STA 261S, Winter 2004, Test #1

(February 11, 2004. Duration: 100 minutes.)

SOLUTIONS

1. Let $\Omega = S = [0, 1]$, and let $L_0(\theta | s) = e^{\theta}$. Determine (with explanation) whether or not each of the following likelihood functions is <u>equivalent</u> to the likelihood function $L_0(\theta | s)$.

(a) $L_1(\theta \,|\, s) = s^2 + e^{\theta}$.

Solution. Here $\frac{L_1(\theta \mid s)}{L_0(\theta \mid s)} = \frac{s^2 + e^{\theta}}{e^{\theta}} = s^2 e^{-\theta} + 1$, which depends on θ . Hence, L_1 is <u>NOT</u> equivalent to L_0 .

(b) $L_2(\theta \,|\, s) = e^{s^2 + \theta}.$

Solution. Here $\frac{L_2(\theta \mid s)}{L_0(\theta \mid s)} = \frac{e^{s^2 + \theta}}{e^{\theta}} = e^{s^2}$, which does not depend on θ . Hence, L_2 <u>IS</u> equivalent to L_0 .

(c)
$$L_3(\theta \mid s) = e^{s^2 \theta}$$
.

Solution. Here $\frac{L_3(\theta \mid s)}{L_0(\theta \mid s)} = \frac{e^{s^2\theta}}{e^{\theta}} = e^{(s^2-1)\theta}$, which depends on θ . Hence, L_3 is <u>NOT</u> equivalent to L_0 .

2. Let $\Omega = S = (0, 1)$. Suppose the likelihood function, given an observation $s \in S$, is given by $L(\theta | s) = \theta^{2s} (1 - \theta)^{4s}$, for $\theta \in \Omega$.

(a) Compute (with explanation) the Score Function for this likelihood.

Solution. Here $\ell(\theta | s) = \log L(\theta | s) = 2s \log(\theta) + 4s \log(1 - \theta)$, so the Score Function is $S(\theta | s) = \frac{\partial}{\partial \theta} \ell(\theta | s) = \frac{2s}{\theta} - \frac{4s}{1-\theta}$.

(b) Solve (with explanation) the corresponding Score Equation.

Solution. The Score Equation is $S(\theta | s) = 0$, which is equivalent to $2s(1-\theta) - 4s(\theta) = 0$, or $\theta = 2s/6s = 1/3$.

(c) Determine (with explanation) the MLE, $\hat{\theta}$, for θ .

Solution. Here the derivative $S(\theta | s)$ is well-defined throughout Ω . And, the second derivative $(\frac{\partial}{\partial \theta})^2 \ell(\theta | s) = -2s\theta^{-2} - 4s(1-\theta)^{-2} < 0$ for all $\theta \in \Omega$ and $s \in S$. And, on the boundary as $\theta \to 0$ or $\theta \to 1$, the likelihood goes to 0. Hence, the solution to the Score Equation must be a global maximum, so $\hat{\theta} = 1/3$.

3. Let $\Omega = (0, \infty)$, $S = [6, \infty)$, and $P_{\theta} = \text{Uniform}[6, 5\theta + 6]$ for $\theta \in \Omega$. Suppose we observe the observations x_1, x_2, \ldots, x_n , with $x_i \ge 6$ for all i.

(a) Compute (with full explanation) the MLE, $\hat{\theta}$, for θ .

Solution. The density of P_{θ} is equal to $1/5\theta$ for $6 \le x_i \le 5\theta + 6$, otherwise 0. Hence, the likelihood function $L(\theta | x_1, \ldots, x_n)$ is equal to $(1/5\theta)^n$ provided that $6 \le x_i \le 5\theta + 6$ for all *i*, i.e. $\max_{1\le i\le n} x_i \le 5\theta + 6$, otherwise it equals 0. Hence, the likelihood is maximised when $(1/5\theta)^n$ is as large as possible (i.e., θ is as small as possible), subject to the constraint that $\max_{1\le i\le n} x_i \le 5\theta + 6$, i.e. $5\theta + 6 \ge \max_{1\le i\le n} x_i$, i.e. $\theta \ge [(\max_{1\le i\le n} x_i) - 6]/5$. The smallest θ satisfying this constraint is $\hat{\theta} = [(\max_{1\le i\le n} x_i) - 6]/5 = \frac{1}{5}[\max_{1\le i\le n} (x_i - 6)]$, which is the MLE.

(b) Compute (with explanation) the MLE for θ^2 .

Solution. Since the mapping $\theta \mapsto \theta^2$ is 1–1 on *S*, we can use the "Plug-In Estimator" as the MLE for θ^2 . Thus the MLE for θ^2 is equal to $(\hat{\theta})^2 = \left(\frac{1}{5}\left[\max_{1\leq i\leq n}(x_i-6)\right]\right)^2 = \frac{1}{25}\left[\max_{1\leq i\leq n}(x_i-6)^2\right].$

- 4. Suppose we observe three observations: $x_1 = 2, x_2 = 3, x_3 = 7$.
- (a) Compute \overline{x} and S^2 . [Provide actual numbers, not just formulae.]

Solution.
$$\overline{x} = \frac{1}{3}[2+3+7] = \frac{12}{3} = 4.$$

 $S^2 = \frac{1}{3-1}[(2-4)^2 + (3-4)^2 + (7-4)^2] = \frac{1}{2}[4+1+9] = \frac{14}{2} = 7.$

(b) Suppose the statistical model is a Location-Scale Model, with $\Omega = \mathbf{R} \times (0, \infty)$, and $P_{(\mu,\sigma^2)} = N(\mu,\sigma^2)$ for $(\mu,\sigma^2) \in \Omega$. Compute (with explanation) a 95% confidence interval for μ . [You should provide an explicit numerical formula, but you do not need to simplify arithmetic expressions. You may use the facts that if $T_2 \sim t(2)$, $T_3 \sim t(3)$, and $T_4 \sim t(4)$, then $P[T_2 \leq -2.92] \doteq P[T_3 \leq -2.35] \doteq P[T_4 \leq -2.13] \doteq 0.05$, and $P[T_2 \leq -4.30] \doteq P[T_3 \leq -3.18] \doteq P[T_4 \leq -2.78] \doteq 0.025$.]

Solution. We know that under P_{θ} , $T \equiv \sqrt{n/S^2} (\overline{X} - \mu) \sim t(n-1)$, i.e. $T \equiv \sqrt{3/7} (\overline{X} - \mu) \sim t(2)$. Hence, $P[-4.30 < T < +4.30] = 1 - P[T \le -4.30] - P[T \ge +4.30] = 1 - 2P[T \le -4.30] \doteq 1 - 2(0.025) = 0.95$. Thus, $0.95 = P[-4.30 < \sqrt{3/7} (\overline{X} - \mu) < +4.30] = P[\overline{X} - 4.30\sqrt{7/3} < \mu < \overline{X} - 4.30\sqrt{7/3}]$. Hence, a 95% C.I. is $(\overline{x} - 4.30\sqrt{7/3}, \overline{x} + 4.30\sqrt{7/3}) = (4 - 4.30\sqrt{7/3}, 4 + 4.30\sqrt{7/3})$. [This equals (-2.57, 10.57), but you don't need to compute that.]

(c) Suppose the statistical model is a Location Model, with $\Omega = \mathbf{R}$, and $P_{\theta} = N(\theta, 4)$ for

 $\theta \in \Omega$. Compute (with explanation) a P-value for the null hypothesis $H_0: \theta = 6$ versus the alternative hypothesis $H_1: \theta \neq 6$. [You may leave your answer in terms of the Φ function.]

Solution. We know that under P_6 , $Z \equiv \sqrt{n/\sigma^2} (\overline{X} - 6) = \sqrt{3/4} (\overline{X} - 6) \sim N(0,1)$. The observed value of Z was $\sqrt{3/4} (4-6) = -\sqrt{3}$. The probability (under P_6) of observing a value which is at least as surprising, is equal to $P[|Z| \geq \sqrt{3}] = 2 \Phi(-\sqrt{3})$. [This equals 0.0833, but you don't need to compute that.]

5. Let $\Omega = S = \mathbf{R}$, with $P_{\theta} = \text{Uniform}[\theta - 3, \theta + 3]$ for $\theta \in \Omega$. Suppose we observe $x_1, x_2, \ldots, x_{100}$, and that $\overline{x} = 11$.

(a) Find $C_1 > 0$ and C_2 (which may depend on θ , but may not depend on x_1, \ldots, x_{100}) such that if $Z = C_1(\overline{X} - C_2)$, then under P_{θ} , Z has mean 0 and variance 1. [Here \overline{X} stands for the corresponding random variable, as opposed to the observed value \overline{x} . Also, recall that the Uniform [a, b] distribution has mean (a + b)/2, and variance $(b - a)^2/12$.]

Solution. Here P_{θ} has mean $[(\theta-3)+(\theta+3)]/2 = \theta$, and variance $[(\theta+3)-(\theta-3)]^2/12 = 6^2/12 = 36/12 = 3$. Hence, \overline{X} has mean θ and variance 3/n = 3/100. Hence, if $C_1 = 1/\sqrt{3/100} = 10/\sqrt{3}$ and $C_2 = \theta$, then $Z = C_1(\overline{X} - C_2) = 10(\overline{X} - \theta)/\sqrt{3}$ has mean θ and variance 1 under P_{θ} .

(b) Compute (with explanation) an approximate 95% confidence interval for θ . [Hint: Use the C.L.T.]

Solution. Since n = 100 is reasonably large, we can use the C.L.T. approximation to conclude that under P_{θ} , $Z \approx N(0,1)$, i.e. $10(\overline{X} - \theta)/\sqrt{3} \approx N(0,1)$. Thus $0.95 \doteq P[-1.96 < (\overline{X} - \theta)(10/\sqrt{3}) < +1.96] = P[\overline{X} - (\sqrt{3}/10) 1.96 < \theta < \overline{X} + (\sqrt{3}/10) 1.96]$. Hence, a 95% C.I. is $(\overline{x} - 1.96\sqrt{3}/10, \overline{x} + 1.96\sqrt{3}/10) = (11 - 0.196\sqrt{3}, 11 + 0.196\sqrt{3})$. [This equals (10.66, 11.34), but you don't need to compute that.]

6. Suppose $\Omega = S = \mathbf{R}$, and we observe two observations x_1 and x_2 , and the likelihood function is given by $L(\theta \mid x_1, x_2) = \exp[(x_1 - \theta)^2] \exp[2\theta x_2]$. Let $T(x_1, x_2) = x_1 - x_2$.

(a) Is T a sufficient statistic for θ ? (Explain your reasoning.)

Solution. Yes, T is sufficient. Indeed, $L(\theta | x_1, x_2) = \exp[(x_1 - \theta)^2 + 2\theta x_2] = \exp[x_1^2 - 2\theta x_1 + \theta^2 + 2\theta x_2] = \exp[x_1^2 + \theta^2 - 2\theta T(x_1, x_2)] = h(x_1, x_2) g_{\theta}(T(x_1, x_2))$, where $h(x_1, x_2) = \exp[x_1^2]$, and $g_{\theta}(t) = \exp[\theta^2 - 2\theta t]$. Hence, by the Factorisation Theorem, T is sufficient.

(b) Is T a minimal sufficient statistic for θ ? (Explain your reasoning.)

Solution. Yes, T is minimal.

Proof #1: Indeed, if $L(\theta | x_1, x_2) = K L(\theta | y_1, y_2)$ for all $\theta \in \Omega$, then

 $L(1 | x_1, x_2) / L(1 | y_1, y_2) = L(0 | x_1, x_2) / L(0 | y_1, y_2).$

Hence,

$$L(1 | x_1, x_2) / L(0 | x_1, x_2) = L(1 | y_1, y_2) / L(0 | y_1, y_2),$$

i.e.

$$\exp[x_1^2 + 1^2 - 2(1)T(x_1, x_2)] / \exp[x_1^2 + 0^2 - 2(0)T(x_1, x_2)]$$
$$= \exp[y_1^2 + 1^2 - 2(1)T(y_1, y_2)] / \exp[y_1^2 + 0^2 - 2(0)T(y_1, y_2)]$$

,

i.e. $\exp[1 - 2T(x_1, x_2)] = \exp[1 - 2T(y_1, y_2)]$. It follows that $1 - 2T(x_1, x_2) = 1 - 2T(y_1, y_2)$, and so $T(x_1, x_2) = T(y_1, y_2)$. Hence, T is minimal.

Proof #2: If $L(\theta | x_1, x_2) = K L(\theta | y_1, y_2)$ for all $\theta \in \Omega$, then $S(\theta | x_1, x_2) = S(\theta | y_1, y_2)$, i.e. $2\theta - 2\theta T(x_1, x_2) = 2\theta - 2\theta T(y_1, y_2)$, and so $T(x_1, x_2) = T(y_1, y_2)$. Hence, T is minimal.

Proof #3: The solution to the Score Equation is $\theta = T(x_1, x_2)$. Hence, since equivalent likelihoods have the same Score Equation, they also have the same value of T. Hence, T is minimal.