Index

K_a-chain, 123
L^1 space, 523
L^∞ space, 523
P^n-Definition of Positive and Null Chains, 502, 505
P^n-Definition of Recurrent and Transient Chains, 501
P^n-properties, 500
σ-field, 520
σ-field generated by a random variable, 523
σ-field, generated, 521
σ-finite measure, 521
τ-Classification of Positive and Null Chains, 503
τ-properties, 500

Absolute continuity, 82
Absorbing set, 91
Absorbing set, maximal, 209
Accessible atom, 103
Accessible set, 93
Adaptive control, 38, 40
Adaptive control model, 410
Adaptive control model, performance, 411
Adaptive control model, tight, 308
Adaptive control, V-uniform, 411
Adaptive control, irreducibility, 169
Age process, 44
Aperiodic, 119, 121
Aperiodic Ergodic Theorem, 313
Aperiodic state, topological, 452
Aperiodic, strongly, 119
Aperiodicity of states, 464
ARMA, 27, 28
Ascoli's Theorem, 525

Associated control model $\text{LCM}(F,G)$, 10
Atom, 103
Atom, f-Kendall, 364
Atom, ergodic, 318
Atom, geometrically ergodic, 361, 364
Atom, Kendall, 364
Autoregression of order k, 27
Autoregression, dependent parameter RCA, 36
Autoregression, RCA, 409
Autoregressive and bilinear models, 384
Autoregressive-moving average process of order (k, ℓ), 28

Backward recurrence time δ-skeleton, 77
Backward recurrence time chain, 44, 61
Backward recurrence time process, 77
Balayage operator, 310
Bilinear model, 30
Bilinear model, dependent parameter, 36
Bilinear model, irreducible T-chain, 159
Bilinear models, f-regularity and ergodicity, 351
Bilinear models, geometrically ergodic, 384
Bilinear models, multidimensional, geometrically ergodic, 408
Blackwell's Renewal Theorem, 352
Borel σ-field, 521, 524
Bounded in probability, 149, 306
Bounded in probability on average, 290
Bounded in probability, T-chain, 460
Brownian motion, 530

Causal controls, 38
Central Limit Theorem, 416
Central Limit Theorem for Martingales, 530
Central Limit Theorem, functional, 436, 440
Central Limit Theorem, Random walk, 447
Chapman-Kolmogorov equations, 68, 69
Chapman-Kolmogorov equations, generalized, 123
Closed sets, 524
Closure of sets, 524
Communicate, 84
Compact sets, 524
Comparison Theorem, 341
Comparison Theorem, Geometric, 373
Conditional expectations, 523
Continuous functions, 525
Control set, 30, 33
Control set., 156, 160
Controllability grammian, 100
Controllability matrix, generalized, 159
Controllable, 16, 97
Converges to infinity, 205, 211
Convolution, 44, 76, 525
Countably generated σ-field, 521
Coupling renewal processes, 320
Coupling time, 321
Coupling, null chains, 453
Coupling, sums, 329
Cruise control, 3
Cycles for control models, 164
Cycles, d-cycle, 118
Cyclic classes, 118

Dense sets, 524
Derivative process, 170
Dirac probability measure, 68
Disturbance, 24
Doeblin’s Condition, 396
Doeblin’s condition, 412
Dominated Convergence Theorem, 523
Drift Classification of Positive and Null
Chains, 504
Drift Classification of Recurrent and
Transient Chains, 502
Drift criteria, 178
Drift criteria for non-positivity, 281
Drift criteria for stability for e-chains, 303
Drift criterion for non-evanescent, 219
Drift criterion for recurrence, 194
Drift criterion for the existence of invariant measures, 301
Drift criterion for transience, 193
Drift for deterministic models, 264
Drift operator, 178
Drift properties, 500
Drift, f-Modulated, 335, 341
Drift, criterion for σ-finite invariant mea-
Sure, 301
Drift, geometric, 371
Drift, history dependent, 479
Drift, mixed, 486
Drift, mixed ladder chain, 490
Drift, positive drift for unstable mod-
els, 281
Drift, state dependent, 471
Drift, strict (foster’s criterion), 267
Dynamical system, 19, 29
Dynkin’s formula, 268

e-Chain, 148
Eigenvalue condition, 144
Embedded Markov chains, 7
Equicontinuous, 148
Equicontinuous functions, 525
Ergodic, 313, 316
Ergodic atom, 318
Ergodic chains, 505
Ergodic, f-ergodic, 335
Ergodic, strongly, 412
Ergodicity and regularity, 332
Ergodicity history, 333
Ergodicity, e-chains, 464
Ergodicity, f-geometric, 359, 379
Ergodicity, f-Norm Ergodic Theorem, 334
Ergodicity, V-uniform, 387
Ergodicity, Geometric Ergodic Theo-
rem, 358
Ergodicity, Null chains, 451
Ergodicity, renewal theory and split-
ting, 316
Ergodicity, uniform, 388, 395
Error, 24
Evanescent, 17, 211
Evanescent, Feller chains, 462
Exchange rate, 4
Index

Increment analysis, 224
Increment analysis, geometric, 402
Increments, chains with bounded increments, 230
Indecomposable, 163
Indicator function, 69, 521
Inessential sets, 203
Initial condition, 56
Initial distribution, 58
Innovation, 24
Integrable functions, 522
Invariant α-fields, 417
Invariant events, 419
Invariant measure for e-chains, 302
Invariant measures, 234
Invariant measures for recurrent chains, 246
Invariant random variables, 417, 419
Invariant random variables and events, 417
Invariant set, 161
Invasion/antibody model, 476
Irreducibility, maximal measure, 91
Irreducible, 85
Irreducible, φ, 89
Irreducible, M-irreducible, 163
Irreducible, open set, 135, 137
Kac’s Theorem, 241
Kaplan’s condition, 496
Kendall sets, 368
Kendall’s Theorem, 362
Kernel, 66
Kernel, substochastic transition probability kernel, 78
Kernel, The n-step transition probability kernel, 68
Kernel, transition probability, 66
Kolmogorov’s inequality, 529

Ladder chain, 78
Ladder chains and GI/G/1 queues, positive, 253
last-exit decomposition, 184
Law of large numbers, 415, 418
Law of large numbers, e-chains, 466
Law of large numbers, general ratio form, 429

Exogenous variables, 38
Expectation, 523
Fatou’s Lemma, 522
Feller property, strong, 132
Feller property, weak, 132
Finiteness of moments, 349
First entrance decomposition, 180, 184
First-entrance last-exit decomposition, 316
Forward accessible, 155, 159
Forward recurrence chain, 87
Forward recurrence time δ-skeleton, 77
Forward recurrence time δ-skeleton, 116, 353
Forward recurrence time chain, 44, 61
Forward recurrence time chain, geometrically ergodic, 365
Forward recurrence time chain, recurrence, 181
Forward recurrence time chain: regular, 276
Forward recurrence time chains, 241
Forward recurrence time chains positive, 252
Forward recurrence time chains, V-uniform, 394
Forward recurrence time process, 77
Foster’s criterion, 267, 289
Foster-Lyapunov criteria, 18
Full set, 91
Functional CLT, 530
Functions unbounded off petite sets, 195
Generalized sampling, 294
Geometrically ergodic atom, 361, 364
Globally attracting, 163
Harmonic functions, 419
Harris τ-property, 501
Harris, maximal set, 209
Harris, positive, 236
Harris, recurrent, 204
Harris, topologically recurrent point, 213
i.i.d, or independent and identically distributed, 9
Increment, 24
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Law of large numbers, ratio with atom</td>
<td>422</td>
</tr>
<tr>
<td>Law of the Iterated Logarithm</td>
<td>416</td>
</tr>
<tr>
<td>LCM(F, G) model</td>
<td>9</td>
</tr>
<tr>
<td>Lebesgue integral</td>
<td>521</td>
</tr>
<tr>
<td>Lebesgue measure</td>
<td>521</td>
</tr>
<tr>
<td>Lebesgue measure irreducibility</td>
<td>96</td>
</tr>
<tr>
<td>Lindelöf’s Theorem</td>
<td>524</td>
</tr>
<tr>
<td>Linear control model</td>
<td>8, 9, 97</td>
</tr>
<tr>
<td>Linear control model, controllable</td>
<td>98</td>
</tr>
<tr>
<td>Linear model, simple</td>
<td>25</td>
</tr>
<tr>
<td>Linear models, regular</td>
<td>276</td>
</tr>
<tr>
<td>Linear state space model</td>
<td>9</td>
</tr>
<tr>
<td>Linear state space model LSS(F, G)</td>
<td>10</td>
</tr>
<tr>
<td>Linear state space model, are T-chains</td>
<td>142</td>
</tr>
<tr>
<td>Linear state space model, bounded in probability</td>
<td>306</td>
</tr>
<tr>
<td>Linear state space model, Gaussian</td>
<td>99, 117</td>
</tr>
<tr>
<td>Linear state space models positive</td>
<td>256</td>
</tr>
<tr>
<td>Linear state space models, Central Limit Theorem</td>
<td>448</td>
</tr>
<tr>
<td>Linear system, deterministic</td>
<td>7</td>
</tr>
<tr>
<td>Linked forward recurrence time chains</td>
<td>242</td>
</tr>
<tr>
<td>Locally compact</td>
<td>524</td>
</tr>
<tr>
<td>Lower semicontinuous</td>
<td>130, 525</td>
</tr>
<tr>
<td>Markov chain</td>
<td>3, 59, 67</td>
</tr>
<tr>
<td>Markov chain, definition</td>
<td>56</td>
</tr>
<tr>
<td>Markov chain, Time-homogeneous</td>
<td>59</td>
</tr>
<tr>
<td>Markov property</td>
<td>70</td>
</tr>
<tr>
<td>Markov property, strong</td>
<td>73</td>
</tr>
<tr>
<td>Markov transition function</td>
<td>66</td>
</tr>
<tr>
<td>Markov transition matrix</td>
<td>60</td>
</tr>
<tr>
<td>Martingale</td>
<td>528</td>
</tr>
<tr>
<td>Martingale difference sequence</td>
<td>528</td>
</tr>
<tr>
<td>Maximal Harris set</td>
<td>209</td>
</tr>
<tr>
<td>Maximal irreducibility measure</td>
<td>91</td>
</tr>
<tr>
<td>Mean drift</td>
<td>229</td>
</tr>
<tr>
<td>Mean square stabilizing</td>
<td>38</td>
</tr>
<tr>
<td>Measurable function</td>
<td>521</td>
</tr>
<tr>
<td>Measurable space</td>
<td>520</td>
</tr>
<tr>
<td>Measure</td>
<td>521</td>
</tr>
<tr>
<td>Metric space</td>
<td>524</td>
</tr>
<tr>
<td>Minimal set</td>
<td>162</td>
</tr>
<tr>
<td>Minimal subinvariant measures</td>
<td>248</td>
</tr>
<tr>
<td>Minimum variance</td>
<td>38, 40</td>
</tr>
<tr>
<td>Minorization Condition</td>
<td>105</td>
</tr>
<tr>
<td>Mixing</td>
<td>413</td>
</tr>
<tr>
<td>Mixing, V-geometric</td>
<td>392</td>
</tr>
<tr>
<td>Moment</td>
<td>233</td>
</tr>
<tr>
<td>Monotone Convergence Theorem</td>
<td>522</td>
</tr>
<tr>
<td>Moran dam</td>
<td>49, 75</td>
</tr>
<tr>
<td>Multidimensional models</td>
<td>474</td>
</tr>
<tr>
<td>Neighborhoods</td>
<td>524</td>
</tr>
<tr>
<td>Networks, computer</td>
<td>5</td>
</tr>
<tr>
<td>Networks, queueing</td>
<td>289</td>
</tr>
<tr>
<td>Networks, teletraffic</td>
<td>5</td>
</tr>
<tr>
<td>Noise</td>
<td>24</td>
</tr>
<tr>
<td>Non-evanescent</td>
<td>211, 291, 502</td>
</tr>
<tr>
<td>Nonlinear state space model, Associated control system</td>
<td>33</td>
</tr>
<tr>
<td>Nonlinear state space model, scalar nonlinear state space model</td>
<td>30</td>
</tr>
<tr>
<td>Nonlinear state space models, 29</td>
<td></td>
</tr>
<tr>
<td>Norm, f</td>
<td>334</td>
</tr>
<tr>
<td>Norm, V-norm</td>
<td>387</td>
</tr>
<tr>
<td>Norm, operator, V-norm</td>
<td>390</td>
</tr>
<tr>
<td>Norm, total variation</td>
<td>314</td>
</tr>
<tr>
<td>Norm-like functions</td>
<td>219, 526</td>
</tr>
<tr>
<td>Norm-like sequence</td>
<td>481</td>
</tr>
<tr>
<td>NSS(F) model</td>
<td>33</td>
</tr>
<tr>
<td>Null chains</td>
<td>502</td>
</tr>
<tr>
<td>Null Markov process</td>
<td>235</td>
</tr>
<tr>
<td>Null sets</td>
<td>459</td>
</tr>
<tr>
<td>Null states</td>
<td>458, 461</td>
</tr>
<tr>
<td>Occupation probabilities</td>
<td>466</td>
</tr>
<tr>
<td>Occupation time</td>
<td>71</td>
</tr>
<tr>
<td>Open sets</td>
<td>524</td>
</tr>
<tr>
<td>Orey’s Theorem</td>
<td>456</td>
</tr>
<tr>
<td>Pakes’ lemma</td>
<td>288</td>
</tr>
<tr>
<td>Period</td>
<td>121</td>
</tr>
<tr>
<td>Persistence</td>
<td>203</td>
</tr>
<tr>
<td>Petite set</td>
<td>124</td>
</tr>
<tr>
<td>Poisson equation</td>
<td>436</td>
</tr>
<tr>
<td>Populations</td>
<td>5</td>
</tr>
<tr>
<td>Positive chain</td>
<td>235, 502</td>
</tr>
<tr>
<td>Positive recurrent T-chain</td>
<td>460</td>
</tr>
<tr>
<td>Positive sets</td>
<td>459</td>
</tr>
<tr>
<td>Positive state, topological</td>
<td>452</td>
</tr>
</tbody>
</table>
Positive states, 452, 458, 461
Positivity versus nullity, 502
Precompact sets, 524
Probability space, 523
Process on A, 249, 258, 299

Quasi-compact, 412
Queue, M/PH/1 q, 407
Queues, 4, 45
Queues with re-entry, 277
Queues, GI/G/1, 47, 78, 115
Queues, GI/G/1 queue with re-entry, 278
Queues, GI/M/1, 48, 63
Queues, Ladder chains and GI/G/1 queues, positive, 253
Queues, M/G/1, 49, 87
Queues, M/G/1, geometrically ergodic, 406
Queues, number in an GI/M/1 queue, 244
Queues, number in an M/G/1 queue, 242
Queues, phase type service, geometrically ergodic, 407
Queues, polling system, geometrically ergodic, 406
Queues, stability of GI/G/1, 493
Random Coefficient Autoregression, 409
Random variable, 523
Random walk, 11, 50, 62, 252
Random walk on a half line, 14, 74, 83, 199, 225
Random walk on a half line, regularity of, 275
Random walk on half line, V-uniform, 394
Random walk on the half line, 94
Random walk on the half-line, 62
Random walk, Bernoulli, 182
Random walk, Bernoulli, geometrically ergodic, 383
Random walk, Central Limit Theorem, 447
Random walk, recurrent, 196
Random walk, simple, 182
Random walk, transient, 197
Random walk, unrestricted, 96, 141
Randomized first entrance times, 294
Rate of convergence, exact, 397
Ratio limit theorem, 422
Reachable state, 135, 137, 452, 460
Real line, 521
Recurrence, 17
Recurrence, deterministic system, 265
Recurrence state: x^* is reachable then classifies chain, 215
Recurrent atom, 179
Recurrent chain, 180, 186
Recurrent chains, 500
Recurrent chains, structure of π, 250
Recurrent set, 177
Regeneration times, 42
Regenerative decomposition, 324, 360
Regular chain, 503
Regular sets, 260
Regularity of Measures, 274
Regularity, f-geometric of chains, 376
Regularity, f-geometric regular sets, 368
Regularity, f-regular sets, 343
Regularity, f-regularity, 336, 342, 356
Regularity, f-regularity sets and chains, 337
Regularity, measures, 524
Renewal measure, 76
Renewal process, 42
Renewal process, delayed, 76
Renewal process, recurrence, 181
Renewal Theorem, 351
Renewal theorem, Blackwell, 352
Residual lifetime process, 44
Resolvent equation, 296
Resolvent kernel, 69
Running maximum, 430
Sample paths, 56
Sampled chain, 122
Sampling distribution, 123
Sampling, generalized, 294
Semi-dynamical system, 265
Semidynamical system, 19
Separability, 524
Sequence or path space, 56
SETAR model, 32, 146, 508
SETAR model, null recurrence, 282
SETAR model, regularity, 279
SETAR model, transience, 226
Shift operator, 70
Simple linear model, regular, 276
Skeleton, m-skeleton, 69
Skip-free chain, invariant measure for, 243
Skip-free random walk on a half line, 201
Skip-free to the left, g, 404
Skip-free to the right, 78
Small set, 109
SNSS(F) model, 30
Splitting general Harris chains, 427
Spread-out, 114, 252
Stability, 15, 177
Stability in the sense of Lyapunov, 20
Stability, \(\tau\)-properties, 500
Stability, \(P^n\)-properties, 500
Stability, asymptotic, 20
Stability, Drift properties, 500
Stability, global asymptotic, 20
Stability, global exponential s., 307
Stability, Lagrange, 20
Stability, Lagrange for CM(F) model, 401
State space, definition, 56
State spaces, 57
Stationary processes, 235
Stochastic comparison, 224
Stopping times, 72
Stopping times, first hitting, 71
Stopping times, first return, 71
Storage model, 4, 63
Storage model, content-dependent, 53
Storage model, simple, 50
Strong Markov Property, 73
Strong mixing, 392
Strongly mixing, 388
Subinvariant measures, 237
Sublevel set, 194, 525
Supermartingale, 528
T-chain, 131, 137
T-chain bounded in probability, 460
T-chain positive recurrent, 460
Taboo probabilities, 74
Test function, 506
Test set, 506
The martingale convergence theorem, 528
Tight, 17, 290
Tightness, 526
Topologically recurrent state, 213
Topology, 524
Total variation norm, 314, 521
Total variation norm, \(f\), 334
Total variation norm, V-norm, 387
Transience of the GI/M/1 queue, 201
Transient, 180, 186
Transient chains, 500
Transient atom, 179
Transient, uniformly, 177
Transition kernel, substochastic, 66
Transition matrix, \(n\)-step, 60
Transition probabilities, 56
Transition probability kernel, 66
Ultimately bounded, 265
Unbounded off petite sets, 195
Uniform accessibility, 123
Uniformly accessible, 93
Uniformly transient, 188
Upper semicontinuous, 525
V-norm, 387
V: \(f\)-drift, 341
V: foster, history, 479
V: foster, state dependent, 472
V: geometric, 371
V: geometric, history, 481
V: geometric, state dependent, 473
V: recurrence, history, 482
V: recurrent, state dependent, 471
V:foster, 267
V: recurrent, 195
Vague topology, 528
Vnorm, 390
Weak convergence, 526
Weak topology, 292, 526
Weakly, 147