Index

$A_+(x)$ The set of states reachable from x by $\text{CM}(F)$, 154
$A^k_+(x)$ The set of states reachable from x at time k by $\text{CM}(F)$, 154
C^k_0 Generalized controllability matrix., 159
*, Convolution operator, 76
$A \sim B$, Uniformly accessibility, 93
$A \sim_0 B$ B is uniformly accessible using a from A, 123
$A \otimes B$, 409
C^∞, Functions whose derivatives of arbitrary order exist, and are continuous, 29
$C_V(r) := \{ x : V(x) \leq r \}$ The rth sublevel set of V, 194
C_n, Controllability matrix, 98
C_0, Complex plane, 144
F_k, The output maps for the linear control model, 30
$G_C^{(r)}(x, B) = \mathbb{E}_x \left[\sum_{k=0}^{\infty} 1_B(\Phi_k) r^k \right]$, 372
I_B, 73
$I_p(x, B)$, 133
$K_a(x, A) := \sum_{n=0}^{\infty} P^n(x, A)a(n)$, 123
K_a, Resolvent kernel, 69
$L(x, A) := P_x(\tau_A < \infty)$, 71
$L(x, h)$, 297
$M_n(g)$ Martingale derived from g, 439
$N(t)$, Number of customers in a queue at time t, 46
$N(t)$, Number of customers in a queue immediately before the nth arrival, 47
N^*_n, Number in a queue immediately after the nth service time is completed, 48
O_w, Supports disturbance or control in $\text{CM}(F)$ and $\text{NSS}(F)$ models, 33
$P(x, A)$, n step transition probability, 68
$P(x, A)$, One step transition probability, 59, 67
$P(z) := \sum_{n=0}^{\infty} p(n)z^n$, 182
$P^n(x, A)$, n step transition probability, 60
$P_h(x, A)$, Kernel for “process on h”, 297
$Q(x, A)$, $P_x\{\Phi \in A \text{ i.o.}\}$, 204
$R(x)$, Conditional emptying time for a dam model, 52
R_n Residual service time immediately after a customer arrival, 78
Re^n, n-dimensional Euclidean space, 6
$S_n(g)$ Partial sum of $g(\Phi_k)$, 415
$T(x, A)$, continuous component, 131
$T_{ab} = \min\{ j : Z_a(j) = Z_b(j) = 1 \}$, 321
$U(x, A) := \sum_{n=1}^{\infty} P^n(x, A)$, 71
$U(z) := \sum_{n=0}^{\infty} u(n)z^n$, 182
$U_A(x, B) := \sum_{n=1}^{\infty} A P^n(x, B)$, 74
$U^{(r)}_C(x, B) = \mathbb{E}_x \left[\sum_{k=1}^{\infty} 1_B(\Phi_k) r^k \right]$, 369
$U^{(r)}_a(x, f) := \mathbb{E}_x \left[\sum_{n=1}^{\infty} f(\Phi_n) r^n \right]$, 361
U_h, Resolvent kernel, 295
$V^+(n)$, Forward recurrence time chain, 45
$V^+(t)$:= $\inf(\{ Z_n - t : Z_n > t, n \geq 1 \})$
Forward recurrence time process, 77
$V^+_\delta(n) = V^+(n\delta)$, 77
$V^-(t)$:= $\inf(\{ t - Z_n : Z_n \leq t, n \geq 1 \})$
Backward recurrence time process, 77
Symbol Index 551

\(V_\delta^{-}(n) = V^{-}(n\delta) \), 77

\(V_C \), Minimal solution to (V2), 271

\(Z_n := \sum_{i=0}^{n} Y_i \), Delayed renewal process, 76

\(\Delta V(x) = \int P(x, dy)V(y) - V(x) \), Drift operator, 178

\(\Delta_k \), Derivative process, 170

\(\Gamma \), The distribution of a disturbance variable \(W \), 24

\(G^+(\gamma) \): distributions which have Laplace-Stieltjes transform convergent in \([0, \gamma] \), 394

\(A^+(x, A) = P(i, x; 0, A) \), Ladder chain transition probabilities, 78

\(A_{i-j+1}(x, A) = P(i, x; j, A) \), Ladder chain transition probabilities, 78

\(\Omega = \mathcal{X}^{\infty} \), Sequence space, 56

\(\Omega_+(C) \), Omega limit set for \(\text{NSS}(F) \), 161

\(\Phi_n \), Markov chain value at time \(n \), 3

\(\mathcal{M} \), Space of Borel probability measures, 19

\(P_x \), Probability conditional on \(\Phi_0 = x \), 16

\(\mathbb{R} \), 521

\(\Sigma_\mu \), \(\sigma \)-field of \(P_\mu \)-invariant events, 417

\(\bar{p}(\mathcal{M}) \), upper tail of renewal sequence, 453

\(\mathcal{T}_k(x, \cdot) \), Cesaro average of \(P^k \), 290

\(\Phi \), Markov chain, 3

\(\Phi_\alpha \), Chain with transition function \(K_\alpha \), 122

\(\Phi_\alpha \), Sampled chain, 123

\(\mathcal{B}(\mathcal{X}) \), \(\sigma \)-field of subsets of \(\mathcal{X} \), 56

\(\hat{P}(x, A) \), The split transition function, 106

\(\mathfrak{a} \), The atom in \(\mathcal{B}(\mathfrak{X}) \), 107

\(\hat{\Phi} \), The split chain, 106

\(\mathcal{C}_c(\mathcal{X}) \), continuous functions on state with compact support, 147

\(\mathcal{B}(\mathbb{R}) \), 521

\(\mathcal{B}^+(\mathcal{X}) \), Sets with \(\psi(A) > 0 \), 91

\(\mathcal{F}_n^\Phi := \sigma(\Phi_0, \ldots, \Phi_n) \), 70

\(\mathcal{F}_\zeta := \{ A \in \mathcal{F} : \zeta = n \} \cap A \in \mathcal{F}_n^\Phi, n \in \mathbb{Z}_+ \), 73

\(\mathcal{C}(\mathcal{X}) \), 525

\(\mathcal{C}(X) \), Continuous bounded functions on \(X \), 132

\(\mathcal{C}_0(X) \), continuous functions vanishing at \(\infty \), 527

\(\delta_x(A) = P^0(x, A) \), the Dirac measure, 68

\(\eta_A := \sum_{n=1}^{\infty} 1\{ \Phi_n = A \} \), 71

\(\gamma_2^* \), Limiting variance in the CLT, 416

\(\hat{\theta} \), Solution to the Poisson equation, 436

\(\mathbb{I}_B \), Indicator function of \(B \), 69

\(\lambda^* \), A split measure on \(bcx \), 106

\(\mu \), Lebesgue measure, 96

\(\mu \), Lebesgue measure on \(\mathbb{R} \), 521

\(\leftrightarrow \), Communicates with, 84

\(\mathbb{Z}_+ \), non-negative integers, 3

\(\mathfrak{A} \), Points from which \(A \) is accessible, 94

\(\mathfrak{A}(m) \), 94

\(\pi \), Invariant measure, 234

\(\psi \), Maximal irreducibility measure, 90

\(\rightarrow \), Leads to, 84

\(\sigma_A := \min\{n \geq 0 : \Phi_n \in A\} \), 71

\(\sigma_\alpha(j) \), times of visits to \(\alpha \), 422

\(X \), State space, 56

\(\succ \), Absolute continuity, 82

\(\lambda P^n(x, B) := P_k(\Phi_n \in B, \tau_A \geq n) \), 74

\(\tau_A := \min\{n \geq 1 : \Phi_n \in A\} \), 71

\(\tau_A \), First entry time to \(A \), 16

\(\tau_A(1) := \tau_A \), 71

\(\tau_A(k) := \min\{n > \tau_A(k-1) : \Phi_n \in A\} \), 71

\(\theta^k \), The \(k \)-th order shift operator on \(\Omega \), 70

\(\tilde{Q}(A) \), An invariant random variable, 419

\(\tilde{\pi}(A) \), An invariant random variable, 419

\(\varphi \), Irreducibility measure, 88

\(\{ \Phi \in A \text{ i.o.} \} \), 204

\(a_x(n) := P_\alpha(\tau_\alpha = n) \), 317

\(d(\alpha) \), The period of \(\alpha \), 118

\(h_y \), Almost everywhere invariant function, 417

\(m_n(t) \), Interpolation of \(M_n(g) \), 440

\(q_j \), Probability of \(j \) arrivals in one service in the \(M/G/1 \) queue, 64
$s_j(f)$, the sum of $f(\Phi_i)$ between visits to atom, 422
$s_n(t)$, Interpolation of $S_n(\bar{y})$, 440
$t_y(n) := \alpha P^n(\alpha, y)$, 317
$u(n) := \sum_{k=0}^{\infty} P(Z_k = n)$, 182
$u(n) := P_\alpha(\Phi_n = \alpha)$, 317
\mathbf{J}, Normalized interarrival times for the Moran dam, 50, 53
$\mathbf{W} = \{W_n\}$, A disturbance process, 24
\mathbf{Z}, A discrete time renewal process, 45
Φ, Markov chain, 67
Φ^m, The m-skeleton chain, 69

$\mu_k \xrightarrow{w} \mu_\infty$, weak convergence of μ_k to μ_∞, 147
$\rho(F)$, maximum eigenvalue modulus, 144
A^0, Points from which A is inaccessible, 94

$\text{Var}(u)$, Variation in a renewal sequence, 329