STA 261S, Winter 2004, Test #1
(February 11, 2004. Duration: 100 minutes.)

SOLUTIONS

1. Let Q=S =[0,1], and let Ly(0|s) = e’. Determine (with explanation) whether
or not each of the following likelihood functions is equivalent to the likelihood function
L0(9 | S).

(a) Li(0]s)=s%+¢e’.

Solution. Here i;ggiz% = 52;;69 = s?2e~% + 1, which depends on 0. Hence, L,

is NOT equivalent to L.

(b) Ly(0]s) =es+0.

. Ly(0]s) _ es2t0 g2 -
Solution. Here To@]s) — o = € which does not depend on 6. Hence,
Lo IS equivalent to Ly.
(c) Ls(0]s)=e".
S2
Solution. Here iﬁgg:g = 6699 = 6(82_1)9, which depends on 0. Hence, L3 is

NOT equivalent to Lyg.

2. LetQ=08= (

1). Suppose the likelihood function, given an observation s € S, is
given by L(6|s) = 0*(1 —

)45, for 6 € Q.
(a) Compute (with explanation) the Score Function for this likelihood.

Solution. Here ¢(f]s) = lo gL(@\ s) = 2slog(6) + 4slog(1 — 6), so the Score
Function is S(@]s)zai @]s)=2% 2s 4s

1-6°

(b) Solve (with explanation) the corresponding Score Equation.

Solution. The Score Equation is S(6|s) = 0, which is equivalent to 2s(1—0) —
4s(0) =0, or 0 = 2s/6s = 1/3.

(c) Determine (with explanation) the MLE, 6, for 6.
Solution. Here the derivative S(0|s) is well-defined throughout Q. And, the
second derivative (2)20(0]s) = —2s072 — 4s(1 — 0)~2 < 0 for all § € Q and
s € S. And, on the boundary as § — 0 or  — 1, the likelihood goes to 0. Hence,

the solution to the Score Equation must be a global maximum, so 6 = 1/3.
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3. Let Q = (0,00), S = [6,00), and Py = Uniform[6, 56 + 6] for § € €. Suppose we
observe the observations x1, o, ..., x,, with x; > 6 for all .

(a) Compute (with full explanation) the MLE, 6, for 6.

Solution. The density of Py is equal to 1/56 for 6 < z; < 50 + 6, otherwise 0.
Hence, the likelihood function L(0|x1,...,x,) is equal to (1/50)™ provided that
6 < x; < 50+ 6 for all i, i.e. maxj<ij<,T; < 50 + 6, otherwise it equals 0.
Hence, the likelihood is maximised when (1/50)" is as large as possible (i.e., 0 is
as small as possible), subject to the constraint that maxi<;<,z; < 50 + 6, i.e.
50 + 6 > max;<;<p T;, i.e. 0 > [( maxi<;<n xl) — 6] /5. The smallest 0 satisfying
this constraint is 6 = [(maxlgign xl) — 6}/5 = %[maxlgign(xi — 6)}, which is
the MLE.

(b) Compute (with explanation) the MLE for 62.

Solution. Since the mapping 0 — 6% is 1-1 on S, we can use the “Plug-
In Estimator” as the MLE for §2. Thus the MLE for 62 is equal to (0)* =

(% [maxlgign(:ci — 6)])2 = % [maxlgign(a}i — 6)2]-
4. Suppose we observe three observations: z1 =2, o = 3, 3 = 7.
(a) Compute T and S2. [Provide actual numbers, not just formulae.|
Solution. = =1[2+3+7 =12/3=4.
§2= 242+ B-4)2+(T—-4)?|=3[4+1+9 =14/2=T1.

(b) Suppose the statistical model is a Location-Scale Model, with @ = R x (0, 00),
and P, o2y = N(u, o?) for (p,0?) € Q. Compute (with explanation) a 95% confidence
interval for p. [You should provide an explicit numerical formula, but you do not need
to simplify arithmetic expressions. You may use the facts that if Tp ~ t(2), T3 ~ (3),
and Ty ~ t(4), then P[Ty < —2.92] = P[T3 < —2.35] = P[Ty < —2.13] = 0.05, and
P[Ty < —4.30] = P[T5 < —3.18] = P[T} < —2.78] = 0.025.]

Solution. We know that under Py, T = \/n/S2(X — pu) ~ t(n — 1), ie. T =
3/7(X —p) ~ t(2). Hence, P[-4.30 < T < +4.30] = 1—P[T < —4.30]— P[T >
4+4.30) = 1 — 2 P[T < —4.30] = 1 — 2(0.025) = 0.95. Thus, 0.95 = P[-4.30 <
3/7(X —p) < +4.30] = P[X —4.30,/7/3 < u < X —4.30/7/3]. Hence, a 95%
C.L is (T — 4.30\/7/3, T+ 4.30\/7/3) = (4 — 4.30\/7/3, 4 + 4.30/7/3). [This

equals (—2.57, 10.57), but you don’t need to compute that.|

(c) Suppose the statistical model is a Location Model, with Q = R, and Py = N (6,4) for



0 € Q. Compute (with explanation) a P-value for the null hypothesis Hy : 6 = 6 versus the
alternative hypothesis H; : 6 # 6. [You may leave your answer in terms of the ® function.|

Solution. We know that under Ps, Z = \/n/o? (X — 6) = /3/4(X — 6) ~
N(0,1). The observed value of Z was +/3/4(4 — 6) = —/3. The probability

(under Py) of observing a value which is at least as surprising, is equal to P[|Z] >
V3] = 2®(—+/3). [This equals 0.0833, but you don’t need to compute that.]

5. Let Q =S = R, with Py = Uniform[f — 3, 6 + 3] for # € Q. Suppose we observe
T1,T2,...,2100, and that 7 = 11.

(a) Find C; > 0 and Cy (which may depend on 6, but may not depend on z1,...,x100)
such that if Z = C(X —C3), then under Py, Z has mean 0 and variance 1. [Here X stands
for the corresponding random variable, as opposed to the observed value Z. Also, recall
that the Uniform[a, b] distribution has mean (a + b)/2, and variance (b — a)?/12.]

Solution. Here Py has mean [(0—3)+(0+3)]/2 = 0, and variance [(0+3)— (0 —
3)]?/12 = 6*/12 = 36/12 = 3. Hence, X has mean 6 and variance 3/n = 3/100.
Hence, if C; = 1/4/3/100 = 10/v/3 and Cy = 0, then Z = C1(X — Cs) =

10(X — 0)/+/3 has mean 0 and variance 1 under Py.

(b) Compute (with explanation) an approximate 95% confidence interval for 6. [Hint:
Use the C.L.T]

Solution. Since n = 100 is reasonably large, we can use the C.L.T. approxi-
mation to conclude that under Py, Z ~ N(0,1), ie. 10(X — 6)/v/3 ~ N(0,1).
Thus 0.95 = P[-1.96 < (X — 0)(10/v/3) < +1.96] = P[X — (v/3/10)1.96 <
0 < X + (v/3/10) 1.96]. Hence, a 95% C.I. is (T — 1.961/3/10, T + 1.961/3/10) =
(11 —0.196+/3, 114 0.196+/3). [This equals (10.66, 11.34), but you don’t need to
compute that.]

6. Suppose 2 =5 =R, and we observe two observations x; and s, and the likelihood
function is given by L(6|x1,12) = exp[(z1 — 0)?] exp[20xs]. Let T(z1,22) = 11 — 2.

(a) Is T a sufficient statistic for 7 (Explain your reasoning.)
Solution. Yes, T is sufficient. Indeed, L(0|xy,x2) = exp[(x1 — 0)% + 20x5] =
explz? — 20x1 + 02 + 20x5] = explat + 02 — 20T (21, 22)] = h(z1,72) go (T (21, 22)),
where h(x1,x2) = exp[x?], and go(t) = exp[0? — 20t]. Hence, by the Factorisation
Theorem, T is sufficient.

(b) Is T a minimal sufficient statistic for 7 (Explain your reasoning.)

Solution. Yes, T is minimal.



Proof #1: Indeed, if L(0|xz1,22) = K L(0|y1,y2) for all 8 € 2, then

L(1 |z, 22)/L(1|y1,y2) = L(O|21,22)/L(0]y1,y2) -
Hence,
L(1|wy,22)/L(0]x1,22) = L(1|y1,y2)/L(O0]y1,92) ,

explz? 4+ 12 — 2(1)T(x1, z2)]/ exp[z? + 0% — 2(0)T (1, z3)]

= explyi + 17 — 2(1)T(y1, y2)]/ explyi 4+ 0° — 2(0)T (y1,¥2)] ,

ie. exp[l — 2T (x1,22)] = exp[l — 2T (y1,y2)]. It follows that 1 — 2T (z1,x2) =
1 —2T(y1,y2), and so T(x1,z2) = T(y1,y2). Hence, T' is minimal.

Proof #2: If L(0|x1,22) = K L(0|y1,y2) for all 6 € §, then S(0|z1,2z2) =
S(O]y1,y2), i.e. 20 —20T (x1,x2) = 20 — 20T (y1,y2), and so T (x1,x2) = T(y1, y2).
Hence, T' is minimal.

Proof #3: The solution to the Score Equation is § = T(x1,x2). Hence, since
equivalent likelihoods have the same Score Equation, they also have the same
value of T'. Hence, T is minimal.



