STA261 LECTURES NOTES, SPRING 2004

Jeffrey Rosenthal, University of Toronto

(Last updated: March 31, 2004.)

Note: I have decided to make these lecture notes available for STA261 students, for their convenience. I will update them regularly. However, they are just rough, point-form notes, with no guarantee of completeness or accuracy. They should in no way be regarded as a substitute for attending the lectures and tutorials, or for doing the weekly homework exercises.

- Introduction to course, handout, web page, etc.
- How many in Statistics Specialist program? Statistics Major? Actuarial Science? Math? Computer Science? Physics/Chemistry? Economics? Management? Life Sciences? Engineering? Other?
- IDEA OF STATISTICAL INFERENCE: Drawing inference about unknown quantities in the presence of randomness. Uses lots of probability theory!
- INFERENCE WHEN PROBABILITY DISTRIBUTION IS KNOWN (Sect. 5.2):
- Example (text): $X=$ machine's lifetime in years. Suppose $X \sim \operatorname{Exp}(1)$. This means $P(X>x)=e^{-x}$ for $x \geq 0$. Then $P(X>5)=e^{-5} \approx 0.0067$. Small! So, machine usually won't last five years. But $P(X>2)=e^{-2} \approx 0.1353$, not so small. ["Machine lasting 2 years is feasible, lasting 5 years is infeasible"]
- Example: Suppose patients with disease "Statitus" have 50% chance of dying. [Like flipping coin, with heads=live, tails=die; do experiment.] Then given 8 patients, probability they ALL live is $(1 / 2)^{8}=1 / 256 \approx 0.0039$. So, they probably won't all live! But, probability first three live is $(1 / 2)^{3}=1 / 8=0.125$, not so small. ["First three surviving is feasible, first eight surviving is infeasible"]
- Example: Roll 6 -sided die, patient dies if get 1 or 2 (do experiment). Then probability first two patients die is $(2 / 6)^{2}=1 / 9 \approx 0.1111$. Not so unlikely; might happen. But probability first five patients die is $(2 / 6)^{5}=1 / 243 \approx 0.0041$, very small. ["First two surviving is feasible, first five surviving is infeasible"]
- INFERENCE WHEN PROBABILITY DISTRIBUTION UNKNOWN (Sect. 5.3):
- Example: Suppose patients with disease "Statitus" are given a new treatment. They then either have 50% chance of dying, or they will all live, but we're not sure which. [Like flipping either regular or two-headed coin; do experiment.] Suppose first 4 patients all live. Does that mean all patients will live? [Probability it happened by chance is $(1 / 2)^{4}=1 / 16=0.0625$.] "Hypothesis testing".
- Example: Suppose we roll a 6 -sided die, patient dies if get one of "certain numbers" (secret). [Do experiment.] What is prob that patient dies? Unknown! Given some observations, how can we ESTIMATE this probability?? "Estimation".
- Example: Suppose you're shooting foul shots in basketball. Your probability p of scoring a basket is unknown. How to estimate it? e.g. Suppose you shoot 10 shots and score 7 times; does that mean $p=0.7$? Exactly? Are you sure? "Confidence Intervals".
- STATISTICAL MODELS (Sect. 5.3):
- If probability distribution is unknown, then need to consider various possible probability distributions.
- Write collection of possible probability distributions as $\left\{P_{\theta}: \theta \in \Omega\right\}$, where θ is a parameter, Ω is the set of possible parameter values, and for each $\theta \in \Omega, P_{\theta}$ is a probability distribution on the set S of possible outcomes (or, "responses").
- For "Statitus treatment" example, could let $S=\{$ live, die $\}$, and $\Omega=\{1,2\}$, and $P_{1}($ die $)=P_{1}($ live $)=1 / 2$, and $P_{2}($ live $)=1$.
- For "secret list" 6 -sided die example, could let $S=\{$ live, die $\}$, and $\Omega=\{0,1,2,3,4,5,6\}$, and for $\theta \in \Omega, P_{\theta}($ die $)=\theta / 6$ and $P_{\theta}($ live $)=1-\theta / 6$.
- For basketball example, could let $S=\{$ score, miss $\}$, and $\Omega=[0,1]$, and for $\theta \in \Omega$, $P_{\theta}($ score $)=\theta$ and $P_{\theta}($ miss $)=1-\theta$.
- Also need to collect and describe data, with e.g. histograms, etc. (Sect. 5.4 - not emphasised now; maybe later.)
- SOME BASIC METHODS OF INFERENCE (Sect. 5.5.1)
- Suppose we have a random response X whose distribution is unknown. We collect some observations ("data") x_{1}, \ldots, x_{n}.
- Example: Suppose we're measuring student heights (in centimeters), and we observe: $170,160,165,160,150,170$.
- Could estimate $F_{X}(x)=P(X \leq x)$ by $\hat{F}_{X}(x) \equiv \frac{1}{n} \sum_{i=1}^{n} I_{(-\infty, x]}\left(x_{i}\right)$, i.e. the fraction of observations which are $\leq x$. (Accurate?) [In above example, could estimate that $2 / 3$ of students have height ≤ 165.]
- Could estimate the mean ("location parameter") of X by the "sample mean" $\bar{x} \equiv \frac{1}{n} \sum_{i=1}^{n} x_{i}$. [In above example, average student height is about $\bar{x}=162.5$.]

_ END MONDAY 1 _

[Offer extra handouts as needed.]
[Remind students about suggested homework, posted on website on Thursdays.]

Previous Class:

* Inference when probability distribution KNOWN
—— What outcomes are "feasible"?
* Introduction to inference when probability distribution UNKNOWN
——hypothesis testing (e.g. statitus treatment: 50-50 or 100\%?)
- estimation (e.g. \# numbers on secret list, when $2 / 8$ die. 2!!)
——confidence (if you score $7 / 10$ foul shots, how close to 0.7 is p ?)
* Statistical Models
—— Collection $\left\{P_{\theta}: \theta \in \Omega\right\}$ of possible probability distributions on outcome space S.
- e.g. $S=\{$ live, die $\}, \Omega=\{0,1,2,3,4,5,6\}, P_{\theta}($ die $)=\theta / 6, P_{\theta}($ live $)=1-\theta / 6$.
- Some Basic Methods of Inference (Continued)
- Have a random response X (distribution unknown). Have observations ("data") x_{1}, \ldots, x_{n}.
- Example: Measuring student heights (in cm), and observe: 170, 160, 165, 160, 150, 170.
- Could estimate $F_{X}(x)=P(X \leq x)$ by $\hat{F}_{X}(x) \equiv \frac{1}{n} \sum_{i=1}^{n} I_{(-\infty, x]}\left(x_{i}\right)$. [In above
example, estimate that $2 / 3$ of students have height ≤ 165.]
- Could estimate the mean ("location parameter") of X, i.e. $\mu_{X}=E[X]$, by the "sample mean" $\bar{x} \equiv \frac{1}{n} \sum_{i=1}^{n} x_{i}$. [In above example, average student height estimated by $\bar{x}=162.5$.]
- Could estimate the variance ("scale") of X, i.e. $\operatorname{Var}(X)=E\left[\left(X-\mu_{X}\right)^{2}\right]$, by the "sample variance" $s^{2} \equiv \frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$. [Why $n-1$ instead of n ? Later!] [In above example, variance of student heights estimated by $s^{2}=57.5$.]
- Then estimate standard deviation by "sample standard deviation" $s \equiv \sqrt{s^{2}}$. [In above example, standard deviation estimated by $s=7.6$.]
- If X is discrete, could estimate $f_{X}(x)=P(X=x)$ by $\hat{f}_{X}(x) \equiv \frac{1}{n} \sum_{i=1}^{n} I_{x}\left(x_{i}\right)$, i.e. the fraction of observations which are $=x$. [In above example, should probably not conclude that $1 / 3$ of students have height exactly 160 , since heights are continuous ...]
- Example: Suppose three candidates (A, B, and C) are running for student president. We select students at random and ask who they will vote for, and observe: A, C, A, B, A, C, A. Then could estimate popularity of candidate A as $4 / 7$, B as $1 / 7$, and C as $2 / 7$. [Here mean, etc. do not make sense, since data are catagorical, i.e. not quantitative.]
- Example: Suppose a random sample of residents are asked to preview a movie and rate it on a scale from 1 to 5 . We observe ratings of $4,2,1,3,2,1,4,2$. Then we might estimate that in the general population, $2 / 8$ of people will rate the movie a 1 , while $5 / 8$ of people will rate the movie a 1 or 2 , and $6 / 8$ of people will rate the movie a 1 or 2 or 3 , etc. Also mean rating $\approx \bar{x}=2.375$, with variance $\approx s^{2} \doteq 1.41$, and standard deviation $\approx s \doteq 1.19$. [Movie probably won't be a hit!]
- [Quantile estimation? Omit for now.]
- But how "good" are these estimates??
[Announce tutorial rooms.]
[Reminder re homework to discuss in tutorial: 5.1.1, 5.1.5, 5.1.7, 5.2.4, 5.2.6, 5.2.10, 5.3.1, 5.3.2, 5.3.3, 5.3.5 (model only), 5.5.1 (omit (e)), 5.5.2 (omit (d)).]
[Note: My lecture notes are now on the web page.]

Previous Class:

* Examples of basic inference from data:
—— estimate mean by sample mean \bar{x}
- estimate variance by sample variance s^{2}
— estimate probabilities and/or cdfs by "fraction of observations"
- LIKELIHOOD FUNCTIONS and MLE (Sect. 6.1, 6.2).
- Let $\left\{P_{\theta}: \theta \in \Omega\right\}$ be a statistical model on some outcome space S. Suppose we observe some outcome $s \in S$.
- If S is discrete, then the Likelihood Function is the function $L(\cdot \mid s)$ on Ω defined by $L(\theta \mid s)=P_{\theta}(s)$, i.e. the probability of observing s if P_{θ} is the true probability distribution.
- L is function of parameter θ, given the (fixed) observation s.
- $L(\theta \mid s)$ provides some indication (?) of how "likely" the distribution P_{θ} is, given the observation s.
- Example (text): $S=\{1,2,3, \ldots\}, \Omega=\{1,2\}, P_{1}=\operatorname{Uniform}\{1,2, \ldots, 1000\}$, and $P_{2}=\operatorname{Uniform}\{1,2, \ldots, 1000000\}$. Observe $s=10$. Then $L(1 \mid 10)=1 / 1000$, and $L(2 \mid 10)=1 / 1000000$. Suggests that P_{1} much more likely than P_{2}, even though both values very small.
- Definition: The Maximum Likelihood Estimator" (MLE) of θ is the value of θ which maximises $L(\theta \mid s)$. In above example, MLE is $\hat{\theta}=1$.
- Example: "Statitus treatment" example: $S=\{$ live, die $\}, \Omega=\{1,2\}, P_{1}$ (live) $=$ $P_{1}($ die $)=1 / 2, P_{2}($ live $)=1$. If we observe $s=$ live, then $L(1 \mid$ live $)=1 / 2$, $L(2 \mid$ live $)=1$, so P_{2} more likely (in fact, twice!). But if we observe $s=$ die, then $L(1 \mid$ die $)=1 / 2, L(2 \mid$ live $)=0$, so P_{1} more likely (in fact, infinitely more!). So, if
$s=$ live then MLE is $\hat{\theta}=2$, but if $s=$ die then MLE is $\hat{\theta}=1$.
- Can also compute likelihood under multiple observations. In "Statitus treatment" example, if observation s corresponds to three patients who all live, then $P_{1}(s)=$ $(1 / 2)^{3}=1 / 8$, while $P_{2}(s)=1$. So can write $L(1 \mid s)=1 / 8, L(2 \mid s)=1$, so P_{2} is eight times more likely, and MLE is $\hat{\theta}=2$.
- e.g. "secret list" 6 -sided die example, where $S=\{$ live, die $\}, \Omega=\{0,1,2,3,4,5,6\}$, and $P_{\theta}($ die $)=\theta / 6$. If observe one patient die, then $L(\theta \mid$ die $)=\theta / 6$ for $\theta \in \Omega$, largest at $\hat{\theta}=6$. If observe one patient live, then $L(\theta \mid$ live $)=1-\theta / 6$ for $\theta \in \Omega$, largest at $\hat{\theta}=0$.
- If instead observation s is that 2 out of 8 patients died, then $L(\theta \mid s)=\binom{8}{2}(\theta / 6)^{2}(1-$ $\theta / 6)^{6}=28(\theta / 6)^{2}(1-\theta / 6)^{6}$. Thus, $L(0 \mid s)=0, L(1 \mid s)=28(1 / 6)^{2}(1-1 / 6)^{6} \doteq$ $0.260, L(2 \mid s) \doteq 0.273, L(3 \mid s) \doteq 0.109, L(4 \mid s) \doteq 0.017, L(5 \mid s) \doteq 0.0004$, $L(6 \mid s) \doteq 0$. Suggests $\theta=2$ is most likely (was actually true!), so MLE is $\hat{\theta}=2$, though $\theta=1$ fairly likely too. ($\theta=3$ less so.)
- Comment: Two different likelihood functions are equivalent (i.e., just as good) if one is a positive constant times the other [since we only care about the ratios $\left.L\left(\theta_{1} \mid s\right) / L\left(\theta_{2} \mid s\right)\right]$. So, in above example, could have ignored the " 28 " if we wanted. More generally, can ignore any positive factor which does not depend on θ (even if it depends on the observation s).
- If S is continuous, so each P_{θ} has a density f_{θ}, then can define likelihood function by $L(\theta \mid s)=f_{\theta}(s)=$ value of density function. (Note: In discrete case, sometimes also write $f_{\theta}(s)$ for $p_{\theta}(s)$, i.e. for $\left.P_{\theta}[s].\right)$
- Example ("one Normal observation"): Suppose $S=\mathbf{R}$, and $\Omega=\mathbf{R}$, and $P_{\theta}=$ $N(\theta, 1)=$ normal distribution. Thus $f_{\theta}(s)=\frac{1}{\sqrt{2 \pi}} e^{-(s-\theta)^{2} / 2}$. If we observe $s \in$ S, then $L(\theta \mid s)=\frac{1}{\sqrt{2 \pi}} e^{-(s-\theta)^{2} / 2}$. Equivalently, can take $L(\theta \mid s)=e^{-(s-\theta)^{2} / 2}$. Largest when $\theta=s$, so MLE is $\hat{\theta}=s$. (Makes sense ...)
- Example ("one Exponential observation"): Suppose $S=(0, \infty)$ and $\Omega=(0, \infty)$, with $P_{\theta}=\operatorname{Exp}(\theta)$, and we observe one outcome $s>0$. Then $L(\theta \mid s)=f_{\theta}(s)=$ $\theta e^{-s \theta}$. How to maximise?
- Well,

$$
\frac{\partial}{\partial \theta} L(\theta \mid s)=e^{-s / \theta}-\theta e^{-s / \theta}(s)
$$

which equals 0 iff $1-s \theta=0$, i.e. $\theta=1 / s$. This appears to maximise $L(\theta \mid s)$, so that MLE is $\hat{\theta}=s$. (Makes sense since mean of $\operatorname{Exp}(\theta)$ is $1 / \theta$, so mean of $\operatorname{Exp}(1 / s)$ is $s \ldots)$

- Easier is to consider logarithm of likelihood; since logarithm is an increasing function, maximising log-likelihood is same as maximising likelihood. Compute:

$$
\ell(\theta \mid s)=\log [L(\theta \mid s)]=\log \left[\theta e^{-s / \theta}\right]=\log (\theta)-s \theta
$$

Then derivative of this is the score function:

$$
S(\theta \mid s)=\frac{\partial}{\partial \theta} \ell(\theta \mid s)=\frac{\partial}{\partial \theta}[\log (\theta)-s \theta]=1 / \theta-s
$$

and this equals 0 ["Score Equation"] if and only if $(1 / \theta)-s=0$, i.e. $\theta=1 / s$.

- As a check, the second derivative is $\frac{\partial}{\partial \theta} \ell(\theta \mid s)=-\theta^{-2}$. At $\theta=\hat{\theta}=s$, this equals $s^{-2}<0$. Hence, $\theta=\hat{\theta}$ is indeed a local maximum, and then easily seen to be a global maximum.
- Example ("multiple Exponential observations"): Again $S=(0, \infty)$ and $\Omega=$ $(0, \infty)$, with $P_{\theta}=\operatorname{Exp}(\theta)$, and we observe n outcomes $x_{1}, x_{2}, \ldots, x_{n}>0$. Then

$$
L\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n}\left[\theta e^{-x_{i} \theta}\right]=\theta^{n} e^{-\sum_{i=1}^{n} x_{i} \theta}=\theta^{n} e^{-n \bar{x} \theta} .
$$

Then

$$
\ell\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\log [L(\theta \mid s)]=n \log (\theta)-n \bar{x} \theta .
$$

Hence, score function is

$$
S\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\frac{\partial}{\partial \theta} \ell\left(\theta \mid x_{1}, \ldots, x_{n}\right)=n / \theta-n \bar{x}
$$

which equals 0 iff $(1 / \theta)-\bar{x}=0$, i.e. $\theta=1 / \bar{x}$. (Makes sense, since could also estimate mean $1 / \theta$ by \bar{x}, equivalent to estimating θ by $1 / \bar{x}$.)
[Reminder about tutorials today, after lecture.]

Previous Class:

* Likelihood function $L(\theta \mid s)$.
—— Indicates relative likelihood of P_{θ} being true, given observation s.
* Discrete case: $L(\theta \mid s)=P_{\theta}(s)$ (probability). [Examples.]
* (Absolutely) continuous case: $L(\theta \mid s)=f_{\theta}(s)$ (density). [Examples.]
* MLE is value of θ which maximises $L(\theta \mid s)$.
* Two likelihood functions are equivalent if $L_{1}(\theta \mid s)=K L_{2}(\theta \mid s)$ for all $\theta \in \Omega$, for some $K>0$ which does not depend on θ.
- Aside about likelihood equivalence: L_{1} and L_{2} are equivalent iff the ratio L_{1} / L_{2} does not depend on θ. For example, suppose $L_{1}(\theta \mid s)=\theta^{2}, L_{2}(\theta \mid s)=15 \theta^{2}, L_{3}(\theta \mid s)=$ $s^{3} \theta^{2}, L_{4}(\theta \mid s)=\theta$. Which are equivalent? Answer: L_{1}, L_{2}, and L_{3} are equivalent, but L_{4} is not. So, can't just erase a constant (like 2) from the exponent. Similarly, if $L_{5}(\theta \mid s)=e^{-\theta}$ and $L_{6}(\theta \mid s)=e^{-\theta / 2}$, then $L_{5}(\theta \mid s) / L_{6}(\theta \mid s)=e^{-\theta / 2}$, which depends on θ, so L_{5} and L_{6} not equivalent.
- Likelihood functions, continuous case (continued).
- Example ("multiple Normal observations"): Suppose observe multiple data $x_{1}, x_{2}, \ldots, x_{n}$ from $N(\theta, 1)$. Then can take $L\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} e^{-\left(x_{i}-\theta\right)^{2} / 2}=\exp (-$ $\left.\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}\right)$.
- In fact, above likelihood function is equivalent to $L_{2}\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\exp (-$ $\left.\frac{n}{2}(\bar{x}-\theta)^{2}\right)$. Proof:

$$
\sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}=\sum_{i=1}^{n}\left(x_{i}^{2}-2 x_{i} \theta+\theta^{2}\right)=\left(\sum_{i=1}^{n} x_{i}^{2}\right)-2 n \bar{x} \theta+n \theta^{2}
$$

while

$$
n(\bar{x}-\theta)^{2}=n \bar{x}^{2}-2 n \bar{x} \theta+n \theta^{2}
$$

so difference between them is

$$
\left(\sum_{i=1}^{n} x_{i}^{2}\right)-n \bar{x}^{2}
$$

which does not depend on θ. So,

$$
\frac{L(\theta \mid s)}{L_{2}(\theta \mid s)}=\exp \left(-\frac{1}{2}\left(\left(\sum_{i=1}^{n} x_{i}^{2}\right)-n \bar{x}^{2}\right)\right)
$$

which does not depend on n.

- Hence, MLE is $\hat{\theta}=\bar{x}$.
- "Uniform" Example (text): Suppose model is $S=[0, \infty), \Omega=(0, \infty)$, and $P_{\theta}=$ Uniform $[0, \theta]$, and we observe $x_{1}, x_{2}, \ldots, x_{n} \geq 0$. How to estimate θ ? Here $L\left(\theta \mid x_{1}, \ldots, x_{n}\right)=1 / \theta^{n}$ if $0 \leq x_{i} \leq \theta$ for all i, otherwise $L\left(\theta \mid x_{1}, \ldots, x_{n}\right)=0$. By observation (not differentiation!), this is maximised at $\theta=\hat{\theta}=\max \left\{x_{i} ; 1 \leq\right.$ $i \leq n\}$. This is the MLE.
- If instead $S=(-\infty, \infty), \Omega=(0, \infty)$, and $P_{\theta}=\operatorname{Uniform}[-\theta, \theta]$, and observe $x_{1}, x_{2}, \ldots, x_{n}$, then MLE is $\hat{\theta}=\max \left\{\left|x_{i}\right| ; 1 \leq i \leq n\right\}$. (exercise)
- Example ("Multinomial Model"): Suppose individual responses can take one of the values $S=\{1,2, \ldots, k\}$ (e.g. election preference; perhaps $k=3$), with various probabilities (unknown). ["Catagorical response".] Statistical model is

$$
\Omega=\left\{\theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right) ; \theta_{i} \geq 0, \theta_{1}+\ldots+\theta_{k}=1\right\}
$$

and $P_{\theta}(i)=\theta_{i}$. If we observe responses $x_{1}, x_{2}, \ldots, x_{n}$ (perhaps n is large), then likelihood function is

$$
L\left(\theta \mid x_{1}, x_{2}, \ldots, x_{n}\right)=\theta_{x_{1}} \theta_{x_{2}} \ldots \theta_{x_{n}}
$$

This is equal to $\theta_{1}^{c_{2}} \theta_{2}^{c_{2}} \ldots \theta_{k}^{c_{k}}$, where $c_{i}=\#\left\{j: x_{j}=i\right\}=$ count of number of responses of type i. Hence, likelihood only depends on the count data $\left(c_{1}, c_{2}, \ldots, c_{k}\right)$, not on the full response list $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

—— END WEDNESDAY 2 —

[Some office hours now posted on web site (TA's, plus New College). Also a few "extra" hours available per TA. However, these office hours are to SUPPLEMENT the tutorials, not REPLACE them!]

Previous Class:

* Example re likelihood equivalence.
* MLE for Multiple Normal observations.
* MLE for Multiple Uniform observations.
* Multinomial Model: $P_{\theta}(i)=\theta_{i}, L\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\theta_{x_{1}} \ldots \theta_{x_{n}}=\left(\theta_{1}\right)^{c_{1}} \ldots\left(\theta_{k}\right)^{c_{k}}$
- Numerical example for Multinomial Model: Suppose $k=3$, and $n=7$, and observations are $1,2,3,2,2,1,2$. Then

$$
L(\theta \mid 1,2,3,2,2,1)=\theta_{1} \theta_{2} \theta_{3} \theta_{2} \theta_{2} \theta_{1} \theta_{2}=\left(\theta_{1}\right)^{2}\left(\theta_{2}\right)^{4}\left(\theta_{3}\right)^{1},
$$

so here $c_{1}=2, c_{2}=4$, and $c_{3}=1$. Can thus summarise the full observation list $(1,2,3,2,2,1,2)$ by the count data $(2,4,1)$.

- SUFFICIENT STATISTICS (6.1.1).

- Definition: A statistic is some function T of the data $\left(x_{1}, \ldots, x_{n}\right)$, e.g. \bar{x}, s^{2}, $\frac{1}{n} \sum_{i=1}^{n} I_{(\infty, 5]}\left(x_{i}\right)$, the count data $\left(c_{1}, c_{2}, \ldots, c_{k}\right)$, etc.
- Definition: A statistic T is sufficient if different observations, with the same value of the statistic, always have equivalent likelihood functions. i.e., if whenever $T\left(s_{1}\right)=T\left(s_{2}\right)$, then $L\left(\theta \mid s_{1}\right)=K L\left(\theta \mid s_{2}\right)$ for all $\theta \in \Omega$, for some constant $K>0$ (which may depend on s_{1} and s_{2}).
- In above "Multinomial Model" example, the statistic of "count data", i.e. $T\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(c_{1}, c_{2}, \ldots, c_{k}\right)$, is sufficient, since the likelihood function only depends on $\left(c_{1}, c_{2}, \ldots, c_{k}\right)$.
- In "Normal Observations" example, likelihood function is equivalent to $L\left(\theta \mid x_{1}, \ldots, x_{n}\right)=$ $\exp \left(-\frac{n}{2}(\bar{x}-\theta)^{2}\right)$, so L only depends on the data through \bar{x}, hence the statistic \bar{x} is sufficient.
- "a-b Example" (text): Let $S=\{1,2,3,4\}$, and $\Omega=\{a, b\}$, with $P_{a}(1)=1 / 2$ and $P_{a}(2)=P_{a}(3)=P_{a}(4)=1 / 6$, and with $P_{b}(1)=P_{b}(2)=P_{b}(3)=P_{b}(4)=1 / 4$. What is a sufficient statistic? Well, note that $L(\theta \mid s)=P_{\theta}(s)$ is the same if s equals 2 , 3 , or 4 . Hence, likelihood "does not care" if observation is 2,3 , or 4 . So, let $T: S \rightarrow\{0,1\}$ by $T(1)=0$, and $T(2)=T(3)=T(4)=1$. Then if $T\left(s_{1}\right)=T\left(s_{2}\right)$, then $L\left(\theta \mid s_{1}\right)=L\left(\theta \mid s_{2}\right)$. Hence, T is sufficient statistic.
- FACTORISATION THEOREM: Let $f_{\theta}(s)$ be probability (or density function) for a statistical model, and let T be a statistic. Suppose can "factor" $f_{\theta}(s)$ as $f_{\theta}(s)=$ $h(s) g_{\theta}(T(s))$ for some positive functions g_{θ} and h. [Often take $h(s) \equiv 1$.] Then T is a sufficient statistic.
- Proof: If $T\left(s_{1}\right)=T\left(s_{2}\right)$, then

$$
\begin{aligned}
& L\left(\theta \mid s_{1}\right)=f_{\theta}\left(s_{1}\right)=h\left(s_{1}\right) g_{\theta}\left(T\left(s_{1}\right)\right)=h\left(s_{1}\right) g_{\theta}\left(T\left(s_{2}\right)\right) \\
= & \frac{h\left(s_{1}\right)}{h\left(s_{2}\right)} h\left(s_{2}\right) g_{\theta}\left(T\left(s_{2}\right)\right)=\frac{h\left(s_{1}\right)}{h\left(s_{2}\right)} L\left(\theta \mid s_{2}\right)=K L\left(\theta \mid s_{2}\right),
\end{aligned}
$$

where $K=h\left(s_{1}\right) / h\left(s_{2}\right)$ does not depend on θ.

- In above "a-b Example", can write $f_{\theta}(s)=1 \cdot g_{\theta}(T(s))$ where $g_{a}(0)=1 / 2$, $g_{a}(1)=1 / 6, g_{b}(0)=g_{b}(1)=1 / 4$. So T is sufficient statistic.
- A statistic T is a minimal sufficient statistic if $T\left(s_{1}\right)=T\left(s_{2}\right)$ if and only if $L\left(\theta \mid s_{1}\right)=$ $L\left(\theta \mid s_{2}\right) \forall \theta \in \Omega$, i.e. we can calculate $T(s)$ once we know the mapping $\theta \mapsto L(\theta \mid s)$.
- Intuitively, this means T is a "best possible" sufficient statistic.
- In above "a-b Example", $L(a \mid s)=1 / 2$ if $T(s)=0$, while $L(a \mid s)=1 / 6$ if $T(s)=1$, so T is minimal sufficient statistic.
- Similarly, for Multinomial Model, $\left(c_{1}, \ldots, c_{k}\right)$ is minimal sufficient statistic; and for Normal Observations example, \bar{x} is minimal sufficient statistic. (Exercise.)
- REPARAMETERIZATION (6.2): Given statistical model $\left\{P_{\theta}: \theta \in \Omega\right\}$, suppose $\Psi: \Omega \rightarrow \Omega^{\prime}$ is $1-1$, Then MLE of new parameter $\psi \equiv \Psi(\theta)$ is given by $\hat{\psi} \equiv \Psi(\hat{\theta}(s))$. ["Plug-in estimator"]
- Multiple Uniform Example: $S=[0, \infty), \Omega=(0, \infty), P_{\theta}=$ Uniform $[0, \theta]$, observe x_{1}, \ldots, x_{n}. We know MLE of θ is $\hat{\theta}=\max _{1 \leq i \leq n}\left\{x_{i}\right\}$. Thus, since $\theta \mapsto e^{\theta}$ is $1-1$, MLE of e^{θ} is $\widehat{e^{\theta}}=e^{\hat{\theta}}=\exp \left(\max _{1 \leq i \leq n}\left\{x_{i}\right\}\right)=\max _{1 \leq i \leq n}\left\{e^{x_{i}}\right\}$. Also, $\theta \mapsto \theta^{2}$ is 1-1 on Ω, so MLE of θ^{2} is $\widehat{\theta^{2}}=(\hat{\theta})^{2}=\max _{1 \leq i \leq n}\left\{\left(x_{i}\right)^{2}\right\}$. However, MLE of $(\theta-5)^{2}$ is unclear since function is not $1-1$.
- ESTIMATOR BIAS (6.3.1):
- Given estimator $\hat{\theta}$ of θ, how good is it?
- Write $E_{\theta}(\hat{\theta})$ for the expected value of $\hat{\theta}$, under the distribution P_{θ}, i.e. assuming that θ is the true parameter value.
- The bias of the estimator is $\operatorname{Bias}_{\theta}(\hat{\theta})=E_{\theta}(\hat{\theta})-\theta$.
- Example: Suppose $S=[0,1], \Omega=\{1,2\}$, and $f_{1}(s)=1$ and $f_{2}(s)=2 s$ for $s \in S$. The MLE of θ is $\hat{\theta}=1$ if $s<1 / 2$, while $\hat{\theta}=2$ if $s>1 / 2$. [If $s=1 / 2$, MLE is either 1 or 2.] Now, $P_{1}[s<1 / 2]=P_{2}[s>1 / 2]=1 / 2$, so $E_{1}(\hat{\theta})=3 / 2$, so $\operatorname{Bias}_{1}(\hat{\theta})=(3 / 2)-1=+1 / 2$. Also $P_{2}[s<1 / 2]=\int_{0}^{1 / 2} 2 s d s=(1 / 2)^{2}=1 / 4$ and $P_{2}[s>1 / 2]=\int_{1 / 2}^{1} 2 s d s=3 / 4$, so $E_{2}(\hat{\theta})=(1 / 4)(1)+(3 / 4)(2)=7 / 4$, and $\operatorname{Bias}_{2}(\hat{\theta})=(7 / 4)-0.5=-1 / 4$.

END MONDAY 3

[Kung Hay Fat Choy!]

Previous Class:

* Sufficient Statistics
* Factorisation Theorem
* Minimal Sufficient Statistics
* Reparameterisation
* Estimator Bias
- Another example re Factorisation Theorem \& Minimal Sufficient Statistics: $S=\Omega=$ $\mathbf{R}, P_{\theta}=N(\theta, 1)$, and $L\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\exp \left(-(n / 2)(\bar{x}-\theta)^{2}\right)$.
- Then $L\left(\theta \mid x_{1}, \ldots, x_{n}\right)=h\left(x_{1}, \ldots, x_{n}\right) g_{\theta}\left(T\left(x_{1}, \ldots, x_{n}\right)\right)$, where $T\left(x_{1}, \ldots, x_{n}\right)=$ $\frac{1}{n}\left(x_{1}+\ldots+x_{n}\right)=\bar{x}, h\left(x_{1}, \ldots, x_{n}\right) \equiv 1$, and $g_{\theta}(r)=\exp \left(-(n / 2)(r-\theta)^{2}\right)$. Hence, by Factorisation Theorem, \bar{x} is sufficient statistic.
- Is \bar{x} minimal?
- Suppose have two sets of observations, $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$. Suppose that $L\left(\theta \mid x_{1}, \ldots, x_{n}\right) \propto L\left(\theta \mid y_{1}, \ldots, y_{n}\right)$, i.e. $\exp \left(-(n / 2)(\bar{x}-\theta)^{2}\right)=K \exp (-(n / 2)(\bar{y}-$ $\left.\theta)^{2}\right), \forall \theta \in \Omega$, some $K>0$. Does this mean that $\bar{x}=\bar{y}$, i.e. $T\left(x_{1}, \ldots, x_{n}\right)=$ $T\left(y_{1}, \ldots, y_{n}\right)$?
- Yes! Theorem: \bar{x} is a minimal sufficient statistic.
- Proof \#1 ("constructive"): If $\exp \left(-(n / 2)(\bar{x}-\theta)^{2}\right)=K \exp \left(-(n / 2)(\bar{y}-\theta)^{2}\right)$, $\forall \theta \in \Omega$, for some $K>0$, then both functions must take their maximum at the same value of θ. But LHS takes maximum at \bar{x}, while RHS takes maximum at \bar{y}. So, must have $\bar{x}=\bar{y}$.
- Proof \#2 (by "contraposition", a form of contradiction): Suppose theorem is false. That means we sometimes have $\bar{x} \neq \bar{y}$, even though $\exp \left(-(n / 2)(\bar{x}-\theta)^{2}\right)=$ $K \exp \left(-(n / 2)(\bar{y}-\theta)^{2}\right), \forall \theta \in \Omega$. Is this possible?? If so, then setting $\theta=\bar{x}$ gives $1=K \exp \left(-(n / 2)(\bar{y}-\bar{x})^{2}\right)<K$, i.e. $K>1$. But setting $\theta=\bar{y}$ gives $\exp \left(-(n / 2)(\bar{x}-\bar{y})^{2}\right)=K$, i.e. $K<1$. Contradiction! i.e., if $\bar{x} \neq \bar{y}$, then we cannot have $\exp \left(-(n / 2)(\bar{x}-\theta)^{2}\right)=K \exp \left(-(n / 2)(\bar{y}-\theta)^{2}\right), \forall \theta \in \Omega$. So, theorem must be true, i.e. \bar{x} must be a minimal sufficient statistic.
- Aside re logic: The principle of "contraposition" states: "P implies Q" is equivalent to "not-Q implies not-P"; indeed, both mean it is impossible to have both P true and Q false, at the same time. [Example: " $x>5$ implies $x>4$ " is equivalent to " $x \leq 4$ implies $x \leq 5$ ". But not equivalent to " $x>4$ implies $x>5$ ".]
- Note that for $\theta=(\bar{x}+\bar{y}) / 2$, we do have $\exp \left(-(n / 2)(\bar{x}-\theta)^{2}\right)=\exp (-(n / 2)(\bar{y}-$ $\theta)^{2}$). But not true for all $\theta \in \Omega$.
- Similarly, $x_{1}+\ldots+x_{n}$ is also minimal sufficient statistic, but just x_{1} is not sufficient.
- By contrast, if we consider the pair $w=\left(x_{1}, x_{2}+\ldots+x_{n}\right)$, then w is still sufficient (since can compute \bar{x} from it), but w is not minimal (since from the likelihood function there is no way to compute x_{1}, just \bar{x} or $\left.x_{1}+\ldots+x_{n}\right)$.
- Estimator Bias, continued:
- More generally, any parameter $\psi=\Psi(\theta)$ with estimator $\hat{\psi}$ has bias given by $\operatorname{Bias}_{\theta}(\hat{\psi})=E_{\theta}(\hat{\psi})-\Psi(\theta)$.
- Example: Suppose P_{θ} has mean $\psi=\Psi(\theta)$ [or just θ], and we estimate ψ by \bar{x}. Then $E_{\theta}\left(X_{i}\right)=\psi$, so $E_{\theta}(\bar{X})=\psi$, so $\operatorname{Bias}_{\theta}(\hat{\psi})=0$ no matter what θ is. ["Unbiased Estimator"]
- Multiple Normal Example: Suppose $\Omega=\mathbf{R}$, and $P_{\theta}=N(\theta, 1)$. Then MLE of θ

- Multiple Uniform Example: Here $P_{\theta}=$ Uniform $[0, \theta]$, and MLE is $\hat{\theta}=\max _{1 \leq i \leq n}\left\{x_{i}\right\}$. Is it unbiased? No, since $P_{\theta}[\hat{\theta}<\theta]=1$, so $E_{\theta}[\hat{\theta}]<\theta$, $\operatorname{so~}_{\operatorname{Bias}}^{\theta}(\hat{\theta})<0$. (How much less?) ["Biased Estimator"] (Bad??)
[New info available on web.]

Previous Class:

* Detailed example of sufficient statistics, factorisation theorem, minimal sufficiency.
* More examples about Estimator Bias.
- YET MORE ABOUT BIAS:
- Multiple Uniform Example (cont'd): $P_{\theta}=\operatorname{Uniform}[0, \theta], \hat{\theta}=\max _{1 \leq i \leq n}\left\{x_{i}\right\}$. Then $P_{\theta}[\hat{\theta}<\theta]=1$, so $E_{\theta}[\hat{\theta}]<\theta$, so $\operatorname{Bias}_{\theta}(\hat{\theta})<0$. (How much less?) ["Biased Estimator"] (Bad??)
- Alternate estimator: $\hat{\theta}_{2}=2 \bar{x}$. Then $E_{\theta}\left(\hat{\theta}_{2}\right)=2 E_{\theta}(\bar{x})=2(\theta / 2)=\theta$, so unbiased. (Good??) But could have $\hat{\theta}_{2}<x_{i}$ for some i. (Crazy??)
- "Location-Scale Normal Model": Suppose $\Omega=\mathbf{R} \times(0, \infty)$, where for $\theta=\left(\mu, \sigma^{2}\right) \in \Omega$, we have $P_{\theta}=P_{\left(\mu, \sigma^{2}\right)}=N\left(\mu, \sigma^{2}\right)$. i.e. both μ and σ^{2} unknown.
- FACT (Text Example 6.2.6): Here MLE of $\left(\mu, \sigma^{2}\right)$ is $\left(\bar{x}, \frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)$. [Requires solving a two-dimensional Score Equation.]
- Thus, $\hat{\mu}=\bar{x}$, which is unbiased.
- What about estimator of σ^{2} ? Fact (Text Corollary 4.6.2): $E_{\theta}\left[\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right]=$ $\frac{n-1}{n} \sigma^{2}$. Thus, always have $E_{\theta}\left[\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right]<\sigma^{2}-$ biased! [Bad??]
- If instead use $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$, then $E_{\theta}\left[S^{2}\right]=\frac{n}{n-1} \frac{n-1}{n} \sigma^{2}=\sigma^{2}$. Thus, S^{2} is unbiased estimator of σ^{2}. [This is why, in S^{2}, we divide by $n-1$ instead of n.] [In fact, $(n-1) S^{2} / \sigma^{2} \sim \chi^{2}(n-1)$, and S^{2} independent of $\bar{x} \ldots$]
- MEAN SQUARED ERROR (6.3.1):
- Defn: Let Ψ be a function of a parameter θ, with estimator $\hat{\psi}$. The mean squared error of $\hat{\psi}$ is

$$
M S E_{\theta}(\hat{\psi})=E_{\theta}\left[(\hat{\psi}-\Psi(\theta))^{2}\right], \quad \theta \in \Omega
$$

(Best if small!)

- Theorem $\left(\right.$ text Thm 6.3.1): $M S E_{\theta}(\hat{\psi})=\operatorname{Var}_{\theta}(\hat{\psi})+\left(\operatorname{Bias}_{\theta}(\hat{\psi})\right)^{2}$.
- Proof:

$$
\begin{gathered}
E_{\theta}\left((\hat{\psi}-\psi(\theta))^{2}\right)=E_{\theta}\left(\left(\hat{\psi}-E_{\theta}(\hat{\psi})+E_{\theta}(\hat{\psi})-\psi(\theta)\right)^{2}\right) \\
=E_{\theta}\left(\left(\hat{\psi}-E_{\theta}(\hat{\psi})\right)^{2}\right)+2 E_{\theta}\left(\left(\hat{\psi}-E_{\theta}(\hat{\psi})\right)\left(E_{\theta}(\hat{\psi})-\psi(\theta)\right)\right)+\left(E_{\theta}(\hat{\psi})-\psi(\theta)\right)^{2} \\
=\operatorname{Var}_{\theta}(\hat{\psi})+2(0)+\left(\operatorname{Bias}_{\theta}(\hat{\psi})\right)^{2},
\end{gathered}
$$

since

$$
\begin{gathered}
E_{\theta}\left(\left(\hat{\psi}-E_{\theta}(\hat{\psi})\right)\left(E_{\theta}(\hat{\psi})-\psi(\theta)\right)\right)=\left(E_{\theta}(\hat{\psi})-\psi(\theta)\right) E_{\theta}\left(\left(\hat{\psi}-E_{\theta}(\hat{\psi})\right)\right) \\
=\left(E_{\theta}(\hat{\psi})-\psi(\theta)\right)(0)=0
\end{gathered}
$$

- Example: $P_{\theta}=N(\theta, 1)$. Then MLE is $\hat{\theta}=\bar{x}$. ${\operatorname{Know~} \operatorname{Bias}_{\theta}(\bar{x})=0 \text {. Hence } M S E_{\theta}(\bar{x})=}_{\text {. }}$ $\operatorname{Var}_{\theta}(\bar{x})=1 / n$. [Gets smaller as $n \rightarrow \infty$.]
- Example: Conducting referendum. $S=\{$ yes, no $\} . \Omega=[0,1] . P_{\theta}($ yes $)=\theta, P_{\theta}($ no $)=$ $1-\theta$. [Just like basketball example.] Observe x_{1}, \ldots, x_{n}. What is MLE? What is MSE of MLE?
- Likelihood is $L\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\theta^{c}(1-\theta)^{n-c}$, where $c=\#\left\{i ; x_{i}=\right.$ yes $\}$.
- Then $\ell\left(\theta \mid x_{1}, \ldots, x_{n}\right)=c \log (\theta)+(n-c) \log (1-\theta)$.
- Then $S\left(\theta \mid x_{1}, \ldots, x_{n}\right)=(c / \theta)-((n-c) /(1-\theta))$.
- Score Equation solved when $c(1-\theta)-(n-c) \theta=0$, i.e. $c-n \theta=0$, i.e. $\theta=c / n$. So, MLE is $\hat{\theta}=c / n$. [Makes sense.]
- Also, under $P_{\theta}, c \sim \operatorname{Binomial}(n, \theta)$, so $E_{\theta}(c)=n \theta$, so $E_{\theta}(c / n)=\theta$, so $\hat{\theta}$ unbiased.
- Hence, $\operatorname{MSE}_{\theta}(\hat{\theta})=\operatorname{Var}_{\theta}(\hat{\theta})=n \theta(1-\theta) / n^{2}=\theta(1-\theta) / n$.
- Problem: θ unknown!! What to do?
- Option \#1: Note that always have $\theta(1-\theta) \leq 1 / 4$, so must have $\operatorname{MSE} E_{\theta}(\hat{\theta}) \leq$ $(1 / 4) / n=1 / 4 n$. [Conservative estimate; what most polling companies do!]
- Option \#2: Instead use the estimated mean squared error $\operatorname{MSE} E_{\hat{\theta}}(\hat{\theta})$, i.e. $\operatorname{MSE}_{\hat{\theta}}(\hat{\theta})=$ $\hat{\theta}(1-\hat{\theta}) / n=(c / n)(1-c / n) / n=c(1-c / n) / n^{2}$. [Less conservative.]
- Corresponding standard error is then $S d_{\hat{\theta}}(\hat{\theta})=\sqrt{M S E_{\hat{\theta}}(\hat{\theta})}=\sqrt{c(1-c / n) / n^{2}}=$ $\sqrt{c(1-c / n)} / n$.
- Aside: Predicting weather. Suppose Environment Canada says, " 20% chance of rain tomorrow", and then it rains. Are they wrong? How to judge??
- Using idea of MSE, their "error" equals $(80 \%)^{2}$, i.e. 0.64 error.
- More generally, if they predict probability p of precipitation (POP), then if it rains or snows their "error" is $(1-p)^{2}$, otherwise their "error" is p^{2}. ["Brier Score" ...]
- Without the square, error is minimised by always predicting either 0% or 100% POP. But with square, error is minimised by best estimate \hat{p} of true probability.
- Example: Suppose $P_{\theta}=$ Uniform $[0, \theta]$, and $\hat{\theta}=\max _{1 \leq i \leq n} x_{i}$. What is $\operatorname{MSE} E_{\theta}(\hat{\theta})$?
- Well, $P_{\theta}\left[(\hat{\theta}-\theta)^{2} \geq r\right]=P_{\theta}[\hat{\theta} \leq \theta-\sqrt{r}]=((\theta-\sqrt{r}) / \theta)^{n}$. So, use trick:

$$
M S E_{\theta}(\hat{\theta})=E_{\theta}\left[(\hat{\theta}-\theta)^{2}\right]=\int_{0}^{\theta} P_{\theta}\left[(\hat{\theta}-\theta)^{2} \geq r\right] d r=\int_{0}^{\theta}((\theta-\sqrt{r}) / \theta)^{n} d r .
$$

[Messy to compute, use computer ...]

- Suppose $\hat{\theta}_{2}=2 \bar{x}$. Then $\operatorname{Bias}_{\theta}\left(\hat{\theta}_{2}\right)=0$, while $\operatorname{Var}_{\theta}\left(\hat{\theta}_{2}\right)=(4 / n) \operatorname{Var}_{\theta}\left(x_{i}\right)=\theta^{2} / 3 n$, so $\operatorname{MSE}_{\theta}\left(\hat{\theta}_{2}\right)=0^{0}+\theta^{2} / 3 n=\theta^{2} / 3 n$.
- e.g. $\theta=5, n=10: \operatorname{MSE}_{\theta}(\hat{\theta}) \doteq 0.38, \operatorname{MSE}_{\theta}\left(\hat{\theta}_{2}\right) \doteq 0.84$.
- e.g. $\theta=5, n=100: \operatorname{MSE}_{\theta}(\hat{\theta}) \doteq 0.005, \operatorname{MSE}_{\theta}\left(\hat{\theta}_{2}\right) \doteq 0.084$. [" $\hat{\theta}$ better"?]
- CONSISTENCY: Say an estimator $\hat{\theta}$ of a parameter θ is consistent if, as the number of observations n goes to infinity, $\hat{\theta}$ converges to θ in probability, i.e. for all $\epsilon>0$, $\lim _{n \rightarrow \infty} P_{\theta}[|\hat{\theta}-\theta| \geq \epsilon]=0$. [Good.]
- Example: $P_{\theta}=\operatorname{Uniform}[0, \theta], \hat{\theta}=\max _{1 \leq i \leq n} x_{i}, \hat{\theta}_{2}=2 \bar{x}$. Are they consistent?
- By WLLN, as $n \rightarrow \infty, \bar{x} \rightarrow \theta / 2$ (mean) in probability. So, $\hat{\theta}_{2} \rightarrow \theta$ in probability. Consistent!
- What about $\hat{\theta}$? Well, given $\epsilon>0, P_{\theta}[|\hat{\theta}-\theta| \geq \epsilon]=P_{\theta}[\hat{\theta} \leq \theta-\epsilon]=((\theta-\epsilon) / \theta)^{n} \rightarrow 0$ as $n \rightarrow 0$. So, $\hat{\theta}$ also consistent.

—— END MONDAY 4 _

Previous Class:

* More about bias, S^{2}.
* Mean Squared Error: $M S E_{\theta}(\hat{\theta})=\operatorname{Var}_{\theta}(\hat{\theta})+\left(\operatorname{Bias}_{\theta}(\hat{\theta})\right)^{2}$.
—— Examples: Normal, Referendum, Weather, Uniform
* Consistency: $\hat{\theta} \rightarrow \theta$ in probability, as $n \rightarrow \infty$.
- Uniform: Both $\hat{\theta}$ and $\hat{\theta}_{2}$ consistent.
- Theorem: If $\lim _{n \rightarrow \infty} M S E_{\theta}(\hat{\theta})=0$, then $\hat{\theta}$ is a consistent estimator for θ.
- Proof: By Markov's inequality,

$$
P_{\theta}[|\hat{\theta}-\theta| \geq \epsilon]=P_{\theta}\left[(\hat{\theta}-\theta)^{2} \geq \epsilon^{2}\right] \leq E_{\theta}\left[(\hat{\theta}-\theta)^{2}\right] / \epsilon^{2}=M S E_{\theta}(\hat{\theta}) / \epsilon^{2},
$$

so if $\operatorname{MSE}_{\theta}(\hat{\theta}) \rightarrow 0$ then $P_{\theta}[|\hat{\theta}-\theta| \geq \epsilon] \rightarrow 0$.

- Corollary: If $\lim _{n \rightarrow \infty} \operatorname{Bias}_{\theta}(\hat{\theta})=0$, and $\lim _{n \rightarrow \infty} \operatorname{Var}_{\theta}(\hat{\theta})=0$, then $\hat{\theta}$ is consistent.
- Proof: In this case,

$$
\lim _{n \rightarrow \infty} \operatorname{MSE}_{\theta}(\hat{\theta})=\lim _{n \rightarrow \infty}\left[\operatorname{Var}_{\theta}(\hat{\theta})+\left(\operatorname{Bias}_{\theta}(\hat{\theta})\right)^{2}\right]=0
$$

- Example: If $P_{\theta}=N(\theta, 1)$, and $\hat{\theta}=\bar{x}$, then $\operatorname{Bias}_{\theta}(\hat{\theta})=0$, and $\operatorname{Var}_{\theta}(\hat{\theta})=1 / n \rightarrow 0$, so $\hat{\theta}$ is consistent.
- If instead try $\hat{\theta}=x_{1}$, then still $\operatorname{Bias}_{\theta}(\hat{\theta})=0$, but now $\operatorname{Var}_{\theta}(\hat{\theta})=1 \nrightarrow 0$. In fact, this $\hat{\theta}$ is not consistent since $P[|\hat{\theta}-\theta| \geq \epsilon]$ does not change with n and so does not $\rightarrow 0$.
- Referendum Example: Estimate θ by $\hat{\theta}=c / n$. Then $\operatorname{Bias}_{\theta}(\hat{\theta})=0$, and $\operatorname{Var}_{\theta}(\hat{\theta})=$ $\theta(1-\theta) / n \rightarrow 0$ as $n \rightarrow \infty$. So, $\hat{\theta}$ is consistent.
- For any model, if observe x_{1}, \ldots, x_{n}, and estimate $\operatorname{cdf} F_{\theta}(z)=P_{\theta}(X \leq z)$ by $\hat{F}(z)=$ $\frac{1}{n} \sum_{i=1}^{n} I_{(-\infty, z]}\left(x_{i}\right)$, then since $P_{\theta}\left(x_{i} \leq z\right)=F_{\theta}(z)$, it follows from the WLLN that $\hat{F}(z) \rightarrow F_{\theta}(z)$ in probability as $n \rightarrow \infty$, so $\hat{F}(z)$ is a consistent estimator of $F_{\theta}(z)$.
- Similarly, $\frac{1}{n} \sum_{i=1}^{n} I_{z}\left(x_{i}\right)$ is consistent estimator of $P_{\theta}(X=z)$, again by WLLN.
- CONFIDENCE INTERVALS (6.3.2):
- Example: Suppose $P_{\theta}=N(\theta, 1)$, and estimate θ by \bar{x}. How close are we?
- Well, MSE is $1 / n$. So, if e.g. $n=16$, and $\bar{x}=5$, then on average $(\theta-5)^{2} \approx 1 / 16$, so $|\theta-5| \approx 1 / 4$, so perhaps θ is likely to be between 4.75 and 5.25. But how sure can we be?
- Well, $\bar{x} \sim N(\theta, 1 / n)$, so that $\sqrt{n}(\bar{x}-\theta) \sim N(0,1)$, with $\operatorname{cdf} \Phi(z)$.
- Fact: $\Phi(-1.96) \doteq 0.025$. [Text Table D.2.] Hence, if $Z \sim N(0,1)$, then $P(Z<$ $-1.96) \doteq 0.025$. Similarly $P(Z>+1.96) \doteq 0.025$. So, $P(-1.96<Z<1.96) \doteq$ 0.95 . [Note: The figure 1.96 is so important that you should remember it.]
- Thus, $P(-1.96<\sqrt{n}(\bar{x}-\theta)<1.96) \doteq 0.95$. So, $P(-1.96 / \sqrt{n}<\bar{x}-\theta<$ $1.96 / \sqrt{n}) \doteq 0.95$. So, $P(\bar{x}-1.96 / \sqrt{n}<\theta<\bar{x}+1.96 / \sqrt{n}) \doteq 0.95$. ["($\bar{x}-$ $1.96 / \sqrt{n}, \bar{x}+1.96 / \sqrt{n})$ is 95% confidence interval for $\theta . "]$
- e.g. $n=16, \bar{x}=5$, then $1.96 / \sqrt{n} \doteq 0.49$, so $P(5-0.49<\theta<5+0.49) \doteq 0.95$. Roughly speaking, we're 95% sure that θ is between 4.5 and 5.5 . [" 19 times out of $20^{\prime \prime}$]
- Error gets smaller as $n \rightarrow \infty$. [Not surprising since $\hat{\theta}$ is consistent.]
- If instead want to be 99% sure, then just replace " 1.96 " by " 2.57 ", since $\Phi(2.57) \doteq$ 0.995 . [Or, if replace " 1.96 " by " 1 ", then 68% sure.]
- If instead $P_{\theta}=N\left(\theta, \sigma_{0}^{2}\right)$ (with σ_{0}^{2} known), then instead $\sqrt{n / \sigma_{0}^{2}}(\bar{x}-\theta) \sim N(0,1)$, so instead $P\left(\bar{x}-1.96 \sqrt{\sigma_{0}^{2} / n}<\theta<\bar{x}+1.96 \sqrt{\sigma_{0}^{2} / n}\right) \doteq 0.95$.

END WEDNESDAY 4

[Test \#1 from 3-5 on Wednesday Feb 11: Surnames A-Li in Medical Sciences Building (1 King's College Circle) room 3153; Surnames Ll-Z in Canadiana Gallery (14 Queen's Park Crescent, behind Sig Sam Library) room 150. No aids allowed. Bring your T-Card!] [Lots of TA office hours [and more] available on web.]

- Exercise 6.1.18: $\Omega=\{1,2\}, T(s)=f_{1}(s) / f_{2}(s)$, show T is minimal sufficient statistic. [I've gotten many questions about this ... and there are many different approaches ... but here's the most direct.] [Assume $f_{i}(s)>0 \forall s \in S$ to avoid complications.] Note that

$$
\begin{gathered}
L\left(\theta \mid s_{1}\right)=K L\left(\theta \mid s_{2}\right) \forall \theta \in \Omega \Leftrightarrow L\left(\theta \mid s_{1}\right) / L\left(\theta \mid s_{2}\right)=K \forall \theta \in \Omega \\
\Leftrightarrow L\left(1 \mid s_{1}\right) / L\left(1 \mid s_{2}\right)=L\left(2 \mid s_{1}\right) / L\left(2 \mid s_{2}\right) \Leftrightarrow L\left(1 \mid s_{1}\right) / L\left(2 \mid s_{1}\right)=L\left(1 \mid s_{2}\right) / L\left(2 \mid s_{2}\right) \\
\Leftrightarrow T\left(s_{1}\right)=T\left(s_{2}\right) .
\end{gathered}
$$

- [Also, don't worry too much about Exercise 6.2.14.]

Previous Class:

* $\hat{\theta}$ consistent if $\operatorname{MSE}_{\theta}(\hat{\theta}) \rightarrow 0$.
* Estimation of probabilities by corresponding "fraction of data" is consistent, by WLLN (Text Thm 4.2.1).
* Confidence intervals.
—— Example: if $P_{\theta}=N(\theta, 1)$, then 95% C.I. given by $\bar{x} \pm 1.96 / \sqrt{n}$.
—— If instead $P_{\theta}=N\left(\theta, \sigma_{0}^{2}\right)$, then instead get $\bar{x} \pm 1.96 \sqrt{\sigma_{0}^{2} / n}$.
- CONFIDENCE INTERVALS, continued.
- Location-Scale Model: Suppose $\theta=\left(\mu, \sigma^{2}\right)$, and $P_{\theta}=N\left(\mu, \sigma^{2}\right)$, i.e. μ and σ^{2} both unknown. Then what is 95% confidence interval for μ ?
- Well, can estimate σ^{2} by S^{2}, so might hope that $P\left(\bar{x}-1.96 \sqrt{S^{2} / n}<\mu<\right.$ $\left.\bar{x}+1.96 \sqrt{S^{2} / n}\right) \approx 0.95$.
- However, actually the uncertainty in σ^{2} requires a larger confidence interval.
- Recall that $\sqrt{n}(\bar{x}-\mu) / \sigma \sim N(0,1)$ and $(n-1) S^{2} / \sigma^{2} \sim \chi^{2}(n-1)$, indep., so

$$
\sqrt{n / S^{2}}(\bar{x}-\mu)=\frac{\sqrt{n}(\bar{x}-\mu) / \sigma}{\sqrt{(n-1) S^{2} / \sigma^{2}(n-1)}} \sim t(n-1)
$$

a t distribution with $n-1$ degrees of freedom. Hence, if a_{n} is such that $P\left(-a_{n}<\right.$ $\left.T_{n}<a_{n}\right)=0.95$ whenever $T_{n} \sim t(n)$, then $P\left(\bar{x}-a_{n-1} \sqrt{S^{2} / n}<\mu<\bar{x}+\right.$ $\left.a_{n-1} \sqrt{S^{2} / n}\right) \doteq 0.95$.

- Always have $a_{n}>1.96$, i.e. confidence intervals larger because of uncertainty in σ^{2}. However, $a_{n} \approx 1.96$ if n is large.
- e.g. $a_{3}=3.18, a_{10}=2.23, a_{50}=2.01$. [Text Table D.4. You do not need to memorise these values.]
- Can similarly get confidence intervals for σ^{2} in terms of S^{2}, using $\chi^{2}(n-1)$ distribution.
- Example: Election poll, candidates A, B, C. Ask n people who they will vote for; c of them say A. Find confidence interval for $\theta=$ fraction of votes A will get.
$-\operatorname{Let} \hat{\theta}=c / n$.
- Know $c \sim \operatorname{Binomial}(n, \theta)$, so $E_{\theta}(\hat{\theta})=\theta$, and $\operatorname{MSE} E_{\theta}(\hat{\theta})=\operatorname{Var}_{\theta}(\hat{\theta})=\theta(1-\theta) / n$. But how to get confidence interval?
- If n small, can perhaps compute with $\operatorname{Binomial}(n, \theta)$ directly. But what if n large?
- Use CLT! If n large, then $(\hat{\theta}-\theta) / \sqrt{\operatorname{Var}_{\theta}(\hat{\theta})} \sim N(0,1)$, i.e. $\sqrt{n / \theta(1-\theta)}(\hat{\theta}-\theta) \sim$ $N(0,1)$.
- Hence, like above, $P\left(\hat{\theta}-\delta_{n}<\theta<\hat{\theta}+\delta_{n}\right) \approx 0.95$, where $\delta_{n}=1.96 \sqrt{\theta(1-\theta) / n}=$ " 95% margin of error".
- Another problem: θ unknown! Two options: (1) "Plug-In Estimate": replace θ by its estimate, $\hat{\theta}$. (2) "Conservative Option": Use that always $\theta(1-\theta) \leq 1 / 4$, so if $\delta_{n}=1.96 \sqrt{(1 / 4) / n}=1.96 / 2 \sqrt{n}=0.98 / \sqrt{n}$, then $P\left(\hat{\theta}-\delta_{n}<\theta<\hat{\theta}+\delta_{n}\right) \geq$ 0.95. [Good, but conservative.]
- What do real polling companies do?
- e.g. Ipsos-Reid mayor's poll, November 3, 2003 (one week before mayoral election). Phoned 700 adult Torontonians. Got estimate Miller 37\%, Tory 31\%, "accurate within $\pm 3.7 \%, 19$ times out of 20 ".
- Check: $0.98 / \sqrt{700} \doteq 0.03704052 \doteq 3.7 \%$. i.e. polling companies usually use option (2) above.
- If instead wanted 99% certainty, then replace 1.96 by 2.57 , get error $2.57 / 2 \sqrt{700} \doteq$ $0.04856843 \doteq 4.9 \%$.
- Basketball Example: Score 7 out of 10 foul shots. What is approximate 95% confidence interval for p ? Here $0.98 / \sqrt{10} \doteq 0.31$, so p could be anywhere in $(0.7-0.31,0.7+$ $0.31)=(0.39,1.01)$. Large interval! [Also crazy, since must have $p<1$, i.e. $n=10$ is too small to accurately use normal approximation.]
- If instead score 70 out of 100 , then $0.98 / \sqrt{100}=0.098 \approx 0.1$, so 95% confidence interval for p is approx. $(0.6,0.8)$.
- If use Plug-In Estimate instead, then for $n=10$ case get margin of error $=$ $1.96 \sqrt{\hat{\theta}(1-\hat{\theta}) / n}=1.96 \sqrt{0.7(0.3) / 10} \doteq 0.28$, and for $n=100$ case get margin of error $=1.96 \sqrt{\hat{\theta}(1-\hat{\theta}) / n}=1.96 \sqrt{0.7(0.3) / 100} \doteq 0.090$. [In both cases, margin of error a little smaller.]
- SAMPLE SIZE calculation (6.3.4): How many shots must we observe to get 95% sure of being within, say, 0.02 of the true value of p ? Want 95% margin of error ≤ 0.02, i.e. $0.98 / \sqrt{n} \leq 0.02$, i.e. $n \geq(0.98 / 0.02)^{2}=2401$. So, would require at least 2401 shots.
- Note: Can use this CLT in many cases. If you can find (say) C_{1} and C_{2} such that, under $P_{\theta}, Z=C_{1}\left(\bar{x}-C_{2}\right)$ has mean 0 and variance 1 , then for large $n, Z \sim N(0,1)$, so $P[|Z| \geq 1.96] \cdot 0.95$.
- HYPOTHESIS TESTING (6.3.3)
- "Statitus" Example: Have either fair coin or two-headed coin. Get three heads in a row. Are we sure we have two-headed coin?
- Have "null hypothesis" H_{0} that coin is fair, versus "alternative hypothesis" H_{1} that coin is two-headed.
- Defn: The P-value of an experiment, is the probability that we would observe that result, or a result "at least as surprising", if the null hypothesis H_{0} is true.
- "Statitus": P-value is $(1 / 2)^{3}=1 / 8=0.125$. Small enough to conclude that H_{0} is false??
- No! Usually require P-value <0.05 to conclude H_{0} false. ["Three heads is not statistically significant."]
- If instead get five heads in a row, then P -value $=(1 / 2)^{5}=1 / 32 \doteq 0.031<0.05$, enough to conclude that H_{0} is false and we must have the two-headed coin. ["Five heads is statistically significant."]
- Suppose we demand 99% significance instead, i.e. require P -value <0.01. Then need seven heads in a row, to get P -value $=(1 / 2)^{7}=1 / 128 \doteq 0.008<0.01$.

END MONDAY 5

- Example: $P_{\theta}=N(\theta, 1)$. Suppose have hypothesis $H_{0}: \theta=\theta_{0}=5$ (say), compared to $H_{1}: \theta \neq 5$. Then observe x_{1}, \ldots, x_{n}, and compute $\bar{x}=5.1$ (say). Can we be sure that H_{0} is wrong?
- Well, here P-value is $P_{5}[|\bar{x}-5| \geq 0.1]$.
- But under P_{5}, \bar{x} has distribution $N(5,1 / n)$, so $\sqrt{n}(\bar{x}-5) \sim N(0,1)$. Hence, P -value is

$$
\begin{gathered}
P_{5}[|\bar{x}-5| \geq 0.1]=P_{5}[|\sqrt{n}(\bar{x}-5)| \geq 0.1 \sqrt{n}]=P[|Z| \geq 0.1 \sqrt{n}] \\
=P[Z \leq-0.1 \sqrt{n}]+P[Z \geq 0.1 \sqrt{n}]=2 P[Z \leq-0.1 \sqrt{n}]=2 \Phi(-0.1 \sqrt{n}),
\end{gathered}
$$

where $Z \sim N(0,1)$. ["Z-test"]

- e.g. [Using text Table D.2, to be supplied if needed for tests.] $n=1$: P-value $\doteq 0.92 ; n=10: \mathrm{P}$-value $\doteq 0.75 ; n=100: \mathrm{P}$-value $\doteq 0.32 ; n=200: \mathrm{P}$-value $\doteq 0.16 ; n=400: \mathrm{P}$-value $\doteq 0.046 ; n=700: \mathrm{P}$-value $\doteq 0.0082$.
- Conclude that to distinguish between $H_{0}: \theta=5$, and $H_{1}: \theta \neq 5$, when $\bar{x}=5.1$, requires SAMPLE SIZE (Sect. 6.3.4) of about 400 at 95% level, or about 700 at 99% level.
- If instead $P_{\theta}=N\left(\theta, \sigma_{0}^{2}\right)$, with $\sigma_{0}^{2}>0$ known, then instead obtain P-value of $2 \Phi(-\mid \bar{x}-$ $\left.\theta_{0} \mid \sqrt{n / \sigma_{0}^{2}}\right)$. [Exercise!]
- Bernoulli Model (Text Example 6.3.11): Suppose again that $\Omega=[0,1]$, and $P_{\theta}($ die $)=$ $\theta, P_{\theta}($ live $)=1-\theta$. Suppose "usually" $\theta=\theta_{0}$ (known), but environment has changed. Question: Do we still have $\theta=\theta_{0}$?
- Here $H_{0}: \theta=\theta_{0}$, while $H_{1}: \theta \neq \theta_{0}$.
- Suppose observe n patients, of whom c die. Assume n large. Let $\delta=\left|(c / n)-\theta_{0}\right|$, observed deviation from θ_{0}.
- Then P-value is $P_{\theta_{0}}[|(c / n)-\theta| \geq \delta]$.
- Under $P_{\theta_{0}}, c \sim \operatorname{Binomial}\left(n, \theta_{0}\right)$, with mean $n \theta_{0}$ and variance $n \theta_{0}\left(1-\theta_{0}\right)$. So, $\bar{x}=c / n$ has mean θ_{0} and variance $\theta_{0}\left(1-\theta_{0}\right) / n$. [Here θ_{0} known, so don't need to bound variance by $1 / 4 n$.]
- Hence if $Z=\sqrt{n / \theta_{0}\left(1-\theta_{0}\right)}\left(\bar{x}-\theta_{0}\right)$, then for large $n, Z \sim N(0,1)$.
- So, P-value is given by

$$
P_{\theta_{0}}[|(c / n)-\theta| \geq \delta]=P_{\theta_{0}}\left[|Z| \geq \delta \sqrt{n / \theta_{0}\left(1-\theta_{0}\right)}\right]=2 \Phi\left(-\delta \sqrt{n / \theta_{0}\left(1-\theta_{0}\right)}\right) .
$$

- e.g. $\theta_{0}=0.2$, observe $n=1000, c=250$. Can we conclude the new environment is more dangerous? Here $\delta=|(250 / 1000)-0.2|=0.05$, and P -value is
$2 \Phi\left(-\delta \sqrt{n / \theta_{0}\left(1-\theta_{0}\right)}\right)=2 \Phi(-0.05 \sqrt{1000 / 0.2(0.8)}) \doteq 2 \Phi(-3.95) \doteq 0.000077$.
So yes, there is a (highly) statistically significant change: it's gotten more dangerous!
- Suppose instead had $n=4$ and $c=1$. Then still $c / n=0.25$, and $\delta=\mid(c / n)-$ $0.2 \mid=0.05$. But would the change still be statistically significant? (No!)

END WEDNESDAY 5 -

[Reminder: Test \#1 on Wednesday, 3-5: Surnames A-Li in MS 3153; Surnames Ll-Z in CG 150. No aids allowed. Bring your T-Card!]
[No classes next week (Reading Week).]

Previous Class:

* Examples re P-values:
——Case $P_{\theta}=N(\theta, 1), H_{0}: \theta=\theta_{0}, H_{1}: \theta \neq \theta_{0}$, P-value $=P_{\theta_{0}}\left[\left|\bar{X}-\theta_{0}\right| \geq \delta\right]=$ $2 \Phi(-\delta \sqrt{n})$, where $\delta=\left|\bar{x}-\theta_{0}\right|$ (observed value, as opposed to random variable \bar{X} in prob).
——Case $P_{\theta}=N\left(\theta, \sigma_{0}^{2}\right)$, P-value $=2 \Phi\left(-\delta \sqrt{n / \sigma_{0}^{2}}\right)$.
——Bernoulli Model, P-value $\approx 2 \Phi\left(-\delta \sqrt{n / \theta_{0}\left(1-\theta_{0}\right)}\right)$, because of CLT (for n large).
- Bernoulli Model revisited: $\Omega=[0,1], P_{\theta}($ die $)=\theta, P_{\theta}($ live $)=1-\theta, H_{0}: \theta=\theta_{0}$, observe n patients of whom c die, set $\delta=\left|(c / n)-\theta_{0}\right|$ (observed difference), then P -value equals

$$
P_{\theta_{0}}\left[\left|(C / n)-\theta_{0}\right| \geq \delta\right]=2 \Phi\left(-\delta \sqrt{n / \theta_{0}\left(1-\theta_{0}\right)}\right) .
$$

- One-Sided Tests: Suppose instead that we're only worried about one "side" of the change in θ, namely θ getting larger. i.e. still $H_{0}: \theta=\theta_{0}$, but now $H_{1}: \theta>\theta_{0}$ instead of $H_{1}: \theta \neq \theta_{0}$.
- In that case, replace P-value $P_{\theta_{0}}[|(C / n)-\theta| \geq \delta]$ by just $P_{\theta_{0}}[(C / n)-\theta \geq \delta]$.
- This change removes the factor of "2" in P-value calculation, i.e. gives P-value $=\Phi\left(-\delta \sqrt{n / \theta_{0}\left(1-\theta_{0}\right)}\right)$ which is half as large.
- Whether to use Two-Sided (usual) or One-Sided test is a matter of judgement, depending on the problem. [Usually just assume Two-Sided.]
- Location-Scale Model P-values [Text Example 6.3.13]: $P_{\theta}=N\left(\mu, \sigma^{2}\right)$ with μ and σ^{2} both unknown. Have hypothesis $H_{0}: \mu=\mu_{0}$. Observe x_{1}, \ldots, x_{n} with deviation $\delta=\left|\bar{x}-\mu_{0}\right|$. What is P-value?
- Recall that $T \equiv \sqrt{n / S^{2}}(\bar{X}-\mu) \sim t(n-1)$. So, P-value is

$$
P_{\theta}[|\bar{X}-\mu| \geq \delta]=P\left[|T| \geq \delta \sqrt{n / S^{2}}\right]=2 P\left[T \leq-\delta \sqrt{n / S^{2}}\right] .
$$

[Can find from statistical package. Will be provided as needed on the class tests.] ["t-test"]

- e.g. $\mu_{0}=5, \bar{x}=5.1, S^{2}=1, n=100$: Get P-value equal to 0.3197 , compared to 0.3173 if $\sigma^{2}=1$ is known. [i.e. P-value slightly larger due to uncertainty in σ^{2}.]
- If instead use one-sided test, i.e. test $H_{0}: \mu=\mu_{0}$ versus $H_{1}: \mu>\mu_{0}$, then remove factor of " 2 ", get P-value equal to 0.1599 .
- Statitus partial-treatment: Suppose statitus is usually 50% fatal. Company claims that with their treatment, it's "less" fatal. We observe 8 patients, of whom just 1 dies. Are we sure the company is correct?
- Let $\Omega=[0,1], P_{\theta}[$ die $]=\theta, P_{\theta}[$ live $]=1-\theta$. Then $H_{0}: \theta=0.5$, and $H_{1}: \theta<0.5$. What is P -value?
- Since $n=8$ is small, don't use CLT. Also, since they claim it is less fatal, use one-sided test. So, P-value is $P[\leq 1$ die $]$.
- Under H_{0},

$$
\begin{aligned}
& P[\leq 1 \text { die }]=P_{0.5}[\leq 1 \text { die }]=P_{0.5}[0 \text { die }]+P_{0.5}[1 \text { die }] \\
& =(0.5)^{8}+\binom{8}{1}(0.5)^{7}(0.5)^{1}=9 / 2^{8} \doteq 0.035<0.05
\end{aligned}
$$

So, 95% confident that treatment helps. [Not 99% confident, though!]

- If instead just observed five patients, of whom one died, then compute [Exercise!] that P -value $=6 / 2^{5} \doteq 0.19$. In this case, we're not sure if it helped.
- METHOD OF MOMENTS (6.4.1)
- Another way to estimate θ is to find the value $\hat{\theta}$ such that mean of $P_{\hat{\theta}}$ equals \bar{x}. [And, if necessary, $E_{\hat{\theta}}\left[X^{2}\right]=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}\right)^{2}$, etc.] ["Method of Moments (MoM) Estimator"]
- Example: $P_{\theta}=N(\theta, 1)$. Then mean of P_{θ} is θ. So, for MoM Estimator, want $\hat{\theta}=\bar{x}$. [Same as MLE.]
- Example: $P_{\theta}=\operatorname{Exp}(\theta)$. Then mean of P_{θ} is $1 / \theta$. So, for MoM Estimator, want $1 / \hat{\theta}=\bar{x}$, i.e. $\hat{\theta}=1 / \bar{x}$.
- Example: $P_{\theta}=$ Uniform $[0, \theta]$. MLE is $\max _{1 \leq i \leq n} x_{i}$. What is MoM Estimator?
- Well, mean of P_{θ} is $\theta / 2$. So, must have $\hat{\theta} / 2=\bar{x}$, i.e. $\hat{\theta}=2 \bar{x}$.
- We've seen this before! [" $\hat{\theta}_{2} "$] We know it's consistent, has $\operatorname{MSE} E_{\theta}(\hat{\theta}) \rightarrow 0$, etc.
- Example: $P_{\theta}=$ Uniform $[-\theta, \theta]$. MLE is $\max _{1 \leq i \leq n}\left|x_{i}\right|$. What is MoM Estimator?
- Here mean of P_{θ} is 0 , which doesn't help. So, must consider second moment.
- Second moment of P_{θ} is $(2 \theta)^{2} / 12=\theta^{2} / 3$. So, want $\hat{\theta}^{2} / 3=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}\right)^{2}$, i.e. $\hat{\theta}=\sqrt{(3 / n) \sum_{i=1}^{n}\left(x_{i}\right)^{2}}$.

END MONDAY 6
[Held Test \#1, then week off for Reading Week ...]

- SUMMARY SO FAR: Have learned basics of "classical statistics":
- Inference when prob dist known or unknown.
- Statistical Models, likelihood functions.
- Maximum Likelihood Estimators, Score Equation.
- (Minimal) Sufficient Statistics.
- Bias, MSE, Consistency.
- Confidence intervals, hypothesis testing.
- Method-of-Moments estimators

- INTRODUCTION TO BAYESIAN INFERENCE (7.1)

- COIN EXAMPLE: Suppose I have either regular or two-headed coin.
- What is probability I have two-headed coin? (Undefined?)
- Suppose I flip it once, and get heads. Now what is probability I have two-headed coin? (Still undefined?)
- In "classical" statistics, these probabilities are undefined. However, an alterna-
tive approach, "Bayesian statistics", says that every unknown has probabilities associated with it.
- Bayesian statistics says start with a prior distribution of what you think at the beginning. e.g. $\Pi($ regular $)=\Pi($ two-headed $)=1 / 2$.
- Then if get one head, then new probability of two-headed coin is equal to old probability, conditional on seeing one head:

$$
\begin{gathered}
P(\text { two-headed } \mid \text { head })=\frac{P(\text { two-headed, head })}{P(\text { head })} \\
=\frac{P(\text { two-headed, head })}{P(\text { two-headed, head })+P(\text { regular, head })}=\frac{(1 / 2)(1)}{(1 / 2)(1)+(1 / 2)(1 / 2)} \\
=\frac{1 / 2}{3 / 4}=2 / 3
\end{gathered}
$$

- If get k heads in a row, then

$$
\begin{aligned}
& P(\text { two-headed } \mid k \text { heads })=\frac{P(\text { two-headed, } k \text { heads })}{P(k \text { heads })} \\
& =\frac{P(\text { two-headed, } k \text { heads })}{P(\text { two-headed, } k \text { heads })+P(\text { regular, } k \text { heads })} \\
& =\frac{(1 / 2)(1)^{k}}{(1 / 2)(1)^{k}+(1 / 2)(1 / 2)^{k}}=\frac{1}{1+(1 / 2)^{k}}
\end{aligned}
$$

This $\rightarrow 1$ as $k \rightarrow \infty$.

- Suppose instead had prior $\Pi($ regular $)=1 / 3, \Pi($ two-headed $)=2 / 3$. Then if get k heads in a row, then

$$
\begin{aligned}
& P(\text { two-headed } \mid k \text { heads })=\frac{P(\text { two-headed, } k \text { heads })}{P(k \text { heads })} \\
& =\frac{P(\text { two-headed, } k \text { heads })}{P(\text { two-headed, } k \text { heads })+P(\text { regular, } k \text { heads })} \\
& =\frac{(2 / 3)(1)^{k}}{(2 / 3)(1)^{k}+(1 / 3)(1 / 2)^{k}}=\frac{2}{2+(1 / 2)^{k}}
\end{aligned}
$$

This still $\rightarrow 1$ as $k \rightarrow \infty$.

- A Bayesian Model consists of Statistical Model $\left\{P_{\theta}: \theta \in \Omega\right\}$ together with a prior distribution Π on Ω.
- Discrete case: Π has probability function $\pi(\theta)=$ probability that θ is true.
- Absolutely continuous case: Π has density function $\pi(\theta)$, so that probability θ between a and b is $\int_{a}^{b} \pi(\theta) d \theta$.
- Then pair (θ, s) has prior joint probability (or density) function $\pi(\theta) f_{\theta}(s)$.
- Hence, prior marginal distribution for s is $m(s)=\sum_{\theta \in \Omega} \pi(\theta) f_{\theta}(s)$ [discrete case], or $m(s)=\int_{\theta \in \Omega} \pi(\theta) f_{\theta}(s) d \theta$ [absolutely continuous case]. "Prior Predictive Distribution"
- Then once we observe some data s, then get conditional probability (or density) function for θ :

$$
\pi(\theta \mid s)=\frac{\pi(\theta) f_{\theta}(s)}{m(s)}
$$

"Posterior Distribution" ["Posterior equals prior times likelihood, normalised."]

- Coin Example again:
- Here $\pi($ two-headed $)=\pi($ regular $)=1 / 2$.
$-f_{\text {two-headed }}($ head $)=1 ; f_{\text {two-headed }}($ tail $)=0 ; f_{\text {regular }}($ head $)=f_{\text {regular }}($ tail $)=1 / 2$.
$-m($ head $)=\pi($ two-headed $) f_{\text {two-headed }}($ head $)+\pi($ regular $) f_{\text {regular }}($ head $)=(1 / 2)(1)+$ $(1 / 2)(1 / 2)=3 / 4$. Also $m($ tail $)=\pi($ two-headed $) f_{\text {two-headed }}($ tail $)$ $+\pi($ regular $) f_{\text {regular }}($ tail $)=(1 / 2)(0)+(1 / 2)(1 / 2)=1 / 4$.
- Then

$$
\pi(\text { two-headed } \mid \text { head })=\frac{\pi(\text { two-headed }) f_{\text {two-headed }}(\text { head })}{m(\text { head })}=\frac{(1 / 2)(1)}{3 / 4}=2 / 3
$$

[Same as before.]

- Also

$$
\pi(\text { regular } \mid \text { head })=\frac{\pi(\text { regular }) f_{\text {regular }}(\text { head })}{m(\text { head })}=\frac{(1 / 2)(1 / 2)}{3 / 4}=1 / 3
$$

- Also

$$
\pi(\text { two-headed } \mid \text { tail })=\frac{\pi(\text { two-headed }) f_{\text {two-headed }}(\text { tail })}{m(\text { tail })}=\frac{(1 / 2)(0)}{3 / 4}=0 .
$$

- If instead observe k heads, then $m(k$ heads $)=\pi$ (two-headed) $f_{\text {two-headed }}(k$ heads $)+$ $\pi($ regular $) f_{\text {regular }}(k$ heads $)=(1 / 2)(1)^{k}+(1 / 2)(1 / 2)^{k}=(1 / 2)+(1 / 2)^{k+1}$. Then

$$
\begin{gathered}
\pi(\text { two-headed } \mid k \text { heads })=\frac{\pi(\text { two-headed }) f_{\text {two-headed }}(k \text { heads })}{m(k \text { heads })} \\
=\frac{(1 / 2)(1)^{k}}{(1 / 2)+(1 / 2)^{k+1}}=\frac{1}{1+(1 / 2)^{k}} .
\end{gathered}
$$

[Same as before.]

- EXAMPLE: BERNOULLI MODEL. (Text p. 354.)
- Here $S=\{0,1\}, \Omega=[0,1]$, and $P_{\theta}(1)=\theta, P_{\theta}(0)=1-\theta$. Suppose prior is UNIFORM on Ω, so that $\pi(\theta) \equiv 1$. Suppose observe $x_{1}, \ldots, x_{n} \in S$. What is posterior?
- Here $f_{\theta}\left(x_{1}, \ldots, x_{n}\right)=\theta^{c}(1-\theta)^{n-c}$, where $c=\#\left\{i ; x_{i}=1\right\}=n \bar{x}$.
- Then $m\left(x_{1}, \ldots, x_{n}\right)=\int_{\theta \in \Omega} \pi(\theta) f_{\theta}\left(x_{1}, \ldots, x_{n}\right) d \theta=\int_{0}^{1}(1) \theta^{c}(1-\theta)^{n-c} d \theta=\int_{0}^{1} y^{c}(1-$ $y)^{n-c} d y$. Hard! [FACT: This equals $\Gamma(c+1) \Gamma(n-c+1) / \Gamma(n+2)$, or $c!(n-$ $c)!/(n+1)$!. But never mind that!]
- Then posterior density is given by

$$
\pi\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\frac{\pi(\theta) f_{\theta}\left(x_{1}, \ldots, x_{n}\right)}{m\left(x_{1}, \ldots, x_{n}\right)}=\frac{(1) \theta^{c}(1-\theta)^{n-c}}{\int_{0}^{1} y^{c}(1-y)^{n-c} d y}
$$

In fact, this is a Beta distribution, $\operatorname{Beta}(c+1, n-c+1)$. [Text pp. 60, 654.]

- Posterior provides our best understanding, given our prior Π and the data x_{1}, \ldots, x_{n}, of all the probabilities for θ.
- Once we have posterior, then we might estimate θ by the posterior mean estimator. Now, the mean of the $\operatorname{Beta}(c+1, n-c+1)$ distribution is $(c+1) /[(c+$ 1) $+(n-c+1)]=(c+1) /(n+2)$. Hence, the posterior mean estimator for θ is $\hat{\theta}=(c+1) /(n+2)$. This is close to our "usual" estimator c / n, but a bit closer to $1 / 2$.

Previous Class:

* Quick review of classical statistics.
* Bayesian inference:
* Coin Example (two-headed or regular).
* Prior distribution Π, with prob/dens fn $\pi(\theta)$.
* Prior predictive distribution $m(s)=\sum_{\theta \in \Omega} \pi(\theta) f_{\theta}(s)$.
* Posterior prob/dens fn $\pi(\theta \mid s)=\pi(\theta) f_{\theta}(s) / m(s)$.
* Bernoulli Model: $\pi(\theta)=1$ (Uniform), then $\pi\left(\theta \mid x_{1}, \ldots, x_{n}\right) \propto \theta^{c}(1-\theta)^{n-c}$, i.e. $\Pi\left(\theta \mid x_{1}, \ldots, x_{n}\right)=$ $\operatorname{Beta}(c+1, n-c+1)$.
_- Then can e.g. estimate θ by posterior mean $\hat{\theta}=(c+1) /(n+2)$.
- Note that the variance of the $\operatorname{Beta}(c+1, n-c+1)$ distribution is $(c+1)(n-c+$ 1) $/(n+3)(n+2)^{2}$, and this provides a measure of how uncertain we are about the estimate $(c+1) /(n+2)$. As $n \rightarrow \infty$, since $0 \leq c \leq n$, we see that variance $\rightarrow 0$, i.e. we're more and more sure.
- Consider again Bernoulli model, but this time with prior density $\pi(\theta)=4 \theta^{3}$ for $\theta \in \Omega \equiv[0,1]$. [i.e. we think it's more likely that θ is larger]
- Still have $f_{\theta}\left(x_{1}, \ldots, x_{n}\right)=\theta^{c}(1-\theta)^{n-c}$, where $c=\#\left\{i ; x_{i}=1\right\}=n \bar{x}$.
- $m\left(x_{1}, \ldots, x_{n}\right)$ still hard to compute.
- Posterior density is given by

$$
\pi\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\frac{\pi(\theta) f_{\theta}\left(x_{1}, \ldots, x_{n}\right)}{m\left(x_{1}, \ldots, x_{n}\right)}=\frac{4\left(\theta^{3}\right) \theta^{c}(1-\theta)^{n-c}}{m\left(x_{1}, \ldots, x_{n}\right)}=\frac{4 \theta^{c+3}(1-\theta)^{n-c}}{m\left(x_{1}, \ldots, x_{n}\right)} .
$$

- We observe that this is a $\operatorname{Beta}(c+4, n-c+1)$ distribution. [Text pp. 60, 654.] (Don't need to bother computing normalisation constants.)
- Posterior mean equals $(c+4) /[(c+4)+(n-c+1)]=(c+4) /(n+5)$. [" $a /(a+b) "]$ A bit larger than previous posterior mean of $(c+1) /(n+2)$.
- LOCATION NORMAL MODEL. Suppose $S=\Omega=\mathbf{R}$, and $P_{\theta}=N(\theta, 1)$. Suppose prior is $\Pi=N\left(\mu_{0}, \tau_{0}^{2}\right)$ for some fixed, known μ_{0} and τ_{0}^{2}. Suppose we observe x_{1}, \ldots, x_{n}. Then we know (from before) that

$$
f_{\theta}\left(x_{1}, \ldots, x_{n}\right)=K \exp \left(-\frac{n}{2}(\bar{x}-\theta)^{2}\right)
$$

Also here

$$
\pi(\theta)=\frac{1}{\sqrt{2 \pi \tau_{0}^{2}}} \exp \left(-\left(\theta-\mu_{0}\right)^{2} / 2 \tau_{0}^{2}\right)
$$

Also $m\left(x_{1}, \ldots, x_{n}\right)=\int \pi(\theta) f_{\theta}\left(x_{1}, \ldots, x_{n}\right) d \theta$. [Don't worry about this for now.]

- Then

$$
\begin{gathered}
\pi\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\frac{\pi(\theta) f_{\theta}\left(x_{1}, \ldots, x_{n}\right)}{m\left(x_{1}, \ldots, x_{n}\right)} \\
=\frac{\exp \left(-\left(\theta-\mu_{0}\right)^{2} / 2 \tau_{0}^{2}\right) K \exp \left(-\frac{n}{2}(\bar{x}-\theta)^{2}\right)}{\sqrt{2 \pi \tau_{0}^{2}} m\left(x_{1}, \ldots, x_{n}\right)} .
\end{gathered}
$$

- We compute (text pp. 355-356) that this is the density of a normal distribution with mean $\left(\left(\mu_{0} / \tau_{0}^{2}\right)+n \bar{x}\right) /\left(\left(1 / \tau_{0}^{2}\right)+n\right)$, and variance $1 /\left(\left(1 / \tau_{0}^{2}\right)+n\right)$.
- Hence, posterior mean estimator is $\hat{\theta}=\left(\left(\mu_{0} / \tau_{0}^{2}\right)+n \bar{x}\right) /\left(\left(1 / \tau_{0}^{2}\right)+n\right)$.
- Note that $\hat{\theta}$ is a weighted average of prior mean μ_{0}, and sample mean \bar{x}. As $n \rightarrow \infty, \hat{\theta} \rightarrow \bar{x}$. ("The data swamps the prior.")

- SUMMARY OF BAYESIAN STATISTICS:

- Adds new information, the "prior distribution", to the model.
- Then can compute a "posterior distribution" which gives a full probability distribution (not just estimate) for the unknown θ.
- Can then e.g. estimate θ by the posterior mean.
- Advantages: Get full distribution for θ, so can estimate probabilities, etc. Also, can encorporate "prior information", e.g. if experts "believe" certain things.
- Disadvantages: Computations can get difficult, even for simple models. [Though not too difficult for simple discrete models, like Coin Example. For harder examples, entire subject of "Markov Chain Monte Carlo algorithms" devoted to trying to do computations!] Also, result depends on prior and so is perhaps "subjective".
- Very controversial: Some statisticians are die-hard Bayesians, others are antiBayesian!

Previous Class:

* More examples re Bayesian inference and posterior distributions.
- MODEL CHECKING (9.1).
- A statistical model $\left\{P_{\theta}: \theta \in \Omega\right\}$ is just a model; how do we know if it's appropriate?
- We hope the data approximately fits some P_{θ}, but we don't know which one; how to check?
- Idea: Find some statistic (i.e. function of the data) which is ancilliary, i.e. whose distribution does not depend on θ. Then see if that statistic approximately follows its distribution.
- Example: $\Omega=S=\mathbf{R}$, and $P_{\theta}=N(\theta, 1)$.
- Then $X_{i} \sim N(\theta, 1)$, which depends on θ - not ancilliary.
- Also $\bar{X} \sim N(\theta, 1 / n)$, which depends on θ - not ancilliary.
- But $(n-1) S^{2} \sim \chi^{2}(n-1)$ which does not depend on θ - ancilliary! So can check $(n-1) s^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ to see if its value is "reasonable" for the $\chi^{2}(n-1)$ distribution.
- e.g. suppose $n=101$, then $\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \sim \chi^{2}(100)$. Hence $E\left[\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right]=$ 100, and in fact $P\left[74.22<\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}<129.56\right] \doteq 0.95$. So, if $\sum_{i=1}^{n}\left(x_{i}-\right.$ $\bar{x})^{2}<74.22$, or $\left.\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}>129.56\right]$, then perhaps have incorrect model.
- If instead $P_{\theta}=N\left(\theta, \sigma_{0}^{2}\right)$ with $\sigma_{0}^{2} \underline{\text { known, then instead } \frac{n-1}{\sigma_{0}^{2}} S^{2}=\frac{1}{\sigma_{0}^{2}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \sim}$ $\chi^{2}(n-1)$, so use this value instead.
- However, if $P_{\left(\mu, \sigma^{2}\right)}=N\left(\mu, \sigma^{2}\right)$ [both unknown], then more complicated! Requires simulation to approximate. [See text Example 9.1.2.]
- Example: Suppose $\Omega=S=\mathbf{R}$, with $P_{\theta}=\operatorname{Uniform}[\theta-3, \theta+3]$.
- Then under $P_{\theta}, X_{i}-\theta \sim \operatorname{Uniform}[-3,3]$, which does not depend on θ, however it is not a statistic [depends on unknown value, θ].
- On the other hand, $\left(X_{i}-\theta\right)-\left(X_{j}-\theta\right)=X_{i}-X_{j}$ is an ancilliary statistic.
- Hence, so is $D=\max _{i, j}\left(X_{i}-X_{j}\right)=\left(\max _{i} X_{i}\right)-\left(\min _{j} X_{j}\right)$. ["discrepancy statistic"]
- Precise distribution of D is tricky. However, if $D>6$ then model must be wrong. Also, for large n, expect $D \approx 6$, otherwise model wrong.
- Example: $S=\Omega=(0, \infty)$, with $P_{\theta}(\{\theta\})=4 / 5$ and $P_{\theta}(\{2 \theta\})=1 / 5$. Observe x_{1}, \ldots, x_{n}.
- Let $D_{i}=X_{i+1} / X_{i}(1 \leq i \leq n-1)$.
- Then $P_{\theta}\left[D_{i}=1\right]=P_{\theta}\left[X_{i}=X_{i+1}\right]=(4 / 5)^{2}+(1 / 5)^{2}=17 / 25$. Also $P_{\theta}\left[D_{i}=2\right]=$ $P_{\theta}\left[D_{i}=1 / 2\right]=(4 / 5)(1 / 5)=4 / 25$.
- Hence, D_{i} is an ancilliary statistic.
- Example: $S=\Omega=(0, \infty)$, with $P_{\theta}=\operatorname{Exp}(\theta)$. Observe x_{1}, \ldots, x_{n}. What is a good ancilliary statistic?
- Claim: $D_{i}=X_{i+1} / X_{i}$ is ancilliary $(1 \leq i \leq n-1)$.
- Proof \#1: Use multivariable change-of-variable formula (text Theorem 2.9.2) to get exact distribution of D_{i}, and observe that it does not depend on θ.
- Proof \#2: Can write $X_{i}=Y_{i} / \theta$, where $Y_{i} \sim \operatorname{Exp}(1)$. Then $D_{i}=\left(Y_{i} / \theta\right) /\left(Y_{i+1} / \theta\right)=$ Y_{i} / Y_{i+1} whose distributions do not depend on θ.

- CHI-SQUARED GOODNESS OF FIT TEST (9.1.2)

- Suppose election has k candidates, $\{1,2, \ldots, k\}$. Suppose we think that candidate i has support p_{i}, so $p_{1}+\ldots+p_{k}=1$. We then observe preferences x_{1}, \ldots, x_{n}, and let $c_{i}=\#\left\{j: x_{j}=i\right\}$ be count data. (So $c_{1}+\ldots+c_{k}=n$.)
- If we're right about the values of p_{i}, then should have $\left(C_{1}, \ldots, C_{k}\right) \sim \operatorname{Multinomial}\left(n, p_{1}, \ldots, p_{k}\right)$. How to test this?
- Well, C_{i} would have mean $n p_{i}$, and variance $n p_{i}\left(1-p_{i}\right)$. So, for large n, should have

$$
R_{i} \equiv \frac{C_{i}-n p_{i}}{\sqrt{n p_{i}\left(1-p_{i}\right)}} \approx N(0,1)
$$

[" i 'th residual"] Ancillary statistic (approx.).

- How to combine them? Intuition: for large $n, \sum_{i}\left(R_{i}\right)^{2}=\sum_{i}\left(C_{i}-n p_{i}\right)^{2} / n p_{i}(1-$ $\left.p_{i}\right) \sim \chi^{2}(k)$. Not quite due to restriction $C_{1}+\ldots+C_{k}=n$. Instead, $X^{2} \equiv$ $\sum_{i}\left(C_{i}-n p_{i}\right)^{2} / n p_{i} \approx \chi^{2}(k-1)$. ["Chi-squared statistic"]
- Observed value is $x^{2} \equiv \sum_{i}\left(c_{i}-n p_{i}\right)^{2} / n p_{i}$. [Text: X_{0}^{2}.]
- Then P-value is $P\left[X^{2} \geq x^{2}\right.$], where $X^{2} \sim \chi^{2}(k-1)$. [One-sided test, since only concerned if too far off.]
- Example: Three candidates $1,2,3$. We think $p_{1}=0.6, p_{2}=0.3, p_{3}=0.1$. We then poll $n=100$ people, and observe counts $c_{1}=45, c_{2}=40, c_{3}=15$. What is P-value?
- Here

$$
x^{2}=\frac{(45-60)^{2}}{60}+\frac{(40-30)^{2}}{30}+\frac{(15-10)^{2}}{10}=115 / 12 \doteq 9.58 .
$$

- Also if $X^{2} \sim \chi^{2}(2)$, then $P\left[X^{2} \geq 9.58\right] \doteq 0.0083$. Small! So, we conclude that our p_{i} values are wrong.

_ END MONDAY 8 _

Previous Class:

* Model Testing:
- Can use ancilliary statistic to see if model is appropriate.
-_e.g. $P_{\theta}=N\left(\theta, \sigma_{0}^{2}\right)$, use $\frac{n-1}{\sigma_{0}^{2}} S^{2} \sim \chi^{2}(n-1)$.
- Other examples: Uniform, Discrete, Exponential.
* Chi-Squared Goodness of Fit Test
——THM: If $\left(C_{1}, \ldots, C_{k}\right) \sim \operatorname{Multinomial}\left(n, p_{1}, \ldots, p_{k}\right)$, then $X^{2} \equiv \sum_{i=1}^{k}\left(C_{i}-n p_{i}\right)^{2} / n p_{i} \approx$ $\chi^{2}(k-1)$.
__ Proof: See e.g. Theory of Statistics, by M.J. Schervish, pages 461-462. Uses matrix analysis and normal distribution theory.
—— This gives P-value $P\left[X^{2} \geq x^{2}\right]$ for hypothesis that $\left\{p_{i}\right\}$ are correct.
- Chi-Squared Goodness of Fit Test can also be used for CONTINUOUS data, by first breaking it up into discrete regions.
- Example: Suppose we think the true distribution is $\operatorname{Exp}(1)$, and we observe values
x_{1}, \ldots, x_{100}.
- Suppose we break up $[0, \infty)$ into, say, the intervals $I_{1}=[0,1], I_{2}=(1,2], I_{3}=$ $(2,5]$, and $I_{4}=(5, \infty)$. Let $C_{i}=\#\left\{j: X_{j} \in I_{i}\right\}$ for $i=1,2,3,4$.
- Then $P\left(X_{j} \in I_{1}\right)=\int_{0}^{1} e^{-x} d x=1-e^{-1} \doteq 0.632 . \quad P\left(X_{j} \in I_{2}\right)=\int_{1}^{2} e^{-x} d x=$ $e^{-1}-e^{-2} \doteq 0.232 . ~ P\left(X_{j} \in I_{3}\right)=\int_{2}^{5} e^{-x} d x=e^{-2}-e^{-5} \doteq 0.129 . P\left(X_{j} \in I_{4}\right)=$ $\int_{5}^{\infty} e^{-x} d x=e^{-5} \doteq 0.007$.
- Then should have $\left(C_{1}, C_{2}, C_{3}, C_{4}\right) \sim \operatorname{Multinomial}(100,0.632,0.232,0.129,0.007)$.
- Suppose we observe $c_{1}=60, c_{2}=25, c_{3}=14, c_{4}=1$. Then

$$
x^{2}=\frac{(60-63.2)^{2}}{63.2}+\frac{(25-23.2)^{2}}{23.2}+\frac{(14-12.9)^{2}}{12.9}+\frac{(1-0.7)^{2}}{0.7} \doteq 0.524 .
$$

- If $X^{2} \sim \chi^{2}(3)$, then $P\left[X^{2} \geq 0.524\right] \doteq 0.914$. Big! So, no evidence against assumption that $X_{i} \sim \operatorname{Exp}(1)$.
- Comment: Here $n p_{4}=0.7$ is quite small, so test is very sensitive to value of c_{4}. Best to have $n p_{i}$ "not too small" (say, ≥ 1, or ≥ 5) if possible.
- RELATIONSHIPS AMONG VARIABLES (Chapter 10)
- Given various quantities X_{i} and Y_{i}, are they related, i.e. does the distribution of one depend on the value of the other, or not? [Equivalently: Are they dependent or independent?]
- CATAGORICAL RESPONSE MODELS (Section 10.2.1).
- Suppose we take a survey of 100 U of T graduates, and find the following count data $\left\{c_{i j}\right\}$:

Doctor	Lawyer	Scientist	Unemployed
23	13	15	5
12	10	8	14

- Question: Does taking STA261 have effect on your future?
- Here have predictor variable $X \in\{$ Taken, Not $\}$. Also outcome variable $Y \in\{$ Doctor, Lawyer, Scientist, Unemployed \}. Are they dependent or independent?
- Let $\theta_{i j}=P[X=i, Y=j] ; \theta_{i}=P[X=i]=\sum_{j} \theta_{i j} ; \theta_{\cdot j}=P[Y=j]=\sum_{i} \theta_{i j}$.
- Then X, Y independent iff $\theta_{i j}=\theta_{i \cdot} \cdot \theta_{j}$ for all i, j. Is it true? How to test?
- If we knew values of $\theta_{i}=q_{i}$ and $\theta_{\cdot j}=r_{j}$, then could use chi-squared statistic

$$
X^{2}=\sum_{i, j} \frac{\left(C_{i j}-n q_{i} r_{j}\right)^{2}}{n q_{i} r_{j}} \sim \chi^{2}(2 \cdot 4-1)=\chi^{2}(7)
$$

and do usual chi-squared test.

- But here θ_{i}. and $\theta_{\cdot j}$ are unknown!
- Instead, could substitute MLE: $q_{i}=\frac{1}{n} \sum_{j} c_{i j} \equiv \frac{1}{n} c_{i}$, $r_{j}=\frac{1}{n} \sum_{i} c_{i j} \equiv \frac{1}{n} c . j$. But then q_{i} and r_{j} depend on the data $\left\{c_{i j}\right\}$. How does this affect the distribution?
- THEOREM (e.g. Schervish, pages 463-467): For large n,

$$
X^{2}=\sum_{i, j} \frac{\left(C_{i j}-C_{i \cdot} \cdot C_{\cdot j} / n\right)^{2}}{C_{i \cdot} \cdot C_{\cdot j} / n} \sim \chi^{2}((2-1)(4-1))=\chi^{2}(3)
$$

In general, if a catagories for X, and b catagories for Y, then $X^{2} \sim \chi^{2}((a-1)(b-1))$.

- This is because $(a-1)(b-1)=[a b-1]-[(a-1)+(b-1)]=" k-1 "-" \operatorname{dim}(\Omega)$ ".
- Using this, can compute P-value for no relationship, as $P\left[X^{2} \geq x^{2}\right]$, where $X^{2} \sim$ $\chi^{2}((a-1)(b-1))$, and x^{2} is the observed value of X^{2}.

_ END WEDNESDAY 9 —_

Previous Class:

* Applying chi-squared test to continuous data, by "partitioning".
* Suppose have predictor variable $X \in\{1, \ldots, a\}$ [e.g. \{Taken STA261, Not Taken\}], and response variable $Y \in\{1, \ldots, b\}$ [e.g. \{Doctor, Lawyer, Scientist, Unemployed\}.
- Are the variables X and Y "related", i.e. dependent?
-_ Null hypothesis: independent, i.e. $P[X=i, Y=j] \equiv \theta_{i j}=\theta_{i} \cdot \theta \cdot j$.
——Use χ^{2} statistic X^{2}, replacing $n p_{i}$ by $n\left(C_{i \cdot} / n\right)\left(C_{\cdot j} / n\right)=C_{i} \cdot C_{\cdot j} / n$, i.e.

$$
X^{2}=\sum_{i, j} \frac{\left(C_{i j}-C_{i} \cdot C_{\cdot j} / n\right)^{2}}{C_{i \cdot} \cdot C_{\cdot j} / n} .
$$

* THEOREM: For large $n, X^{2} \approx \chi^{2}((a-1)(b-1))$.
——This is because $(a-1)(b-1)=[a b-1]-[(a-1)+(b-1)]=" k-1 "-" \operatorname{dim}(\Omega) " ;$ see Text Theorem 9.1.2.
- Back to "U of T graduates" example:

	Doctor	Lawyer	Scientist	Unemployed
Have taken STA261	23	13	15	5
Have NOT taken STA261	12	10	8	14

- In this example, the observed value is

$$
\begin{gathered}
x^{2}=\frac{(23-(35)(56) / 100)^{2}}{(35)(56) / 100}+\frac{(13-(23)(56) / 100)^{2}}{(23)(56) / 100}+\frac{(15-(23)(56) / 100)^{2}}{(23)(56) / 100}+\frac{(5-(19)(56) / 100)^{2}}{(19)(56) / 100} \\
+\frac{(12-(35)(44) / 100)^{2}}{(35)(44) / 100}+\frac{(10-(23)(44) / 100)^{2}}{(23)(44) / 100}+\frac{(8-(23)(44) / 100)^{2}}{(23)(44) / 100}+\frac{(14-(19)(44) / 100)^{2}}{(19)(44) / 100} \\
\doteq 8.93
\end{gathered}
$$

But we expect $X^{2} \sim \chi^{2}((4-1)(2-1))=\chi^{2}(3)$. Now, if $X^{2} \sim \chi^{2}(3)$, then $P\left[X^{2} \geq\right.$ $8.93] \doteq 0.030$. So, P-value is $0.030-$ small!

- Conclusion: Taking STA261 has a significant effect on your future!
- LEAST SQUARES ESTIMATES (10.3.1):
- Unconditioned case: Suppose want to estimate $E(Y)$ based on a sample $y_{1}, y_{2}, \ldots, y_{n}$.
- Least Squares Principle: Estimate $E(Y)$ by \hat{e}, chosen to minimise $S E \equiv \sum_{i=1}^{n}\left(y_{i}-e\right)^{2}$.
- Well, $\frac{\partial}{\partial e} S E=-\sum_{i=1}^{n} 2\left(y_{i}-e\right)$ [differentiable everywhere], which equals 0 iff $e=\bar{y}$.
- Also, $\left(\frac{\partial}{\partial e}\right)^{2} S E=\sum_{i=1}^{n} 2=2 n>0$.
- So, f all values in \mathbf{R} are possible for e, then must have $\hat{e}=\bar{y}$. [Makes sense.]
- On the other hand, if only certain values possible for e, then \hat{e} is the possible value of e which is closest to \bar{y}. [See Text Example 10.3.1.]
- What if Y depends on some other variable X ?
- Need to assume some model for the dependence.
- LINEAR REGRESSION (10.3.2):
- Suppose X, Y related variables, and we assume $E(Y \mid X=x)=\beta_{1}+\beta_{2} x$ for some unknown β_{1}, β_{2}, and we observe independent draws $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$. How to estimate β_{1} and β_{2} ?
- Example: $x_{i}=$ grade in STA261, $y_{i}=$ salary when you graduate. Are they related? How? Is β_{2} zero, or positive, or negative??
- Principle of Least Squares says choose β_{1}, β_{2} to minimise $S E \equiv \sum_{i=1}^{n}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)^{2}$. How? [DRAW GRAPH.]
- Well, $S E$ differentiable everywhere, and $\rightarrow \infty$ as $\beta_{1}, \beta_{2} \rightarrow \pm \infty$. Hence, minimising value must be critical point (if unique).
- Hence, want to solve $\frac{\partial}{\partial \beta_{1}} S E=\frac{\partial}{\partial \beta_{2}} S E=0$.
$-\frac{\partial}{\partial \beta_{1}} S E=-\sum_{i} 2\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)$, which equals 0 iff $\beta_{1}=\bar{y}-\beta_{2} \bar{x}$.
$-\frac{\partial}{\partial \beta_{2}} S E=-\sum_{i} 2 x_{i}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)$. Substituting in $\beta_{1}=\bar{y}-\beta_{2} \bar{x}$, we see this equals $-\sum_{i} 2 x_{i}\left(y_{i}-\bar{y}-\beta_{2}\left(x_{i}-\bar{x}\right)\right)$.
- This equals 0 iff $\beta_{2}=\sum_{i} x_{i}\left(y_{i}-\bar{y}\right) / \sum_{i} x_{i}\left(x_{i}-\bar{x}\right)$.
- Since $\sum_{i} \bar{x}\left(y_{i}-\bar{y}\right)=0=\sum_{i} \bar{x}\left(x_{i}-\bar{x}\right)$, this is the same as $\beta_{2}=\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\right.$ $\bar{y}) / \sum_{i}\left(x_{i}-\bar{x}\right)^{2} \equiv b_{2}$.
- Then $\beta_{1}=\bar{y}-b_{2} \bar{x} \equiv b_{1}$.
- Thus, $\left(b_{1}, b_{2}\right)$ is the least-squares estimate of $\left(\beta_{1}, \beta_{2}\right)$.
- Then the line $y=b_{1}+b_{2} x$ is the "line of best fit" of the data $\left\{\left(x_{i}, y_{i}\right)\right\}$. Also, $b_{1}+b_{2} x$ is the least-squares estimate of $E(Y \mid X=x)$. [Draw graph.] [See e.g. Text Figure 10.3.4.]
- Can also use $b_{1}+b_{2} x$ to estimate the actual value of Y, given $X=x$.
- If the x_{i} are all equal, then $\sum_{i}\left(x_{i}-\bar{x}\right)^{2}=0$, so b_{2} is undefined. [Makes sense since then cannot determine how $E(Y \mid X=x)$ varies with x.]

Previous Class:

* Chi-Squared test for Catagorical Response Models:
$-X^{2}=\sum_{i, j} \frac{\left(C_{i j}-C_{i} \cdot C_{\cdot j} / n\right)^{2}}{C_{i} \cdot C \cdot j / n} \approx \chi^{2}((a-1)(b-1))$.
-T Then P -value against independence is $P\left[X^{2} \geq x^{2}\right]$.
—— Example with $a=2, b=4$.
* Least Squares Principle.
—— Unconditioned case: Estimate $E[Y]$ by \bar{y}, or the possible value which is closest to \bar{y}.
* Linear Regression:
——If $E[Y \mid X=x]=\beta_{1}+\beta_{2} x$, then estimate β_{2} by $b_{2}=\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) / \sum_{i}\left(x_{i}-\bar{x}\right)^{2}$, and β_{1} by $b_{1}=\bar{y}-b_{2} \bar{x}$.
- Are these estimators unbiased? That is, suppose $E(Y \mid X=x)=\beta_{1}+\beta_{2} x$, with β_{1} and β_{2} unknown. We observe $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, and estimate $\left(\beta_{1}, \beta_{2}\right)$ by $\left(b_{1}, b_{2}\right)$ as above. Does $E\left(B_{i}\right)=\beta_{i}$?
- Hard to compute $E\left(B_{2}\right)$, since involves $E(X Y)$, etc.
- Trick: Compute conditional probability, $E\left(B_{i} \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)$:

$$
\begin{gathered}
E\left(B_{2} \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) \\
=E\left(\left.\frac{\sum_{i}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i}\left(X_{i}-\bar{X}\right)^{2}} \right\rvert\, X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) \\
=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left[\left(\beta_{1}+\beta_{2} x_{i}\right)-\left(\beta_{1}+\beta_{2} \bar{x}\right)\right]}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \\
=\frac{\sum_{i}\left(x_{i}-\bar{x}\right) \beta_{2}\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}=\beta_{2} .
\end{gathered}
$$

- Then by double-expectation formula (Text Theorem 3.5.2), $E\left(B_{2}\right)=E\left[E\left(B_{2} \mid X_{1}, \ldots, X_{n}\right)\right]=E\left[\beta_{2}\right]=\beta_{2}$. Unbiased!
- Then $E\left(B_{1} \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=E\left(\bar{Y}-B_{2} \bar{X} \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=$ $\left(\beta_{1}+\beta_{2} \bar{x}\right)-\beta_{2} \bar{x}=\beta_{1}$. Hence, $E\left(B_{1}\right)=E\left[E\left(B_{1} \mid X_{1}, \ldots, X_{n}\right)\right]=E\left[\beta_{1}\right]=\beta_{1}$. Also unbiased!
- What about UNCERTAINTY in estimates b_{1}, b_{2} ?
- Text Theorem 10.3.3: If $E(Y \mid X=x)=\beta_{1}+\beta_{2} x$, and $\operatorname{Var}(Y \mid X=x)=\sigma^{2}$ for all $x \in \mathbf{R}$, then

$$
\begin{gathered}
\operatorname{Var}\left(B_{2} \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\frac{\sigma^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}, \\
\operatorname{Var}\left(B_{1} \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\sigma^{2}\left(\frac{1}{n}+\frac{(\bar{x})^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right), \\
\operatorname{Var}\left(B_{1}+B_{2} x \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\sigma^{2}\left(\frac{1}{n}+\frac{(x-\bar{x})^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right) .
\end{gathered}
$$

As $n \rightarrow \infty, \sum_{i}\left(x_{i}-\bar{x}\right)^{2} \approx n \operatorname{Var}(X) \rightarrow \infty$, provided $\operatorname{Var}(X)>0$, so all these variances $\rightarrow 0$. Hence, in this case [technically, using Text Theorem 3.5.6 to remove the conditioning], the biases are zero, and the variances $\rightarrow 0$, so the $M S E \rightarrow 0$, so the estimates are consistent (as well as being unbiased).
[Test \#2 from 3-5 on Wednesday March 24, in Canadiana Gallery (14 Queen's Park Crescent, behind Sig Sam Library). Surnames A-Li in room 150, surnames Ll-Z in room 250. No aids allowed. Bring your T-Card!]
[Test \#2 will cover everything covered in lectures up to the end of this week, with emphasis on material not covered on Test \#1.]
[More TA office hours posted on web site.]

Previous Class:

* Linear Regression Model: $E[Y \mid X=x]=\beta_{1}+\beta_{2} x$.
-Here β_{1}, β_{2} are true (unknown) values. [Analogous to σ^{2}, etc.]
* Then least squares estimate for β_{2} is $b_{2}=\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) / \sum_{i}\left(x_{i}-\bar{x}\right)^{2}$; and for β_{1} is $b_{1}=\bar{y}-b_{2} \bar{x}$.
- Here b_{1}, b_{2} are observed values of estimators, depending on the observed values $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$. [Analogous to s^{2}, etc.]
* Considered sampling properties of $B_{2}=\sum_{i}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right) / \sum_{i}\left(X_{i}-\bar{X}\right)^{2}$, and $B_{1}=\bar{Y}-b_{2} \bar{X}$.
-Here B_{1}, B_{2} are the estimators, viewed as random variables depending on the random data $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$. [Analogous to S^{2}, etc.]
$*$ Proved that B_{1}, B_{2} are unbiased, i.e. $E\left[B_{1}\right]=\beta_{1}$ and $E\left[B_{2}\right]=\beta_{2}$. Good.
-_ Used trick: First computed conditional expectation, conditional on $X_{1}=x_{1}, \ldots, X_{n}=$ x_{n}. Then used double-expectation formula.
* Also showed (using theorem from text) that variances $\rightarrow 0$, so that $M S E \rightarrow 0$, and estimators are consistent. Good.
- Aside: Formally, we described conditional variances $\operatorname{Var}\left[B_{i} \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]$. Then can recover usual (unconditional) variances, $\operatorname{Var}\left[B_{i}\right]$, using Text Theorem 3.5.6.
- If $E(Y \mid X=x)=\beta_{1}+\beta_{2} x$ for all $x \in \mathbf{R}$, then $E\left[B_{1}+B_{2} x \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]=$ $\beta_{1}+\beta_{2} x$. Hence $E\left[B_{1}+B_{2} x\right]=\beta_{1}+\beta_{2} x=E[Y \mid X=x]$. Thus, $B_{1}+B_{2} x$ is an unbiased estimator of $E[Y \mid X=x]$. [For interpolation / extrapolation.]
- Can also compute (Text Corollary 10.3.1) that if $E(Y \mid X=x)=\beta_{1}+\beta_{2} x$, and $\operatorname{Var}(Y \mid X=x)=\sigma^{2}$ for all $x \in \mathbf{R}$, then

$$
\operatorname{Var}\left(B_{1}+B_{2} x \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\sigma^{2}\left(\frac{1}{n}+\frac{(x-\bar{x})^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right) .
$$

This is the MSE when estimating $E[Y \mid X=x]$ by $B_{1}+B_{2} x$ (since unbiased).

- The square-root of this MSE is then the "standard error" of estimating $E[Y \mid X=$ x] by $B_{1}+B_{2} x$. [Don't need to memorise formula, but need it for homework.]
- Assuming $\operatorname{Var}(X)>0$, this $M S E \rightarrow 0$ as $n \rightarrow \infty$. Thus, $B_{1}+B_{2} x$ is a consistent (and unbiased) estimator of $E[Y \mid X=x]$.
- What if σ^{2} is unknown? Can estimate σ^{2} by

$$
s^{2}=\frac{1}{n-2} \sum_{i=1}^{n}\left(y_{i}-b_{1}-b_{2} x_{i}\right)^{2} .
$$

[Don't need to subtract any mean, since already $E\left[Y-B_{1}-B_{2} X\right]=0$.]

- Text Theorem 10.3.4: If $E(Y \mid X=x)=\beta_{1}+\beta_{2} x$, and $\operatorname{Var}(Y \mid X=x)=\sigma^{2}$ for all $x \in \mathbf{R}$, then $E\left[S^{2} \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]=\sigma^{2}$, and $E\left(S^{2}\right)=\sigma^{2}$. [Unbiased estimator.]
- Analagous to $\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$.
- Intuition: We got to choose b_{1}, b_{2}, so that reduces "dimension" by 2 , from n to $n-2$. [Under additional assumptions (later), $(n-2) S^{2} / \sigma^{2} \sim \chi^{2}(n-2)$.]
- How to test if X and Y are related? [e.g. does grade in STA261 really affect future income? does age really affect blood pressure?]
- They're unrelated (actually "uncorrelated") iff $\beta_{2}=0$.
- Our estimate b_{2} may be "close" to 0 . How close does it have to be? Is $b_{2}=0.1$ small enough? How to test? P-value?
- Trick: Let

$$
F=\frac{\left(B_{2}\right)^{2} \sum_{i}\left(X_{i}-\bar{X}\right)^{2}}{S^{2}} .
$$

["F statistic"]

- Why? Well, we know $E\left[S^{2} \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]=\sigma^{2}$. Also

$$
\begin{gathered}
E\left[\left(B_{2}\right)^{2} \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right] \\
=E\left[B_{2} \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]^{2}+\operatorname{Var}\left[B_{2} \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right] \\
=\left(\beta_{2}\right)^{2}+\frac{\sigma^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} .
\end{gathered}
$$

Hence, $E\left[\left(B_{2}\right)^{2} \sum_{i}\left(X_{i}-\bar{X}\right)^{2} \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]=\left(\beta_{2}\right)^{2} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}+\sigma^{2}$.

- Conclusion: If $\beta_{2}=0$, then $E\left[\left(B_{2}\right)^{2} \sum_{i}\left(x_{i}-\bar{x}\right)^{2} \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]=\sigma^{2}$, in which case $F \approx 1$. But if F large, then probably $\beta_{2} \neq 0$. [How large?? P-value?? More later.]
- ANOVA ("Analysis of Variance"):
- THEOREM (Text Lemma 10.3.1): If observe $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, and if b_{1}, b_{2} are linear regression coefficients as above, then

$$
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\left(b_{2}\right)^{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+\sum_{i=1}^{n}\left(y_{i}-b_{1}-b_{2} x_{i}\right)^{2} \equiv R S S+E S S
$$

where RSS $=$ regression sum of squares $=$ amount of variation of the $\left\{y_{i}\right\}$ due to variation in the $\left\{x_{i}\right\}$, and ESS $=$ error sum of squares $=$ amount of variation of the $\left\{y_{i}\right\}$ due to deviations from the model $Y=b_{1}+b_{2} X$ (due to randomness in Y so that $Y \neq E[Y \mid X]$, and/or deviations from the model so that $\left.E[Y \mid X] \neq b_{1}+b_{2} X\right)$.

- Thus, our F statistic equals $R S S /[E S S /(n-2)]$. [Distribution??]
- Also, $S^{2}=E S S /(n-2)$.

END MONDAY 10

[Reminder: Test \#2 is 3-5 next Wednesday. Surnames A-Li in room CG 150, surnames Ll-Z in room CG 250. No aids allowed. Bring your T-Card!]

Previous Class:

* Linear Regression Model, with $E[Y \mid X=x]=\beta_{1}+\beta_{2} x$, and $\operatorname{Var}[Y \mid X=x]=\sigma^{2}$.
$-B_{1}+B_{2} x$ is unbiased, consistent estimate of $\beta_{1}+\beta_{2} x \equiv E[Y \mid X=x]$.
$-S^{2} \equiv \frac{1}{n-2} \sum_{i=1}^{n}\left(Y_{i}-B_{1}-B_{2} X_{i}\right)^{2}$ is unbiased estimator of σ^{2}.
—— If $F=\left(B_{2}\right)^{2} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} / S^{2}$, then $F \approx 1$ if $\beta_{2} \approx 0$, while $F \gg 1$ if β_{2} far from 0 .
* ANOVA: $\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=R S S+E S S$, where $R S S \equiv\left(b_{2}\right)^{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ and $E S S \equiv$ $\sum_{i=1}^{n}\left(y_{i}-b_{1}-b_{2} x_{i}\right)^{2}$.
_- Thus, $S^{2}=E S S /(n-2)$, and $F=R S S /[E S S /(n-2)]$.
- Can also define $R^{2}=R S S / \sum_{i}\left(y_{i}-\bar{y}\right)^{2}=R S S /(R S S+E S S)=$ COEFFICIENT OF DETERMINATION. Thus $0 \leq R^{2} \leq 1$.
- If $R^{2} \approx 1$, then $E S S$ is small, so model $Y=b_{1}+b_{2} X$ is accurate, i.e. Y is heavily influenced by X.
- If $R^{2} \approx 0$, then $R S S$ is small, so Y depends more on random effects than on $b_{1}+b_{2} X$, i.e. Y isn't influenced much by X.
- THEOREM (Text Theorem 10.3.5): R^{2} is the natural estimate of $[\operatorname{Corr}(X, Y)]^{2}=$ $[\operatorname{Cov}(X, Y)]^{2} / \operatorname{Var}(X) \operatorname{Var}(Y)$. Indeed,

$$
\begin{gathered}
R^{2}=\frac{\left(b_{2}\right)^{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}=\frac{\left[\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)\right]^{2}}{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} \\
=\frac{\text { Estimate of }[\operatorname{Cov}(X, Y)]^{2}}{\text { Estimate of } \operatorname{Var}(X) \operatorname{Var}(Y)} .
\end{gathered}
$$

[Reminder: Test \#2 is $3-5$ this Wednesday. Surnames A-Li in room CG 150, surnames Ll-Z in room CG 250. No aids allowed. Bring your T-Card!]

Previous Class:

* Reviewed Linear Regression, $B_{1}, B_{2}, B_{1}+B_{2} x, S^{2}, F, R S S, E S S$.
* Introduced "coefficient of determination", $R^{2}=R S S /(R S S+E S S)$.
- NORMAL LINEAR REGRESSION:
- So far, we have generally assumed that $E[Y \mid X=x]=\beta_{1}+\beta_{2} x$, and (sometimes) that $\operatorname{Var}[Y \mid X=x]=\sigma^{2}$.
- We now make a stronger assumption, that the conditional distribution of Y, given that $X=x$, is equal to $N\left(\beta_{1}+\beta_{2} x, \sigma^{2}\right)$. ["Normal Linear Regression", or "Linear Regression with Normal Errors".]
- In that case, we can determine many other distributions precisely [since linear combinations of normals are normal, etc.].
- Text Theorem 10.3.6: Under these assumptions, conditional on $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$,

$$
\begin{gathered}
B_{1} \sim N\left(\beta_{1}, \sigma^{2}\left(\frac{1}{n}+\frac{(\bar{x})^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)\right) ; \\
B_{2} \sim N\left(\beta_{2}, \frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right) ; \\
\frac{n-2}{\sigma^{2}} S^{2} \sim \chi^{2}(n-2),
\end{gathered}
$$

with S^{2} independent of $\left(B_{1}, B_{2}\right)$.

- So, $E S S / \sigma^{2} \equiv \frac{n-2}{\sigma^{2}} S^{2} \sim \chi^{2}(n-2)$.
- By C.L.T., these distributions are approximately true for large n, even with other (non-normal) error distributions ...
- Then what about our F statistic?
- Well, if $\beta_{2}=0$, then conditional on $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$,

$$
\left(B_{2}\right) \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} / \sigma^{2}} \sim N(0,1)
$$

$$
\frac{R S S}{\sigma^{2}} \equiv\left(B_{2}\right)^{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} / \sigma^{2} \sim \chi^{2}(1)
$$

But $\frac{E S S}{\sigma^{2}} \equiv \frac{n-2}{\sigma^{2}} S^{2} \sim \chi^{2}(n-2)$, so

$$
F=\frac{\left(B_{2}\right)^{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{S^{2}}=\frac{\left[\left(B_{2}\right)^{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} / \sigma^{2}\right] /(1)}{\frac{n-2}{\sigma^{2}} S^{2} /(n-2)} \sim F(1, n-2) .
$$

- But if $\beta_{2} \neq 0$, then F should be larger.
- Hence, P -value for alternative hypothesis $\beta_{2} \neq 0$, versus null hypothesis that $\beta_{2}=0$, is given by

$$
P\left[W \geq \frac{\left(b_{2}\right)^{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{s^{2}}\right],
$$

where $W \sim F(1, n-2)$. [Can compute from statistical package.]

- Note that mean of $F(a, b)$ is $b /(b-2)$, so mean of $F(1, n-2)$ is $(n-2) /(n-4)=$ $1+2 /(n-4)$ [if $n>4$], a little more than 1. [Makes sense, since we know that if $\beta_{2}=0$, then $F \approx 1$.]
- [Aside: Variance of $F(1, n-2)$ is $2(n-2)^{2}(n-3) /(n-4)^{2}(n-6)=O(1)$ as $n \rightarrow \infty$.]
- Example: Suppose observe pairs $(3,1),(5,2),(7,2),(9,3)$. [DRAW GRAPH.]
- Does Y increase with X (on average), or not? We want to test the null hypothesis that $\beta_{2}=0$ against the alternative hypothesis that $\beta_{2} \neq 0$.
- Compute (messy!) that $b_{1}=1 / 5, b_{2}=3 / 10, s^{2}=1 / 10$, and $F=18$. [Exercise: Verify these!]
- But expect that $F \sim F(1, n-2)=F(1,2)$.
- Then P-value against null hypothesis $\left(\beta_{2}=0\right)$ is given by $P[W \geq F]=P[W \geq$ 18], where $W \sim F(1,2)$.
- We compute (from statistical package) that this P -value $\doteq 0.0513$. Thus, not quite 95% confident that observed increase wasn't just from chance. (But almost!)
- [P-value would be smaller if n were larger.]
[Held Test \#2.]

Previous Class:

* Normal Linear Regression:
-D Distribution of Y, conditional on $X=x$, is $N\left(\beta_{1}+\beta_{2} x, \sigma^{2}\right)$.
-Then $B_{2} \sim N\left(\beta_{2}, \sigma^{2} / \sum_{i}\left(x_{i}-\bar{x}\right)^{2}\right)$.
- Also $B_{1} \sim N\left(\beta_{1}, \sigma^{2}\left[(1 / n)+(\bar{x})^{2} / \sum_{i}\left(x_{i}-\bar{x}\right)^{2}\right]\right)$.
- Also $(n-2) S^{2} / \sigma^{2} \sim \chi^{2}(n-2)$, indep. of B_{1}, B_{2}.
* Then $E S S / \sigma^{2} \sim \chi^{2}(n-2)$.
——And $R S S / \sigma^{2} \sim \chi^{2}(1)$ if $\beta_{2}=0$.
* Thus $F \sim F(1, n-2)$ if $\beta_{2}=0$.
* Then P -value for $H_{0}: \beta_{2}=0$ versus $H_{1}: \beta_{2} \neq 0$ is given by $P[W \geq F]$, where F is observed value of F-statistic, and $W \sim F(1, n-2)$.
* Example: Observe $(3,1),(5,2),(7,2),(9,3)$.
-Compute $b_{1}=1 / 5, b_{2}=3 / 10, s^{2}=1 / 10$, and $F=18$.
——Then P-value against $\beta_{2}=0$ is $P[W \geq 18] \doteq 0.0513$, where $W \sim F(1, n-2)=F(1,2)$.
- Can also get confidence intervals for B_{1} and B_{2}. [Here we focus on B_{2}.]
- Since

$$
B_{2} \sim N\left(\beta_{2}, \frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right),
$$

therefore

$$
B_{2}-\beta_{2} \sim N\left(0, \frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)
$$

so

$$
\left(B_{2}-\beta_{2}\right) \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} / \sigma^{2}} \sim N(0,1)
$$

- But also $\frac{n-2}{\sigma^{2}} S^{2} \sim \chi^{2}(n-2)$, independent of B_{2}. Hence,

$$
\frac{\left(B_{2}-\beta_{2}\right) \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} / \sigma^{2}}}{\sqrt{\left(\frac{n-2}{\sigma^{2}} S^{2}\right) /(n-2)}} \sim t(n-2),
$$

i.e.

$$
\left(B_{2}-\beta_{2}\right) \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} / S^{2}} \sim t(n-2)
$$

- So, if a_{n} is such that $P\left(-a_{n}<T_{n}<a_{n}\right)=0.95$ whenever $T_{n} \sim t(n)$, then

$$
P\left[B_{2}-a_{n-2} \sqrt{S^{2} / \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}<\beta_{2}<B_{2}+a_{n-2} \sqrt{S^{2} / \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right] \doteq 0.95
$$

- i.e., $b_{2} \pm a_{n-2} \sqrt{s^{2} / \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$ is a 95% confidence interval for value of β_{2}.
- Above example continued:
- Here $b_{2}=3 / 10, s^{2}=1 / 10$, and $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=20$.
- Also, $n=4$, and if $T_{2} \sim t(2)$, then $P\left[T_{2} \leq-4.3\right] \doteq 0.025$, so (by symmetry) $P\left[T_{2} \geq+4.3\right] \doteq 0.025$, and $P\left[-4.3<T_{2}<+4.3\right] \doteq 1-0.025-0.025=0.95$, i.e. $a_{2} \doteq 4.3$.
- Hence, 95% confidence interval for β_{2} is $(3 / 10) \pm 4.3 \sqrt{(1 / 10) / 20}=0.3 \pm 4.3 / \sqrt{200} \doteq$ $0.3 \pm 0.304=(-0.004,0.604)$.
- This interval just barely contains 0 . [Makes sense since $\beta_{2}=0$ is just barely possible at 95% confidence level.]
- B_{1} is similar, since [Text Corollary 10.3.2]:

$$
\frac{B_{1}-\beta_{1}}{\sqrt{S^{2}\left(\frac{1}{n}+\frac{n}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)}} \sim t(n-2)
$$

- ONE CATEGORICAL PREDICTOR (10.4.1):
- Context:
- In Categorical Response Models: both X and Y are categorical.
- In Linear Regression: both X and Y are quantitative (i.e. numerical).
- Suppose now that Y is quantitative, but X takes values in one of a different catagories, $\{1,2, \ldots, a\}$.
- Example: $Y=$ height, while $X=$ gender (male or female).
- For $i \in\{1,2, \ldots, a\}$, let $\beta_{i}=E[Y \mid X=i]$. Want to estimate the β_{i}.
- Suppose for each $i \in\{1,2, \ldots, a\}$, we observe n_{i} different values of Y corresponding to $X=i$, namely $y_{i 1}, y_{i 2}, \ldots, y_{i n_{i}}$. Assume that $n_{i} \geq 1$ for all i.
- Let $N=n_{1}+n_{2}+\ldots+n_{a}$ be total number of observations.
- How to estimate the β_{i} ?
- Use principle of least squares.
- Here squared error is $S E=\sum_{i=1}^{a} \sum_{j=1}^{n_{i}}\left(y_{i j}-\beta_{i}\right)^{2}$.
- Differentiable everywhere, goes to ∞ as any one $\beta_{i} \rightarrow \pm \infty$. So, $S E$ is minimised at a critical point (if unique).
- Critical point requires that $\frac{\partial}{\partial \beta_{i}} S E=0$ for each i.
- But $\frac{\partial}{\partial \beta_{i}} S E=-\sum_{j=1}^{n_{i}} 2\left(y_{i j}-\beta_{i}\right)$.
- This equals 0 iff $n_{i} \beta_{i}=\sum_{j=1}^{n_{i}} y_{i j}$, i.e. $\beta_{i}=\left(1 / n_{i}\right) \sum_{j=1}^{n_{i}} y_{i j} \equiv \bar{y}_{i}$, the average of the observations corresponding to $X=i$.
- Hence, estimate each β_{i} by the corresponding \bar{y}_{i}. [Makes sense.]
$-E\left[\bar{Y}_{i}\right]=\left(1 / n_{i}\right) \sum_{j=1}^{n_{i}} E\left[Y_{i j}\right]=\left(1 / n_{i}\right) \sum_{j=1}^{n_{i}} \beta_{i}=\beta_{i}$. [Unbiased estimator.]
- What about variance? Suppose $\operatorname{Var}[Y \mid X=i]=\sigma^{2}$ for all i, but σ^{2} is unknown. How to estimate?
- Fact (Text Theorem 10.3.10): Unbiased estimate of σ^{2} is given by

$$
S^{2}=\frac{1}{N-a} \sum_{i=1}^{a} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i}\right)^{2}
$$

[Like $\frac{1}{n-1}$ originally, and $\frac{1}{n-2}$ for linear regression. This time get to choose a values $\left(\bar{y}_{1}, \ldots, \bar{y}_{a}\right)$ based on data, which leads to the factor of $\frac{1}{N-a}$.]

- NORMAL ASSUMPTION: Assume now that the law of Y, given that $X=i$, is $N\left(\beta_{i}, \sigma^{2}\right)$.
- Then $\bar{Y}_{i} \sim N\left(\beta_{i}, \sigma^{2} / n_{i}\right)$.
- Also (Text Theorem 10.3.11), $(N-a) S^{2} / \sigma^{2} \sim \chi^{2}(N-a)$, with S^{2} independent of the \bar{Y}_{i}.
- It follows that $\frac{\bar{Y}_{i}-\beta_{i}}{\sqrt{S^{2} / n_{i}}} \sim t(N-a)$.

__ END MONDAY 12 _

Previous Class:

* Normal Linear Regression:
- Review.
- Confidence Interval for β_{2}.
* One Categorical Predictor (10.4.1):
$-X \in\{1,2, \ldots, a\}, Y \in \mathbf{R}$.
- Observe $n_{i} \geq 1$ observations with $X=i$; let $N=n_{1}+\ldots+n_{a}$.
—— Least-squares estimate of $\beta{i} \equiv E[Y \mid X=i]$ is $\bar{y}_{i} \equiv\left(1 / n_{i}\right) \sum_{j=1}^{n_{i}} y_{i j}$. [Unbiased.]
$—$ Estimate $\sigma^{2} \equiv \operatorname{Var}[Y \mid X=i]$ by $s^{2}=(1 /(N-a)) \sum_{i} \sum_{j}\left(y_{i j}-\bar{y}_{i}\right)^{2}$. [Unbiased.]
* Normal assumption: Given $X=i, Y \sim N\left(\beta_{i}, \sigma^{2}\right)$.
-Then $\bar{Y}_{i} \sim N\left(\beta_{i}, \sigma^{2} / n_{i}\right)$.
—Also $(N-a) S^{2} / \sigma^{2} \sim \chi^{2}(N-a)$ [assuming $\left.N>a\right]$.
- Also $\frac{\bar{Y}_{i}-\beta_{i}}{\sqrt{S^{2} / n_{i}}} \sim t(N-a)$.
- CONFIDENCE INTERVALS:
- Let a_{n} (again) be such that $P\left[-a_{n}<T_{n}<a_{n}\right]=0.95$ whenever $T_{n} \sim t(n)$.
- Then $P\left[-a_{N-a}<\frac{\bar{Y}_{i}-\beta_{i}}{\sqrt{S^{2} / n_{i}}}<a_{N-a}\right]=0.95$.
- Re-arranging, $P\left[\bar{Y}_{i}-a_{N-a} \sqrt{S^{2} / n_{i}}<\beta_{i}<\bar{Y}_{i}+a_{N-a} \sqrt{S^{2} / n_{i}}\right]=0.95$.
- i.e., 95% confidence interval for β_{i} is $\bar{y}_{i} \pm a_{N-a} \sqrt{s^{2} / n_{i}}$, where now $s^{2}=\frac{1}{N-a} \sum_{i=1}^{a} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i}\right)^{2}$. [Interval depends on values of $y_{k j}$ for $k \neq i$, too.]
- DIFFERENCES OF MEANS:
- What about differences $\beta_{i}-\beta_{j}(j \neq i)$?
- Well, $\bar{Y}_{i} \sim N\left(\beta_{i}, \sigma^{2} / n_{i}\right)$, and $\bar{Y}_{j} \sim N\left(\beta_{j}, \sigma^{2} / n_{j}\right)$, independent.
- Therefore, $\bar{Y}_{i}-\bar{Y}_{j} \sim N\left(\beta_{i}-\beta_{j}, \sigma^{2}\left(\left(1 / n_{i}\right)+\left(1 / n_{j}\right)\right)\right.$.
- So,

$$
\frac{\left(\bar{Y}_{i}-\bar{Y}_{j}\right)-\left(\beta_{i}-\beta_{j}\right)}{\sqrt{\sigma^{2}\left(\left(1 / n_{i}\right)+\left(1 / n_{j}\right)\right)}} \sim N(0,1) .
$$

- Here σ^{2} is unknown (as usual). But we know that $(N-a) S^{2} / \sigma^{2} \sim \chi^{2}(N-a)$.
- So, $T \sim t(N-a)$, where

$$
T=\frac{\frac{\left(\bar{Y}_{i}-\bar{Y}_{j}\right)-\left(\beta_{i}-\beta_{j}\right)}{\sqrt{\sigma^{2}\left(\left(1 / n_{i}\right)+\left(1 n_{j}\right)\right)}}}{\sqrt{\left((N-a) S^{2} / \sigma^{2}\right) /(N-a)}}=\frac{\left(\bar{Y}_{i}-\bar{Y}_{j}\right)-\left(\beta_{i}-\beta_{j}\right)}{\sqrt{S^{2}\left(\left(1 / n_{i}\right)+\left(1 / n_{j}\right)\right)}} .
$$

- Then $P\left[-a_{N-a}<T<a_{N-a}\right]=0.95$.
- Hence,

$$
P\left[-a_{N-a}<\frac{\left(\bar{Y}_{i}-\bar{Y}_{j}\right)-\left(\beta_{i}-\beta_{j}\right)}{\sqrt{S^{2}\left(\left(1 / n_{i}\right)+\left(1 / n_{j}\right)\right)}}<a_{N-a}\right]=0.95
$$

- Re-arranging, $P\left[\left(\bar{Y}_{i}-\bar{Y}_{j}\right)-a_{N-a} \sqrt{S^{2}\left(\left(1 / n_{i}\right)+\left(1 / n_{j}\right)\right)}<\beta_{i}-\beta_{j}<\left(\bar{Y}_{i}-\bar{Y}_{j}\right)+\right.$ $\left.a_{N-a} \sqrt{S^{2}\left(\left(1 / n_{i}\right)+\left(1 / n_{j}\right)\right)}\right]=0.95$.
- Thus, 95% confidence interval for $\beta_{i}-\beta_{j}$ is $\left(\bar{y}_{i}-\bar{y}_{j}\right) \pm a_{N-a} \sqrt{s^{2}\left(\left(1 / n_{i}\right)+\left(1 / n_{j}\right)\right)}$.
- EXAMPLE:
- Suppose measuring IQs of students at U of T and at York. U of T students: 130, 150, 140, 150, 170, 160. York students: 130, 140, 135.
- Then $\bar{y}_{1}=(130+150+140+150+170+160) / 6=150$. And $\bar{y}_{2}=(130+140+$ 135) $/ 3=135$. Also $n_{1}=6$ and $n_{2}=3$, and $N=6+3=9$, and $a=2$.
- Then $s^{2}=\frac{1}{N-a} \sum_{i=1}^{2} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i}\right)^{2}=\frac{1}{9-2}\left((130-150)^{2}+(150-150)^{2}+(140-\right.$ $150)^{2}+(150-150)^{2}+(170-150)^{2}+(160-150)^{2}+(130-135)^{2}+(140-135)^{2}+$ $\left.(135-135)^{2}\right)=\frac{1}{7}(400+0+100+0+400+100+25+25+0)=1050 / 7$.
- Also, if $T_{7} \sim t(7)$, then $P\left[-2.36<T_{7}<2.36\right] \doteq 0.95$.
- Thus, 95% confidence interval for mean of U of T IQs (i.e., β_{1}) is given by $\bar{y}_{1} \pm 2.36 \sqrt{s^{2} / n_{1}}=150 \pm 2.36 \sqrt{(1050 / 7) / 6} \doteq(138.2,161.8)$.
- And, 95% confidence interval for mean of York IQs (i.e., β_{2}) is given by $\bar{y}_{2} \pm$ $2.36 \sqrt{s^{2} / n_{2}}=135 \pm 2.36 \sqrt{(1050 / 7) / 3} \doteq(123.2,146.8)$.
- Some overlap in these intervals. What about difference?
- Here 95% confidence interval for difference $\beta_{1}-\beta_{2}$ is given by $\left(\bar{y}_{1}-\bar{y}_{2}\right) \pm$ $2.36 \sqrt{s^{2}\left(\left(1 / n_{1}\right)+\left(1 / n_{2}\right)\right)}=(150-135) \pm 2.36 \sqrt{(1050 / 7)[(1 / 6)+(1 / 3)]} \doteq(-5.4,35.4)$.
- So, probably $\beta_{1}>\beta_{2}$, i.e. average IQ at U of T is larger than average IQ at York, but we're not quite 95% sure that it is.
- Final Exam is Monday, May 3, 9:00 a.m. - 12:00 noon, in University College, East Hall (surnames A-Li) and West Hall (surnames Ll-Z).
- FINAL COMMENT: Statistics courses for next year.
- STA 302, STA 322, STA 322: More about applied statistics techniques. [regression analysis / sample surveys / experimental design]
- STA 352: More about the mathematical theory of statistical inference.
- STA 347: More about probability theory (expand on STA 257).

