
STA 261S, Winter 2004, Test #1
(February 11, 2004. Duration: 100 minutes.)

SOLUTIONS

1. Let Ω = S = [0, 1], and let L0(θ | s) = eθ. Determine (with explanation) whether
or not each of the following likelihood functions is equivalent to the likelihood function
L0(θ | s).

(a) L1(θ | s) = s2 + eθ.

Solution. Here L1(θ | s)
L0(θ | s) = s2+eθ

eθ = s2 e−θ + 1, which depends on θ. Hence, L1

is NOT equivalent to L0.

(b) L2(θ | s) = es2+θ.

Solution. Here L2(θ | s)
L0(θ | s) = es2+θ

eθ = es2
, which does not depend on θ. Hence,

L2 IS equivalent to L0.

(c) L3(θ | s) = es2θ.

Solution. Here L3(θ | s)
L0(θ | s) = es2θ

eθ = e(s2−1)θ, which depends on θ. Hence, L3 is

NOT equivalent to L0.

2. Let Ω = S = (0, 1). Suppose the likelihood function, given an observation s ∈ S, is
given by L(θ | s) = θ2s(1− θ)4s, for θ ∈ Ω.

(a) Compute (with explanation) the Score Function for this likelihood.

Solution. Here `(θ | s) = log L(θ | s) = 2s log(θ) + 4s log(1 − θ), so the Score
Function is S(θ | s) = ∂

∂θ `(θ | s) = 2s
θ −

4s
1−θ .

(b) Solve (with explanation) the corresponding Score Equation.

Solution. The Score Equation is S(θ | s) = 0, which is equivalent to 2s(1−θ)−
4s(θ) = 0, or θ = 2s/6s = 1/3.

(c) Determine (with explanation) the MLE, θ̂, for θ.

Solution. Here the derivative S(θ | s) is well-defined throughout Ω. And, the
second derivative ( ∂

∂θ )2`(θ | s) = −2sθ−2 − 4s(1 − θ)−2 < 0 for all θ ∈ Ω and
s ∈ S. And, on the boundary as θ → 0 or θ → 1, the likelihood goes to 0. Hence,
the solution to the Score Equation must be a global maximum, so θ̂ = 1/3.
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3. Let Ω = (0,∞), S = [6,∞), and Pθ = Uniform[6, 5θ + 6] for θ ∈ Ω. Suppose we
observe the observations x1, x2, . . . , xn, with xi ≥ 6 for all i.

(a) Compute (with full explanation) the MLE, θ̂, for θ.

Solution. The density of Pθ is equal to 1/5θ for 6 ≤ xi ≤ 5θ + 6, otherwise 0.
Hence, the likelihood function L(θ |x1, . . . , xn) is equal to (1/5θ)n provided that
6 ≤ xi ≤ 5θ + 6 for all i, i.e. max1≤i≤n xi ≤ 5θ + 6, otherwise it equals 0.
Hence, the likelihood is maximised when (1/5θ)n is as large as possible (i.e., θ is
as small as possible), subject to the constraint that max1≤i≤n xi ≤ 5θ + 6, i.e.
5θ + 6 ≥ max1≤i≤n xi, i.e. θ ≥

[(
max1≤i≤n xi

)
− 6

]
/5. The smallest θ satisfying

this constraint is θ̂ =
[(

max1≤i≤n xi

)
− 6

]
/5 = 1

5

[
max1≤i≤n(xi − 6)

]
, which is

the MLE.

(b) Compute (with explanation) the MLE for θ2.

Solution. Since the mapping θ 7→ θ2 is 1–1 on S, we can use the “Plug-
In Estimator” as the MLE for θ2. Thus the MLE for θ2 is equal to (θ̂)2 =(

1
5

[
max1≤i≤n(xi − 6)

])2

= 1
25

[
max1≤i≤n(xi − 6)2

]
.

4. Suppose we observe three observations: x1 = 2, x2 = 3, x3 = 7.

(a) Compute x and S2. [Provide actual numbers, not just formulae.]

Solution. x = 1
3 [2 + 3 + 7] = 12/3 = 4.

S2 = 1
3−1 [(2− 4)2 + (3− 4)2 + (7− 4)2] = 1

2 [4 + 1 + 9] = 14/2 = 7.

(b) Suppose the statistical model is a Location-Scale Model, with Ω = R × (0,∞),
and P(µ,σ2) = N(µ, σ2) for (µ, σ2) ∈ Ω. Compute (with explanation) a 95% confidence
interval for µ. [You should provide an explicit numerical formula, but you do not need
to simplify arithmetic expressions. You may use the facts that if T2 ∼ t(2), T3 ∼ t(3),
and T4 ∼ t(4), then P [T2 ≤ −2.92] .= P [T3 ≤ −2.35] .= P [T4 ≤ −2.13] .= 0.05, and
P [T2 ≤ −4.30] .= P [T3 ≤ −3.18] .= P [T4 ≤ −2.78] .= 0.025.]

Solution. We know that under Pθ, T ≡
√

n/S2 (X − µ) ∼ t(n − 1), i.e. T ≡√
3/7 (X−µ) ∼ t(2). Hence, P [−4.30 < T < +4.30] = 1−P [T ≤ −4.30]−P [T ≥

+4.30] = 1 − 2 P [T ≤ −4.30] .= 1 − 2(0.025) = 0.95. Thus, 0.95 = P [−4.30 <√
3/7 (X−µ) < +4.30] = P [X−4.30

√
7/3 < µ < X−4.30

√
7/3]. Hence, a 95%

C.I. is (x − 4.30
√

7/3, x + 4.30
√

7/3) = (4 − 4.30
√

7/3, 4 + 4.30
√

7/3). [This
equals (−2.57, 10.57), but you don’t need to compute that.]

(c) Suppose the statistical model is a Location Model, with Ω = R, and Pθ = N(θ, 4) for
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θ ∈ Ω. Compute (with explanation) a P-value for the null hypothesis H0 : θ = 6 versus the
alternative hypothesis H1 : θ 6= 6. [You may leave your answer in terms of the Φ function.]

Solution. We know that under P6, Z ≡
√

n/σ2 (X − 6) =
√

3/4 (X − 6) ∼
N(0, 1). The observed value of Z was

√
3/4 (4 − 6) = −

√
3. The probability

(under P6) of observing a value which is at least as surprising, is equal to P [|Z| ≥√
3] = 2 Φ(−

√
3). [This equals 0.0833, but you don’t need to compute that.]

5. Let Ω = S = R, with Pθ = Uniform[θ − 3, θ + 3] for θ ∈ Ω. Suppose we observe
x1, x2, . . . , x100, and that x = 11.

(a) Find C1 > 0 and C2 (which may depend on θ, but may not depend on x1, . . . , x100)
such that if Z = C1(X−C2), then under Pθ, Z has mean 0 and variance 1. [Here X stands
for the corresponding random variable, as opposed to the observed value x. Also, recall
that the Uniform[a, b] distribution has mean (a + b)/2, and variance (b− a)2/12.]

Solution. Here Pθ has mean [(θ−3)+(θ+3)]/2 = θ, and variance [(θ+3)−(θ−
3)]2/12 = 62/12 = 36/12 = 3. Hence, X has mean θ and variance 3/n = 3/100.
Hence, if C1 = 1/

√
3/100 = 10/

√
3 and C2 = θ, then Z = C1(X − C2) =

10(X − θ)/
√

3 has mean 0 and variance 1 under Pθ.

(b) Compute (with explanation) an approximate 95% confidence interval for θ. [Hint:
Use the C.L.T.]

Solution. Since n = 100 is reasonably large, we can use the C.L.T. approxi-
mation to conclude that under Pθ, Z ≈ N(0, 1), i.e. 10(X − θ)/

√
3 ≈ N(0, 1).

Thus 0.95 .= P [−1.96 < (X − θ)(10/
√

3) < +1.96] = P [X − (
√

3/10) 1.96 <
θ < X + (

√
3/10) 1.96]. Hence, a 95% C.I. is (x− 1.96

√
3/10, x + 1.96

√
3/10) =

(11− 0.196
√

3, 11+0.196
√

3). [This equals (10.66, 11.34), but you don’t need to
compute that.]

6. Suppose Ω = S = R, and we observe two observations x1 and x2, and the likelihood
function is given by L(θ |x1, x2) = exp[(x1 − θ)2] exp[2θx2]. Let T (x1, x2) = x1 − x2.

(a) Is T a sufficient statistic for θ? (Explain your reasoning.)

Solution. Yes, T is sufficient. Indeed, L(θ |x1, x2) = exp[(x1 − θ)2 + 2θx2] =
exp[x2

1−2θx1 + θ2 +2θx2] = exp[x2
1 + θ2−2θT (x1, x2)] = h(x1, x2) gθ(T (x1, x2)),

where h(x1, x2) = exp[x2
1], and gθ(t) = exp[θ2−2θt]. Hence, by the Factorisation

Theorem, T is sufficient.

(b) Is T a minimal sufficient statistic for θ? (Explain your reasoning.)

Solution. Yes, T is minimal.
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Proof #1: Indeed, if L(θ |x1, x2) = K L(θ | y1, y2) for all θ ∈ Ω, then

L(1 |x1, x2)/L(1 | y1, y2) = L(0 |x1, x2)/L(0 | y1, y2) .

Hence,
L(1 |x1, x2)/L(0 |x1, x2) = L(1 | y1, y2)/L(0 | y1, y2) ,

i.e.

exp[x2
1 + 12 − 2(1)T (x1, x2)]/ exp[x2

1 + 02 − 2(0)T (x1, x2)]

= exp[y2
1 + 12 − 2(1)T (y1, y2)]/ exp[y2

1 + 02 − 2(0)T (y1, y2)] ,

i.e. exp[1 − 2 T (x1, x2)] = exp[1 − 2 T (y1, y2)]. It follows that 1 − 2T (x1, x2) =
1− 2T (y1, y2), and so T (x1, x2) = T (y1, y2). Hence, T is minimal.

Proof #2: If L(θ |x1, x2) = K L(θ | y1, y2) for all θ ∈ Ω, then S(θ |x1, x2) =
S(θ | y1, y2), i.e. 2θ−2θT (x1, x2) = 2θ−2θT (y1, y2), and so T (x1, x2) = T (y1, y2).
Hence, T is minimal.

Proof #3: The solution to the Score Equation is θ = T (x1, x2). Hence, since
equivalent likelihoods have the same Score Equation, they also have the same
value of T . Hence, T is minimal.
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