STA261 EXTRA QUESTIONS, SPRING 2004

Jeffrey Rosenthal, University of Toronto

(Last updated: March 4, 2004.)
Note: What follows are a few extra homework questions, about topics for which the textbook doesn't have enough appropriate questions.

1. Consider the statistical model where $S=[0,1], \Omega=\{1,2\}, P_{1}$ has density $f_{1}(s)=2 s$, and P_{2} has density $f_{2}(s)=3 s^{2}$. Suppose we observe a single observation $s \in S$.
(a) Compute the likelihood function for this model.
(b) Compute the MLE, $\hat{\theta}$, for θ.
(c) $\operatorname{Compute}^{\operatorname{Bias}} \theta(\hat{\theta})$, the bias of $\hat{\theta}$.
2. Consider the statistical model where $S=\{0,1,2, \ldots\}, \Omega=(0, \infty)$, and for $\theta \in \Omega, P_{\theta}$ is the $\operatorname{Poisson}(\theta)$ distribution, so $P_{\theta}(s)=e^{-\theta} \theta^{s} / s$!. Suppose we observe a single observation $s \in S$. (You may assume that $s>0$ for simplicity.) Repeat parts (a) to (c) of the previous question. [Hint: For (b), use the Score Equation.]
3. Compute $\operatorname{MSE} E_{\theta}(\hat{\theta})$, the mean squared error of $\hat{\theta}$, for each of the two models in the two previous questions.
4. Suppose P_{θ} has mean θ and variance 1 , and we observe x_{1}, \ldots, x_{n}, and we estimate θ by $\hat{\theta}=\bar{x}+1 / n$.
(a) $\operatorname{Compute}_{\operatorname{Bias}}^{\theta}(\hat{\theta})$.
(b) Compute $\operatorname{Var}_{\theta}(\hat{\theta})$.
(c) Compute $\operatorname{MSE} E_{\theta}(\hat{\theta})$.
(d) Is $\hat{\theta}$ a consistent estimator for θ ? Explain.
5. Suppose P_{θ} has mean θ and variance 1 , and we observe x_{1}, \ldots, x_{n}, and we estimate θ by $\hat{\theta}=\bar{x}+W_{n}$, where W_{n} is a random variable independent of the x_{i} with $P\left[W_{n}=\right.$ $n]=P\left[W_{n}=-n\right]=1 / n$ and $P\left[W_{n}=0\right]=1-2 / n$. Repeat parts (a) through (d) of the previous question.
6. Consider the statistical model where $S=\{0,1,2, \ldots\}, \Omega=(0, \infty)$, and for $\theta \in \Omega, P_{\theta}$ is the $\operatorname{Poisson}(\theta)$ distribution, so $P_{\theta}(s)=e^{-\theta} \theta^{s} / s!$. Suppose we observe the observations $11,5,8.5$, and 7.5. Compute (with explanation) the Method-of-Moments Estimate of θ.
7. Consider the statistical model where $S=\Omega=\mathbf{R}$, and for $\theta \in \Omega, P_{\theta}=N(2, \theta)$, so that θ represents the variance (not the mean!). Suppose we observe the observations 3, $-5,6$, and -2 . Compute (with explanation) the Method-of-Moments Estimate of θ.
8. (Bayesian Inference) Suppose we have one of three dice: either six-sided (so the numbers $\{1, \ldots, 6\}$ are all equally likely), or eight-sided (so the numbers $\{1, \ldots, 8\}$ are all equally likely), or ten-sided (so the numbers $\{1, \ldots, 10\}$ are all equally likely), but we don't know which one we have. Thus, $\Omega=\{$ six-sided, eight-sided, ten-sided $\}$. Suppose our prior distribution on Ω is given by $\pi($ six-sided $)=4 / 7, \pi($ eight-sided $)=1 / 7$, and $\pi($ tensided) $=2 / 7$. Compute the posterior distribution for the unknown $\theta \in \Omega$, for each of the following cases:
(a) We observe just one roll, and it is a 4.
(b) We observe two rolls, and they are 4 and 5 .
(c) We observe two rolls, and they are 4 and 7 .
9. Let $\Omega=\{1,2,3\}$, with $P_{1}\{5\}=1 / 2, P_{1}\{8\}=1 / 3, P_{1}\{9\}=1 / 6, P_{2}\{10\}=1 / 2$, $P_{2}\{13\}=1 / 3, P_{2}\{14\}=1 / 6, P_{3}\{25\}=1 / 2, P_{3}\{28\}=1 / 3, P_{3}\{29\}=1 / 6$. Suppose we observe X_{1}, \ldots, X_{n}. Let $D=\bar{X}-X_{1}$. Prove that D is ancilliary.
