EX
to govern the overall evolution of @. The formula (3.1) and the interpretation of the
transition function given in (3.8) follow immediately from this construction.
A careful construction is in Chung [49], Chapter 1.2. This leads to

Theorem 3.2.1 If X is countable, and

u:{u(x),arex}, P:{P(.’I),y),lﬂ,y EX}

are an initial measure on X and a Markov transition matriz satisfying (3.6) then there
exists a Markov chain @ on (§2, F) with probability law P, satisfying

PIL(¢TL+1 =Y | én :-"E,---,QO :"Ll()) :P("an)

3.3 Specific Transition Matrices

In practice models are often built up by constructing sample paths heuristically, often
for quite complicated processes, such as the queues in Section 2.4.2 and their many
ramifications in the literature, and then calculating a consistent set of transition prob-
abilities. Theorem 3.2.1 then guarantees that one indeed has an underlying stochastic
process for which these probabilities make sense.

To make this more concrete, let us consider a number of the models with Marko-
vian structure introduced in Chapter 2, and illustrate how their transition probabili-
ties may be constructed on a countable space from physical or other assumptions.

3.3.1 The forward and backward recurrence time chains

Recall that the forward recurrence time chain V1 is given by
V*t(n) :=inf(Z, —n: Z, > n), n>0

where Z,, is a renewal sequence as introduced in Section 2.4.1.

The transition matrix for VT is particularly simple. If VT (n) = k for some k > 0,
then after one time unit V*(n+1) = k—1. If V™ (n) = 1 then a renewal occurs at n+1
and V*(n + 1) has the distribution p of an arbitrary term in the renewal sequence.
This gives the sub-diagonal structure

p(1) p(2) p3) p(4)
1 0 0
P=] 0 ’

The backward recurrence time chain V~ has a similarly simple structure. For any
n € Z, let us write

pn) = Y p(j) (3.9)
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Write M = sup(m > 1 : p(m) > 0); if M < oo then for this chain the state space
X =1{0,1,...,M — 1}; otherwise X = Z . In either case, for z € X we have (with ¥
as a generic increment variable in the renewal process)

P(s,oc+1) = P(Y>a+1|Y >2)=p(z +1)/p(x)
P(z,0) = PY =2+1|Y >z)=p(z+1)/p(z) (3.10)
and zero otherwise. This gives a superdiagonal matrix of the form
b(1) 1-0b(1) 0 0
b(2) 0 1-0b(2) 0
P =

b3) 0 o 1-b(3)

where we have written b(j) = p(j + 1)/p(4)-

These particular chains are a rich source of simple examples of stable and unstable
behaviors, depending on the behavior of p; and they are also chains which will be found
to be fundamental in analyzing the asymptotic behavior of an arbitrary chain.

3.3.2 Random walk models

Random walk on the integers Let us define the random walk @ = {®,;n € Z}
by setting, as in (RW1), &, = &,,_1 + W,, where now the increment variables W, are
i.i.d. random variables taking only integer valuesin Z = {...,—1,0,1,...}. As usual,
write I'(y) = P(W =vy).

Then for z,y € Z, the state space of the random walk,

P(z,y) = P(@1=y| P =1)
P(@o+Wi=y| Py =)
= P(Wi=y-2)
= I'(y—x). (3.11)

The random walk is distinguished by this translation invariant nature of the transition
probabilities: the probability that the chain moves from x to y in one step depends
only on the difference £ — y between the values.

Random walks on a half line It is equally easy to construct the transition prob-
ability matrix for the random walk on the half-line Z , defined in (RWHLI).

Suppose again that {W;} takes values in Z, and recall from (RWHL1) that the
random walk on a half line obeys

&, = D1+ W,]T. (3.12)

Then for y € Z,, the state space of the random walk on a half line, we have as in
(3.11) that for y > 0
P(z,y) =I'(y — z); (3.13)
whilst for y = 0,
P(.T),O) = P(q§0+W1 <0 | Py :.13)
= P(W; < —1) (3.14)
(—o0, —z].

N
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The simple storage model The storage model given by (SSM1)-(SSM2) is a con-
crete example of the structure in (3.13) and (3.14), provided the release rate is r = 1,
the inter-input times take values n € Z, with distribution G, and the input values
are also integer valued with distribution H.

The random walk on a half line describes the behavior of this storage model, and
its transition matrix P therefore defines its one-step behavior. We can calculate the
values of the increment distribution function I' in a different way, in terms of the
basic parameters G and H of the models, by breaking up the possibilities of the input
time and the input size: we have

T(z) = P(Sy—Ju=2)
— Y®H()G(z +1).

We have rather forced the storage model into our countable space context by assuming
that the variables concerned are integer valued. We will rectify this in later sections.

3.3.3 Embedded queueing models

The GI/M/1 Queue The next context in which we illustrate the construction of
the transition matrix is in the modeling of queues through their embedded chains.
Consider the random variable N, = N(T},—), which counts customers immedi-
ately before each arrival in a queueing system satisfying (Q1)-(Q3).
We will first construct the matrix P = (P(z,y)) corresponding to the number of
customers N = {N,,} for the GI/M/1 queue; that is, the queue satisfying (Q4).

Proposition 3.3.1 For the GI/M/1 queue, the sequence N = {N,,n > 0} can be
constructed as a Markov chain with state space Z and transition matriz

q0 Do
g P1 Do 0

P = 92 P2 P11 Po

where q; = Z;’ijﬂ pi, and

po=P(S>T)= /oo e G (dt) (3.15)

0

pj = P{S;>T>5; )
= [Ty e, iz (3.16)

Hence N is a random walk on a half line.

PROOF  In Section 2.4.2 we established the Markovian nature of the increases at
T} —, in (2.27), under the assumption of exponential service times.

Since we consider N(t) immediately before every arrival time, N, can only
increase from N,, by one unit at most; hence for k£ > 1 it is trivial that

P(Npy1=7+k| Ny =3,Npn_1,Np_9,...,Ng) =0. (3.17)
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The independence and identical distribution structure of the service times show as in
Section 2.4.2 that, no matter which previous customer was being served, and when
their service started,

o
P(Nn—l—l =741 ‘ N, = Js Np 1,Np_o,... ,N()) = ‘/0 e_“t G(dt) = po (318)
as shown in equation (2.31). This establishes the upper triangular structure of P.
If N, = j, then for 0 < i < j, we have N, 1 = i provided exactly (j —i + 1)
jobs are completed in an inter-arrival period. It is an elementary property of sums of
exponential random variables (see, for example, Cinlar [40], Chapter 4) that for any

t, the number of services completed in a time [0,%] is Poisson with parameter put, so
that

P(So+-+++Sj11>t> 8o+ +8;) = e (ut)’ /5! (3.19)

from which we derive (3.16).

It remains to show that P(j,0) = ¢; = 322, pi; but this follows analogously
with equation (3.16), since the queue empties if more than (j+1) customers complete
service between arrivals.

Finally, to assert that N = {NN,,} can actually be constructed in its entirety as a
Markov chain on Z , we appeal to the general results of Theorem 3.2.1 above to build
N from the probabilistic building blocks P = (P(i,7)), and any initial distribution

M. O

The M/G/1 queue Next consider the random variables N;}, which count customers
immediately after each service time ends in a queueing system satisfying (Q1)-(Q3).

We showed in Section 2.4.2 that this is Markovian when the inter-arrival times
are exponential: that is, for an M/G/1 model satisfying (Q5).

Proposition 3.3.2 For the M/G/1 queue, the sequence N* = {N},n > 0} can be
constructed as a Markov chain with state space Z, and transition matriz

9 91 G2 g3 q4
9 91 G2 g3 q4

P = @ 91 92 g3
9 q1 Qg2
where for each 7 >0
o .
g = / (e MO /N H(d) > 1. (3-20)
0

Hence N* is similar to a random walk on a half line, but with a different modification
of the transitions away from zero.

ProOF  Exactly as in (3.19), the expressions g represent the probabilities of k
arrivals occurring in one service time with distribution H, when the interarrival times
are independent exponential variables of rate . O
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3.3.4 Linear models on the rationals

The discussion of the queueing models above not only gives more explicit examples of
the abstract random walk models, but also indicates how the Markov assumption may
or may not be satisfied, depending on how the process is constructed: we need the
exponential distributions for the basic building blocks, or we do not have probabilities
of transition independent of the past.

In contrast, for the simple scalar linear AR(1) models satisfying (SLM1) and
(SLM2), the Markovian nature of the process is immediate. The use of a countable
space here is in the main inappropriate, but some versions of this model do provide a
good source of examples and counterexamples which motivate the various topological
conditions we introduce in Chapter 6. Recall then that for an AR(1) model X,, and
W, are random variables on IR, satisfying

Xn = aXp_1 + Wy,

for some o € IR, with the “noise” variables {W,} independent and identically dis-
tributed. To use the countable structure of Section 3.2 we might assume, as with the
storage model in Section 3.3.2 above, that « is integer valued, and the noise variables
are also integer valued.

Or, if we need to assume a countable structure on X we might, for example, find
a better fit to reality by supposing that the constant « takes a rational value; and
that the generic noise variable W also has a distribution on the rationals @, with
P(W =q) =I'(q), g € Q. We then have, in a very straightforward manner

Proposition 3.3.3 Provided o € Q, the sequence X = {X,,n > 0} can be con-
structed as a time homogeneous Markov chain on the countable space Q, with transi-
tion probability matriz

P(r,q) = P(Xny1=¢q|Xn=r1)
= F(q—ar), raqu'

PrROOF  We have established that X is Markov. Clearly, from (SLM1), when X, €
@, the value of X7 is in Q also; and P(r,q) merely describes the fact that the chain
moves from r to ar in a deterministic way before adding the noise with distribution
wW.

Again, once we have P = {P(r,q),r,q € Q}, we are guaranteed the existence
of the Markov chain X, using the results of Theorem 3.2.1 with P as transition
probability matrix. O

This autoregression highlights immediately the shortcomings of the countable
state space structure. Although @ is countable, so that in a formal sense we can
construct a linear model satisfying (SLM1) and (SLM2) on @ in such a way that we
can use countable space Markov chain theory, it is clearly more natural to take, say,
«a as real and the variable W as real-valued also, so that X, is real-valued for any
initial =y € IR.

To model such processes, and the more complex autoregressions and nonlinear
models which generalize them in Chapter 2, and which are clearly Markovian but
continuous-valued in conception, we need a theory for continuous-valued Markov
chains. We turn to this now.
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3.4 Foundations for General State Space Chains

3.4.1 Developing & from transition probabilities

The countable space approach guides the development of the theory we shall present
in this book for a much broader class of Markov chains, on quite general state spaces:
it is one of the more remarkable features of this seemingly sweeping generalization that
the great majority of the countable state space results carry over virtually unchanged,
without assuming any detailed structure on the space.

We let X be a general set, and B(X) denote a countably generated o-field on X:
when X is topological, then B(X) will be taken as the Borel o-field, but otherwise it
may be arbitrary.

In this case we again start from the one-step transition probabilities and construct
@ much as in Theorem 3.2.1.

Transition Probability Kernels

If P={P(z,A),z € X,A € B(X)} is such that

(i) for each A € B(X), P(-, A) is a non-negative measurable function on
(ii) for each z € X, P(z, -) is a probability measure on B(X)

then we call P a transition probability kernel or Markov transition func-
tion.

On occasion, as in Chapter 6, we may require that a collection T = {T'(z, A),z €
X,A € B(X)} satisfies (i) and (ii), with the exception that T'(z,X) < 1 for each z:
such a collection is called a substochastic transition kernel. In the other direction,
there will be times when we need to consider completely non-probabilistic mappings
K:X x B(X) - R4y with K(z, -) a measure on B(X) for each z, and K(-,B) a
measurable function on X for each B € B(X). Such a map is called a kernel on
(X, B(X)).

We now imitate the development on a countable space to see that from the
transition probability kernel P we can define a stochastic process with the appropriate
Markovian properties, for which P will serve as a description of the one-step transition
laws.

We first define a finite sequence ¢ = {Py, 1, ..., P, } of random variables on the
product space X" =[], X;, equipped with the product o-field /I, B(X;), by an
inductive procedure.
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For any measurable sets 4; C X;, we develop the set functions P?(-) on X"*! by
setting, for a fixed starting point £ € X and for the “cylinder sets” A x --- x A,

PL(A1) = P(z,4),
PZ(A; x Ag) = /AP(%dyl)P(yl,Aﬂ,

1

PRl x o x Ay) = [ Plody) [ Plys,dyn) - Plya-, An).
Ay Az
These are all well-defined by the measurability of the integrands P(-, -) in the first
variable, and the fact that the kernels are measures in the second variable.
If we now extend P? to all of \/ij B(X;) in the usual way [25] and repeat this
procedure for increasing n, we find

Theorem 3.4.1 For any initial measure p on B(X), and any transition probabil-
ity kernel P = {P(z,A),x € X,A € B(X)}, there ezists a stochastic process
D = {Dy,P1,...} on 2 =[[2,Xi, measurable with respect to F = \/520 B(X;), and a
probability measure P, on F such that P,(B) is the probability of the event {® € B}
for B € F; and for measurable A; C X;,1 =0,...,n, and any n

Pu(¢0 S A0,¢1 S Al, e, ®p € An) (3.21)
p(dyo)P(yo, dy1) - - - P(yn—1, An).

yOEAO ‘/yn—1€An—1

PROOF  Because of the consistency of definition of the set functions P}, there is an
overall measure P, for which the P? are finite dimensional distributions, which leads
to the result: the details are relatively standard measure theoretic constructions, and
are given in the general case by Revuz [223], Theorem 2.8 and Proposition 2.11;
whilst if the space has a suitable topology, as in (MC1), then the existence of @ is a
straightforward consequence of Kolmogorov’s Consistency Theorem for construction
of probabilities on topological spaces. ad

The details of this construction are omitted here, since it suffices for our purposes
to have indicated why transition probabilities generate processes, and to have spelled
out that the key equation (3.21) is a reasonable representation of the behavior of the
process in terms of the kernel P.

We can now formally define

Markov Chains on General Spaces

The stochastic process @ defined on ({2, F) is called a time-homogeneous
Markov chain with transition probability kernel P(z, A) and initial dis-
tribution p if the finite dimensional distributions of @ satisfy (3.21) for
every n.
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3.4.2 The n-step transition probability kernel

As on countable spaces the n-step transition probability kernel is defined iteratively.
We set P%(z, A) = §,(A), the Dirac measure defined by

1 z€A
dz(A) = { 0 o¢A, (3.22)
and, for n > 1, we define inductively
P"(z,A) = / P(z,dy)P""'(y,A), zeX, AecB(X). (3.23)
X

We write P" for the n-step transition probability kernel { P"(z, A),z € X, A € B(X)}:
note that P™ is defined analogously to the n-step transition probability matrix for
the countable space case.

As a first application of the construction equations (3.21) and (3.23), we have the
celebrated Chapman-Kolmogorov equations. These underlie, in one form or another,
virtually all of the solidarity structures we develop.

Theorem 3.4.2 For any m with 0 < m < n,

Pz, A) = / P™(z,dy)P" ™(y,A), ze€X, A€ B(X). (3.24)

X
ProoOF In (3.21), choose p = ¢, and integrate over sets A; = X fori=1,...,n—1;
and use the definition of P™ and P"~™ for the first m and the last n — m integrands.
O

We interpret (3.24) as saying that, as @ moves from z into A in n steps, at any
intermediate time m it must take (obviously) some value y € X; and that, being a
Markov chain, it forgets the past at that time m and moves the succeeding (n — m)
steps with the law appropriate to starting afresh at y. We can write equation (3.24)
alternatively as

Py(Bn € A) = /X Py (B € dy)Py (B € A). (3.25)

Exactly as the one-step transition probability kernel describes a chain @, the m-step
kernel (viewed in isolation) satisfies the definition of a transition kernel, and thus
defines a Markov chain ™ = {®]"'} with transition probabilities

P, (8™ € A) = P™ (g, A). (3.26)

This, and several other transition functions obtained from P, will be used widely in
the sequel.
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Skeletons and Resolvents

The chain ¢ with transition law (3.26) is called the m-skeleton of the
chain &.

The resolvent K,_ is defined for 0 < e < 1 by

K, (z,A):=(1-¢) ZeiPi(x,A), z € X, A € B(X).
1=0

The Markov chain with transition function K,_ is called the K,_-chain.

This nomenclature is taken from the continuous-time literature, but we will see that
in discrete time the m-skeletons and resolvents of the chain also provide a useful tool
for analysis.

There is one substantial difference in moving to the general case from the count-
able case, which flows from the fact that the kernel P" can no longer be viewed as
symmetric in its two arguments.

In the general case the kernel P™ operates on quite different entities from the left
and the right. As an operator P™ acts on both bounded measurable functions f on
X and on o-finite measures y on B(X) via

P @) = [ Pr@df). P () = [ alds)P" (s, 4),

and we shall use the notation P"f uP™ to denote these operations. We shall also
write

P(z, f) = / P (2, dy) f(y) := 6, P" f

if it is notationally convenient. In general, the functional notation is more compact:
for example, we can rewrite the Chapman-Kolmogorov equations as

pmtn = pmpn g e Z.

On many occasions, though, where we feel that the argument is more transparent
when written in full form we shall revert to the more detailed presentation.

The form of the Markov chain definitions we have given to date concern only
the probabilities of events involving @. We now define the expectation operation E,
corresponding to P,.

For cylinder sets we define E, by

E,u[]leX---XAn(éﬂ, ce 7¢n)] = PIL({QO’ - ,dsn} € Ag X -+ X An),

where 15 denotes the indicator function of a set B. We may extend the definition to
that of E,[h(®o, D1, ...)] for any measurable bounded real-valued function A on {2 by
requiring that the expectation be linear.
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By linearity of the expectation, we can also extend the Markovian relationship
(3.21) to express the Markov property in the following equivalent form. We omit the
details, which are routine.

Proposition 3.4.3 If ¢ is a Markov chain on (£2,F), with initial measure pu, and
h: 2 = R is bounded and measurable, then

Ep[h(¢n+1a¢n+25 .. ) | @0, A ,@n; @n = .T] = Ex[h(@h @2, .. )] (327)
o

The formulation of the Markov concept itself is made much simpler if we develop
more systematic notation for the information encompassed in the past of the process,
and if we introduce the “shift operator” on the space (2.

For a given initial distribution, define the o-field

FE.=o(&y,...,d,) C BXX"T)

which is the smallest o-field for which the random variable {®, ..., ®,} is measurable.
In many cases, .7-""45 will coincide with B(X™), although this depends in particular on
the initial measure y chosen for a particular chain.

The shift operator 6 is defined to be the mapping on (2 defined by

0({zo,T1,---,ZTn,y--.}) = {Z1, T2, -+, Tpp1,-- -}
We write 8% for the k" iterate of the mapping 6, defined inductively by
0'=0, OFtl=000% k>1.
The shifts 6% define operators on random variables H on ({2, F, P,) by
(0FH)(w) = H o 6%(w).

It is obvious that &, o 8%(w) = &, . Hence if the random variable H is of the form
H = h(®Pgy, P, ...) for a measurable function h on the sequence space {2 then

0 H = h(Dg, Pr i1, - - .)

Since the expectation E;[H] is a measurable function on X, it follows that Eg [H] is
a random variable on ({2, F,P,) for any initial distribution. With this notation the
equation

Eu[0"H | F] =Es,[H]  as. [P)] (3.28)

valid for any bounded measurable h and fixed n € Z, describes the time homoge-
neous Markov property in a succinct way.

It is not always the case that F is complete: that is, contains every set of P.-
measure zero. We adopt the following convention as in [223]. For any initial measure
p we say that an event A occurs P,-a.s. to indicate that A° is a set contained in an
element of F2 which is of P,-measure zero.

If A occurs P;-a.s. for all z € X then we write that A occurs Py-a.s.
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3.4.3 Occupation, hitting and stopping times

71

The distributions of the chain @ at time n are the basic building blocks of its existence,
but the analysis of its behavior concerns also the distributions at certain random times

in its evolution, and we need to introduce these now.

Occupation Times, Return Times and Hitting Times

by @ to A after time zero, and is given by
o
NA = Z 1{P, € A}.
n=1

(ii) For any set A € B(X), the variables

T4 = min{n >1:&, € A}
o4 = min{n >0:P, € A}

(i) For any set A € B(X), the occupation time n4 is the number of visits

are called the first return and first hitting times on A, respectively.

For every A € B(X), n4, 74 and o4 are obviously measurable functions from {2 to

Z, U{oo}.

Unless we need to distinguish between different returns to a set, then we call 74
and o4 the return and hitting times on A respectively. If we do wish to distinguish
different return times, we write 74 (k) for the random time of the k** visit to A: these

are defined inductively for any A by

Ta(l) = Ta
TA(k) = min{n > 714(k—1): P, € A}.

Analysis of @ involves the kernel U defined as

o0

U(z,A) = Z P"(z,A)
n=1
= Egna]
which maps X x B(X) to IRU {oo}, and the return time probabilities

L(z,A) = Py(ra < )
= P,(®Pever enters A).

(3.29)

(3.30)

(3.31)
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In order to analyze numbers of visits to sets, we often need to consider the behavior
after the first visit 74 to a set A (which is a random time), rather than behavior
after fixed times. One of the most crucial aspects of Markov chain theory is that the
“forgetfulness” properties in equation (3.21) or equation (3.27) hold, not just for fixed
times n, but for the chain interrupted at certain random times, called stopping times,
and we now introduce these ideas.

Stopping Times

A function (: 2 — Z, U {oo} is a stopping time for @ if for any initial
distribution u the event {¢ =n} € FZ for all n € Z..

The first return and the hitting times on sets provide simple examples of stopping
times.

Proposition 3.4.4 For any set A € B(X), the variables T4 and o4 are stopping
times for @.

ProOOF Since we have

{ra=n} = Mt {d, € AYN{P, €A} eFL, n>1

{oa=n} = M {Pnc AYN{S, c A eFL2, n>0
it follows from the definitions that 74 and o4 are stopping times. O

We can construct the full distributions of these stopping times from the basic
building blocks governing the motion of @, namely the elements of the transition
probability kernel, using the Markov property for each fixed n € Z, . This gives
Proposition 3.4.5 (i) For allz € X, A € B(X)
Po(14 =1) = P(z, 4),

and inductively for n > 1

Pora=n) = [ Pledy)Pyra=n—1)
= / P(xadyl)/ P(y1,dys) - -
Ac Ac

/AC P(yn72adynfl)P(yn71>A)-
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(ii) For allz € X, A € B(X)

and forn > 1, x € A°

P.(ca =n) =Py(r4 = n).
O
If we use the kernel Ip defined as Ip(z,A) := l4np(z), we have, in more compact
functional notation,
Po(ta = k) = [(PIs)* "1 P] (z, A).

From this we obtain the formula

L(z,A) := i[(PIAc)k_lP] (z,A)
k=1

for the return time probability to a set A starting from the state x.

The simple Markov property (3.28) holds for any bounded measurable h and fixed
n € Z. We now extend (3.28) to stopping times.

If ¢ is an arbitrary stopping time, then the fact that our time-set is Z enables
us to define the random variable @, by setting & = @, on the event {( = n}. For a
stopping time ( the property which tells us that the future evolution of @ after the
stopping time depends only on the value of @, rather than on any other past values,
is called the Strong Markov Property.

To describe this formally, we need to define the o-field .7-"? ={AeF:{(=
n}NA € F2,n € Z,}, which describes events which happen “up to time ¢”.

For a stopping time ¢ and a random variable H = h(®g, ®1,...) the shift 8¢ is
defined as

O°H = h(®¢,Dern,---),

on the set {¢ < oco}. The required extension of (3.28) is then

The Strong Markov Property

We say @ has the Strong Markov Property if for any initial distribution u,
any real-valued bounded measurable function A on {2, and any stopping
time C,

Eu[0°H | F¢] = Eg [H] a.s. [P, (3.32)

on the set {{ < oo}.

Proposition 3.4.6 For a Markov chain @ with discrete time parameter, the Strong
Markov Property always holds.
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PROOF  This result is a simple consequence of decomposing the expectations on
both sides of (3.32) over the set where {( = n}, and using the ordinary Markov
property, in the form of equation (3.28), at each of these fixed times n. O

We are not always interested only in the times of visits to particular sets. Often
the quantities of interest involve conditioning on such visits being in the future.

Taboo Probabilities

We define the n-step taboo probabilities as
AP"(z,B) :=Py(®, € B,74 > n), z € X, A, B € B(X).

The quantity 4P"(z, B) denotes the probability of a transition to B in n steps of the
chain, “avoiding” the set A. As in Proposition 3.4.5 these satisfy the iterative relation

API("EaB) = P(iE,B)
and for n > 1

AP"wB) = [ Plo,dy)aP" 5, B),  weX, ABEBX),  (333)
AC

or, in operator notation, oP"(x, B) = [(PI4)" 'P](z, B).
We will also use extensively the notation
o0
Ua(z,B):=»_ aP™(z,B), z€X, A BE¢eDBX); (3.34)
n=1

note that this extends the definition of L in (3.31) since

Uy(z,A) = L(z, A), z e X

3.5 Building Transition Kernels For Specific Models

3.5.1 Random walk on a half line

Let @ be a random walk on a half line, where now we do not restrict the increment
distribution to be integer-valued. Thus {W;} is a sequence of i.i.d. random variables
taking values in R = (—o00,00), with distribution function I'(4A) = P(W € A),
A € B(R).

For any A C (0,00), we have by the arguments we have used before
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P(z,A) = P(@g+ W€ A|Py=r1)

= P(W1 € A— .’E)
= I'(A-2), (3.35)
whilst
P(z,{0}) = P(®+ Wi <0 =ux)
= P(W1 S —:E)
= I(-00,—1]. (3.36)

These models are often much more appropriate in applications than random walks
restricted to integer values.

3.5.2 Storage and queueing models

Consider the Moran dam model given by (SSM1)-(SSM2), in the general case where
r > 0, the inter-input times have distribution GG; and the input values have distribu-
tion H.

The model of a random walk on a half line with transition probability kernel P
given by (3.36) defines the one-step behavior of the storage model. As for the integer
valued case, we calculate the distribution function I" explicitly by breaking up the

possibilities of the input time and the input size, to get a similar convolution form
for I' in terms of G and H:

I'(A) = P(S,—Jnc€A)
= [T+ ym Hay), (3.37)

where as usual the set A/r:={y:ry € A}.

The model (3.37) is of a storage system, and we have phrased the terms ac-
cordingly. The same transition law applies to the many other models of this form:
inventories, insurance models, and models of the residual service in a GI/G/1 queue,
which were mentioned in Section 2.5.

In Section 3.5.4 below we will develop the transition probability structure for a
more complex system which can also be used to model the dynamics of the GI/G/1
queue.

3.5.3 Renewal processes and related chains

We now consider a real-valued renewal process: this extends the countable space
version of Section 2.4.1 and is closely related to the residual service time mentioned
above.

Let {Y1,Ys,...} be a sequence of independent and identical random variables,
now with distribution function I' concentrated, not on the whole real line nor on
Z ., but rather on IR.. Let Yy be a further independent random variable, with the
distribution of Yy being I, also concentrated on IR ;. The random variables

Zn=)Y;

n
=0
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are again called a delayed renewal process, with Iy being the distribution of the delay
described by the first variable. If Iy = I" then the sequence {Z,} is again referred to
as a renewal process.

As with the integer-valued case, write Iy * I' for the convolution of I'y and I’
given by

t

Iy« I' (dt) := /Ot I'(dt — s) I'y(ds) = /0 I'o(dt — s) I'(ds) (3.38)

and I'™* for the n'® convolution of I" with itself. By decomposing successively over
the values of the first n variables Zy, ..., Z,_1 we have that

P(Z, € dt) = T « ™ (dt)

and so the renewal measure given by U(—o0,t] = > 5° I'™ (—o0, t| has the interpre-
tation

U|0,t] = Eg[number of renewals in [0, ¢]]

and

Iy * U [0,t] = Ep,[number of renewals in [0, ¢]],

where E( refers to the expectation when the first renewal is at 0, and Ep, refers to
the expectation when the first renewal has distribution 1.

It is clear that Z,, is a Markov chain: its transition probabilities are given by
P(z,A)=P(Z, € A| Z,-1=2)=T(A—1x)

and so Z, is a random walk. It is not a very stable one, however, as it moves inexorably
to infinity with each new step.

The forward and backward recurrence time chains, in contrast to the renewal pro-
cess itself, exhibit a much greater degree of stability: they grow, then they diminish,
then they grow again.
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Forward and backward recurrence time chains

If {Z,} is a renewal process with no delay, then we call the process

(RT3)

VT (t):=inf(Z, —t: Z, > t, n>1), t>0 (3.39)

the forward recurrence time process; and for any § > 0, the discrete time
chain Vi = {V;"(n) = VT (nd), n € Z.} is called the forward recurrence
time §-skeleton.

We call the process
(RT4)

V7 (t):=inf(t — Z, : Z, <t, n>1), t>0

the backward recurrence time process; and for any § > 0, the discrete
time chain Vj = {Vy (n) = V™ (nd), n € Z,} is called the backward
recurrence time d-skeleton.

No matter what the structure of the renewal sequence (and in particular, even if I is
not exponential), the forward and backward recurrence time §-skeletons V(‘;" and Vy
are Markovian.

To see this for the forward chain, note that if > §, then the transition proba-
bilities P° of V(}" are merely

P(z,{z —0}) =1

whilst if x < § we have, by decomposing over the time and the index of the last
renewal in the period after the current forward recurrence time finishes, and using
the independence of the variables Y;

o—x

4 _ % _ — ] —
P(z, A) _/0 ZBF (dt)T(A = [§ — o] — 1)

- /0 T AT (A — 5 — 1] — 1), (3.40)
For the backward chain we have similarly that for all z
PV (nd)=z+6|V ((n—1))=2)=I(z+d00)/I'(z,00)
whilst for dv C [0, d]

I'(v, )

z+0
PV~ (nd) € dv | V- ((n — 1)6) = z) = / T(d)U(do — (u =) = 0) e, "2
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3.5.4 Ladder chains and the GI/G/1 queue

The GI/G/1 queue satisfies the conditions (Q1)-(Q3). Although the residual service
time process of the GI/G/1 queue can be analyzed using the model (3.37), the more
detailed structure involving actual numbers in the queue in the case of general (i.e.
non-exponential) service and input times requires a more complex state space for a
Markovian analysis.

We saw in Section 3.3.3 that when the service time distribution H is exponential,
we can define a Markov chain by

N,, = { number of customers at 7,—,n =1,2,...},

whilst we have a similarly embedded chain after the service times if the inter-arrival
time is exponential. However, the numbers in the queue, even at the arrival or depar-
ture times, are not Markovian without such exponential assumptions.

The key step in the general case is to augment {N,,} so that we do get a Markov
model. This augmentation involves combining the information on the numbers in the
queue with the information in the residual service time

To do this we introduce a bivariate “ladder chain” on a “ladder” space Z x IR,
with a countable number of rungs indexed by the first variable and with each rung
constituting a copy of the real line.

This construction is in fact more general than that for the GI/G/1 queue alone,
and we shall use the ladder chain model for illustrative purposes on a number of
occasions.

Define the Markov chain & = {®,} on Z, x IR with motion defined by the
transition probabilities P(i,z;j X A), i,j € Z4+, z € R, A € B(IR) given by

Pli,z;jxA) = 0 j>i+1
Pli,z;jx A) = Aiji(z,A), j=1,...i+1 (3.41)
P(i,z;0 x A) = Aj(z,A).

where each of the A;, A7 is a substochastic transition probability kernel on IR in its
own right.

The translation invariant and “skip-free to the right” nature of the movement of
this chain, incorporated in (3.42), indicates that it is a generalization of those random
walks which occur in the GI/M/1 queue, as delineated in Proposition 3.3.1. We have

AL Ay
A A Ay 0
P=1 A5 Ay A A

where now the A;, A} are substochastic transition probability kernels rather than mere
scalars.
To use this construction in the GI/G/1 context we write

b, = (NnaRn)a n>1

where as before NN, is the number of customers at 7;,— and
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R,, = {total residual service time in the system at 7, +} :

then & = {®,;;n € Z} can be realised as a Markov chain with the structure (3.42),
as we now demonstrate by constructing the transition kernel P explicitly.

As in (Q1)-(Q3) let H denote the distribution function of service times, and G
denote the distribution function of interarrival times; and let Z1, Z5, Z3, ... denote
an undelayed renewal process with Z, — Z,,_1 = §,, having the service distribution
function H, as in (2.26). This differs from the process of completion points of services
in that the latter may have longer intervals when there is no customer present, after
completion of a busy cycle.

Let R; denote the forward recurrence time in the renewal process {Z} at time ¢
in this process, i.e., Rt = Zy(;)41 — t, where N(t) = sup{n : Z, <t} as in (3.39). If
Ry = x then Z; = . Now write

Pﬁ(may) =P(Z,<t< Zpt1, R <y| Ry =1) (3.42)

for the probability that, in this renewal process n “service times” are completed in
[0,¢] and that the residual time of current service at ¢ is in [0,y], given Ry = z.

With these definitions it is easy to verify that the chain @ has the form (3.42)
with the specific choice of the substochastic transition kernels 4;, A7 given by

An(a,0.9]) = [ Pi(a,y) Gat (3.43)

and -
A, 0,]) = [ 3 4y, [0, 00)) | HI0, ). (3.44)

n+1

3.5.5 State space models

The simple nonlinear state space model is a very general model and, consequently, its
transition function has an unstructured form until we make more explicit assumptions
in particular cases. The general functional form which we construct here for the scalar
SNSS(F') model of Section 2.2.1 will be used extensively, as will the techniques which
are used in constructing its form.

For any bounded and measurable function h: X — IR we have from (SNSS1),

h(Xn—I—l) = h(F(Xna Wn+1))
Since {W,,} is assumed i.i.d. in (SNSS2) we see that

Ph(z) = E[h(Xus1)| Xy = 1]
= E[(F(2,W))]

where W is a generic noise variable. Since I' denotes the distribution of W, this
becomes

Ph(z) = /_ O; h(F (z,w)) (dw)

and by specializing to the case where h = 14, we see that for any measurable set A
and any x € X,
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Pz, A) = /_ O:o 1 F(z,w) € A} I'(dw).

To construct the k-step transition probability, recall from (2.5) that the transi-
tion maps for the SNSS(F) model are defined by setting Fy(z) = z, Fi(zg,w1) =
F(zg,w1), and for k > 1,

Fyy1(zo, wi, ... wiy1) = F(Fi(wo, w1, - - - Wk), Wy 1)

where zy and w; are arbitrary real numbers. By induction we may show that for any
initial condition Xy = zo and any k € Z,

Xy = Fy(zo, W1,...,Wy),
which immediately implies that the k-step transition function may be expressed as
PF(z,A) = P(Fy(z,Wi,...,W};) € A)
= [+ [ M wn, . wn) € A} T(duwn) .. T(dwy)  (3.49)

3.6 Commentary

The development of foundations in this chapter is standard. The existence of the
excellent accounts in Chung [49] and Revuz [223] renders it far less necessary for us
to fill in specific details.

The one real assumption in the general case is that the o-field B(X) is countably
generated. For many purposes, even this condition can be relaxed, using the device of
“admissible o-fields” discussed in Orey [208], Chapter 1. We shall not require, for the
models we develop, the greater generality of non-countably generated o-fields, and
leave this expansion of the concepts to the reader if necessary.

The Chapman-Kolmogorov equations, simple though they are, hold the key to
much of the analysis of Markov chains. The general formulation of these dates to
Kolmogorov [139]: David Kendall comments [132] that the physicist Chapman was
not aware of his role in this terminology, which appears to be due to work on the
thermal diffusion of grains in a non-uniform fluid.

The Chapman-Kolmogorov equations indicate that the set P™ is a semigroup of
operators just as the corresponding matrices are, and in the general case this obser-
vation enables an approach to the theory of Markov chains through the mathematical
structures of semigroups of operators. This has proved a very fruitful method, espe-
cially for continuous time models. However, we do not pursue that route directly in
this book, nor do we pursue the possibilities of the matrix structure in the countable
case.

This is largely because, as general non-negative operators, the P" often do not act
on useful spaces for our purposes. The one real case where the P™ operate successfully
on a normed space occurs in Chapter 16, and even there the space only emerges after
a probabilistic argument is completed, rather than providing a starting point for
analysis.

Foguel [79, 81] has a thorough exposition of the operator-theoretic approach to
chains in discrete time, based on their operation on L' spaces. Vere-Jones [283, 284]
has a number of results based on the action of a matrix P as a non-negative operator
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on sequence spaces suitably structured, but even in this countable case results are
limited. Nummelin [202] couches many of his results in a general non-negative operator
context, as does Tweedie [272, 273], but the methods are probabilistic rather than
using traditional operator theory.

The topological spaces we introduce here will not be considered in more detail
until Chapter 6. Very many of the properties we derive will actually need less structure
than we have imposed in our definition of “topological” spaces: often (see for example
Tuominen and Tweedie [269]) all that is required is a countably generated topology
with the 77 separability property. The assumptions we make seem unrestrictive in
practice, however, and avoid occasional technicalities of proof.

Hitting times and their properties are of prime importance in all that follows. On
a countable space Chung [49] has a detailed account of taboo probabilities, and much
of our usage follows his lead and that of Nummelin [202], although our notation differs
in minor ways from the latter. In particular our 74 is, regrettably, Nummelin’s S4
and our o4 is Nummelin’s T); our usage of 74 agrees, however, with that of Chung
[49] and Asmussen [10], and we hope is the more standard.

The availability of the Strong Markov Property is vital for much of what follows.
Kac is reported as saying [35] that he was fortunate, for in his day all processes had
the Strong Markov Property: we are equally fortunate that, with a countable time
set, all chains still have the Strong Markov Property.

The various transition matrices that we construct are well-known. The reader
who is not familiar with such concepts should read, say, Cinlar [40], Karlin and Taylor
[122] or Asmussen [10] for these and many other not dissimilar constructions in the
queueing and storage area. For further information on linear stochastic systems the
reader is referred to Caines [39]. The control and systems areas have concentrated
more intensively on controlled Markov chains which have an auxiliary input which is
chosen to control the state process @. Once a control is applied in this way, the “closed
loop system” is frequently described by a Markov chain as defined in this chapter.
Kumar and Varaiya [143] is a good introduction, and the article by Arapostathis et al
[7] gives an excellent and up to date survey of the controlled Markov chain literature.
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Irreducibility

This chapter is devoted to the fundamental concept of irreducibility: the idea that all
parts of the space can be reached by a Markov chain, no matter what the starting
point. Although the initial results are relatively simple, the impact of an appropriate
irreducibility structure will have wide-ranging consequences, and it is therefore of
critical importance that such structures be well understood.

The results summarized in Theorem 4.0.1 are the highlights of this chapter from
a theoretical point of view. An equally important aspect of the chapter is, however, to
show through the analysis of a number of models just what techniques are available
in practice to ensure the initial condition of Theorem 4.0.1 (“p-irreducibility”) holds,
and we believe that these will repay equally careful consideration.

Theorem 4.0.1 If there exists an “irreducibility” measure ¢ on B(X) such that for
every state x
0(A) >0= L(z,A) >0 (4.1)

then there exists an essentially unique “mazimal” irreducibility measure ¥ on B(X)
such that

(i) for every state x we have L(x, A) > 0 whenever ¢(A) > 0, and also
(ii) if ¥(A) =0, then (A) = 0, where

A:={y: Ly, A) > 0};

(iii) if ¥(A°) =0, then A = Ag U N where the set N is also 1-null, and the set Ay

is absorbing in the sense that

P(:E,A()) =1, z € Ap.

PROOF  The existence of a measure 1 satisfying the irreducibility conditions (i)
and (ii) is shown in Proposition 4.2.2, and that (iii) holds is in Proposition 4.2.3. O
The term “maximal” is justified since we will see that ¢ is absolutely continuous
with respect to 1, written ¢ = ¢, for every ¢ satisfying (4.1); here the relation of
absolute continuity of ¢ with respect to ¢ means that 1(A) = 0 implies ¢(A) = 0.
Verifying (4.1) is often relatively painless. State space models on IR* for which
the noise or disturbance distribution has a density with respect to Lebesgue measure
will typically have such a property, with ¢ taken as Lebesgue measure restricted to
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an open set (see Section 4.4, or in more detail, Chapter 7); chains with a regeneration
point a reached from everywhere will satisfy (4.1) with the trivial choice of ¢ = d,
(see Section 4.3).

The extra benefit of defining much more accurately the sets which are avoided by
“most” points, as in Theorem 4.0.1 (ii), or of knowing that one can omit t-null sets
and restrict oneself to an absorbing set of “good” points as in Theorem 4.0.1 (iii),
is then of surprising value, and we use these properties again and again. These are
however far from the most significant consequences of the seemingly innocuous as-
sumption (4.1): far more will flow in Chapter 5, and thereafter.

The most basic structural results for Markov chains, which lead to this formal-
ization of the concept of irreducibility, involve the analysis of communicating states
and sets. If one can tell which sets can be reached with positive probability from
particular starting points z € X, then one can begin to have an idea of how the chain
behaves in the longer term, and then give a more detailed description of that longer
term behavior.

Our approach therefore commences with a description of communication between
sets and states which precedes the development of irreducibility.

4.1 Communication and Irreducibility: Countable Spaces

When X is general, it is not always easy to describe the specific points or even sets
which can be reached from different starting points x € X. To guide our development,
therefore, we will first consider the simpler and more easily understood situation when
the space X is countable; and to fix some of these ideas we will initially analyze briefly
the communication behavior of the random walk on a half line defined by (RWHL1),
in the case where the increment variable takes on integer values.

4.1.1 Communication: random walk on a half line

Recall that the random walk on a half line @ is constructed from a sequence of i.i.d.
random variables {W;} taking values in Z = (...,—2,—1,0,1,2,...), by setting

Dy = [Bp1 + W, (4.2)
We know from Section 3.3.2 that this construction gives, for y € Z,
P(.’L‘,y) = P(Wl :y_x)a
P(z,0) = P(W; < —x). (4.3)

In this example, we might single out the set {0} and ask: can the chain ever reach
the state {0}?

It is transparent from the definition of P(z,0) that {0} can be reached with
positive probability, and in one step, provided the distribution I" of the increment
{W,} has an infinite negative tail. But suppose we have, not such a long tail, but
only P(W,, < 0) > 0, with, say,

I(w)=6>0 (4.4)

for some w < 0. Then we have for any z that after n = [z/w] steps,
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Pw(én:O)zP(lew,Wgzw,,Wn:w):5">0

so that {0} is always reached with positive probability.

On the other hand, if P(W,, < 0) = 0 then it is equally clear that {0} cannot
be reached with positive probability from any starting point other than 0. Hence
L(z,0) > 0 for all states z or for none, depending on whether (4.4) holds or not.

But we might also focus on points other than {0}, and it is then possible that
a number of different sorts of behavior may occur, depending on the distribution of
W. If we have P(W = y) > 0 for all y € Z then from any state there is positive
probability of @ reaching any other state at the next step. But suppose we have the
distribution of the increments {W,,} concentrated on the even integers, with

P(W =2y) >0, PW=2y+1)=0, y€EZ,

and consider any odd valued state, say w. In this case w cannot be reached from any
even valued state, even though from w itself it is possible to reach every state with
positive probability, via transitions of the chain through {0}.

Thus for this rather trivial example, we already see X breaking into two subsets
with substantially different behavior: writing Zg_ ={2y,y € Z,} and Zi_ = {2y +
1,y € Z} for the set of non-negative even and odd integers respectively, we have

0 1
z,=z%uZ,

and from y € Zﬁ_, every state may be reached, whilst for y € Z:)L, only states in Zg_
may be reached with positive probability.

Why are these questions of importance?

As we have already seen, the random walk on a half line above is one with many
applications: recall that the transition matrices of N = {N,} and N* = {N;}, the
chains introduced in Section 2.4.2 to describe the number of customers in GI/M/1
and M/G/1 queues, have exactly the structure described by (4.3).

The question of reaching {0} is then clearly one of considerable interest, since
it represents exactly the question of whether the queue will empty with positive
probability. Equally, the fact that when {WW,} is concentrated on the even integers
(representing some degenerate form of batch arrival process) we will always have an
even number of customers has design implications for number of servers (do we always
want to have two?), waiting rooms and the like.

But our efforts should and will go into finding conditions to preclude such odd-
ities, and we turn to these in the next section, where we develop the concepts of
communication and irreducibility in the countable space context.

4.1.2 Communicating classes and irreducibility

The idea of a Markov chain @ reaching sets or points is much simplified when X
is countable and the behavior of the chain is governed by a transition probability
matrix P = P(z,y), z,y € X. There are then a number of essentially equivalent ways
of defining the operation of communication between states.

The simplest is to say that state z leads to state y, which we write as z — vy, if
L(z,y) > 0, and that two distinct states z and y in X communicate, written = <> v,
when L(z,y) > 0 and L(y,x) > 0. By convention we also define z — z.
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The relation x <> y is often defined equivalently by requiring that there exists
n(z,y) > 0 and m(y,z) > 0 such that P"(z,y) > 0 and P™(y,z) > 0; that is,
¥ P(z,5) > 0 and ¥ P(y,z) > 0.

Proposition 4.1.1 The relation “~” is an equivalence relation, and so the equiva-
lence classes C(z) = {y : ¢ <> y} cover X, with z € C(z).

PROOF By convention z <> z for all . By the symmetry of the definition, z < y
if and only if y <> .

Moreover, from the Chapman-Kolmogorov relationships (3.24) we have that if
z <>y and y <> z then z <> z. For suppose that x — y and y — 2z, and choose n(z, y)
and m(y, z) such that P"(z,y) > 0 and P™(y, z) > 0. Then we have from (3.24)

Pz, 2) > P™(z,y)P™ (y,2) > 0

so that z — z: the reverse direction is identical. O
Chains for which all states communicate form the basis for future analysis.

Irreducible Spaces and Absorbing Sets

If C(z) = X for some z, then we say that X (or the chain {X,}) is
irreducible.

We say C(z) is absorbing if P(y,C(z)) =1 for all y € C(z).

When states do not all communicate, then although each state in C(z) communicates
with every other state in C(z), it is possible that there are states y € [C(z)]¢ such
that © — y. This happens, of course, if and only if C(z) is not absorbing.

Suppose that X is not irreducible for @. If we reorder the states according to the
equivalence classes defined by the communication operation, and if we further order
the classes with absorbing classes coming first, then we have a decomposition of P
such as that depicted in Figure 4.1.

Here, for example, the blocks C(1), C(2) and C(3) correspond to absorbing
classes, and block D contains those states which are not contained in an absorbing
class. In the extreme case, a state in D may communicate only with itself, although
it must lead to some other state from which it does not return. We can write this
decomposition as

X = (Z C(x)) ubD (4.5)
z€l

where the sum is of disjoint sets.
This structure allows chains to be analyzed, at least partially, through their con-
stituent irreducible classes. We have
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Fig.4.1. Block decomposition of P into communicating classes

Proposition 4.1.2 Suppose that C:=C(xz) is an absorbing communicating class for
some x € X. Let Po denote the matrix P restricted to the states in C. Then there
exists an irreducible Markov chain ®¢c whose state space is restricted to C' and whose
transition matriz is given by Po.

PROOF  We merely need to note that the elements of Po are positive, and

ZP(J;,y)El, zxeC

yeC

because C' is absorbing: the existence of @ then follows from Theorem 3.2.1, and
irreducibility of @ is an obvious consequence of the communicating class structure
of C. ad

Thus for non-irreducible chains, we can analyze at least the absorbing subsets in
the decomposition (4.5) as separate chains.

The virtue of the block decomposition described above lies largely in this assur-
ance that any chain on a countable space can be studied assuming irreducibility. The
“irreducible absorbing” pieces C(z) can then be put together to deduce most of the
properties of a reducible chain.

Only the behavior of the remaining states in D must be studied separately, and
in analyzing stability D may often be ignored. For let J denote the indices of the
states for which the communicating classes are not absorbing. If the chain starts in
D = Uyes C(y), then one of two things happens: either it reaches one of the absorbing
sets C(z),z € X\J, in which case it gets absorbed: or, as the only other alternative,
the chain leaves every finite subset of D and “heads to infinity”.

To see why this might hold, observe that, for any fixed y € J, there is some
state z € C(y) with P(z,[C(y)]°) = d > 0 (since C(y) is not an absorbing class), and
P™(y,z) = > 0 for some m > 0 (since C(y) is a communicating class). Suppose
that in fact the chain returns a number of times to y: then, on each of these returns,
one has a probability greater than 8¢ of leaving C(y) exactly m + 1 steps later, and
this probability is independent of the past due to the Markov property.
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Now, as is well known, if one tosses a coin with probability of a head given by
(B¢ infinitely often, then one eventually actually gets a head: similarly, one eventually
leaves the class C(y), and because of the nature of the relation z <> y, one never
returns.

Repeating this argument for any finite set of states in D indicates that the chain
leaves such a finite set with probability one.

There are a number of things that need to be made more rigorous in order for
this argument to be valid: the forgetfulness of the chain at the random time of
returning to y, giving the independence of the trials, is a form of the Strong Markov
Property in Proposition 3.4.6, and the so-called “geometric trials argument” must be
formalized, as we will do in Proposition 8.3.1 (iii).

Basically, however, this heuristic sketch is sound, and shows the directions in
which we need to go: we find absorbing irreducible sets, and then restrict our atten-
tion to them, with the knowledge that the remainder of the states lead to clearly
understood and (at least from a stability perspective) somewhat irrelevant behavior.

4.1.3 Irreducible models on a countable space

Some specific models will illustrate the concepts of irreducibility. It is valuable to
notice that, although in principle irreducibility involves P™ for all n, in practice we
usually find conditions only on P itself that ensure the chain is irreducible.

The forward recurrence time model Let p be the increment distribution of a
renewal process on Z,, and write

r =sup(n : p(n) > 0). (4.6)

Then from the definition of the forward recurrence chain it is immediate that the set
A = {1,2,...,r} is absorbing, and the forward recurrence chain restricted to A is
irreducible: for if z,y € A, with z > y then P*~¥(z,y) = 1 whilst

PV (y,3) > PV (y, Dp(r) P~ (r,z) = p(r) > 0. (4.7)

Queueing models Consider the number of customers N in the GI/M/1 queue. As
shown in Proposition 3.3.1, we have P(z,z + 1) = po > 0, and so the structure of N
ensures that by iteration, for any z > 0

P*(0,z) > P(0,1)P(1,2)... P(z — 1,z) = [po]® > 0.

But we also have P(z,0) > 0 for any x > 0: hence we conclude that for any pair
z,y € X, we have

P¥*Y(z,y) > P(z,0)P¥(0,y) > 0.

Thus the chain N is irreducible no matter what the distribution of the interarrival
times.

A similar approach shows that the embedded chain N* of the M/G/1 queue is
always irreducible.
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Unrestricted random walk Let d be the greatest common divisor of {n : I'(n) >
0}. If we have a random walk on Z with increment distribution I', each of the sets
D, = {md+r,m € Z} for each r = 0,1,...,d — 1 is absorbing, so that the chain is
not irreducible.

However, provided I'(—00,0) > 0 and I'(0,00) > 0 the chain is irreducible when
restricted to any one D,. To see this we can use Lemma D.7.4: since I'(md) > 0 for
all m > mg we only need to move my steps to the left and then we can reach all
states in D, above our starting point in one more step. Hence this chain admits a
finite number of irreducible absorbing classes.

For a different type of behavior, let us suppose we have an increment distribution
on the integers, P(W,, = z) > 0, z € Z, so that d = 1; but assume the chain itself is
defined on the whole set of rationals Q).

If we start at a value ¢ € Q then @ “lives” on the set C(q) = {n + ¢,n € Z},
which is both absorbing and irreducible: that is, we have P(q,C(q)) = 1,9 € ®, and
for any r € C(q), P(r,q) > 0 also.

Thus this chain admits a countably infinite number of absorbing irreducible
classes, in contrast to the behavior of the chain on the integers.

4.2 -Irreducibility

4.2.1 The concept of p-irreducibility

We now wish to develop similar concepts of irreducibility on a general space X. The
obvious problem with extending the ideas of Section 4.1.2 is that we cannot define
an analogue of “<”, since, although we can look at L(z, A) to decide whether a set
A is reached from a point z with positive probability, we cannot say in general that
we return to single states .

This is particularly the case for models such as the linear models for which the
n-step transition laws typically have densities; and even for some of the models such
as storage models where there is a distinguished reachable point, there are usually no
other states to which the chain returns with positive probability.

This means that we cannot develop a decomposition such as (4.5) based on a
countable equivalence class structure: and indeed the question of existence of a so-
called “Doeblin decomposition”

X = (Z C’(x)) uD, (4.8)

z€l

with the sets C(z) being a countable collection of absorbing sets in B(X) and the
“remainder” D being a set which is in some sense ephemeral, is a non-trivial one. We
shall not discuss such reducible decompositions in this book although, remarkably,
under a variety of reasonable conditions such a countable decomposition does hold
for chains on quite general state spaces.

Rather than developing this type of decomposition structure, it is much more
fruitful to concentrate on irreducibility analogues. The one which forms the basis for
much modern general state space analysis is @-irreducibility.
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p-Irreducibility for general space chains

We call @ = {®,} p-irreducible if there exists a measure ¢ on B(X) such
that, whenever p(A4) > 0, we have L(z,A) > 0 for all z € X.

There are a number of alternative formulations of g-irreducibility. Define the transi-
tion kernel

K, (z,4) =Y P"(z,A)2~ " zeX, AeB(X) (4.9)
n=0

1
3

this is a special case of the resolvent of @ introduced in Section 3.4.2, and which
we consider in Section 5.5.1 in more detail. The kernel K,, defines for each z a
probability measure equivalent to I(z, A) + U(z, A) = Y72, F%”(x, A), which may be
infinite for many sets A.

Proposition 4.2.1 The following are equivalent formulations of @-irreducibility:
(i) for all x € X, whenever p(A) >0, U(z,A) > 0;

(ii) for all x € X, whenever p(A) > 0, there exists some n > 0, possibly depending
on both A and x, such that P"(z,A) > 0;

(iii) for all z € X, whenever ¢(A) > 0 then K,, (z,A) > 0.

PROOF  The only point that needs to be proved is that if L(z, A) > 0 for all z € A°
then, since L(z, A) = P(z, A)+ [4. P(z,dy)L(y, A), we have L(z, A) > 0 forall z € X:
thus the inclusion of the zero-time term in K,, does not affect the irreducibility. O

We will use these different expressions of é—irredueibility at different times with-
out further comment.

4.2.2 Maximal irreducibility measures

Although seemingly relatively weak, the assumption of ¢-irreducibility precludes sev-
eral obvious forms of “reducible” behavior. The definition guarantees that “big” sets
(as measured by ¢) are always reached by the chain with some positive probability, no
matter what the starting point: consequently, the chain cannot break up into separate
“reduced” pieces.

For many purposes, however, we need to know the reverse implication: that “neg-
ligible” sets B, in the sense that ¢(B) = 0, are avoided with probability one from
most starting points. This is by no means the case in general: any non-trivial restric-
tion of an irreducibility measure is obviously still an irreducibility measure, and such
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restrictions can be chosen to give zero weight to virtually any selected part of the
space.

For example, on a countable space if we only know that z — z* for every z and
some specific state z* € X, then the chain is §z«-irreducible.

This is clearly rather weaker than normal irreducibility on countable spaces, which
demands two-way communication. Thus we now look to measures which are exten-
sions, not restrictions, of irreducibility measures, and show that the -irreducibility
condition extends in such a way that, if we do have an irreducible chain in the sense
of Section 4.1, then the natural irreducibility measure (namely counting measure) is
generated as a “maximal” irreducibility measure.

The maximal irreducibility measure will be seen to define the range of the chain
much more completely than some of the other more arbitrary (or pragmatic) irre-
ducibility measures one may construct initially.

Proposition 4.2.2 If & is p-irreducible for some measure @, then there exists a
probability measure 1 on B(X) such that

(1) @ is Yp-irreducible;
(ii) for any other measure ¢, the chain @ is @ -irreducible if and only if ¥ = ¢';
(iii) if ¥(A) =0, then ¢ {y : L(y, A) > 0} = 0;

(iv) the probability measure v is equivalent to

WA) = [ @K, v, 4),

1
3

for any finite irreducibility measure ¢'.

PROOF  Since any probability measure which is equivalent to the irreducibility mea-
sure ¢ is also an irreducibility measure, we can assume without loss of generality that
©(X) = 1. Consider the measure 1 constructed as

V()= [ oldn)Ky (. ). (4.10)

It is obvious that %) is also a probability measure on B(X). To prove that 1 has all
the required properties, we use the sets

k
Ak) = {y: > P'(y,A) > kl}.

The stated properties now involve repeated use of the Chapman-Kolmogorov equa-
tions. To see (i), observe that when ¥(A) > 0, then from (4.10), there exists some k

such that @(A(k)) > 0, since A(k) T {y: L1 P"(y, A) > 0} = X. For any fixed =,
by ¢-irreducibility there is thus some m such that P™(z, A(k)) > 0. Then we have

k k
S Prn(z, A) = /Xpm(_q;,dy) (nz::l P"(y,A)) > k' P™(z, A(k)) > 0,

n=1

which establishes 1-irreducibility.
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Next let ¢’ be such that @ is ¢'-irreducible. If ¢'(A) > 0, we have Y, P"(y, A) > 0
for all y, and by its definition (A) > 0, whence 9 > ¢'. Conversely, suppose that
the chain is 1p-irreducible and that ¢ > ¢'. If ¢'{A} > 0 then ${A} > 0 also, and by
1p-irreducibility it follows that K, (z, A) > 0 for any = € X. Hence @ is ¢'-irreducible,
as required in (ii). ’

Result (iv) follows from the construction (4.10) and the fact that any two maximal
irreducibility measures are equivalent, which is a consequence of (ii).

Finally, we have that

/X P(dy)P™(y, A)2™™ = /X w(dy);Pm”(y,A)T(”*m“) < p(A)

from which the property (iii) follows immediately. O

Although there are other approaches to irreducibility, we will generally restrict
ourselves, in the general space case, to the concept of y-irreducibility; or rather, we
will seek conditions under which it holds. We will consistently use ¥ to denote an
arbitrary maximal irreducibility measure for @.

tp-Irreducibility Notation

(i) The Markov chain is called -irreducible if it is @-irreducible for
some ¢ and the measure 9 is a maximal irreducibility measure
satisfying the conditions of Proposition 4.2.2.

(ii) We write
BT (X):={A € B(X) : ¢(A) > 0}

for the sets of positive 1-measure; the equivalence of maximal ir-
reducibility measures means that B7(X) is uniquely defined.

(iii) We call a set A € B(X) full if p(A°) = 0.
(iv) We call a set A € B(X) absorbing if P(z,A) =1 for z € A.

The following result indicates the links between absorbing and full sets. This result
seems somewhat academic, but we will see that it is often the key to showing that
very many properties hold for i-almost all states.

Proposition 4.2.3 Suppose that @ is ¥-irreducible. Then
(i) every absorbing set is full,

(ii) ewvery full set contains a non-empty, absorbing set.
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Proor If A is absorbing, then were 1(A€) > 0, it would contradict the definition
of 9 as an irreducibility measure: hence A is full.

Suppose now that A is full, and set

B={yeX: iPn(y,AC) = 0}.

n=0

We have the inclusion B C A since P°(y, A°) = 1 for y € A°. Since ¥(A¢) = 0, from
Proposition 4.2.2 (iii) we know 9(B) > 0, so in particular B is non-empty. By the
Chapman-Kolmogorov relationship, if P(y, B¢) > 0 for some y € B, then we would
have

> P a9 [ P(y,dz){an(z,AC)}

n=0

which is positive: but this is impossible, and thus B is the required absorbing set. O
If a set C' is absorbing and if there is a measure 9 for which

¥(B) > 0= L(z,B) >0, zelC

then we will call C' an absorbing 1-irreducible set.

Absorbing sets on a general space have exactly the properties of those on a
countable space given in Proposition 4.1.2.

Proposition 4.2.4 Suppose that A is an absorbing set. Let P4 denote the kernel P
restricted to the states in A. Then there exists a Markov chain @4 whose state space
is A and whose transition matriz is given by Ps. Moreover, if @ is y-irreducible then
@D 4 is P-irreducible.

PrROOF  The existence of ®4 is guaranteed by Theorem 3.4.1 since P4(z,A) =
1,z € A. If & is y-irreducible then A is full and the result is immediate by Proposi-
tion 4.2.3. ad

The effect of these two propositions is to guarantee the effective analysis of re-
strictions of chains to full sets, and we shall see that this is indeed a fruitful avenue
of approach.

4.2.3 Uniform accessibility of sets

Although the relation = < y is not a generally useful one when X is uncountable, since
P"(z,y) = 0 in many cases, we now introduce the concepts of “accessibility” and,
more usefully, “uniform accessibility” which strengthens the notion of communication
on which -irreducibility is based.

We will use uniform accessibility for chains on general and topological state spaces
to develop solidarity results which are almost as strong as those based on the equiv-
alence relation = < y for countable spaces.
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Accessibility

We say that a set B € B(X) is accessible from another set A € B(X) if
L(z,B) > 0 for every z € A;

We say that a set B € B(X) is uniformly accessible from another set
A € B(X) if there exists a 6 > 0 such that

inf I, > §; :
inf L(z, B) 2 &; (4.11)

and when (4.11) holds we write A ~ B.

The critical aspect of the relation “A ~» B” is that it holds uniformly for = € A.
In general the relation “~»” is non-reflexive although clearly there may be sets A, B
such that A is uniformly accessible from B and B is uniformly accessible from A.

Importantly, though, the relationship is transitive. In proving this we use the
notation

o
Ua(z,B) = > aP"(z,B), z € X, A, B € B(X);

n=1

introduced in (3.34).

Lemma 4.2.5 If A~ B and B ~ C then A~ C.

PROOF  Since the probability of ever reaching C' is greater than the probability of
ever reaching C after the first visit to B, we have

inf Uc(z,C) > inf BUB(w,dy)Uc(y, C) > ;relflUB(y,B) Inf Uc(y,C) >0
as required. O

We shall use the following notation to describe the communication structure of
the chain.
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Communicating sets

The set A:={x € X : L(z, A) > 0} is the set of points from which A is
accessible.

The set A(m):={z € X: 3", P"(z,A) > m~}.

The set A% := {z € X : L(z,A) = 0} = [A]° is the set of points from
which A is not accessible.

Lemma 4.2.6 The set A= U,, A(m), and for each m we have A(m) ~ A.

PROOF  The first statement is obvious, whilst the second follows by noting that for
all z € A(m) we have

L(z,A) > Py(14 <m) > m~2.

O

It follows that if the chain is 9-irreducible, then we can find a countable cover of
X with sets from which any other given set A in B (X) is uniformly accessible, since
A = X in this case.

4.3 -Irreducibility For Random Walk Models

One of the main virtues of i-irreducibility is that it is even easier to check than the
standard definition of irreducibility introduced for countable chains. We first illustrate
this using a number of models related to random walk.

4.3.1 Random walk on a half line
Let & be a random walk on the half line [0, 00), with transition law as in Section 3.5.

The communication structure of this chain is made particularly easy because of the
“atom” at {0}.

Proposition 4.3.1 The random walk on a half line = {P,,} with increment vari-
able W is @-irreducible, with ©(0,00) =0, ¢({0}) =1, if and only if

P(W < 0) = I'(—00,0) > 0; (4.12)

and in this case if C is compact then C ~ {0}.
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PROOF  The necessity of (4.12) is trivial. Conversely, suppose for some §, £ > 0,
I'(—o00,—¢) > 4. Then for any n, if z/e < n,

P"(z,{0}) > 6" > 0.
If C =0, ¢| for some ¢, then this implies for all z € C that
Py(1o < c/e) > site/e

so that C ~» {0} as in Lemma 4.2.6. O

It is often as simple as this to establish ¢-irreducibility: it is not a difficult con-
dition to confirm, or rather, it is often easy to set up “grossly sufficient” conditions
such as (4.12) for p-irreducibility.

Such a construction guarantees ¢-irreducibility, but it does not tell us very much
about the motion of the chain. There are clearly many sets other than {0} which the
chain will reach from any starting point. To describe them in this model we can easily
construct the maximal irreducibility measure. By considering the motion of the chain
after it reaches {0} we see that @ is also 1-irreducible, where

P(A) =D PM(0,4)27"

we have that 1 is maximal from Proposition 4.2.2.

4.3.2 Storage models

If we apply the result of Proposition 4.3.1 to the simple storage model defined by
(SSM1) and (SSM2), we will establish 1-irreducibility provided we have

P(Sp, —Jn <0) > 0.

Provided there is some probability that no input takes place over a period long enough
to ensure that the effect of the increment .S, is eroded, we will achieve §g-irreducibility
in one step. This amounts to saying that we can “turn off” the input for a period longer
than s whenever the last input amount was s, or that we need a positive probability
of the input remaining turned off for longer than s/r. One sufficient condition for this
is obviously that the distribution H have infinite tails.

Such a construction may fail without the type of conditions imposed here. If, for
example, the input times are deterministic, occurring at every integer time point, and
if the input amounts are always greater than unity, then we will not have an irreducible
system: in fact we will have, in the terms of Chapter 9 below, an evanescent system
which always avoids compact sets below the initial state.

An underlying structure as pathological as this seems intuitively implausible,
of course, and is in any case easily analyzed. But in the case of content-dependent
release rules, it is not so obvious that the chain is always g-irreducible. If we assume
R(z) = [J[r(y)] 'dy < oo as in (2.33), then again if we can “turn off” the input
process for longer than R(z) we will hit {0}; so if we have

P(T; > R(z)) >0

for all z we have a dp-irreducible model. But if we allow R(z) = oo as we may wish
to do for some release rules where r(xz) — 0 slowly as x — 0, which is not unrealistic,
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then even if the inter-input times 7; have infinite tails, this simple construction will
fail. The empty state will never be reached, and some other approach is needed if we
are to establish p-irreducibility.

In such a situation, we will still get p"**-irreducibility, where p"“* is Lebesgue
measure, if the inter-input times T; have a density with respect to p~": this can be
determined by modifying the “turning off” construction above. Exact conditions for
@-irreducibility in the completely general case appear to be unknown to date.

b

4.3.3 Unrestricted random walk

The random walk on a half line, and the various applications of it in storage and
queueing, have a single state reached from all initial points, which forms a natural
candidate to generate an irreducibility measure. The unrestricted random walk re-
quires more analysis, and is an example where the irreducibility measure is not formed
by a simple regenerative structure.

For unrestricted random walk @ given by

Dpy1 =P + Wiy,

and satisfying the assumption (RW1), let us suppose the increment distribution I" of
{Wp,} has an absolutely continuous part with respect to Lebesgue measure p™* on
IR, with a density vy which is positive and bounded from zero at the origin; that is,
for some 5 > 0,6 > 0,

P(W, € A) > / () da,
A
and
y(z) >26>0, |z[ <B.
Set C ={z:|z| <p/2}:if BC C, and z € C then
P(z,B) = P(Wy€B-—x)
> / v(y) dy
B—x
2 5MLeb(B).

But now, exactly as in the previous example, from any x we can reach C in at most
n = 2|z|/p steps with positive probability, so that p"® restricted to C forms an
irreducibility measure for the unrestricted random walk.

Such behavior might not hold without a density. Suppose we take I" concentrated
on the rationals Q, with I'(r) > 0, r € Q. After starting at a value r € Q the chain
@ “lives” on the set {r + ¢,q¢ € Q} = @ so that Q is absorbing. But for any z € IR
the set {z + ¢,q € Q} = =z + Q is also absorbing, and thus we can produce, for this
random walk on IR, an uncountably infinite number of absorbing irreducible sets.

It is precisely this type of behavior we seek to exclude for chains on a general
space, by introducing the concepts of 1-irreducibility above.

4.4 1-Irreducible Linear Models

4.4.1 Scalar models

Let us consider the scalar autoregressive AR(k) model
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Yo=a1Yp 1 +taYes o+ ...+ apYy g + Wy,

where aq, ..., € IR, as defined in (AR1). If we assume the Markovian representation
in (2.1), then we can determine conditions for 9)-irreducibility very much as for random
walk.

In practice the condition most likely to be adopted is that the innovation process
W has a distribution I" with an everywhere positive density. If the innovation process
is Gaussian, for example, then clearly this condition is satisfied. We will see below, in
the more general Proposition 4.4.3, that the chain is then p“°’-irreducible regardless
of the values of ay, ..., ag.

It is however not always sufficient for ¢-irreducibility to have a density only
positive in a neighborhood of zero. For suppose that W is uniform on [-1,1], and
that k¥ = 1 so we have a first order autoregression. If |a;| < 1 the chain will be
u[Lj‘Ll]—irreducible under such a density condition: the argument is the same as for
the random walk. But if |a;| > 1, then once we have an initial state larger than
(Jor| — 1)1, the chain will monotonically “explode” towards infinity and will not be
irreducible.

This same argument applies to the general model (2.1) if the zeros of the poly-
nomial A(z) =1— 12" — -+ — ap2* lie outside of the closed unit disk in the complex
plane C. In this case Y,, — 0 as n — oo when W, is set equal to zero, and from this
observation it follows that it is possible for the chain to reach [—1,1] at some time in
the future from every initial condition. If some root of A(z) lies within the open unit
disk in C then again “explosion” will occur and the chain will not be irreducible.

Our argument here is rather like that in the dam model, where we considered
deterministic behavior with the input “turned off”. We need to be able to drive
the chain deterministically towards a center of the space, and then to be able to
ensure that the random mechanism ensures that the behavior of the chain from initial
conditions in that center are comparable.

We formalize this for multidimensional linear models in the rest of this section.

4.4.2 Communication for linear control models

Recall that the linear control model LCM(F,G) defined in (LCM1) by zg4+1 = Fay +
Gug41 is called controllable if for each pair of states zg,z* € X, there exists m €
Z . and a sequence of control variables (uf,...u},) € IRP such that z,, = z* when
(u1,...um) = (uf,...u},), and the initial condition is equal to z.

This is obviously a concept of communication between states for the deterministic
model: we can choose the inputs uj in such a way that all states can be reached from
any starting point. We first analyze this concept for the deterministic control model
then move on to the associated linear state space model LSS(F,G), where we see
that controllability of LCM(F,G) translates into 1-irreducibility of LSS(F',G) under
appropriate conditions on the noise sequence.

For the LCM(F,G) model it is possible to decide explicitly using a finite procedure
when such control can be exerted. We use the following rank condition for the pair
of matrices (F,G):
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Controllability for the Linear Control Model

Suppose that the matrices F' and G have dimensions n X n and n X p,
respectively.

(LCM3)  The matrix
C,:=[F"'G|---| FG |G (4.13)
is called the controllability matriz, and the pair of matrices

(F,Q) is called controllable if the controllability matrix C),
has rank n.

It is a consequence of the Cayley Hamilton Theorem, which states that any power F*
is equal to a linear combination of {I, F,..., F" '}, where n is equal to the dimension
of F (see [39] for details), that (F, @) is controllable if and only if

[FE1G |-+ | FG | G
has rank n for some k € Z,.

Proposition 4.4.1 The linear control model LCM(F,G) is controllable if the pair
(F,G) satisfy the rank condition (LCMS3).

PROOF  When this rank condition holds it is straightforward that in the LCM(F,G)
model any state can be reached from any initial condition in k steps using some control
sequence (u1,...,ux), for we have by

u1
zy = Freo + [FF71G |--- | FG | G] | : (4.14)

U
and the rank condition implies that the range space of the matrix [F¥~1G | --- | FG |
G] is equal to R". O

This gives us as an immediate application

Proposition 4.4.2 The autoregressive AR(k) model may be described by a linear
control model (LCM1), which can always be constructed so that it is controllable.

Proor  For the linear control model associated with the autoregressive model de-
scribed by (2.1), the state process x is defined inductively by
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al . DY ak
1 0
Tp = .. Tp—1+ Unp,
0 1 0
and we can compute the controllability matrix C), of (LCM3) explicitly:
[ k-1 m mo 1]
' 1 0
Co=[F""'G |-+ |FG|G]=| 5
m 1 :
10 0]

where we define g = 1, ; = 0 for ¢ < 0, and for 57 > 2,

k
N = Z Q515 —i-
i=1

The triangular structure of the controllability matrix now implies that the linear
control system associated with the AR(k) model is controllable. O

4.4.3 Gaussian linear models

For the LSS(F,G) model
Xpy1 = FXp + GWi

described by (LSS1) and (LSS2) to be t-irreducible, we now show that it is sufficient
that the associated LCM(F,G) model be controllable and the noise sequence W have
a distribution that in effect allows a full cross-section of the possible controls to be
chosen. We return to the general form of this in Section 6.3.2 but address a specific

case of importance immediately. The Gaussian linear state space model is described
by (LSS1) and (LSS2) with the additional hypothesis

Disturbance for the Gaussian state space model

(LSS3) The noise variable W has a Gaussian distribution on
IR? with zero mean and unit variance: that is, W ~ N(0,I),
where I is the p X p identity matrix.

If the dimension p of the noise were the same as the dimension n of the space, and if
the matrix G were full rank, then the argument for scalar models in Section 4.4 would
immediately imply that the chain is p"“*-irreducible. In more general situations we
use controllability to ensure that the chain is p**"-irreducible.
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Proposition 4.4.3 Suppose that the LSS(F,G) model is Gaussian and the associated
control model is controllable.

Then the LSS(F,G) model is @-irreducible for any non-trivial measure ¢ which
possesses a density on IR", Lebesgue measure is a mazimal irreducibility measure, and
for any compact set A and any set B with positive Lebesgue measure we have A ~» B.

PROOF  If we can prove that the distribution P¥(z, -) is absolutely continuous
with respect to Lebesgue measure, and has a density which is everywhere positive
on IR", it will follow that for any ¢ which is non-trivial and also possesses a density,
Pk(z, ) = ¢ for all z € IR™ for any such ¢ the chain is then g-irreducible. This
argument also shows that Lebesgue measure is a maximal irreducibility measure for
the chain.

Under condition (LSS3), for each deterministic initial condition zg € X = IR",
the distribution of X is also Gaussian for each k € Z, by linearity, and so we need
only to prove that P¥(z, -) is not concentrated on some lower dimensional subspace
of IR™. This will happen if and only if the variance of the distribution P*(z, -) is of
full rank for each z.

We can compute the mean and variance of X to obtain conditions under which
this occurs. Using (4.14) and (LSS3), for each initial condition zy € X the conditional
mean of X}, is easily computed as

pur(20) := Eay[Xi] = F¥ag (4.15)

and the conditional variance of X}, is given independently of zy by

k—1
e = Eaol(Xk — pui(20)) (Xe — pn(0)) ] = Y F'GGTFT. (4.16)
1=0

Using (4.16), the variance of X has full rank n for some k if and only if the control-
lability grammian, defined as
o
Y F'GGTF', (4.17)
i=0
has rank n. From the Cayley Hamilton Theorem again, the conditional variance of
X}, has rank n for some k if and only if the pair (F,G) is controllable and, if this is
the case, then one can take k = n.
Under (LSS1)-(LSS3), it thus follows that the k-step transition function possesses
a smooth density; we have P*(z,dy) = pi(z,y)dy where

pe(z,y) = 2| ) exp{-L(y — F¥z) 5, (y — F*z)} (4.18)

and |X;| denotes the determinant of the matrix Y. Hence P*(z, -) has a density
which is everywhere positive, as required, and this implies finally that for any compact
set A and any set B with positive Lebesgue measure we have A ~» B. O

Assuming, as we do in the result above, that W has a density which is every-
where positive is clearly something of a sledge hammer approach to obtaining -
irreducibility, even though it may be widely satisfied. We will introduce more delicate
methods in Chapter 7 which will allow us to relax the conditions of Proposition 4.4.3.

Even if (F,G) is not controllable then we can obtain an irreducible process, by
appropriate restriction of the space on which the chain evolves, under the Gaussian
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assumption. To define this formally, we let Xy C X denote the range space of the
controllability matrix:

Xo = R(F"'G|--|FG|G))

= {nZIFiGwZ' Tw; € ]Rp},
=0

which is also the range space of the controllability grammian. If 2y € X then so is
Fzg+ Gw; for any wy € IRP. This shows that the set Xy is absorbing, and hence the
LSS(F,G) model may be restricted to Xg.

The restricted process is then described by a linear state space model, similar to
(LSS1), but evolving on the space Xy whose dimension is strictly less than n. The
matrices (Fy, Go) which define the dynamics of the restricted process are a controllable
pair, so that by Proposition 4.4.3, the restricted process is p™*-irreducible.

4.5 Commentary

The communicating class concept was introduced in the initial development of count-
able chains by Kolmogorov [140] and used systematically by Feller [76] and Chung
[49] in developing solidarity properties of states in such a class.

The use of 1-irreducibility as a basic tool for general chains was essentially de-
veloped by Doeblin [65, 67], and followed up by many authors, including Doob [68],
Harris [95], Chung [48], Orey [207]. Much of their analysis is considered in greater de-
tail in later chapters. The maximal irreducibility measure was introduced by Tweedie
[272], and the result on full sets is given in the form we use by Nummelin [202].
Although relatively simple they have wide-ranging implications.

Other notions of irreducibility exist for general state space Markov chains. One
can, for example, require that the transition probabilities

K% (',L‘a ) = Z Pn(xa ‘)2—(n+1)
n=0

all have the same null sets. In this case the maximal measure ¥ will be equivalent to
Ky (z,-) for every z. This was used by Nelson [192] and Sidak [238] to derive solidarity
properties for general state space chains similar to those we will consider in Part II.
This condition, though, is hard to check, since one needs to know the structure of
P"(z,-) in some detail; and it appears too restrictive for the minor gains it leads to.

In the other direction, one might weaken @-irreducibility by requiring only that,
whenever ¢(A4) > 0, we have ), P"(z,A) > 0 only for p-almost all z € X. Whilst
this expands the class of “irreducible” models, it does not appear to be noticeably
more useful in practice, and has the drawback that many results are much harder to
prove as one tracks the uncountably many null sets which may appear. Revuz [223]
Chapter 3 has a discussion of some of the results of using this weakened form.

The existence of a block decomposition of the form

X = (2 C(x)) ubD

zel
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such as that for countable chains, where the sum is of disjoint irreducible sets and D
is in some sense ephemeral, has been widely studied. A recent overview is in Meyn
and Tweedie [182], and the original ideas go back, as so often, to Doeblin [67], after
whom such decompositions are named. Orey [208], Chapter 9, gives a very accessible
account of the measure-theoretic approach to the Doeblin decomposition.

Application of results for 1-irreducible chains has become more widespread re-
cently, but the actual usage has suffered a little because of the somewhat inadequate
available discussion in the literature of practical methods of verifying 1-irreducibility.
Typically the assumptions are far too restrictive, as is the case in assuming that in-
novation processes have everywhere positive densities or that accessible regenerative
atoms exist (see for example Laslett et al [153] for simple operations research models,
or Tong [267] in time series analysis).

The detailed analysis of the linear model begun here illustrates one of the recur-
ring themes of this book: the derivation of stability properties for stochastic models
by consideration of the properties of analogous controlled deterministic systems. The
methods described here have surprisingly complete generalizations to nonlinear mod-
els. We will come back to this in Chapter 7 when we characterize irreducibility for
the NSS(F') model using ideas from nonlinear control theory.

Irreducibility, whilst it is a cornerstone of the theory and practice to come, is
nonetheless rather a mundane aspect of the behavior of a Markov chain. We now
explore some far more interesting consequences of the conditions developed in this
chapter.



5

Pseudo-atoms

Much Markov chain theory on a general state space can be developed in complete
analogy with the countable state situation when X contains an atom for the chain @.

Atoms

A set o € B(X) is called an atom for @ if there exists a measure v on
B(X) such that
P(z,A)=v(4), z€a.

If & is 1p-irreducible and () > 0 then « is called an accessible atom.

A single point « is always an atom. Clearly, when X is countable and the chain is
irreducible then every point is an accessible atom.

On a general state space, accessible atoms are less frequent. For the random walk
on a half line as in (RWHL1), the set {0} is an accessible atom when I'(—oc,0) > 0:
as we have seen in Proposition 4.3.1, this chain has 1 ({0}) > 0. But for the random
walk on IR when I' has a density, accessible atoms do not exist.

It is not too strong to say that the single result which makes general state space
Markov chain theory as powerful as countable space theory is that there exists an
“artificial atom” for @p-irreducible chains, even in cases such as the random walk with
absolutely continuous increments. The highlight of this chapter is the development of
this result, and some of its immediate consequences.

Atoms are found for “strongly aperiodic” chains by constructing a “split chain”
b evolving on a split state space X = XoU X1, where Xy and X; are copies of the state
space X, in such a way that

(i) the chain @ is the marginal chain of &, in the sense that P(®, € A) = P(®;, €
Ap U Ay) for appropriate initial distributions, and
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(ii) the “bottom level” X; is an accessible atom for .

The existence of a splitting of the state space in such a way that the bottom level is
an atom is proved in the next section. The proof requires the existence of so-called
“small sets” C, which have the property that there exists an m > 0, and a minorizing
measure v on B(X) such that for any z € C,

P™(z, B) > v(B). (5.1)

In Section 5.2, we show that, provided the chain is 1-irreducible
o
X=JC;
1

where each Cj is small: thus we have that the splitting is always possible for such
chains.

Another non-trivial consequence of the introduction of small sets is that on a
general space we have a finite cyclic decomposition for i-irreducible chains: there is
a cycle of sets D;,i = 0,1,...,d — 1 such that

where ¢(N) = 0 and P(z,D;) =1 for z € D;_; (mod d). A more general and more
tractable class of sets called petite sets are introduced in Section 5.5: these are used
extensively in the sequel, and in Theorem 5.5.7 we show that every petite set is small
if the chain is aperiodic.

5.1 Splitting ¢-Irreducible Chains

Before we get to these results let us first consider some simpler consequences of the
existence of atoms.

As an elementary first step, it is clear from the proof of the existence of a maximal
irreducibility measure in Proposition 4.2.2 that we have an easy construction of 7
when X contains an atom.

Proposition 5.1.1 Suppose there is an atom o in X such that Y, P"(z,a) > 0 for
all z € X. Then o is an accessible atom and D is v-irreducible with v = P (e, -).

ProOOF  We have, by the Chapman-Kolmogorov equations, that for any n > 1

Prti(z, 4) > / P"(z,dy) Py, A)
= P"z,a)v(A)

which gives the result by summing over n. O
The uniform communication relation “~ A” introduced in Section 4.2.3 is also

simplified if we have an atom in the space: it is no more than the requirement that

there is a set of paths to A of positive probability, and the uniformity is automatic.
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Proposition 5.1.2 If L(z, A) > 0 for some state z € o, where a is an atom, then
o~ A O

In many cases the “atoms” in a state space will be real atoms: that is, single
points which are reached with positive probability.

Consider the level in a dam in any of the storage models analyzed in Section 4.3.2.
It follows from Proposition 4.3.1 that the single point {0} forms an accessible atom
satisfying the hypotheses of Proposition 5.1.1, even when the input and output pro-
cesses are continuous.

However, our reason for featuring atoms is not because some models have single-
tons which can be reached with probability one: it is because even in the completely
general 1-irreducible case, by suitably extending the probabilistic structure of the
chain, we are able to artificially construct sets which have an atomic structure and
this allows much of the critical analysis to follow the form of the countable chain
theory.

This unexpected result is perhaps the major innovation in the analysis of general
Markov chains in the last two decades. It was discovered in slightly different forms,
independently and virtually simultaneously, by Nummelin [200] and by Athreya and
Ney [12].

Although the two methods are almost identical in a formal sense, in what follows
we will concentrate on the Nummelin Splitting, touching only briefly on the Athreya-

Ney random renewal time method as it fits less well into the techniques of the rest of
this book.

5.1.1 Minorization and splitting

To construct the artificial atom or regeneration point involves a probabilistic “split-
ting” of the state space in such a way that atoms for a “split chain” become natural
objects.

In order to carry out this construction we need to consider sets satisfying the
following

Minorization Condition

For some ¢ > 0, some C € B(X) and some probability measure v with
v(C% =0and v(C) =1

Pz, A) > 61c(zx)v(4), AeB(X), z€X. (5.2)
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The form (5.2) ensures that the chain has probabilities uniformly bounded below
by multiples of v for every z € C. The crucial question is, of course, whether any
chains ever satisfy the Minorization Condition. This is answered in the positive in
Theorem 5.2.2 below: for g-irreducible chains “small sets” for which the Minorization
Condition holds exist, at least for the m-skeleton. The existence of such small sets is a
deep and difficult result: by indicating first how the Minorization Condition provides
the promised atomic structure to a split chain, we motivate rather more strongly the
development of Theorem 5.2.2.

In order to construct a split chain, we split both the space and all measures that
are defined on B(X).

We first split the space X itself by writing X = X x {0,1}, where X := X x {0}
and X; := X x {1} are thought of as copies of X equipped with copies B(Xp), B(X1)
of the o-field B(X)

We let B(X) be the o-field of subsets of X generated by B(Xq), B(X1): that is,
B(X) is the smallest o-field containing sets of the form Ag:= A x {0}, A; := A x {1},
A € B(X).

We will write z;,7 = 0,1 for elements of X, with z denoting members of the
upper level Xy and z1 denoting members of the lower level X;. In order to describe
more easily the calculations associated with moving between the original and the split
chain, we will also sometimes call Xy the copy of X, and we will say that A € B(X) is
a copy of the corresponding set Ay C Xp.

If A is any measure on B(X), then the next step in the construction is to split the
measure A into two measures on each of Xy and X; by defining the measure A\* on

B(X) through
A (Ao) = MANO)1 -]+ AMANCe), } (5.3)

A (A1) = MANO)S,

where ¢ and C are the constant and the set in (5.2). Note that in this sense the
splitting is dependent on the choice of the set C, and although in general the set
chosen is not relevant, we will on occasion need to make explicit the set in (5.2) when
we use the split chain.

It is critical to note that X is the marginal measure induced by A*, in the sense
that for any A in B(X) we have

A (Ag U A1) = MA). (5.4)

In the case when A C C¢, we have A\*(Ap) = A(A); only subsets of C are really
effectively split by this construction.

Now the third, and most subtle, step in the construction is to split the chain &
to form a chain & which lives on (X, B(X)). Define the split kernel P(z;, A) for z; € X

and A € B(X) by

P(zo, -) = P(z, )", o € Xo\Co; (5.5)
P(zo, -) = [1 = 0] [P(x, -)* = dv*(-)], o € Co; (5.6)

P(zq, ) =v*(-), z1 € Xy. (5.7)
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where C,§ and v are the set, the constant and the measure in the Minorization
Condition.

Outside C the chain {&,} behaves just like {®,}, moving on the “top” half X,
of the split space. Each time it arrives in C, it is “split”; with probability 1 — § it
remains in Cj, with probability ¢ it drops to C;. We can think of this splitting of the
chain as tossing a d-weighted coin to decide which level to choose on each arrival in
the set C' where the split takes place.

When the chain remains on the top level its next step has the modified law
(5.6). That (5.6) is always non-negative follows from (5.2). This is the sole use of the
Minorization Condition, although without it this chain cannot be defined.

Note here the whole point of the construction: the bottom level X; is an atom,
with ¢*(X1) = dp(C) > 0 whenever the chain @ is g-irreducible. By (5.3) we have
P (z;,X;\C1) =0 for all n > 1 and all z; € X, so that the atom C; C X is the only
part of the bottom level which is reached with positive probability. We will use the
notation

&:=Cy (5.8)

when we wish to emphasize the fact that all transitions out of C; are identical, so
that C; is an atom in X.

5.1.2 Connecting the split and original chains

The splitting construction is valuable because of the various properties that & inherits
from, or passes on to, @. We give the first of these in the next result.

Theorem 5.1.3 (i)  The chain ® is the marginal chain of {®,}: that is, for any
initial distribution X on B(X) and any A € B(X),

/ Mdz) P* (z, A) = / N (dyi) P* (i, Ag U A1), (5.9)
X X

(ii)  The chain @ is p-irreducible if S is p*-irreducible; and if Y is p-irreducible
with p(C) > 0 then D is v*-irreducible, and & is an accessible atom for the split chain.

ProorF (i) From the linearity of the splitting operation we only need to check
the equivalence in the special case of A = §,, and k& = 1. This follows by direct
computation. We analyze two cases separately.

Suppose first that z € C¢. Then

[ 82w P(ui, A0 U Ar) = Plao, Ao U A1) = Pla, A)
by (5.5) and (5.4). On the other hand suppose z € C. Then
/ 65 (dyi) P yza Ao U Ay)
= (1- 5)15(:c0, AO UAp) 4 6P(z1, Ag U Ay)

(1-4) TP (2, Ap U A1) — 00" (Ao U A1)]] + 0 (49 U Ay)
= ('T,A)

from (5.6), (5.7) and (5.4) again.
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(ii)  If the split chain is @*-irreducible it is straightforward that the original
chain is g-irreducible from (i). The converse follows from the fact that ¢& is an acces-
sible atom if ¢(C) > 0, which is easy to check, and Proposition 5.1.1. O

The following identity will prove crucial in later development. For any measure
u on B(X) we have

[ )P, ) = ([ wlde)Pla, )’ (510

or, using operator notation, u*P = (uP)*. This follows from the definition of the
* operation and the transition function P, and is in effect a restatement of Theo-
rem 5.1.3 (i).

Since it is only the marginal chain @ which is really of interest, we will usually
consider only sets of the form A = Ag U Ay, where A € B(X), and we will largely
restrict ourselves to functions on X of the form f(z;) = f(z;), where f is some function
on X; that is, f is identical on the two copies of X. By (5.9) we have for any k, any
initial distribution ), and any function f identical on Xy and X;

Ex[f (k)] = Ex-[f(Dx)]-

To emphasize this identity we will henceforth denote f by f, and A by A in these
special instances. The context should make clear whether A is a subset of X or X, and
whether the domain of f is X or X.

The Minorization Condition ensures that the construction in (5.6) gives a prob-
ability law on X. A similar construction can also be carried out under the seem-
ingly more general minorization requirement that there exists a function h(z) with

J h(z)p(dz) > 0, and a measure v(-) on B(X) such that
P(z,A) > h(z)v(4), z € X,A e B(X). (5.11)

The details are, however, slightly less easy than for the approach we give above al-
though there are some other advantages to the approach through (5.11): the interested
reader should consult Nummelin [202] for more details.

The construction of a split chain is of some value in the next several chapters,
although much of the analysis will be done directly using the small sets of the next
section. The Nummelin Splitting technique will, however, be central in our approach
to the asymptotic results of Part III.

5.1.3 A random renewal time approach

There is a second construction of a “pseudo-atom” which is formally very similar to
that above. This approach, due to Athreya and Ney [12], concentrates, however, not
on a “physical” splitting of the space but on a random renewal time.

If we take the existence of the minorization (5.2) as an assumption, and if we also
assume

L(z,C)=1, zeX (5.12)

we can then construct an almost surely finite random time 7 > 1 on an enlarged
probability space such that P,(7 < co) = 1 and for every A

P(®Pp, € A, 7 =n) =v(CNAP (T =n). (5.13)
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To construct 7, let @ run until it hits C; from (5.12) this happens eventually with
probability one. The time and place of first hitting C' will be, say, k and z. Then
with probability ¢ distribute @1 over C according to v; with probability (1 — §)
distribute @1 over the whole space with law Q(z,-), where

Qz, A) = [P(z,4) — w(ANC)]/(1 = 0);

from (5.2) @ is a probability measure, as in (5.6). Repeat this procedure each time
@ enters C; since this happens infinitely often from (5.12) (a fact yet to be proven in
Chapter 9), and each time there is an independent probability § of choosing v, it is
intuitively clear that sooner or later this version of @, is chosen. Let the time when
it occurs be 7. Then Py(7 < 00) = 1 and (5.13) clearly holds; and (5.13) says that 7
is a regeneration time for the chain.

The two constructions are very close in spirit: if we consider the split chain
construction then we can take the random time 7 as 74, which is identical to the
hitting time on the bottom level of the split space.

There are advantages to both approaches, but the Nummelin Splitting does not
require the recurrence assumption (5.12), and more pertinently, it exploits the rather
deep fact that some m-skeleton always obeys the Minorization Condition when -
irreducibility holds, as we now see.

5.2 Small Sets

In this section we develop the theory of small sets. These are sets for which the
Minorization Condition holds, at least for the m-skeleton chain. From the splitting
construction of Section 5.1.1, then, it is obvious that the existence of small sets is of
considerable importance, since they ensure the splitting method is not vacuous.

Small sets themselves behave, in many ways, analogously to atoms, and in partic-
ular the conclusions of Proposition 5.1.1 and Proposition 5.1.2 hold. We will find also
many cases where we exploit the “pseudo-atomic” properties of small sets without
directly using the split chain.

Small Sets

A set C € B(X) is called a small set if there exists an m > 0, and a
non-trivial measure v, on B(X), such that for all z € C, B € B(X),

P™(z,B) > vm(B). (5.14)

When (5.14) holds we say that C is v,-small.
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The central result (Theorem 5.2.2 below), on which a great deal of the subsequent
development rests, is that for a 4)-irreducible chain, every set A € BT (X) contains
a small set in B*(X). As a consequence, every 9-irreducible chain admits some m-
skeleton which can be split, and for which the atomic structure of the split chain can
be exploited.

In order to prove this result, we need for the first time to consider the densities of
the transition probability kernels. Being a probability measure on (X, B(X)) for each
individual z and each n, the transition probability kernel P"(zx,-) admits a Lebesgue
decomposition into its absolutely continuous and singular parts, with respect to any
finite non-trivial measure ¢ on B(X) : we have for any fixed z and B € B(X)

P(e,B) = [ p"(z,y)¢(dy) + PL (. B). (515)

where p"(z,y) is the density of P"(z, -) with respect to ¢ and P, is orthogonal to ¢.

Theorem 5.2.1 Suppose ¢ is a o-finite measure on (X, B(X)). Suppose A is any set
in B(X) with ¢(A) > 0 such that

o0
¢(B)>0, BCA = > P¥x,B)>0, ze€A
k=1

Then, for every n, the function p™ defined in (5.15) can be chosen to be a measurable
function on X2, and there exists C C A, m > 1, and § > 0 such that $(C) > 0 and

p"(z,y) >0, z,y€C. (5.16)

PROOF  We include a detailed proof because of the central place small sets hold
in the development of the theory of ¥-irreducible Markov chains. However, the proof
is somewhat complex, and may be omitted without interrupting the flow of under-
standing at this point.

It is a standard result that the densities p™(z,y) of P"(z, -) with respect to ¢
exist for each z € X, and are unique except for definition on ¢-null sets. We first need
to verify that

(i) the densities p™(x,y) can be chosen jointly measurable in z and y, for each n;

(ii) the densities p™(z,y) can be chosen to satisfy an appropriate form of the
Chapman-Kolmogorov property, namely for n, m € Z,, and all z, z

P w,2) > [ (o)™ (v, 2)gldy). (517
X

To see (i), we appeal to the fact that B(X) is assumed countably generated. This
means that there exists a sequence {B;;7 > 1} of finite partitions of X, such that
B; 1 is a refinement of B;, and which generate B(X). Fix z € X, and let B;(z) denote
the element in B; with z € B;(z).

For each i, the functions

ph(z,y) = { 0 (1) =0
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are non-negative, and are clearly jointly measurable in z and y. The Basic Differen-
tiation Theorem for measures (cf. Doob [68], Chapter 7, Section 8) now assures us
that for y outside a ¢-null set NV,

pLo(z,y) = lim p}(z,y) (5.18)
71— 00

exists as a jointly measurable version of the density of P(z,-) with respect to ¢.
The same construction gives the densities p (z,y) for each n, and so jointly
measurable versions of the densities exist as required.
We now define inductively a version p"(z,y) of the densities satisfying (5.17),
starting from p? (z,y). Set p'(z,y) = pl,(x,vy) for all z, y; and set, for n > 2 and any
T,Y,

P,y = pol@y) V| _max [ P7adw)p " (w,y).

One can now check (see Orey [208] p 6) that the collection {p"(z,y),z,y € X,n € Z}
satisfies both (i) and (ii).

We next verify (5.16). The constraints on ¢ in the statement of Theorem 5.2.1
imply that

o0

Y p"(x,y) >0, ze€A,  aeye Al

n=1

and thus we can find integers n, m such that

[ ] | 7@ () edy)éz) > o.
A JA JA
Now choose 1 > 0 sufficiently small that, writing

An(n) :==A{(z,y) € Ax A:p"(z,y) > n}

and ¢ for the product measure ¢ x ¢ x ¢ on X x X x X, we have

¢ ({(z,9,2) € Ax Ax A (z,y) € An(n), (y,2) € Am(n)}) > 0.

We suppress the notational dependence on 7 from now on, since 7 is fixed for the
remainder of the proof.

For any z,y, set B;(z,y) = Bj(z) x B;(y), where B;(x) is again the element
containing z of the finite partition B; above. By the Basic Differentiation Theorem as
in (5.18), this time for measures on B(X) x B(X), there are ¢-null sets N C X x X
such that for any k and (z,y) € Ag\Ng,

lim ¢°(Ay N Bi(z,y))/¢*(Bi(z,y)) = 1. (5.19)

71— 00

Now choose a fixed triplet (u,v,w) from the set

{(z,9,2) : (z,y) € An\Nn, (y,2) € A \Nm}-
From (5.19) we can find j large enough that

¢*(An N Bj(u,v))

>
¢* (4 N Bj(v,w)) >

(3/4)¢* (B (v, w))- (5.20)



112 5. Pseudo-atoms

Let us write Ap(z) = {y € A: (z,y) € Ap}, AL (2) ={y € A: (y,2) € A} for the
sections of A, and A,, in the different directions. If we define

E, = {z € Ay N B;(u) : $(An(z) N Bj(v)) > (3/4)B;(v)} (5.21)

Do = {5 € A1 By(w) : $(A5 () N B(0) = BB}, (5:22)
then from (5.20) we have that ¢(E,) > 0, ¢(D,,) > 0. This then implies, for any pair
(x,2) € Ep, X Dy,

$(An(z) N A7,(2)) = (1/2)¢(Bj(v)) > 0 (5.23)
from (5.21) and (5.22).

Our pieces now almost fit together. We have, from (5.17), that for (z,z) € E, x
Dy,

Pz, 2) > /A (@, )™ (y, 2) pdy)
n(z)NA}, (2)
> 12h(An(z) N AL (2))
> [n?/2)6(B;(v))
> 01, say . (5.24)

To finish the proof, note that since ¢(E;,) > 0, there is an integer k and a set C C D,,
with P*(z, E,) > 0, > 0, for all z € C. It then follows from the construction of the
densities above that for all z,z € C

PP (z,2) > /E Pk(z,dy)p" T (y, 2)

51525

\Y

and the result follows with § = §;62 and M =k +n + m. O

The key fact proven in this theorem is that we can define a version of the densities
of the transition probability kernel such that (5.16) holds uniformly over z € C. This
gives us

Theorem 5.2.2 If & is i-irreducible, then for every A € BT (X), there exists m > 1
and a vpy,-small set C C A such that C € BT(X) and v, {C} > 0.

PROOF When @& is ¢-irreducible, every set in BT (X) satisfies the conditions of

Theorem 5.2.1, with the measure ¢ = 1. The result then follows immediately from

(5.16). O
As a direct corollary of this result we have

Theorem 5.2.3 If & is -irreducible, then the Minorization Condition holds for
some m-skeleton, and for every K, -chain, 0 <& < 1. O

Any @ which is 9-irreducible is well-endowed with small sets from Theorem 5.2.1,
even though it is far from clear from the initial definition that this should be the case.
Given the existence of just one small set from Theorem 5.2.2, we now show that it is
further possible to cover the whole of X with small sets in the %-irreducible case.

Proposition 5.2.4 (i) If C € B(X) is vp-small, and for any x € D we have
P™(z,C) > 4, then D is vpim-small, where vyim, is a multiple of vy,.
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(ii) Suppose D is 1p-irreducible. Then there exists a countable collection C; of small
sets in B(X) such that

X=JC (5.25)

(iii) Suppose @ is P-irreducible. If C € BT (X) is v,-small, then we may find M € Z
and a measure vy such that C is vpr-small, and vy {C} > 0.

Proor (i) By the Chapman-Kolmogorov equations, for any = € D,

P, B) = [ P(a,dy)P"(y, B)

v

/C P"(z, dy)P™(y, B) (5.26)
> ovp(B).

(ii) Since @ is 7-irreducible, there exists a vy,-small set C € BT (X) from
Theorem 5.2.2. Moreover from the definition of -irreducibility the sets

C(n,m):={y: P"(y,C) >m™'} (5.27)

cover X and each C(n,m) is small from (i).
(iii) Since C € BT (X), we have K,, (z,C) > 0 for all z € X. Hence vK,, (C) >
0, and it follows that for some m € Z,,

vp(C) :=vP™(C) > 0.

To complete the proof observe that, for all z € C,
P (s, B) = [ P(o,dy)P"(y, B) > vP™(B) = vay(B),
X

which shows that C' is vjs-small, where M = n + m. O

5.3 Small Sets for Specific Models

5.3.1 Random walk on a half line

Random walks on a half line provide a simple example of small sets, regardless of the
structure of the increment distribution.

It follows as in the proof of Proposition 4.3.1 that every set [0,c],c € Ry is
small, provided only that I'(—00,0) > 0: in other words, whenever the chain is 1)-
irreducible, every compact set is small. Alternatively, we could derive this result by
use of Proposition 5.2.4 (i) since {0} is, by definition, small.

This makes the analysis of queueing and storage models very much easier than
more general models for which there is no atom in the space. We now move on to
identify conditions under which these have identifiable small sets.



114 5. Pseudo-atoms

5.3.2 “Spread-out” random walks

Let us again consider a random walk @ of the form
b, = D1+ Wy,

satisfying (RW1). We showed in Section 4.3 that, if I" has a density v with respect
to Lebesgue measure p* on IR with

y(z) > 6 >0, lz| < B,

then @ is 9-irreducible: re-examining the proof shows that in fact we have demon-
strated that C = {z : |z| < 8/2} is a small set.

Random walks with nonsingular distributions with respect to p"*", of which the
above are special cases, are particularly well adapted to the 1-irreducible context. To
study them we introduce so-called “spread-out” distributions.

Spread-Out Random Walks

(RW2)  We call the random walk spread-out (or equivalently, we
call I" spread out) if some convolution power I'"™* is non-
singular with respect to p"".

For spread out random walks, we find that small sets are in general relatively easy to
find.

Proposition 5.3.1 If & is a spread-out random walk, with I'™* non-singular with
respect to p"°® then there is a neighborhood Cg = {x : |z| < B} of the origin which is
von-small, where von, = ep™ 1, 4 for some interval [s,t], and some £ > 0.

PROOF  Since I is spread out, we have for some bounded non-negative function y
with [(z)dz > 0, and some n > 0,

P"(0, A) 2/7(;1:) dr,  Ac B(R).
A
Iterating this we have
P04 2 [ [ v -yydydo= [ v da: (5.28)
AJR A

but since from Lemma D.4.3 the convolution *-y(z) is continuous and not identically
zero, there exists an interval [a,b] and a § with v % y(z) > d on [a,b]. Choose § =
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[b—a]/4, and [s,t] = [a+ B,b — B], to prove the result using the translation invariant
properties of the random walk. O

For spread out random walks, a far stronger irreducibility result will be provided
in Chapter 6 : there we will show that if @ is a random walk with spread-out increment
distribution I, with I'(—o0, 0) > 0,1'(0,00) > 0, then @ is p~"-irreducible, and every
compact set is a small set.

5.3.3 Ladder chains and the GI/G/I queue

Recall from Section 3.5 the Markov chain constructed on Z; x IR to analyze the
GI/G/1 queue, defined by

b, = (NnaRn)a n>1

where N,, is the number of customers at 7}, — and R, is the residual service time at
T +.
This has the transition kernel

Pli,z;i x A) = 0, i>it1

P(’L,LL‘,jXA) = Ai—j+1(w7A)’ ]:1,,’L+1

Pliz;0x 4) = Ai(z, A),

where

Ao, 09]) = [ Phay)Gla), (529)
0

A 0.9) = [ Ayl [0,00)] HDO, . (5.30)
n+1

Pl(z,y) = P(S, <t<S,,,R<y|Ro=u1); (5.31)

here, Ry = Sﬁv(t) 41 — t, where N(t) is the number of renewals in [0,] of a renewal

process with inter-renewal time H, and if Ry = z then S| = z.
At least one collection of small sets for this chain can be described in some detail.

Proposition 5.3.2 Let & = {N,, R,} be the Markov chain at arrival times of a
GI/G/1 queue described above. Suppose G(B) < 1 for all B < oo. Then the set
{0 x [0, 8]} is vi-small for ®, with v1(-) given by G(B,00)H(-).

ProOF  We consider the bottom “rung” {0 x IR}. By construction

45(, [0, 1) = H[0, -][1 = Ao(, [0, d])];

and since
Ao(z,[0,00)] = /G(dt)P(O <t<o|Ry=1)
— / G(d)1{t < x}
= G(—OO,.’L‘],
we have

The result follows immediately, since for z < 8, A§(z, [0, -]) > H[O0, - |G(B, o0). O
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5.3.4 The forward recurrence time chain

Consider the forward recurrence time é-skeleton VI = V*(né),n € Z,, which was
defined in Section 3.5.3: recall that

VT(t):=inf(Z, —t: Z, > 1), t>0

where Z,, ;=37 Y; for {Y1,Ys,...} a sequence of independent and identical random
variables with distribution I', and Yy a further independent random variable with
distribution Iy.

We shall prove

Proposition 5.3.3 When I' is spread out then for ¢ sufficiently small the set [0, ]
is a small set for V(}".

PrROOF  As in (5.28), since I' is spread out there exists n € Z, an interval [a, ]
and a constant 8 > 0 such that

I'*(du) > Bu""(du), du C [a,b].
Hence if we choose small enough ¢ then we can find k£ € Z such that
™ (du) > Alis orayy (Wi (), du C [a,B] (5.32)

Now choose m > 1 such that I'[md, (m + 1)) = v > 0; and set M = k+m + 2. Then
for z € [0,), by considering the occurrence of the n'® renewal where n is the index
so that (5.32) holds we find

P(V (M) € dun|0,d))
> P()(.T + Zpt1 — Mé§ €dun [0, 6)>Yn+1 > (5)

_ / T(dy)Po(z + y — M6 + Zy, € dun [0,5)) (5.33)
y€[d,00)

> I'(dy)Py(Z, € dun{[0,0) —z —y + Md}).

~/y€[m6,(m+1)6)
Now when y € [md, (m + 1)6) and z € [0, ), we must have

{[0,0) —xz —y+ M} C [ké, (k + 3)d) (5.34)
and therefore from (5.33)

P(VH(MS) € dun[0,8) > Blig g (w)p™"(du) I (mé, (m + 1)3)

>
> Byl s (u)p (du). (5.35)

Hence [0, d) is a small set, and the measure v can be chosen as a multiple of Lebesgue
measure over [0, 6). O

In this proof we have demanded that (5.32) holds for v € [kd, (k + 4)d] and in
(5.34) we only used the fact that the equation holds for u € [ké, (k + 3)d]. This is not
an oversight: we will use the larger range in showing in Proposition 5.4.5 that the
chain is also aperiodic.



5.4 Cyclic Behavior 117

5.3.5 Linear state space models

For the linear state space LSS(F,G) model we showed in Proposition 4.4.3 that in
the Gaussian case when (LSS3) holds, for every initial condition zy € X = R",

k—1
P¥(zq, ) = N(FFzo,Y F'GGTF'"); (5.36)
=0

and if (F,G) is controllable then from (4.18) the n-step transition function possesses
a smooth density p,(z,y) which is continuous and everywhere positive on IR?". It
follows from continuity that for any pair of bounded open balls B; and B, C IR”,
there exists ¢ > 0 such that

pn(way) Z g, (‘Tay) € Bl X B2-

Letting v, denote the normalized uniform distribution on By we see that By is v,-
small.

This shows that for the controllable, Gaussian LSS(F,G) model, all compact
subsets of the state space are small.

5.4 Cyclic Behavior

5.4.1 The cycle phenomenon

In the previous sections of this chapter we concentrated on the communication struc-
ture between states. Here we consider the set of time-points at which such communi-
cation is possible; for even within a communicating class, it is possible that the chain
returns to given states only at specific time points, and this certainly governs the
detailed behavior of the chain in any longer term analysis.

A highly artificial example of cyclic behavior on the finite set X = {1,2,3,...,d}
is given by the transition probability matrix

Pz,z+1)=1, z€{l,2,3,...,d—1}, P(d,1) = 1.

Here, if we start in z then we have P"(z,z) > 0 if and only if n = 0,d,2d, ..., and
the chain @ is said to cycle through the states of X.

On a continuous state space the same phenomenon can be constructed equally
easily: let X = [0, d), let U; denote the uniform distribution on [i,7 + 1), and define

P(z,) =1y 3(2)U;(+), i=0,1,...,d =1 (mod d).

In this example, the chain again cycles through a fixed finite number of sets. We now
prove a series of results which indicate that, no matter how complex the behavior
of a %)-irreducible chain, or a chain on an irreducible absorbing set, the finite cyclic
behavior of these examples is typical of the worst behavior to be found.

5.4.2 Cycles for a countable space chain

We discuss this structural question initially for a countable space X.
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Let a be a specific state in X, and write
dla) = g.cd{n>1: P"(a,a) > 0}. (5.37)

This does not guarantee that Pmd(a)(a,a) > 0 for all m, but it does imply
P"(a, ) = 0 unless n = md(a), for some m.

We call d(a) the period of a. The result we now show is that the value of d(a)
is common to all states y in the class C(a) = {y : a ¢ y}, rather than taking a
separate value for each y.

Proposition 5.4.1 Suppose a has period d(a): then for any y € C(e), d(a) = d(y).

PROOF  Since e +» y, we can find m and n such that P™(e,y) > 0 and P"(y, o) >
0. By the Chapman-Kolmogorov equations, we have

P (o, 00) > P™ (e, y) P (y, &) > 0, (5.38)

and so by definition, (m + n) is a multiple of d(a). Choose k such that k is not a
multiple of d(a). Then (k + m + n) is not a multiple of d(a): hence, since

P™(c,y)P¥(y,y)P" (y, @) < P**™ (@, @) = 0,

we have P*(y,y) = 0, which proves d(y) > d(a). Reversing the role of o and y shows
d(a) > d(y), which gives the result. O

This result leads to a further decomposition of the transition probability matrix
for an irreducible chain; or, equivalently, within a communicating class.

Proposition 5.4.2 Let @ be an irreducible Markov chain on a countable space, and
let d denote the common period of the states in X. Then there exist disjoint sets
Dq...Dg C X such that

d
X =] Dy,
=1

and
P(z,Dyyq1) =1, 2 €Dk, k=0,...,d—1 (mod d). (5.39)

PROOF  The proof is similar to that of the previous proposition. Choose a0 € X as
a distinguished state, and let y be another state, such that for some M

PM(y, a) > 0.

Let k be any other integer such that P*(a,y) > 0. Then P**M(a, ) > 0, and
thus k£ + M = jd for some j; equivalently, £k = jd — M. Now M is fixed, and so we
must have P*(a,y) > 0 only for k in the sequence {r,r + d,r + 2d, ...}, where the
integer r = r(y) € {1,...,d} is uniquely defined for y.

Call D, the set of states which are reached with positive probability from a only
at points in the sequence {r,r +d,r + 2d,...} for each r € {1,2...d}. By definition
a € Dy, and P(a, Df) = 0 so that P(a, D1) = 1. Similarly, for any y € D, we have
P(y, D¢, ) = 0, giving our result. O

The sets {D;} covering X and satisfying (5.39) are called cyclic classes, or a d-
cycle, of @. With probability one, each sample path of the process ¢ “cycles” through
values in the sets D1, Ds,... Dy, D1, Do, . ...
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Diagrammatically, we have shown that we can write an irreducible transition
probability matrix in “super-diagonal” form

o0 P -
0 0 P 0

S .0 )

_Pd T

where each block F; is a square matrix whose dimension may depend upon <.

Aperiodicity

An irreducible chain on a countable space X is called

(1) aperiodic, if d(x) =1, x € X;

(ii) strongly aperiodic, if P(x,x) > 0 for some z € X.

Whilst cyclic behavior can certainly occur, as illustrated in the examples at the begin-
ning of this section, and the periodic behavior of the control systems in Theorem 7.3.3
below, most of our results will be given for aperiodic chains. The justification for using
such chains is contained in the following, whose proof is obvious.

Proposition 5.4.3 Suppose @ is an irreducible chain on a countable space X, with
period d and cyclic classes {D1 ... Dgs}. Then for the Markov chain @4 = { P4, P24, - - -}
with transition matriz P4, each D; is an irreducible absorbing set of aperiodic states.

5.4.3 Cycles for a general state space chain

The existence of small sets enables us to show that, even on a general space, we still
have a finite periodic breakup into cyclic sets for 1-irreducible chains.

Suppose that C is any vjs-small set, and assume that vy (C) > 0, as we may
without loss of generality by Proposition 5.2.4.

We will use the set C' and the corresponding measure v to define a cycle for a
general irreducible Markov chain. To simplify notation we will suppress the subscript
on v. Hence we have PM(z, -) > v(-), z € C, and v(C) > 0, so that, when the chain
starts in C, there is a positive probability that the chain will return to C' at time M.
Let

Ec={n>1: theset C is vp-small, with v, = d,v for some 6, > 0.} (5.40)
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be the set of timepoints for which C is a small set with minorizing measure propor-
tional to v. Notice that for B C C, n, m € E¢ implies

P"tm(s B) > / P™(x, dy)P"(y, B)
[0m0 I/(C’)] (B), z € C;

Y

so that E¢ is closed under addition. Thus there is a natural “period” for the set C,
given by the greatest common divisor of E¢; and from Lemma D.7.4, C is v,4-small
for all large enough n.

We show that this value is in fact a property of the whole chain @, and is indepen-
dent of the particular small set chosen, in the following analogue of Proposition 5.4.2.

Theorem 5.4.4 Suppose that @ is a P-irreducible Markov chain on X. Let C €
B(X)" be a vpr-small set and let d be the greatest common divisor of the set Ec.
Then there exist disjoint sets Dy ... Dy € B(X) (a “d-cycle”) such that

(i) forz € D;, P(z,D;41)=1,i=0...d -1 (mod d);
(ii) the set N = [U%, D;]° is ¢-null.

The d-cycle {D;} is mazimal in the sense that for any other collection {d', D,k =
1,...d'} satisfying (i)-(ii), we have d' dividing d; whilst if d = d', then, by reordering
the indices if necessary, Di = D; a.e. 1.

PrROOF Fori=0,1...d—1 set

D] = {y: iPnd*i(y, C) > 0} :

n=1

by irreducibility, X = UD}.

The D} are in general not disjoint, but we can show that their intersection is
p-null. For suppose there exists i,k such that ¢(D; N D;) > 0. Then for some fixed
m,n > 0, there is a subset A C D} N D} with 9(A) > 0 such that

Py C) > Gy >0, weE A
Pk C) > §,>0, weA (5.41)

and since % is the maximal irreducibility measure, we can also find r such that
/ V(dy)P" (y, A) = 6, > 0. (5.42)
C
Now we use the fact that C is a vps-small set: for z € C, B C C, from (5.41), (5.42),

P2M—|—md7i+r (.’E, B)

Vv

/C PM(z, dy) /A P (y, dw) /C P™ % (w, dz) PM (2, B)

> [6c0m]v(B),

so that [2M +md+r]—i € E¢. By identical reasoning, we also have [2M +nd+r]—k €
E¢. This contradicts the definition of d, and we have shown that (D} N D;) = 0,

i # k.
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Let N = U, ;(D} N Dj), so that ¢(N) = 0. The sets {D;\N} form a disjoint class
of sets whose union is full. By Proposition 4.2.3, we can find an absorbing set D such
that D; = D N (D;\N) are disjoint and D = UD;. By the Chapman-Kolmogorov
equations again, if # € D is such that P(z,D;) > 0, then we have z € D;_1, by
definition, for j =0,...,d — 1 (mod d). Thus {D;} is a d-cycle.

To prove the maximality and uniqueness result, suppose {D;} is another cycle
with period d', with N = [UDj]¢ such that 9(N) = 0. Let k£ be any index with
v(D;, N C) > 0: since ¢(N) = 0 and ¢ > v, such a k exists. We then have, since C is
a vyr-small set, PM(z, D}, N C) > v(D}, NC) > 0 for every z € C. Since (D}, N C) is
non-empty, this implies firstly that M is a multiple of d’; since this happens for any
n € E¢, by definition of d we have d’ divides d as required. Also, we must have C ﬂD;-
empty for any j # k: for if not we would have some z € C with PM(z,C n D)) = 0,
which contradicts the properties of C.

Hence we have C C (D, U N), for some particular k. It follows by the definition
of the original cycle that each D;- is a union up to v-null sets of (d/d;) elements of
D;. O

It is obvious from the above proof that the cycle does not depend, except perhaps
for 1-null sets, on the small set initially chosen, and that any small set must be
essentially contained inside one specific member of the cyclic class {D;}.

Periodic and aperiodic chains

Suppose that @ is a ¢-irreducible Markov chain.
The largest d for which a d-cycle occurs for @ is called the period of ®.
When d = 1, the chain @ is called aperiodic.

When there exists a vq-small set A with v1(A) > 0, then the chain is
called strongly aperiodic.

As a direct consequence of these definitions and Theorem 5.2.3 we have
Proposition 5.4.5 Suppose that @ is a Pp-irreducible Markov chain.

(1) If @ is strongly aperiodic, then the Minorization Condition (5.2) holds.
(ii) The resolvent, or K,_-chain, is strongly aperiodic for all 0 < e < 1.

(iii) If @ is aperiodic then every skeleton is -irreducible and aperiodic, and some
m-skeleton is strongly aperiodic.
O

This result shows that it is clearly desirable to work with strongly aperiodic chains.
Regrettably, this condition is not satisfied in general, even for simple chains; and we
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will often have to prove results for strongly aperiodic chains and then use special
methods to extend them to general chains through the m-skeleton or the K,_-chain.

We will however concentrate almost exclusively on aperiodic chains. In practice
this is not greatly restrictive, since we have as in the countable case

Proposition 5.4.6 Suppose @ is a ¥-irreducible chain with period d and d-cycle
{D;,i = 1...d}. Then each of the sets D; is an absorbing -irreducible set for the
chain 4 corresponding to the transition probability kernel P%, and ®4 on each D; is
aperiodic.

Proor  That each D; is absorbing and irreducible for &, is obvious: that ¢4 on
each D; is aperiodic follows from the definition of d as the largest value for which a
cycle exists. O

5.4.4 Periodic and aperiodic examples: forward recurrence times

For the forward recurrence time chain on the integers it is easy to evaluate the period
of the chain. For let p be the distribution of the renewal variables, and let

d = g.cd{n :p(n) > 0}.

It is a simple exercise to check that d is also the g.c.d. of the set of times {n :
P™(0,0) > 0} and so d is the period of the chain.

Now consider the forward recurrence time d-skeleton Vi = V*(nd), n € Z,
defined in Section 3.5.3. Here, we can find explicit conditions for aperiodicity even
though the chain has no atom in the space. We have

Proposition 5.4.7 If F is spread out then V(}" is aperiodic for sufficiently small 6.

PrROOF  In Proposition 5.3.3 we showed that for sufficiently small 4, the set [0, )
is a vps-small set, where v is a multiple of Lebesgue measure restricted to [0, 6].

But since the bounds on the densities in (5.35) hold, not just for the range
[k, (k 4+ 3)d) for which they were used, but by construction for the greater range
[kd, (k + 4)d), the same proof shows that [0,d) is a vpsy1-small set also, and thus
aperiodicity follows from the definition of the period of Vi as the g.c.d. in (5.40). O

5.5 Petite Sets and Sampled Chains

5.5.1 Sampling a Markov chain

A convenient tool for the analysis of Markov chains is the sampled chain, which
extends substantially the idea of the m-skeleton or the resolvent chain.

Let a = {a(n)} be a distribution, or probability measure, on Z., and consider
the Markov chain ¢, with probability transition kernel

K, (z, A) == f: P(z,A)a(n), =z €X,A€B(X). (5.43)
n=0



5.5 Petite Sets and Sampled Chains 123

It is obvious that K, is indeed a transition kernel, so that @, is well-defined by
Theorem 3.4.1.

We will call ¢, the K,-chain, with sampling distribution a. Probabilistically, @,
has the interpretation of being the chain @ “sampled” at time-points drawn suc-
cessively according to the distribution a, or more accurately, at time-points of an
independent renewal process with increment distribution a as defined in Section 2.4.1.

There are two specific sampled chains which we have already invoked, and which
will be used frequently in the sequel. If @ = ¢, is the Dirac measure with d,,(m) = 1,
then the K, -chain is the m-skeleton with transition kernel P™. If a. is the geometric
distribution with

as(n) =[1 —ele”, neZ;
then the kernel K,_ is the resolvent K, which was defined in Chapter 3. The concept
of sampled chains immediately enables us to develop useful conditions under which

one set is uniformly accessible from another. We say that a set B € B(X) is uniformly
accessible using a from another set A € B(X) if there exists a § > 0 such that

;ggKa(x,B) > 0; (5.44)
and when (5.44) holds we write A ~ B.

Lemma 5.5.1 If A~5 B for some distribution a then A~ B.

PrROOF  Since L(z,B) = Py(tp < o0) = Py(®, € B forsome n € Z.) and
Kq(z,B) = Py(®, € B) where 7 has the distribution a, it follows that

L(z, B) > Ku(z, B) (5.45)

for any distribution a, and the result follows. O
The following relationships will be used frequently.

Lemma 5.5.2 (i) If a and b are distributions on Z then the sampled chains with
transition laws K, and Ky satisfy the generalized Chapman-Kolmogorov equa-
tions

Kaw(,4) = [ Kalo, dy)Koly, 4) (5.46)
where a *x b denotes the convolution of a and b.
(i) If A% B and B~ C, then A% C.

(iii) If a is a distribution on Z. then the sampled chain with transition law K,
satisfies the relation

Uz, A) > / U, dy) Ko (y, A) (5.47)
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PrROOF  To see (i), observe that by definition and the Chapman-Kolmogorov equa-
tion

M8

Kop(z, A) = P*(z,A)axb(n)

3
Il
o

n

P (z,A) Z a(m)b(n —m)

I
M8

Y / P™(z, dy) P"™ (y, A)a(m)b(n — m)
n=0m=0
_ / S Pz, dy)a(m) Y P*"™(y, A)b(n —m)
m=0 n=m
_ / Ka(z, dy) Ky (yA), (5.48)

as required.
The result (ii) follows directly from (5.46) and the definitions.
For (iii), note that for fixed m, n,

Pz, Aa(n) = [ P, dy)P"(y, A)aln)
so that summing over m gives

Ula, Aa(n) > 3 P, A)a(n) = [ Ulw, dy)P"(y, A)a(n);
m>n
a second summation over n gives the result since >, a(n) = 1. O
The probabilistic interpretation of Lemma 5.5.2 (i) is simple: if the chain is sam-
pled at a random time 1 = 11 + 19, where 7; has distribution a and 72 has indepen-
dent distribution b, then since n has distribution a * b, it follows that (5.46) is just a
Chapman-Kolmogorov decomposition at the intermediate random time.

5.5.2 The property of petiteness

Small sets always exist in the i-irreducible case, and provide most of the properties
we need. We now introduce a generalization of small sets, petite sets, which have even
more tractable properties, especially in topological analyses.

Petite Sets

We will call a set C' € B(X) v,-petite if the sampled chain satisfies the
bound
Ka(xaB) > Va(B),

for all z € C, B € B(X), where v, is a non-trivial measure on B(X).
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From the definitions we see that a small set is petite, with the sampling distribution a
taken as d,, for some m. Hence the property of being a small set is in general stronger
than the property of being petite. We state this formally as

Proposition 5.5.3 If C € B(X) is vy,-small then C is vs,, -petite. O
The operation “%” interacts usefully with the petiteness property. We have

Proposition 5.5.4 (i) If A € B(X) is v,-petite, and D L A then D is Upsa-petite,
where Vpeq can be chosen as a multiple of v,.

(ii) If @ is 1p-irreducible and if A € BT (X) is v,-petite, then v, is an irreducibility
measure for ®.

PrROOF  To prove (i) choose § > 0 such that for z € D we have Ky(z,A) > §. By
Lemma 5.5.2 (i),

Kb*a(xaB) = AKb(mady)Ka(yaB)

/A Ky(z, dy) Ko (y, B) (5.49)
> dve(B).

v

To see (ii), suppose A is v,-petite and v,(B) > 0. For z € A(n,m) as in (5.27) we
have

P"Ko(2,B) > [ P"(@,dy)Ku(y, B) 2 m™'v,(B) > 0
A

which gives the result. ad
Proposition 5.5.4 provides us with a prescription for generating an irreducibility
measure from a petite set A, even if all we know for general = € X is that the single
petite set A is reached with positive probability. We see the value of this in the
examples later in this chapter
The following result illustrates further useful properties of petite sets, which dis-
tinguish them from small sets.

Proposition 5.5.5 Suppose P is y-irreducible.

(1) If A is vq-petite, then there exists a sampling distribution b such that A is also
Py-petite where by is a mazimal irreducibility measure.

(ii) The union of two petite sets is petite.

(iii) There exists a sampling distribution ¢, an everywhere strictly positive, measur-
able function s: X — IR, and a mazimal irreducibility measure . such that

K.(z,B) > s(x)¢.(B), x € X, B € B(X)

Thus there is an increasing sequence {C;} of 1.-petite sets, all with the same
sampling distribution ¢ and minorizing measure equivalent to v, with UC; = X.
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ProOOF  To prove (i) we first show that we can assume without loss of generality
that 1, is an irreducibility measure, even if 9)(A) = 0.

From Proposition 5.2.4 there exists a v,-petite set C with C € BT (X). We have
K, (y,C) > 0 for any y € X and any ¢ > 0, and hence for z € A,

Kava, (2,C) > / Va(dy)Ka, (y,C) > 0.

This shows that A "3° C, and hence from Proposition 5.5.4 we see that A is Vgsa, xb-
petite, where Vg4« 1S a constant multiple of v,. Now, from Proposition 5.5.4 (ii),
the measure v,.4_« is an irreducibility measure, as claimed.

We now assume that v, is an irreducibility measure, which is justified by the
discussion above, and use Proposition 5.5.2 (i) to obtain the bound, valid for any
0<e<l,

Kara. (z,B) = Ko Ko, (2, B) > VoK, (B), T € A, B € B(X).

Hence A is p-petite with b = a. * a and 9, = v, K,_. Proposition 4.2.2 (iv) asserts
that, since v, is an irreducibility measure, the measure v, is a maximal irreducibility
measure.

To see (ii), suppose that A; is 1,,-petite, and that Ay is 1,,-petite. Let Ay €
BT (X) be a fixed petite set and define the sampling measure a on Z, as a(i) =
a1 (i) + az(i)], i € Z4.

Since both 1,, and %,, can be chosen as maximal irreducibility measures, it
follows that for z € A1 U Ay

Ka(x,AO) 2 %min(qﬁal (AO)aqpaz (AO)) >0

so that A; U Ay ~5 Ay. From Proposition 5.5.4 we see that A; U Ay is petite.

For (iii), first apply Theorem 5.2.2 to construct a v,-small set C' € BT (X). By (i)
above we may assume that C is -petite with 1, a maximal irreducibility measure.
Hence Ky(y, -) > Ao (y)s(-) for all y € X.

By irreducibility and the definitions we also have K,_(z,C) > 0forall0 < e < 1,
and all z € X. Combining these bounds gives for any =z € X, B € B(X),

Kiua, (z,B) > /C Ko, (y,d2)Ky(2, B) > Ko, (2, C)ihy(B)

which shows that (iii) holds with ¢ = b* a, s(z) = K,_(z,C) and ¢, = ;.

The petite sets forming the countable cover can be taken as Cp,:={z € X : s(z) >
m~}, m > 1. O

Clearly the result in (ii) is best possible, since the whole space is a countable
union of small (and hence petite) sets from Proposition 5.2.4, yet is not necessarily
petite itself.

Our next result is interesting of itself, but is more than useful as a tool in the use
of petite sets.

Proposition 5.5.6 Suppose that @ is ¥-irreducible and that C is v,-petite.

(i) Without loss of generality we can take a to be either a uniform sampling distri-
bution ap, (i) = 1/m, 1 <i <m, or a to be the geometric sampling distribution
ac. In either case, there is a finite mean sampling time

Mg = Z ia(i).
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(ii) If & is strongly aperiodic then the set CoUC, C X corresponding to C is vy -petite
for the split chain P.

PrOOF  To see (i), let A € BT(X) be v,-small. By Proposition 5.5.5 (i) we have
Ky(a,A) > $(4) >0, z€C

where 1), is a maximal irreducibility measure. Hence S35, P*(z, A) > sPp(A),z € C,
for some N sufficiently large.
Since A is v,-small, it follows that for any B € B(X),

N+n

N
Y PH(z,B) > Y PH(z, B) > Loy (A)va(B)
k=1 k=1

for € C. This shows that C is v,-petite with a(k) = (N +n)"! for 1 <k < N +n.
Since for all € and m there exists some constant ¢ such that a.(j) > cam(j), 7 € Z+,
this proves (i).

To see (ii), suppose that the chain is split with the small set A € BT (X). Then
Ap U X is also petite: for X is small, and Ag is also small since P(x,Xl) > ¢ for
zo € Ag, and we know that the union of petite sets is petite, by Proposition 5.5.5.

Since when zy € A§ we have for n > 1, P”(xO,AO UXp) = P”(:vo,Ao U4 =
P"(z,A) it follows that

Ka(o, Ao UX1) =Y a(j) P! (zo, Ag U X1)
=0

is uniformly bounded from below for 2y € Cy\ Ag, which shows that Cj\ Ay is petite.
Since the union of petite sets is petite, Cy U X is also petite. O

5.5.3 Petite sets and aperiodicity

If A is a petite set for a 9-irreducible Markov chain then the corresponding minorizing
measure can always be taken to be equal to a maximal irreducibility measure, although
the measure v, appropriate to a small set is not as large as this.

We now prove that in the t-irreducible aperiodic case, every petite set is also
small for an appropriate choice of m and vy,.

Theorem 5.5.7 If @ is irreducible and aperiodic then every petite set is small.

PROOF Let A be a petite set. From Proposition 5.5.5 we may assume that A is
14-petite, where 1, is a maximal irreducibility measure.

Let C denote the small set used in (5.40). Since the chain is aperiodic, it follows
from Theorem 5.4.4 and Lemma D.7.4 that for some ng € Z, the set C is vi-small,
with v, = v for some § > 0, for all ng/2 — 1 < k < ny.

Since C € BT (X), we may also assume that ng is so large that
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With ng so fixed, we have for all z € A and B € B(X),

[no/2]
Po@B) > Y { [ PP . B) ek
k=0

[n0/2]

> (2 P’“(x,C)a(k)) (51/(3))
k=0

> ($9a(0)) (0v(B))

which shows that A is vy,,-small, with v,y = (359,(C))v. O

This somewhat surprising result, together with Proposition 5.5.5, indicates that
the class of small sets can be used for different purposes, depending on the choice
of sampling distribution we make: if we sample at a fixed finite time we may get
small sets with their useful fixed time-point properties; and if we extend the sampling
as in Proposition 5.5.5, we develop a petite structure with a maximal irreducibility
measure. We shall use this duality frequently.

5.6 Commentary

We have already noted that the split chain and the random renewal time approaches
to regeneration were independently discovered by Nummelin [200] and Athreya and
Ney [12]. The opportunities opened up by this approach are exploited with growing
frequency in later chapters.

However, the split chain only works in the generality of y-irreducible chains be-
cause of the existence of small sets, and the ideas for the proof of their existence go
back to Doeblin [67], although the actual existence as we have it here is from Jain and
Jamison [106]. Our proof is based on that in Orey [208], where small sets are called
C-sets. Nummelin [202] Chapter 2 has a thorough discussion of conditions equivalent
to that we use here for small sets; Bonsdorff [26] also provides connections between
the various small set concepts.

Our discussion of cycles follows that in Nummelin [202] closely. A thorough study
of cyclic behavior, expanding on the original approach of Doeblin [67], is given also
in Chung [48].

Petite sets as defined here were introduced in Meyn and Tweedie [178]. The
“small sets” defined in Nummelin and Tuominen [204] as well as the petits ensembles
developed in Duflo [69] are also special instances of petite sets, where the sampling
distribution a is chosen as a(i) = 1/N for 1 < i < N, and a(i) = (1—a)a’ respectively.
To a French speaker, the term “petite set” might be disturbing since the gender of
ensemble is masculine: however, the nomenclature does fit normal English usage since
[21] the word “petit” is likened to “puny”, while “petite” is more closely akin to
“small”.

It might seem from Theorem 5.5.7 that there is little reason to consider both
petite sets and small sets. However, we will see that the two classes of sets are useful in
distinct ways. Petite sets are easy to work with for several reasons: most particularly,
they span periodic classes so that we do not have to assume aperiodicity, they are
always closed under unions for irreducible chains (Nummelin [202] also finds that
unions of small sets are small under aperiodicity), and by Proposition 5.5.5 we may
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assume that the petite measure is a maximal irreducibility measure whenever the
chain is irreducible.

Perhaps most importantly, when in the next chapter we introduce a class of
Markov chains with desirable topological properties, we will see that the structure of
these chains is closely linked to petiteness properties of compact sets.
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Topology and Continuity

The structure of Markov chains is essentially probabilistic, as we have described it
so far. In examining the stability properties of Markov chains, the context we shall
most frequently use is also a probabilistic one: in Part II, stability properties such as
recurrence or regularity will be defined as certain return to sets of positive ¢-measure,
or as finite mean return times to petite sets, and so forth.

Yet for many chains, there is more structure than simply a o-field and a probabil-
ity kernel available, and the expectation is that any topological structure of the space
will play a strong role in defining the behavior of the chain. In particular, we are used
thinking of specific classes of sets in IR" as having intuitively reasonable properties.

When there is a topology, compact sets are thought of in some sense as manage-
able sets, having the same sort of properties as a finite set on a countable space; and
so we could well expect “stable” chains to spend the bulk of their time in compact
sets. Indeed, we would expect compact sets to have the sort of characteristics we have
identified, and will identify, for small or petite sets.

Conversely, open sets are “non-negligibl