STA261 EXTRA QUESTIONS, SPRING 2004

Jeffrey Rosenthal, University of Toronto

(Last updated: March 4, 2004.)

Note: What follows are a few extra homework questions, about topics for which the textbook doesn't have enough appropriate questions.

1. Consider the statistical model where S = [0, 1], $\Omega = \{1, 2\}$, P_1 has density $f_1(s) = 2s$, and P_2 has density $f_2(s) = 3s^2$. Suppose we observe a single observation $s \in S$.

(a) Compute the likelihood function for this model.

(b) Compute the MLE, $\hat{\theta}$, for θ .

(c) Compute $\operatorname{Bias}_{\theta}(\hat{\theta})$, the bias of $\hat{\theta}$.

2. Consider the statistical model where $S = \{0, 1, 2, ...\}, \Omega = (0, \infty)$, and for $\theta \in \Omega$, P_{θ} is the Poisson(θ) distribution, so $P_{\theta}(s) = e^{-\theta} \theta^s / s!$. Suppose we observe a single observation $s \in S$. (You may assume that s > 0 for simplicity.) Repeat parts (a) to (c) of the previous question. [Hint: For (b), use the Score Equation.]

3. Compute $MSE_{\theta}(\hat{\theta})$, the mean squared error of $\hat{\theta}$, for each of the two models in the two previous questions.

4. Suppose P_{θ} has mean θ and variance 1, and we observe x_1, \ldots, x_n , and we estimate θ by $\hat{\theta} = \overline{x} + 1/n$.

- (a) Compute $\operatorname{Bias}_{\theta}(\hat{\theta})$.
- (b) Compute $\operatorname{Var}_{\theta}(\hat{\theta})$.
- (c) Compute $MSE_{\theta}(\hat{\theta})$.
- (d) Is $\hat{\theta}$ a consistent estimator for θ ? Explain.

5. Suppose P_{θ} has mean θ and variance 1, and we observe x_1, \ldots, x_n , and we estimate θ by $\hat{\theta} = \overline{x} + W_n$, where W_n is a random variable independent of the x_i with $P[W_n = n] = P[W_n = -n] = 1/n$ and $P[W_n = 0] = 1 - 2/n$. Repeat parts (a) through (d) of the previous question.

6. Consider the statistical model where $S = \{0, 1, 2, ...\}$, $\Omega = (0, \infty)$, and for $\theta \in \Omega$, P_{θ} is the Poisson(θ) distribution, so $P_{\theta}(s) = e^{-\theta} \theta^s / s!$. Suppose we observe the observations 11, 5, 8.5, and 7.5. Compute (with explanation) the Method-of-Moments Estimate of θ .

7. Consider the statistical model where $S = \Omega = \mathbf{R}$, and for $\theta \in \Omega$, $P_{\theta} = N(2, \theta)$, so that θ represents the <u>variance</u> (not the mean!). Suppose we observe the observations 3, -5, 6, and -2. Compute (with explanation) the Method-of-Moments Estimate of θ .

8. (Bayesian Inference) Suppose we have one of three dice: either six-sided (so the numbers $\{1, \ldots, 6\}$ are all equally likely), or eight-sided (so the numbers $\{1, \ldots, 8\}$ are all equally likely), or ten-sided (so the numbers $\{1, \ldots, 10\}$ are all equally likely), but we don't know which one we have. Thus, $\Omega = \{\text{six-sided, eight-sided, ten-sided}\}$. Suppose our prior distribution on Ω is given by $\pi(\text{six-sided}) = 4/7$, $\pi(\text{eight-sided}) = 1/7$, and $\pi(\text{ten-sided}) = 2/7$. Compute the posterior distribution for the unknown $\theta \in \Omega$, for each of the following cases:

(a) We observe just one roll, and it is a 4.

- (b) We observe two rolls, and they are 4 and 5.
- (c) We observe two rolls, and they are 4 and 7.

9. Let $\Omega = \{1, 2, 3\}$, with $P_1\{5\} = 1/2$, $P_1\{8\} = 1/3$, $P_1\{9\} = 1/6$, $P_2\{10\} = 1/2$, $P_2\{13\} = 1/3$, $P_2\{14\} = 1/6$, $P_3\{25\} = 1/2$, $P_3\{28\} = 1/3$, $P_3\{29\} = 1/6$. Suppose we observe X_1, \ldots, X_n . Let $D = \overline{X} - X_1$. Prove that D is ancilliary.