STA 261S, Winter 2004, Test \#1

(February 11, 2004. Duration: 100 minutes.)

SOLUTIONS

1. Let $\Omega=S=[0,1]$, and let $L_{0}(\theta \mid s)=e^{\theta}$. Determine (with explanation) whether or not each of the following likelihood functions is equivalent to the likelihood function $L_{0}(\theta \mid s)$.
(a) $L_{1}(\theta \mid s)=s^{2}+e^{\theta}$.

Solution. Here $\frac{L_{1}(\theta \mid s)}{L_{0}(\theta \mid s)}=\frac{s^{2}+e^{\theta}}{e^{\theta}}=s^{2} e^{-\theta}+1$, which depends on θ. Hence, L_{1} is NOT equivalent to L_{0}.
(b) $\quad L_{2}(\theta \mid s)=e^{s^{2}+\theta}$.

Solution. Here $\frac{L_{2}(\theta \mid s)}{L_{0}(\theta \mid s)}=\frac{e^{s^{2}+\theta}}{e^{\theta}}=e^{s^{2}}$, which does not depend on θ. Hence, L_{2} IS equivalent to L_{0}.
(c) $L_{3}(\theta \mid s)=e^{s^{2} \theta}$.

Solution. Here $\frac{L_{3}(\theta \mid s)}{L_{0}(\theta \mid s)}=\frac{e^{s^{2} \theta}}{e^{\theta}}=e^{\left(s^{2}-1\right) \theta}$, which depends on θ. Hence, L_{3} is NOT equivalent to L_{0}.
2. Let $\Omega=S=(0,1)$. Suppose the likelihood function, given an observation $s \in S$, is given by $L(\theta \mid s)=\theta^{2 s}(1-\theta)^{4 s}$, for $\theta \in \Omega$.
(a) Compute (with explanation) the Score Function for this likelihood.

Solution. Here $\ell(\theta \mid s)=\log L(\theta \mid s)=2 s \log (\theta)+4 s \log (1-\theta)$, so the Score Function is $S(\theta \mid s)=\frac{\partial}{\partial \theta} \ell(\theta \mid s)=\frac{2 s}{\theta}-\frac{4 s}{1-\theta}$.
(b) Solve (with explanation) the corresponding Score Equation.

Solution. The Score Equation is $S(\theta \mid s)=0$, which is equivalent to $2 s(1-\theta)-$ $4 s(\theta)=0$, or $\theta=2 s / 6 s=1 / 3$.
(c) Determine (with explanation) the MLE, $\hat{\theta}$, for θ.

Solution. Here the derivative $S(\theta \mid s)$ is well-defined throughout Ω. And, the second derivative $\left(\frac{\partial}{\partial \theta}\right)^{2} \ell(\theta \mid s)=-2 s \theta^{-2}-4 s(1-\theta)^{-2}<0$ for all $\theta \in \Omega$ and $s \in S$. And, on the boundary as $\theta \rightarrow 0$ or $\theta \rightarrow 1$, the likelihood goes to 0 . Hence, the solution to the Score Equation must be a global maximum, so $\hat{\theta}=1 / 3$.
3. Let $\Omega=(0, \infty), S=[6, \infty)$, and $P_{\theta}=\operatorname{Uniform}[6,5 \theta+6]$ for $\theta \in \Omega$. Suppose we observe the observations $x_{1}, x_{2}, \ldots, x_{n}$, with $x_{i} \geq 6$ for all i.
(a) Compute (with full explanation) the MLE, $\hat{\theta}$, for θ.

Solution. The density of P_{θ} is equal to $1 / 5 \theta$ for $6 \leq x_{i} \leq 5 \theta+6$, otherwise 0 . Hence, the likelihood function $L\left(\theta \mid x_{1}, \ldots, x_{n}\right)$ is equal to $(1 / 5 \theta)^{n}$ provided that $6 \leq x_{i} \leq 5 \theta+6$ for all i, i.e. $\max _{1 \leq i \leq n} x_{i} \leq 5 \theta+6$, otherwise it equals 0 . Hence, the likelihood is maximised when $(1 / 5 \theta)^{n}$ is as large as possible (i.e., θ is as small as possible), subject to the constraint that $\max _{1 \leq i \leq n} x_{i} \leq 5 \theta+6$, i.e. $5 \theta+6 \geq \max _{1 \leq i \leq n} x_{i}$, i.e. $\theta \geq\left[\left(\max _{1 \leq i \leq n} x_{i}\right)-6\right] / 5$. The smallest θ satisfying this constraint is $\hat{\theta}=\left[\left(\max _{1 \leq i \leq n} x_{i}\right)-6\right] / 5=\frac{1}{5}\left[\max _{1 \leq i \leq n}\left(x_{i}-6\right)\right]$, which is the MLE.
(b) Compute (with explanation) the MLE for θ^{2}.

Solution. Since the mapping $\theta \mapsto \theta^{2}$ is $1-1$ on S, we can use the "PlugIn Estimator" as the MLE for θ^{2}. Thus the MLE for θ^{2} is equal to $(\hat{\theta})^{2}=$ $\left(\frac{1}{5}\left[\max _{1 \leq i \leq n}\left(x_{i}-6\right)\right]\right)^{2}=\frac{1}{25}\left[\max _{1 \leq i \leq n}\left(x_{i}-6\right)^{2}\right]$.
4. Suppose we observe three observations: $x_{1}=2, x_{2}=3, x_{3}=7$.
(a) Compute \bar{x} and S^{2}. [Provide actual numbers, not just formulae.]

Solution. $\quad \bar{x}=\frac{1}{3}[2+3+7]=12 / 3=4$.
$S^{2}=\frac{1}{3-1}\left[(2-4)^{2}+(3-4)^{2}+(7-4)^{2}\right]=\frac{1}{2}[4+1+9]=14 / 2=7$.
(b) Suppose the statistical model is a Location-Scale Model, with $\Omega=\mathbf{R} \times(0, \infty)$, and $P_{\left(\mu, \sigma^{2}\right)}=N\left(\mu, \sigma^{2}\right)$ for $\left(\mu, \sigma^{2}\right) \in \Omega$. Compute (with explanation) a 95% confidence interval for μ. [You should provide an explicit numerical formula, but you do not need to simplify arithmetic expressions. You may use the facts that if $T_{2} \sim t(2), T_{3} \sim t(3)$, and $T_{4} \sim t(4)$, then $P\left[T_{2} \leq-2.92\right] \doteq P\left[T_{3} \leq-2.35\right] \doteq P\left[T_{4} \leq-2.13\right] \doteq 0.05$, and $\left.P\left[T_{2} \leq-4.30\right] \doteq P\left[T_{3} \leq-3.18\right] \doteq P\left[T_{4} \leq-2.78\right] \doteq 0.025.\right]$

Solution. We know that under $P_{\theta}, T \equiv \sqrt{n / S^{2}}(\bar{X}-\mu) \sim t(n-1)$, i.e. $T \equiv$ $\sqrt{3 / 7}(\bar{X}-\mu) \sim t(2)$. Hence, $P[-4.30<T<+4.30]=1-P[T \leq-4.30]-P[T \geq$ $+4.30]=1-2 P[T \leq-4.30] \doteq 1-2(0.025)=0.95$. Thus, $0.95=P[-4.30<$ $\sqrt{3 / 7}(\bar{X}-\mu)<+4.30]=P[\bar{X}-4.30 \sqrt{7 / 3}<\mu<\bar{X}-4.30 \sqrt{7 / 3}]$. Hence, a 95% C.I. is $(\bar{x}-4.30 \sqrt{7 / 3}, \bar{x}+4.30 \sqrt{7 / 3})=(4-4.30 \sqrt{7 / 3}, 4+4.30 \sqrt{7 / 3})$. [This equals ($-2.57,10.57$), but you don't need to compute that.]
(c) Suppose the statistical model is a Location Model, with $\Omega=\mathbf{R}$, and $P_{\theta}=N(\theta, 4)$ for
$\theta \in \Omega$. Compute (with explanation) a P-value for the null hypothesis $H_{0}: \theta=6$ versus the alternative hypothesis $H_{1}: \theta \neq 6$. [You may leave your answer in terms of the Φ function.]

Solution. We know that under $P_{6}, Z \equiv \sqrt{n / \sigma^{2}}(\bar{X}-6)=\sqrt{3 / 4}(\bar{X}-6) \sim$ $N(0,1)$. The observed value of Z was $\sqrt{3 / 4}(4-6)=-\sqrt{3}$. The probability (under P_{6}) of observing a value which is at least as surprising, is equal to $P[|Z| \geq$ $\sqrt{3}]=2 \Phi(-\sqrt{3})$. [This equals 0.0833 , but you don't need to compute that.]
5. Let $\Omega=S=\mathbf{R}$, with $P_{\theta}=\operatorname{Uniform}[\theta-3, \theta+3]$ for $\theta \in \Omega$. Suppose we observe $x_{1}, x_{2}, \ldots, x_{100}$, and that $\bar{x}=11$.
(a) Find $C_{1}>0$ and C_{2} (which may depend on θ, but may not depend on x_{1}, \ldots, x_{100}) such that if $Z=C_{1}\left(\bar{X}-C_{2}\right)$, then under P_{θ}, Z has mean 0 and variance 1. [Here \bar{X} stands for the corresponding random variable, as opposed to the observed value \bar{x}. Also, recall that the Uniform $[a, b]$ distribution has mean $(a+b) / 2$, and variance $(b-a)^{2} / 12$.]

Solution. Here P_{θ} has mean $[(\theta-3)+(\theta+3)] / 2=\theta$, and variance $[(\theta+3)-(\theta-$ $3)]^{2} / 12=6^{2} / 12=36 / 12=3$. Hence, \bar{X} has mean θ and variance $3 / n=3 / 100$. Hence, if $C_{1}=1 / \sqrt{3 / 100}=10 / \sqrt{3}$ and $C_{2}=\theta$, then $Z=C_{1}\left(\bar{X}-C_{2}\right)=$ $10(\bar{X}-\theta) / \sqrt{3}$ has mean 0 and variance 1 under P_{θ}.
(b) Compute (with explanation) an approximate 95% confidence interval for θ. [Hint: Use the C.L.T.]

Solution. Since $n=100$ is reasonably large, we can use the C.L.T. approximation to conclude that under $P_{\theta}, Z \approx N(0,1)$, i.e. $10(\bar{X}-\theta) / \sqrt{3} \approx N(0,1)$. Thus $0.95 \doteq P[-1.96<(\bar{X}-\theta)(10 / \sqrt{3})<+1.96]=P[\bar{X}-(\sqrt{3} / 10) 1.96<$ $\theta<\bar{X}+(\sqrt{3} / 10) 1.96]$. Hence, a 95% C.I. is $(\bar{x}-1.96 \sqrt{3} / 10, \bar{x}+1.96 \sqrt{3} / 10)=$ ($11-0.196 \sqrt{3}, 11+0.196 \sqrt{3}$). [This equals $(10.66,11.34)$, but you don't need to compute that.]
6. Suppose $\Omega=S=\mathbf{R}$, and we observe two observations x_{1} and x_{2}, and the likelihood function is given by $L\left(\theta \mid x_{1}, x_{2}\right)=\exp \left[\left(x_{1}-\theta\right)^{2}\right] \exp \left[2 \theta x_{2}\right]$. Let $T\left(x_{1}, x_{2}\right)=x_{1}-x_{2}$.
(a) Is T a sufficient statistic for θ ? (Explain your reasoning.)

Solution. Yes, T is sufficient. Indeed, $L\left(\theta \mid x_{1}, x_{2}\right)=\exp \left[\left(x_{1}-\theta\right)^{2}+2 \theta x_{2}\right]=$ $\exp \left[x_{1}^{2}-2 \theta x_{1}+\theta^{2}+2 \theta x_{2}\right]=\exp \left[x_{1}^{2}+\theta^{2}-2 \theta T\left(x_{1}, x_{2}\right)\right]=h\left(x_{1}, x_{2}\right) g_{\theta}\left(T\left(x_{1}, x_{2}\right)\right)$, where $h\left(x_{1}, x_{2}\right)=\exp \left[x_{1}^{2}\right]$, and $g_{\theta}(t)=\exp \left[\theta^{2}-2 \theta t\right]$. Hence, by the Factorisation Theorem, T is sufficient.
(b) Is T a minimal sufficient statistic for θ ? (Explain your reasoning.)

Solution. Yes, T is minimal.

Proof \#1: Indeed, if $L\left(\theta \mid x_{1}, x_{2}\right)=K L\left(\theta \mid y_{1}, y_{2}\right)$ for all $\theta \in \Omega$, then

$$
L\left(1 \mid x_{1}, x_{2}\right) / L\left(1 \mid y_{1}, y_{2}\right)=L\left(0 \mid x_{1}, x_{2}\right) / L\left(0 \mid y_{1}, y_{2}\right) .
$$

Hence,

$$
L\left(1 \mid x_{1}, x_{2}\right) / L\left(0 \mid x_{1}, x_{2}\right)=L\left(1 \mid y_{1}, y_{2}\right) / L\left(0 \mid y_{1}, y_{2}\right),
$$

i.e.

$$
\begin{aligned}
\exp \left[x_{1}^{2}\right. & \left.+1^{2}-2(1) T\left(x_{1}, x_{2}\right)\right] / \exp \left[x_{1}^{2}+0^{2}-2(0) T\left(x_{1}, x_{2}\right)\right] \\
& =\exp \left[y_{1}^{2}+1^{2}-2(1) T\left(y_{1}, y_{2}\right)\right] / \exp \left[y_{1}^{2}+0^{2}-2(0) T\left(y_{1}, y_{2}\right)\right]
\end{aligned}
$$

i.e. $\exp \left[1-2 T\left(x_{1}, x_{2}\right)\right]=\exp \left[1-2 T\left(y_{1}, y_{2}\right)\right]$. It follows that $1-2 T\left(x_{1}, x_{2}\right)=$ $1-2 T\left(y_{1}, y_{2}\right)$, and so $T\left(x_{1}, x_{2}\right)=T\left(y_{1}, y_{2}\right)$. Hence, T is minimal.

Proof \#2: If $L\left(\theta \mid x_{1}, x_{2}\right)=K L\left(\theta \mid y_{1}, y_{2}\right)$ for all $\theta \in \Omega$, then $S\left(\theta \mid x_{1}, x_{2}\right)=$ $S\left(\theta \mid y_{1}, y_{2}\right)$, i.e. $2 \theta-2 \theta T\left(x_{1}, x_{2}\right)=2 \theta-2 \theta T\left(y_{1}, y_{2}\right)$, and so $T\left(x_{1}, x_{2}\right)=T\left(y_{1}, y_{2}\right)$. Hence, T is minimal.

Proof \#3: The solution to the Score Equation is $\theta=T\left(x_{1}, x_{2}\right)$. Hence, since equivalent likelihoods have the same Score Equation, they also have the same value of T. Hence, T is minimal.

