
Adaptive Component-wise Multiple-Try
Metropolis Sampling

Jinyoung Yang∗ , Evgeny Levi†, Radu V. Craiu‡ , and Jeffrey S. Rosenthal§

(March 2016; last revised March 2017)

Abstract

One of the most widely used samplers in practice is the component-wise Metropolis-
Hastings (CMH) sampler that updates in turn the components of a vector valued
Markov chain using accept-reject moves generated from a proposal distribution.
When the target distribution of a Markov chain is irregularly shaped, a ‘good’ pro-
posal distribution for one part of the state space might be a ‘poor’ one for another
part of the state space. We consider a component-wise multiple-try Metropolis
(CMTM) algorithm that can automatically choose from a set of candidate moves
sampled from different distributions. The computational efficiency is increased us-
ing an adaptation rule for the CMTM algorithm that dynamically builds a better
set of proposal distributions as the Markov chain runs. The ergodicity of the adap-
tive chain is demonstrated theoretically. The performance is studied via simulations
and real data examples.

Keywords: Adaptive Markov chain Monte Carlo, Component-wise Metropolis-Hastings,
Multiple-try Metropolis.

1 Introduction

Markov chain Monte Carlo (MCMC) methods are widely used to analyze complex prob-
ability distributions, especially within the Bayesian inference paradigm. One of the most
used MCMC algorithms is the Metropolis-Hastings (MH) sampler, first developed by
Metropolis et al. (Metropolis et al., 1953), and later expanded by Hastings (1970). At
each iteration the MH algorithm samples a candidate new state from a proposal distri-
bution which is subsequently accepted or rejected. When the state space of the chain is
high dimensional or irregularly shaped, finding a good proposal distribution that can be

∗Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3G3.
Email: jinyoung.yang@mail.utoronto.edu
†Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3G3.

Email: evgeny@utstat.utoronto.ca
‡Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3G3.

Email: craiu@utstat.utoronto.ca
§Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3G3.

Email: jeff@math.toronto.edu

1

used to update all the components of the chain simultaneously is very challenging, often
impossible. The optimality results for the acceptance rate of the Metropolis-Hastings
algorithm (Gelman et al., 1996; Roberts and Rosenthal, 2001) have inspired the devel-
opment of the so-called adaptive MCMC (AMCMC) samplers that are designed to adapt
their transition kernels based on the gradual information about the target that is col-
lected through the very samples they produce. Successful designs can be found in Haario
et al. (2001), Haario et al. (2006), Turro et al. (2007), Roberts and Rosenthal (2009),
Craiu et al. (2009), Giordani and Kohn (2010), and Vihola (2012) among others. Theo-
retical difficulties arise because the adaptive chains are no longer Markovian so ergodicity
properties must be proven on a case-by-case basis. Attempts at streamlining the theoret-
ical validation process for AMCMC samplers have been increasingly successful including
Atchadé and Rosenthal. (2005), Andrieu and Moulines (2006), Andrieu and Atchadé
(2007), Roberts and Rosenthal (2007), Fort et al. (2011) and Craiu et al. (2015). For use-
ful reviews of AMCMC we refer to Andrieu and Thoms (2008) and Roberts and Rosenthal
(2009). Despite many success stories, it is our experience that existing adaptive strategies
for MH in high dimensional spaces may take a very long time to “learn” good simulation
parameters so that the samplers may not improve much before the simulation is ended.

We can increase the computational efficiency if instead of using a full MH to update
all the components at once, we choose to update the components of the chain one-at-a-
time. In this case the update rule follows the MH transition kernel but the acceptance or
rejection is based on the target’s conditional distribution of that component given all the
other ones. More precisely, if we are interested in sampling from the continuous density
π(x) : X ⊂ Rd → R+; the component-wise MH (CMH) transition kernel updates the ith
component of the chain, xi, using a proposal yi ∈ R, yi ∼ Ti(·|xi) and setting the next
value of the chain as

z =

{
(x1, . . . , xi−1, yi, xi+1, . . . , xd) w.p. αi

x w.p. 1− αi

where

αi = min

{
1,
T (xi|yi)π(yi|x[−i])
T (yi|xi)π(xi|x[−i])

}
,

and π(·|x[−i]) is the target conditional distribution of the ith component given all the
other components x[−i] = (x1, . . . , xi−1, xi+1, . . . , xd). The CMH replaces the difficult
problem of finding one good proposal in d dimensions with the easier problem of finding
d good 1-dimensional proposals. However, the latter task can also prove difficult if the
conditional densities π(·|x[−i]) change significantly, e.g. have very different variances, as
x[−i] varies. Intuitively, let us imagine that for a region of the sample space of x[−i] the
proposal Ti must have a higher spread for the chain to mix well and a smaller one for
the remaining part of the support. In this case an adaptive strategy based on a single
proposal distribution cannot be efficient everywhere in the support of π. Some success
has been obtained in lower dimensions or for distributions with a well-known structure
using the regional adaptive MCMC strategies of Craiu et al. (2009) or Bai et al. (2011),
but extending those approaches can be cumbersome when d is even moderately large.
Other adaptive MCMC ideas proposed for the CMH too include Haario et al. (2005)
where the authors propose to use component-wise random walk Metropolis (RWM) and
to use the component-specific sample variance to tune the proposal’s variance, along the

2

same lines that were used by Haario et al. (2001) to adapt the proposal distribution for
the joint RWM. Another intuitive approach is proposed in Roberts and Rosenthal (2009)
who aim for a particular acceptance rate for each component update.

The strategy we propose here aims to close the gap that still exists between AMCMC
and efficient CMH samplers. When contemplating the problem, one may be tempted to
try to “learn” each conditional distribution π(·|x[−i]), but parametric models are likely
not flexible enough and nonparametric models will face the curse of dimensionality even
for moderate values of d. Note that here the difficult part is understanding how the
conditional distribution changes as x[−i] varies, which is a (d− 1)-dimensional problem.

Before getting to the technical description of the algorithm, we present here the intu-
itive idea behind our design. Within the CMH algorithm imagine that for each component
we can propose m candidate moves, each generated from m different proposal distribu-
tions. Naturally, the latter will be selected to have a diverse range of variances so that
we generate some proposals close to the current location of the chain and some that are
further away. If we assume that the transition kernel for each component is such that
among the proposed states it will select the one that is most likely to lead to an accep-
tance, then one can reasonably infer that this approach will improve the mixing of the
chain provided that the proposal distributions are reasonably calibrated. To mirror the
discussion above, in a region where Ti should have small spread, one wants to have among
the proposal distributions a majority with small variances, and similarly in regions where
Ti should be spread out we want to include among our proposal densities a majority with
larger variances. This intuition can be tested using an approach based on the multiple-try
Metropolis (MTM) that originated with Liu et al. (2000) and was further generalized by
Casarin et al. (2013).

This paper is organized as follows. Section 2 introduces a component-wise multiple-try
Metropolis (CMTM) algorithm. In Section 3, we add adaption to CMTM, creating a new
ACMTM algorithm in which the proposal distributions get modified on the fly according
to the local shape of the target distribution, and we prove (Theorem 1) convergence
of this algorithm. Section 4 then applies the adaptive CMTM algorithm to numerical
examples, and compares the efficiency of the adaptive CMTM algorithm to other adaptive
Metropolis algorithms.

2 Component-wise multiple-try Metropolis

2.1 Algorithm

Assume that a Markov chain {Xn} is defined on X ⊂ Rd with a target distribution
π. The component-wise multiple-try Metropolis (CMTM) will update the chain one-
component-at-a-time using m proposals. Specifically, the kth component of the chain is
updated using proposals {y(k)j : 1 ≤ j ≤ m} that are sampled from {T (k)

j : 1 ≤ j ≤ m},
respectively. Let the value of the chain at iteration n be Xn = x ∈ Rd. One step
of the CMTM involves updating every coordinate Xk of the chain in a fixed order, for
k ∈ {1, . . . , d}. The following steps are performed to update the kth component:

1. Draw proposals y
(k)
1 , . . . , y

(k)
m where y

(k)
j ∼ T

(k)
j (·|xk).

3

2. Compute
w

(k)
j (y

(k)
j , x) = π(y

(k)
j |x[−k])Tj(xk|y

(k)
j)λ

(k)
j (y

(k)
j , xk), (2.1)

for each y
(k)
j , where x[−k] denotes the state of the chain without the kth component and

λ
(k)
j (xk, y

(k)
j) is a nonnegative symmetric function satisfying λ

(k)
j (xk, y

(k)
j) > 0 whenever

T
(k)
j (y

(k)
j |xk) > 0.

3. Select one y = y
(k)
s out of y

(k)
1 , . . . , y

(k)
m with probabilities proportional to wj(y

(k)
j , x).

4. Draw x
∗(k)
1 , . . . , x

∗(k)
s−1 , x

∗(k)
s+1 , . . . , x

∗(k)
m where x

∗(k)
j ∼ T

(k)
j (·|y) and set x

∗(k)
s = x.

5. Accept y with a probability

ρ = min
[
1,

w1(y
(k)
1 , x) + . . .+ wm(y

(k)
m , x)

w1(x∗(k), y) + . . .+ wm(x
∗(k)
m , y)

]
We note that in step 1. the proposal distributions T

(k)
j depend only on the kth com-

ponent of the current state of the chain. More general formulations are possible, but
make intuitive adaptive schemes more cumbersome and without clear benefits in terms of
efficiency. Having dependent proposals can be beneficial when the proposal distributions
are identical (Craiu and Lemieux, 2007). However, in the current implementation the
proposals have different scales so the advantage of using dependent proposals is less clear
and will not be pursued in this paper.

Whether a proposal distribution is ‘good’ or not will depend on the current state of the
Markov chain, especially if the target distribution π have conditional densities with vary-
ing properties, e.g. different variances, across the target’s support. In addition to choosing
the m proposals, an added flexibility of the CMTM algorithm is that we have freedom in
choosing the nonnegative symmetric maps λ

(k)
j as long as they satisfy λ

(k)
j (xk, y

(k)
j) > 0

whenever T
(k)
j (y

(k)
j |xk) > 0. In subsequent sections we show that the CMTM algorithm

can benefit from choosing a particular form of the function λ
(k)
j (xk, y

(k)
j).

Our choice of λ
(k)
j is guided by a simple and intuitive principle. Between two candidate

moves y
(k)
1 and y

(k)
2 that are equally far from the current state we favour y

(k)
1 over y

(k)
2 if

π(y
(k)
1 |x[−k]) is greater than π(y

(k)
2 |x[−k]), but if π(y

(k)
1 |x[−k]) is similar to π(y

(k)
2 |x[−k]), we

would like CMTM to favour whatever candidate is further away from the current state.
These simple rules lead us to consider

λ
(k)
j (x, y) = T

(k)
j (y

(k)
j |xk)−1‖(y

(k)
j − xk)‖α, (2.2)

where ‖ · ‖ is the Euclidean norm. Note that this choice of λ
(k)
j is possible because

T
(k)
j (y

(k)
j |xk) is a symmetric function in xk and y

(k)
j as it involves only one draw from a

normal distribution with mean xk.
Replacing (2.2) in the weights equation (2.1) results in

w
(k)
j (y

(k)
j , x) = π(y

(k)
j |x[−k])T

(k)
j (xk|y(k)j)λ

(k)
j (y

(k)
j , xk)

= π(y
(k)
j |x[−k])‖(y

(k)
j − xk)‖α. (2.3)

With this choice of λ, the selection probabilities are only dependent on the value of the
target density at the candidate point y

(k)
j and the size of the potential jump of the chain,

4

were this candidate accepted. From (2.2) we can see that the size of α will balance of
importance of the attempted jump distance from the current state over the importance
of the candidate under π. However, while we understand the trade-off imposed by the
choice of α for selecting a candidate move, it is less clear how it will impact the overall
performance of the CMTM, e.g acceptance rate or average jump distance.

Therefore, it is paramount to gauge what are good choices for the parameter α for the
mixing of the CMTM chain. In the next section we approach this task via the average
squared jumping distance (ASJ) and the autocorrelation time (ACT). To obtain the
average squared jumping distance, we calculate the squared jumping distance for each
iteration, (Xn+1−Xn)2 and average them over the whole Markov chain run. Note that if
a new proposal is rejected and (Xn+1−Xn)2 is equal to zero, we still add zero to total sum
of the squared jumping distances and divide the sum by the total number of iterations.
The ACT can be calculated using

τ = 1 + 2
∞∑
k=1

ρk,

where ρk = Cov(X0, Xk)/V ar(X0) is the autocorrelation at lag k. Higher ACT for a
Markov chain implies successive samples are highly correlated, which reduces the effective
information contained in any given number of samples produced by the chain.

While ACT has long been known to relate directly with the variance of the Monte
Carlo estimators (Geyer, 1992), the ASJ incorporates both the jump distance and the
acceptance rate, a combination that has turned out to be useful in other AMCMC designs
(see for instance Craiu et al., 2009). Estimates of ACT and ASJ are obtained by averaging
over the realized path of the chain.

2.2 Choice of α

In order to study the influence of the parameter α on the CMTM efficiency we have
conducted a number of simulation studies, some of which are described here.

We considered first a 2-dimensional mixture of two normal distributions

0.5N(µ1,Σ1) + 0.5N(µ2,Σ2) (2.4)

where
µ1 = (5, 0)T

µ2 = (15, 0)T

Σ1 = diag(6.25, 6.25)

Σ2 = diag(6.25, 0.25)
Figure 2.1: Target density plot. 2-
dimensional mixture of two normals

An iid sample of size 2000 from (2.4) is plotted in Figure 2.1. We run the CMTM
algorithm repeatedly with λj(x, yj) functions in (2.2) while changing the value of α from
0.1 to 15. We choose m = 5 as the number of proposals for each component, while the

5

proposal standard deviations σk,j’s are for each component 1, 2, 4, 8 and 16.

As we see in Figure 2.2, the propor-
tion of each proposal distribution selected
increases/decreases as α changes. As ex-
pected, when α increases we see the se-
lection percentages of the proposal distri-
butions with smaller σk,j’s drop and those
with larger σk,j’s increase. Figure 2.2 shows,
with larger α’s, our algorithm favours pro-
posal distributions with larger scales, which
makes sense based on the equation (2.3). Figure 2.2: Proportion of proposal distri-

bution selected. Coordinate 1: Red, Blue,
Green, Orange and Purple lines show be-
haviour when σk,j = 1, 2, 4, 8, 16, respec-
tively.

Figure 2.3 shows how the ASJ and ACT change as the value of α changes. We can
infer that the highest efficiency is achieved for α ∈ (2, 4).

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●
●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

0 5 10 15

6
7

8
9

10
11

12

alpha

Ju
m

p

●

●

●
●●

●
●
●

●

●●
●●

●

●●
●●●

●●●●
●●

●
●

●

●
●●●●●

●●
●●●●

●●
●●

●

●●

●●●
●

●
●●

●
●●●

●●

●
●

●

●
●
●●

●

●

●
●

●

●
●

●

●

●

●

●●
●●

●

●
●
●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0 5 10 15

10
20

30
40

50
60

alpha

av
. A

C
T

Figure 2.3: Two-Dimensional Mixture of two Gaussians: ASJ (left panel) and ACT (right
panel) for different values of α. For each α, the estimates are obtained from a single run
with 100,000 iterations.

We also examined a 4-dimensional mixture of two normal distributions as our target
density:

0.5N(µ1,Σ1) + 0.5N(µ2,Σ2),

6

where
µ1 = (5, 5, 0, 0)T

µ2 = (15, 15, 0, 0)T

Σ1 = diag(6.25, 6.25, 6.25, 0.01)

Σ2 = diag(6.25, 6.25, 0.25, 0.01).

The number of proposals, m = 5 and σk,j’s of the set of proposal distributions for each
coordinate are 0.5, 1, 2, 4 and 8. Figure 2.4 shows the results. We notice that the ACT
measurements are more noisy, while the ASJ ones yield a more precise message that is in
line with the previous example. Once again we can see from Figure 2.4 that the average
squared jumping distances are largest for α ∈ (2, 4).

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●
●

●●
●●

●

●●
●
●

●

●
●●

●●

●●
●
●●●

●●●●●
●
●●

●
●
●●

●●
●
●

●
●

●

●

●
●
●
●●●●●

●

●●●
●

●

●●

●●

●

●

●

●●●●
●●●●

●

●
●

●

●

●

●●

●●●
●●●●

●●
●●

●●
●
●●

●

●
●●●

●
●

●

●
●●

●●

●●●
●●

●

●●

●

●
●

●
●●●

●

●

●

●

●

●
●
●
●

●
●

0 5 10 15

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Average Jump

alpha

Ju
m

p

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

0 5 10 15

15
0

20
0

25
0

30
0

Average ACT

alpha

A
C

T

Figure 2.4: 4-Dimensional Mixture of two Gaussians: ASJ (left panel) and ACT (right
panel) for different values of α. For each α, the estimates are obtained from a single run
with 100,000 iterations.

Other numerical experiments not reported here agree with the two examples presented
and suggest that optimal values of α are between 2 and 4. In the absence of theoretical
results we cannot claim a universal constant α that would be optimal in every example.
However, based on the available evidence, we believe that a value of α in the (2, 4) range
will increase the efficiency of the chain. Henceforth we fix α = 2.9 in all simulations
involving CMTM.

7

3 Adaptive Component-wise multiple-try Metropo-

lis

3.1 CMTM Favours Component-wise ‘Better’ Proposal Distri-
butions

The intuition behind our construction as described in the Introduction, relies on the idea
that CMTM will automatically tend to choose the “right” proposal among the m possible
ones. In this section we verify empirically that this is indeed the case.

We consider the same 4-dimensional mixture of normal distributions from Section 2.2
as our target distribution and run the CMTM algorithm. The target parameters are set
to reflect the numerical experiments reported in Section 4, i.e. m = 20 and σk,j = 2j with
j ∈ {−10,−9, . . . , 9}. Table 3.1 reports the selection probabilities computed from 10,000
samples for each proposal and each coordinate.

Coordinate
σk,j coord1 coord2 coord3 coord4
2−10 0.00 0.00 0.00 0.00
2−9 0.00 0.00 0.00 0.00
2−8 0.00 0.00 0.00 0.00
2−7 0.00 0.00 0.00 0.00
2−6 0.00 0.00 0.00 0.00
2−5 0.00 0.00 0.00 0.03
2−4 0.00 0.00 0.00 0.11
2−3 0.00 0.00 0.01 0.25
2−2 0.00 0.00 0.03 0.27
2−1 0.01 0.01 0.11 0.17
20 0.05 0.05 0.15 0.08
21 0.15 0.14 0.19 0.04
22 0.26 0.26 0.20 0.02
23 0.24 0.25 0.15 0.01
24 0.14 0.14 0.08 0.01
25 0.08 0.07 0.04 0.00
26 0.04 0.04 0.02 0.00
27 0.02 0.02 0.01 0.00
28 0.01 0.01 0.01 0.00
29 0.00 0.00 0.00 0.00

Table 3.1: CMTM: Frequency of selection for each proposal and each coordinate.

8

(a) Xn,2 < 8

Coordinate
σk,j coord1 coord2 coord3 coord4
2−10 0.00 0.00 0.00 0.00
2−9 0.00 0.00 0.00 0.00
2−8 0.00 0.00 0.00 0.00
2−7 0.00 0.00 0.00 0.00
2−6 0.00 0.00 0.00 0.01
2−5 0.00 0.00 0.00 0.03
2−4 0.00 0.00 0.00 0.10
2−3 0.00 0.00 0.00 0.25
2−2 0.00 0.00 0.00 0.27
2−1 0.01 0.01 0.01 0.18
20 0.05 0.05 0.04 0.09
21 0.16 0.14 0.17 0.04
22 0.27 0.26 0.28 0.02
23 0.24 0.25 0.23 0.01
24 0.13 0.14 0.13 0.01
25 0.07 0.08 0.07 0.00
26 0.03 0.04 0.03 0.00
27 0.02 0.02 0.01 0.00
28 0.01 0.00 0.01 0.00
29 0.00 0.00 0.01 0.00

(b) Xn,2 ≥ 8

Coordinate
σk,j coord1 coord2 coord3 coord4
2−10 0.00 0.00 0.00 0.00
2−9 0.00 0.00 0.00 0.00
2−8 0.00 0.00 0.00 0.00
2−7 0.00 0.00 0.00 0.00
2−6 0.00 0.00 0.00 0.00
2−5 0.00 0.00 0.00 0.04
2−4 0.00 0.00 0.00 0.12
2−3 0.00 0.00 0.02 0.24
2−2 0.00 0.00 0.06 0.26
2−1 0.01 0.01 0.20 0.17
20 0.05 0.06 0.24 0.08
21 0.14 0.14 0.20 0.04
22 0.26 0.26 0.13 0.02
23 0.24 0.25 0.08 0.01
24 0.14 0.14 0.03 0.00
25 0.09 0.07 0.02 0.00
26 0.04 0.04 0.01 0.00
27 0.02 0.02 0.01 0.00
28 0.01 0.01 0.00 0.00
29 0.00 0.00 0.00 0.00

Table 3.2: Selection frequencies for each proposal and each coordinate calculated on two
regions of the support, A1 = {X ∈ R4 : X2 < 8} and A2 = {X ∈ R4 : X2 ≥ 8}. The
entries in boldface show the difference in selection frequencies for some of the proposals
in the two regions of the support considered.

Tables 3.2 and 3.2b present the proportion of candidate selection and acceptance
rates for each proposal. We compare the proportion of proposals selected in the regions
A1 = {Xn,2 < 8} and A2 = {Xn,2 ≥ 8}. While these regions are defined based on knowing
the target exactly, they do not enter in any way in the design of the CMTM and are used
here only to verify that the sampler indeed automatically adapts to local characteristics
of the target. We can see that the CMTM favours proposal distributions with smaller
σk,j’s when updating the third coordinate in the region A2. This is appropriate given
that in that region larger moves for the third coordinate will tend to be rejected. This
pattern does not hold for the first two coordinates for which larger moves are appropriate
throughout the sample space. This is in line with what is expected since the target
variances (= 6.25) are the same in both directions in that region and confirms that the
CMTM algorithm tends to choose the ‘better’ proposal distribution out of the available
choices provided at each iteration.

3.2 Comparison with a Mixture Transition Kernel

An astute reader may wonder about a different strategy for using the different proposals
that one may have at one’s disposal. Maybe the most natural alternative is a random
mixture of the component-wise Metropolis-Hastings (CMH) algorithms. The set of pro-
posal distributions used in both algorithms is the same and we assign equal weights for
the proposal distributions in the mixture. The mixture CMH kernel selects each proposal
at random with equal probability, but since a single proposal is produced each time a
coordinate is updated, it is different than a CMTM algorithm with equal weights wj.

However, this comparison will help us determine whether adjusting the selection prob-
abilities of each proposal distribution is an improvement over equal probability selection.

9

Our target distribution is the 4-dimensional mixture of two normals introduced in Section
2.2. We use m = 20 and the same proposal scales discussed in the previous section. In
Tables 3.3 and 3.3b we present the acceptance rates for each coordinate and each proposal
for the two samplers. The results in Table 3.3 suggest that proposal distributions with
small variances have their proposals, if selected, accepted with with high frequency. In
the case of mixture of CMH this also means that if we were to guide our selection of
proposals based on acceptance rates, we would favour small jumps. The selection step in
the CMTM seems to balance out a lot more the acceptance frequencies for the proposals
used. The even acceptance frequencies mean that they are not very informative about
which variances are to be used in each coordinate.

To compare the efficiency of the two algorithms, we report in Table 3.4 the ASJ and
ACT calculated from 100 replicated runs as well as the CPU time. We note that the
average squared jumping distance significantly improves with the CMTM compared to
the mixture CMH. We can also see that for all the chain’s coordinates the ACT is an
order of magnitude smaller for the CMTM than the mixture CMH. When programming
the examples in this paper we were able to take advantage of the R software’s efficient
handling of vector operations. This explain the small difference in CPU time even as
CMTM requires m times more evaluations of the target than the mixture CMH.

(a) Mixture of CMH

Coordinate
σk,j coord1 coord2 coord3 coord4
2−10 1.00 1.00 1.00 1.00
2−9 1.00 1.00 1.00 0.99
2−8 1.00 1.00 1.00 0.98
2−7 0.99 1.00 1.00 0.98
2−6 1.00 1.00 0.99 0.93
2−5 0.99 1.00 1.00 0.90
2−4 0.99 0.99 0.98 0.78
2−3 0.99 0.97 0.96 0.65
2−2 0.97 0.95 0.97 0.39
2−1 0.91 0.94 0.88 0.23
20 0.88 0.87 0.77 0.11
21 0.76 0.76 0.63 0.06
22 0.58 0.58 0.43 0.04
23 0.39 0.36 0.26 0.01
24 0.21 0.21 0.19 0.01
25 0.11 0.12 0.11 0.00
26 0.05 0.05 0.04 0.00
27 0.02 0.04 0.02 0.00
28 0.02 0.00 0.01 0.00
29 0.01 0.01 0.00 0.00

(b) CMTM

Coordinate
σk,j coord1 coord2 coord3 coord4
2−10 NaN NaN NaN NaN
2−9 NaN NaN NaN NaN
2−8 NaN NaN NaN NaN
2−7 NaN NaN NaN 0.17
2−6 NaN NaN NaN 0.52
2−5 NaN NaN 1.00 0.44
2−4 0.50 NaN 0.50 0.52
2−3 0.00 0.00 0.42 0.50
2−2 0.17 0.43 0.53 0.47
2−1 0.49 0.38 0.58 0.47
20 0.54 0.45 0.49 0.44
21 0.57 0.52 0.52 0.45
22 0.51 0.49 0.49 0.37
23 0.48 0.45 0.47 0.41
24 0.46 0.45 0.48 0.33
25 0.41 0.48 0.48 0.33
26 0.40 0.35 0.50 0.43
27 0.45 0.31 0.45 0.38
28 0.47 0.24 0.35 0.00
29 0.33 0.45 0.61 NaN

Table 3.3: Post-selection acceptance frequencies. The NA’s in the table are due to the
fact that some proposals are never selected for some of the coordinates .

10

(a) Mixture of CMH

Min. Median Mean Max.
cputime(s) 4.47 4.56 4.57 4.97
sq. jump 0.467 0.619 0.622 0.784

coord1 coord2 coord3 coord4
ACT 464.21 460.41 28.07 26.70

(b) CMTM

Min. Median Mean Max.
cputime(s) 10.25 10.41 10.43 11.22
sq. jump 6.20 6.62 6.62 7.07

coord1 coord2 coord3 coord4
ACT 41.96 41.25 1.64 1.64

Table 3.4: Comparison of performance indicators that were computed from 100 inde-
pendently replicated runs. The tables contain statistics about the execution time for a
complete run (cputime), the average squared jump distance and the ACT.

3.3 The Adaptive CMTM Algorithm (ACMTM)

Given its propensity to choose the best candidate put forward by the proposal distribu-
tions, it is reasonable to infer that CMTM’s performance will be roughly aligned with the
most suitable proposal for the region where the chain current state lies. The other side of
the coin is that a whole set of bad proposals will compromise the efficiency of the CMTM
algorithm. Therefore, we focus our efforts in developing an adaptive CMTM (AMCTM)
design that aims to minimize, possibly annihilate, the chance of having at our disposal
only poorly calibrated proposal distributions in any region of the space.

The adaptation strategy is centered on finding well-calibrated values for the set Sk =
{σk,j : 1 ≤ j ≤ m} for every coordinate 1 ≤ k ≤ d. Note that Sk varies across
coordinates.

Consider an arbitrarily fixed coordinate k and suppose we label the m proposal distri-
butions such that σk,1 < σk,2 < . . . < σk,m. Changes in the kernel occur at fixed points in
the simulation process, called adaption points. We want our adaptive algorithm to adapt
less and less as the simulation proceeds, a condition known as Diminishing Adaptation
(DA) and long recognized as being useful for establishing the chain’s valid asymptotic be-
haviour (Roberts and Rosenthal, 2007). However, the adaption strategy proposed above
may not diminish in the long run, so we ensure the DA condition more directly by only
adapting on ath iteration (for a ≥ 1) with probability Pa = max(0.99a−1, 1√

a
). Since

Pa → 0, the DA condition is ensured. On the other hand, we chose Pa so that it is
decreases slowly and has high values at the beginning of the run when most adaptations
will take place. Furthermore, the Borel-Cantelli lemma guarantees that the adaption will
keep occurring for as long as we run the chain since

∑∞
a=1 Pa =∞.

An adaption is required for the standard deviations σk,j only if we notice that the

candidates generated by the proposal distribution T
(k)
j with the smallest scale, σk,1, or

the largest one, σk,m, are under- or over-selected. For instance, suppose that in an
inter-adaptation time interval the candidates generated using σk,1 are selected more than
100× 2

m
% or less that 100× 1

2m
% of the time. If we denote qj the frequency of selecting

the candidate generated using σk,j we have mmax qj ≥
∑

j qj = 1 ≥ mmin qj. Thus, the
thresholds represent, respectively, more than double the selection percentage for the least
selected proposal and less than half of the selection percentage for the most popular pro-
posal. A high selection percentage for σk,1 suggests that the chain tends to favour, when
updating the kth coordinate, proposals with smaller scale so the ACMTM design requires
to: 1) halve the value of σk,1; 2) recalculate the intermediate values, σk,2, . . . , σk,m−1 to
be equidistant between σk,1 and σk,m on the log-scale. A low selection percentage for σk,1

11

will ensure that the lowest scale is doubled up followed by step 2).
Similarly, if the largest element in Sk, σk,m, produces proposals with selection per-

centages above or below the thresholds mentioned above, we will double or halve σk,m,
respectively. Each modification is followed by redistribution of the intermediate scales.

If neither the smallest nor the largest elements in Sk produce proposals that are
outside the boundaries set by the two thresholds, we wait until the algorithm reaches the
next ‘adaption point’ and recalculate the proportion of each proposal candidate being
selected during the last inter-adaption time interval. The pseudo-code for the ACMTM
is presented in Algorithm 1.

Finally, we make two minor technical modifications to our ACMTM algorithm, to
ensure the Containment condition of Roberts and Rosenthal (2007), and thus allow us to
prove the convergence of our algorithm in Section 3.5 below. Namely:

(A1) We choose a (very large) non-empty compact subset K ⊂ X , and force Xn ∈ K
for all n. Specifically, we reject all proposals Yn+1 6∈ K (but if Yn+1 ∈ K, then we still
accept/reject Yn+1 by the usual rule for the CMTM algorithm described in Section 2.1).
Correspondingly, the initial value X0 should be chosen in K.

(A2) We choose a (very large) constant L > 0 and a (very small) constant ε > 0, and
force the proposal scalings σk,j to always be in [ε, L]. Specifically, if σn,k,j is the value of
σk,j used at the n-th iteration in our adaptive CMTM algorithm, then if σn,k,j would be
greater than L, we instead set σn,k,j = L, while if σn,k,j would be less than ε, we instead
set σn,k,j = ε. Correspondingly, the initial values σ0,k,j should all be chosen in [ε, L].

Remark. Our adaptive algorithm keeps the number of different proposals at each iteration
fixed at some constant m. We have also experimented with allowing the value m itself
to be updated adaptively. This works fairly well, but does not appear to offer any clear
improvement over keeping m constant, so we do not pursue it further herein. However,
our theoretical justification also covers this case as long as the possible m values are
bounded; see the remark following the proof of Theorem 1 below.

3.4 To Adapt or Not To Adapt?

We compare the ACMTM algorithm with the CMTM algorithm without adaption to see
if the adaption indeed improves the efficiency of the algorithm. We use the 4-dimensional
mixture of two normal distributions from Section 2.2 as our target distribution. The
σk,j’s for the non-adaptive algorithm are those given in Section 3.1 and they are also the
starting σk,j’s for the adaptive algorithm. Evidently the final values are the same as the
initial ones for the non-adaptive version of the sampler. In Table 3.5 we report the final
values of the σk,j’s obtained after the last adaption in one random run of ACMTM. For
this particular run, the last adaption occurred right after 1800 iterations out of 10000
iterations in total. We notice that the scales chosen vary from component to component.
For instance, the fourth component of the chain has a smaller marginal variance so
the adaption will favour smaller scales. Similarly, the third component requires both
large and small proposal scales and we can see that reflected in the range of values for
{σ3,j; 1 ≤ j ≤ m} which is different than for the first two components.

The comparison in terms of ASJ and ACT is based on 100 independent replicates.
The results shown in Table 3.6 indeed confirm the benefits of adaptation, as both ASJ

12

Algorithm 1 Adaptive CMTM

Given:

• M - number of MCMC iterations

• m - number of proposals

• d - number of coordinates

• {σk,j : 1 ≤ k ≤ d, 1 ≤ j ≤ m} - initial proposals

Set initial values:

• β = 100 - the number of iterations between attempting an adaptation

• Pa = 1 - probability of adapting at each attempt

for t = 1 to M do
if t = 0 mod β then

a = t/β
u ∼ U[0, 1]
if u ≤ Pa then

Let σk,j ≤ . . . ≤ σk,m be the scales used and {Sk,j : 1 ≤ k ≤ d, 1 ≤ j ≤ m}
be the selection rates computed since the previous adaptation till now. Then

for k = 1 to d do
if Sk,m > 2/m then

σk,m = 2σk,m
Make {σk,j} equidistant on log base 2 scale

else if (Sk,m < 1/(2m)) ∧ (σk,1 < σk,m/2) then
σk,m = σk,m/2
Make {σk,j} equidistant on log base 2 scale

end if
if Sk,1 > 2/m then

σk,1 = σk,1/2
Make {σk,j} equidistant on log base 2 scale

else if (Sk,1 < 1/(2m)) ∧ (2σk,1 < σk,m) then
σk,1 = 2σk,1
Make {σk,j} equidistant on log base 2 scale

end if
end for

end if
Pa = max(0.99a−1, 1√

a
)

end if
Perform CMTM move

end for

13

coord1 coord2 coord3 coord4
prop1 4.0000 4.0000 2.0000 0.1250
prop2 4.1486 4.1486 2.0743 0.1345
prop3 4.3028 4.3028 2.1514 0.1446
prop4 4.4626 4.4626 2.2313 0.1556
prop5 4.6284 4.6284 2.3142 0.1674
prop6 4.8004 4.8004 2.4002 0.1800
prop7 4.9788 4.9788 2.4894 0.1937
prop8 5.1638 5.1638 2.5819 0.2083
prop9 5.3556 5.3556 2.6778 0.2241

prop10 5.5546 5.5546 2.7773 0.2410
prop11 5.7610 5.7610 2.8805 0.2593
prop12 5.9750 5.9750 2.9875 0.2789
prop13 6.1970 6.1970 3.0985 0.3000
prop14 6.4273 6.4273 3.2136 0.3227
prop15 6.6661 6.6661 3.3330 0.3472
prop16 6.9138 6.9138 3.4569 0.3734
prop17 7.1707 7.1707 3.5853 0.4017
prop18 7.4371 7.4371 3.7185 0.4321
prop19 7.7134 7.7134 3.8567 0.4648
prop20 8.0000 8.0000 4.0000 0.5000

Table 3.5: Adaptive CMTM: Final σk,j for each coordinate and each proposal used.

and ACT are in agreement regarding the superiority of ACMTM over CMTM.

(a) Non-adaptive CMTM

Min. Median Mean Max.
cputime(s) 10.25 10.41 10.43 11.22
sq. jump 6.20 6.62 6.62 7.07

coord1 coord2 coord3 coord4
ACT 41.96 41.25 1.64 1.64

(b) Adaptive CMTM

Min. Median Mean Max.
cputime(s) 10.42 10.57 10.65 13.14
sq. jump 8.88 10.15 10.04 10.76

coord1 coord2 coord3 coord4
ACT 22.55 22.46 1.43 1.00

Table 3.6: Comparison of performance indicators that were computed from 100 inde-
pendently replicated runs. The tables contain statistics about the execution time for a
complete run (cputime), the average squared jump distance and the ACT.

coord1 coord2 coord3 coord4
prop1 0.04 0.05 0.05 0.04
prop2 0.05 0.05 0.05 0.05
prop3 0.05 0.05 0.05 0.05
prop4 0.05 0.04 0.05 0.05
prop5 0.05 0.05 0.05 0.05
prop6 0.05 0.05 0.05 0.05
prop7 0.05 0.05 0.05 0.04
prop8 0.05 0.05 0.05 0.05
prop9 0.05 0.05 0.05 0.06

prop10 0.05 0.05 0.05 0.05
prop11 0.05 0.05 0.04 0.05
prop12 0.05 0.05 0.05 0.05
prop13 0.05 0.05 0.05 0.06
prop14 0.05 0.05 0.05 0.05
prop15 0.05 0.05 0.05 0.05
prop16 0.05 0.05 0.05 0.05
prop17 0.05 0.05 0.05 0.05
prop18 0.05 0.05 0.05 0.04
prop19 0.05 0.05 0.05 0.04
prop20 0.05 0.05 0.05 0.04

Table 3.7: Adaptive CMTM: Rate of selection for each proposal and each coordinate.

14

When comparing the rate of selection for each proposal, as reported in Tables 3.1 and
3.7, we observe the almost constant selection probabilities for the ACMTM which suggests
that all the proposal scales selected are important in the simulation. Finally, we also
compare the acceptance frequencies for the selected proposals for CMTM and ACMTM,
as shown in Tables 3.3b and 3.8, respectively. The adaptive version of the algorithm
clearly makes better use of the generated proposals. There are no longer any NA’s, i.e.
all proposals are occasionally accepted in each coordinate. In fact, the acceptance rates for
ACMTM are quite even, again suggesting a balanced use of the proposal distributions. In
almost every instance the acceptance rates have gone up compared to the CMTM values
in Table 3.3b.

coord1 coord2 coord3 coord4
prop1 0.58 0.66 0.49 0.60
prop2 0.57 0.58 0.58 0.60
prop3 0.60 0.65 0.62 0.60
prop4 0.63 0.55 0.59 0.60
prop5 0.61 0.59 0.58 0.65
prop6 0.65 0.53 0.60 0.60
prop7 0.59 0.59 0.60 0.62
prop8 0.64 0.65 0.58 0.60
prop9 0.58 0.57 0.59 0.60

prop10 0.57 0.61 0.60 0.56
prop11 0.61 0.66 0.59 0.54
prop12 0.57 0.54 0.62 0.66
prop13 0.53 0.54 0.66 0.60
prop14 0.55 0.58 0.57 0.61
prop15 0.61 0.60 0.58 0.55
prop16 0.58 0.61 0.60 0.60
prop17 0.54 0.65 0.61 0.57
prop18 0.58 0.61 0.58 0.53
prop19 0.56 0.56 0.62 0.60
prop20 0.61 0.63 0.66 0.59

Table 3.8: ACMTM: Post-selection acceptance probabilities for each proposal.

3.5 Convergence of Adaptive CMTM

We prove below the convergence of the adaptive CMTM algorithm described in Sec-
tion 3.3. As explained in Section 3.3, Diminishing Adaptation condition holds by the
construction of the adaption mechanism.

Theorem 1. Consider the adaptive CMTM algorithm in Section 3.3 to sample from
state space X that is an open subset of Rd for some d ∈ N. Let π be a target probability
distribution, which has a continuous positive density on K with respect to the Lebesgue
measure. Then, the adaptive CMTM algorithm converges to stationarity as in

lim
n→∞

sup
A∈F
|P(Xn ∈ A)− π(A)| = 0. (3.1)

Proof. By Roberts and Rosenthal (2007), the convergence of an adaptive MCMC algo-
rithm as in (3.1) can be ensured by two conditions Diminishing Adaptation and Contain-
ment. Our algorithm satisfies Diminishing Adaptation (DA) as explained in Section 3.3.
So, it suffices to show that our algorithm satisfies the Containment condition.

The Containment condition of Roberts and Rosenthal (2007) (see also Craiu et al.
(2015); Rosenthal and Yang (2016) states that the process’s convergence times are bounded

15

in probability, i.e. that {Mε(Xn,Γn)}∞n=1 is bounded in probability, where Mε(x, γ) :=
inf{n ≥ 1 : ‖P n

γ (x, ·)− π(·)‖ ≤ ε} for all ε > 0, and P n
γ is a fixed n-step proposal kernel.

We proceed similarly to the proof of Proposition 23 of Craiu et al. (2015). By our
assumption (A1), the process {Xn} is bounded in probability, in fact ‖Xn‖ ≤ L for all n.
To continue, we let Y be the collection of all d × m matrices of real numbers in [ε, L].
Then by our assumption (A2), Y is compact. Here each γ ∈ Y corresponds to a particular
choice of MTM proposals, where γk,j equals the scaling of the jth proposal kernel for the
kth coordinate. And, our adaption rule is such that choosing which γ ∈ Y to use for
each iteration n is determined by the past and/or current information obtained from the
chain.

Next, let Pγ be the Markov kernel corresponding to one full sequence of updates for
all coordinates of the chain, in sequence. Then Pγ is Harris ergodic to π, since it is
known that any non-adaptive CMTM algorithm must converge to π (cf. Liu et al. (2000);
Casarin et al. (2013)). It follows that limn→∞∆(x, γ, n) := ‖P n

γ (x, ·) − π(·)‖ = 0 for
each (x, γ), where ‖ · · · ‖ is the usual total variation distance convergence metric. Now,
with our algorithm as set up in Section 3.3, ∆(x, γ, n) is a continuous function of (x, γ):
indeed, it is a composition of single-coordinate MTM updates each of which is continuous
as in the proof of Corollary 11 of Roberts and Rosenthal (2007).

To finish, we note (following Rosenthal and Yang (2016)) that by Dini’s Theorem,

lim
n→∞

sup
x∈C

sup
γ∈Y

∆(x, γ, n) = 0

for any compact set C ⊂ X . Hence, for any ε > 0, there is D < ∞ such that
supx∈C supγ∈Y ∆(x, γ,D) < ε. It follows that supx∈C supγ∈YMε(x, γ) ≤ D < ∞. In
particular, choosing C = K from our assumption (A1), we know that P (Xn 6∈ K) = 0 for
all n, so if D := supx∈K supγ∈YMε(x, γ), then for any δ > 0, P (Mε(Xn,Γn) > D) = 0 ≤ δ
for all n. In particular, {Mε(Xn,Γn)}∞n=1 is bounded in probability. Therefore, the Con-
tainment condition holds, thus finishing the proof.

Remark. Our theorem is still valid if the number of proposals m is allowed to change from
iteration to iteration, providedm is forced to remain between 1 and some large finite upper
bound M . Indeed, in that case Y is a discrete union of M different collections of d×m
matrices, and ∆(x, γ, n) is continuous separately on each collection, and the rest of the
proof can then proceed without further change.

4 Applications

In the following examples we compare the CMTM and AMCTM started with the same
set of σk,j. We also compare their performance with CMH and adaptive CMH. The de-
sign of the latter is based on the theoretical results of Gelman et al. (1996) and Roberts
and Rosenthal (2001) who found that the optimal acceptance rate for one-dimensional
Metropolis algorithm is 0.44 and therefore adjusts the proposal variance to get an accep-
tance rate close to this value for each coordinate.

First we compare CMTM (with different number of proposals m) with CMH, both
with generic proposals. For CMTM with m proposals we set σk,j = 2j−1−bm/2c for each
coordinate 1 ≤ j ≤ m. The CMH’s proposals are fixed at 1 for each coordinate.

16

In second comparisons we compare adaptive CMTM with different number of pro-
posals and adaptive CMH. The starting σ’s are identical to the ones used in their non-
adaptive counterparts.

For all the examples we use the effective sample size (ESS) and ESS/CPUtime (CPUtime
is the time needed to complete the simulation) to compare the efficiency of MCMC al-
gorithms. The latter is particularly relevant for algorithm comparison since it is a way
to quantify the resource allocation efficiency. Since ESS = w/τ , where w is the number
of samples obtained from a Markov chain and τ is the ACT, one can see that ESS is
equivalent to ACT. One may intuitively interpret ESS the number of iid samples from
the target that would contain the same amount of information about the target as the
MCMC sample. The first half of the chains’ 10000 realizations is discarded and the re-
maining samples are used to calculate the ACT. The reported ESS is based on averaging
the ACT over 50 independent runs.

4.1 Variance Components Model

The Variance Components Model (VCM) is a typical hierarchical model, often used in
Bayesian statistics community. Here, we use the data on batch to batch variation in
dyestuff yields. The data were introduced in Davies (1967) and later analyzed by Box
and Tiao (1973). The Bayesian set-up of the Variance Components Model on dyestuff
yields is also well-described in Roberts and Rosenthal (2004). The data records yields
on dyestuff of 5 samples, from each of 6 randomly chosen batches. The data is shown in
Table 4.1.

Batch 1 1545 1440 1440 1520 1580
Batch 2 1540 1555 1490 1560 1495
Batch 3 1595 1550 1605 1510 1560
Batch 4 1445 1440 1595 1465 1545
Batch 5 1595 1630 1515 1635 1625
Batch 6 1520 1455 1450 1480 1445

Table 4.1: Dyestuff Batch Yield (in grams)

Let yij be the yield on the dyestuff batch, with i indicating which batch it is from and j
indexing each individual sample from the batch. The Bayesian model is then constructed
as:

yij|θi, σ2
e ∼ N(θi, σ

2
e), i = 1, 2, ..., K, j = 1, 2, ..., J

where θi|µ, σ2
θ ∼ N(µ, σ2

θ). θi’s are conditionally independent of each other given µ, σ2
θ .

The priors for the σ2
θ , σ

2
e and µ are: σ2

θ ∼ IG(a1, b1), σ
2
e ∼ IG(a2, b2) and µ ∼ N(µ0, σ

2
0).

Thus, the posterior density function of this VCM model is

f(σ2
θ , σ

2
e , µ, θi|yij, a1, a2, b1, b2, σ2

0) ∝

(σ2
θ)
−(a1+1)e−b1/σ

2
θ (σ2

e)
−(a2+1)e−b2/σ

2
ee−(µ−µ0)

2/2σ2
0

K∏
i=1

e(θi−µ)
2/2σ2

θ

σθ

K∏
i=1

J∏
j=1

e(yij−θi)
2/2σ2

e

σe

We set the hyperparameters a1 = a2 = 300 and b1 = b2 = 1000, making inverse
gamma priors very concentrated. We also set σ2

0 = 1010.

17

Figure 4.1 shows ESS and ESS/CPU (averaged over 50 runs) of the CMTM algorithms
with and without adaption and of standard CMH and adaptive CMH algorithm. For both
CMTM algorithms (with and without adaption), the starting proposals were generic for
every coordinate as described above.

● ●

● ● ● ● ● ● ●

0 2 4 6 8

0
10

00
20

00
30

00
40

00
50

00
60

00

ESS

Coordinate

E
S

S ●
●

● ● ● ● ● ● ●

● ●

●
● ● ● ● ● ●

CMTM:gen 5

CMTM:gen 30

CMH:gen

●
●

●
● ● ● ● ● ●

0 2 4 6 8

0
50

10
0

15
0

20
0

ESS/CPU

Coordinate

E
S

S
/C

P
U

●
●

●
● ● ● ● ● ●

● ●

●
● ● ● ● ● ●

CMTM:gen 5

CMTM:gen 30

CMH:gen

● ●

● ● ● ● ● ● ●

0 2 4 6 8

0
20

00
40

00
60

00
80

00
10

00
0

ESS

Coordinate

E
S

S

● ●

● ● ● ● ● ● ●

●
●

●
● ● ● ● ● ●

● ●

●

● ● ● ● ● ●

● ●

●
● ● ● ● ● ●

CMTM:adp 3

CMTM:adp 5

CMTM:adp 20

CMTM:adp 30

CMH:adp

●
●

●
● ● ● ● ● ●

0 2 4 6 8

0
10

0
20

0
30

0
40

0

ESS/CPU

Coordinate

E
S

S
/C

P
U

● ●

● ● ● ● ● ● ●

●
●

●
● ● ● ● ● ●

● ●

●

● ● ● ● ● ●

● ●

●
● ● ● ● ● ●

CMTM:adp 3

CMTM:adp 5

CMTM:adp 20

CMTM:adp 30

CMH:adp

Figure 4.1: Variance components model. Top Row: Comparison between non-adaptive
CMH and CMTM with 5 and 30 generic proposals. The red and green lines show the ESS
(left panel) or ESS/CPU (right panel) for the CMTM with 5 and 30 proposals, respec-
tively, the blue line presents the same for CMH. Bottom Row: Comparison between
ACMTM with 3, 5, 20 or 30 proposals and the adaptive CMH. The red, green, purple
and orange lines show ESS (left panel) or ESS/CPU (right panel) for ACMTM with 3, 5,
20 and 30 proposals, respectively, and the blue shows the performance for the adaptive
CMH.

The plots for non-adaptive samplers clearly show that CMTM with 30 proposals is

18

the most efficient in ESS and even when CPU time is taken into account it still performs
better than CMH. Similar results is evident for adaptive samplers. Clearly adaptive
CMTM with 20 or 30 proposal have much better ESS than adaptive CMH. When CPU
time is considered than adaptive CMTM with 20 proposals is the most efficient.

4.2 “Banana-shaped” Distribution

The “Banana-shaped” distribution was originally presented in Haario et al. (1999) as an
irregularly-shaped target that may call for different proposal distributions for the different
parts of the state space.

The target density function of the “banana-shaped” distribution is constructed as
fB = f ◦ φB, where f is the density of d−dimensional multivariate normal distribution
N(0, diag(100, 1, 1, . . . , 1)) and φB(x) = (x1, x2 + Bx21 − 100B, x3, . . . , xd). B > 0 is the
nonlinearity parameter and the non-linearity or “bananacity” of the target distribution
increases with B. The target density function is

fB(x1, x2, . . . , xd) ∝ exp[−x21/200− 1

2
(x2 +Bx21 − 100B)2 − 1

2
(x23 + x24 + . . .+ x2d)].

We set B = 0.01 and d = 10, the results are shown in Figure 4.2 (averaged over 50
runs starting with generic proposals).

19

● ●

● ● ● ● ● ● ● ●

0 5 10 15

0
10

00
20

00
30

00
40

00
50

00
60

00
ESS

Coordinate

E
S

S

●
●

● ● ●
●

●
● ●

●

●

●

●
●

●
● ●

●
●

●
CMTM:gen 5

CMTM:gen 30

CMH:gen

●

●

●

●
●

●

●

●
●

●

0 5 10 15

0
10

0
20

0
30

0
40

0
50

0

ESS/CPU

Coordinate

E
S

S
/C

P
U

●

●

● ● ●
●

●
● ●

●

●

●

●
●

● ● ●
●

●
●

CMTM:gen 5

CMTM:gen 30

CMH:gen

●
●

● ● ● ● ● ● ● ●

0 5 10 15

0
20

00
40

00
60

00
80

00
10

00
0

ESS

Coordinate

E
S

S

● ●

● ● ● ●
● ● ●

●

●
●

●
●

●
● ●

●
●

●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

CMTM:adp 3

CMTM:adp 5

CMTM:adp 20

CMTM:adp 30

CMH:adp

●

●

●
●

●
●

●

●
● ●

0 5 10 15

0
20

0
40

0
60

0
80

0

ESS/CPU

Coordinate

E
S

S
/C

P
U

● ●

● ● ● ●
● ● ●

●

●
●

●
●

●
● ● ●

●
●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

CMTM:adp 3

CMTM:adp 5

CMTM:adp 20

CMTM:adp 30

CMH:adp

Figure 4.2: Banana-shaped distribution. Top Row: Comparison between non-adaptive
CMH and CMTM with 5 and 30 generic proposals. The red and green lines show the ESS
(left panel) or ESS/CPU (right panel) for the CMTM with 5 and 30 proposals, respec-
tively, the blue line presents the same for CMH. Bottom Row: Comparison between
ACMTM with 3, 5, 20 or 30 proposals and the adaptive CMH. The red, green, purple
and orange lines show ESS (left panel) or ESS/CPU (right panel) for ACMTM with 3, 5,
20 and 30 proposals, respectively, and the blue shows the performance for the adaptive
CMH.

Focusing on ESS plots, CMTM and adaptive CMTM with 30 proposals clearly out-
perform standard CMH and adaptive CMH in all coordinates. When CPU time is taken
into account then CMH and adaptive CMH performs a little better than CMTM algo-
rithms on most coordinates. However on coordinate 1, CMTM methods perform much
better than CMHs, actually by a factor of 2.5 or more.

20

4.3 Mixture of 20-dimensional Gaussians

● ●

●
●

●

●

● ●

●

●

● ●

●
●

●

●

● ●

●

●

0 5 10 15 20 25 30

0
10

00
20

00
30

00
40

00
50

00
60

00

ESS

Coordinate

E
S

S

● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

● ●

● ● ● ●

● ●

●
●

● ●

● ● ●
●

● ●

●
●

CMTM:gen 5

CMTM:gen 30

CMH:gen

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

0 5 10 15 20 25 30

0
20

40
60

80

ESS/CPU

Coordinate

E
S

S
/C

P
U

● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

● ●

● ● ● ●

● ●

●
●

● ●

● ● ●
●

● ●

●
●

CMTM:gen 5

CMTM:gen 30

CMH:gen

● ●

●

● ●

●
● ●

●

●

● ●

●

● ●

●
● ●

●

●

0 5 10 15 20 25 30

0
20

00
40

00
60

00
80

00
10

00
0

ESS

Coordinate

E
S

S

● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

● ●

●

● ●

●
● ●

●

●

● ●

●

● ●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

● ●

●

● ●

● ●

●

●

●

CMTM:adp 3

CMTM:adp 5

CMTM:adp 20

CMTM:adp 30

CMH:adp

● ●

●

●
●

●

● ●

●

●

● ●

●

● ●

●

● ●

●

●

0 5 10 15 20 25 30

0
20

40
60

80
10

0
12

0
14

0

ESS/CPU

Coordinate

E
S

S
/C

P
U

● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

● ●

●

● ●

●
● ●

●

●

● ●

●

● ●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

● ●

●

● ●

● ●

●

●

●

CMTM:adp 3

CMTM:adp 5

CMTM:adp 20

CMTM:adp 30

CMH:adp

Figure 4.3: 20-dimensional mixture distribution. Top Row: Comparison between non-
adaptive CMH and CMTM with 5 and 30 generic proposals. The red and green lines show
the ESS (left panel) or ESS/CPU (right panel) for the CMTM with 5 and 30 propos-
als, respectively, the blue line presents the same for CMH. Bottom Row: Comparison
between ACMTM with 3, 5, 20 or 30 proposals and the adaptive CMH. The red, green,
purple and orange lines show ESS (left panel) or ESS/CPU (right panel) for ACMTM
with 3, 5, 20 and 30 proposals, respectively, and the blue shows the performance for the
adaptive CMH.

We are also examining the gains brought by the ACMTM in the case of multimodal
distributions. We consider the mixture

0.5N20(µ1,Σ1) + 0.5N20(µ2,Σ2)

21

where

µ1 =(5, 5, 0, 0, 0, 0, 10, 15, 0, 0, 5, 5, 0, 0, 0, 0, 10, 15, 0, 0),

µ2 =(10, 10, 0, 0, 0, 0, 7, 20, 0, 0, 10, 10, 0, 0, 0, 0, 7, 20, 0, 0),

Σ1 = diag(16.00, 16.00, 0.25, 4.00, 1.00, 0.01, 9.00, 16.00, 9.00,

0.01, 16.00, 16.00, 0.25, 4.00, 1.00, 0.01, 9.00, 16.00, 9.00, 0.01),

Σ2 = diag(16.00, 16.00, 6.25, 4.00, 1.00, 4.41, 9.00, 16.00, 0.25,

0.01, 16.00, 16.00, 6.25, 4.00, 1.00, 4.41, 9.00, 16.00, 0.25, 0.01).

In this example, CMTM methods with 30 proposals (in each coordinate) is the most
efficient in ESS and ESS/CPU. The comparison is reported in Figure 4.3. We note that
the adaptive and non adaptive versions of CMTM perform much better than the CMHs
counterparts.

The ESS/CPU calculations suggest that the best performance is achieved when the
number of chains m is between 20 and 30. When programming the examples (the pro-
grams are available as online supplemental material), we have taken advantage of the soft-
ware R’s ability to handle vectorial operations much more efficiently than loops. When
similar savings can be obtained, we recommend using m = 20 in practice. In instances
where the likelihood is expensive to compute due to the large number of observations in
the data, embarrassingly parallel strategies could be used efficiently in conjunction with
ACMTM (Neiswanger et al., 2013; Scott et al., 2013; Wang and Dunson, 2013; Reihaneh
et al., 2016).

It is also important to note that in all 3 examples described above adaptive CMTM
is always more efficient than CMTM with generic proposals. CPU time for both are
about the same but ESS generally much larger for the latter. Hence adaptive CMTM
generally produces much better results and it is advisable to use it for real-world problems
especially since it only requires a few lines of extra code.

5 Conclusion and Discussion

It is known that adaptive algorithms can be highly influenced by initial values given to
their simulation parameters and by the quality of the chain during initialization period,
i.e. the period during which no modifications of the transition kernel take place. ACMTM
is no exception, but some of its features can be thought of as means towards a more robust
behaviour. For instance, the fact that we can start with multiple proposals makes it less
likely that all initial values will be poor choices for a given coordinate. The ACMTM
is motivated by situations in which the sampler requires very different proposals across
coordinates and across regions of the state space. In such situations, traditional adaptive
samplers are known to fail unless special modifications are implemented (Craiu et al.,
2009; Bai et al., 2011), but even these tend to underperform when d is high.

The adaption mechanism is very rapid as the scales can change in multiple of 2’s and
is also stable since modifications to the kernel occur only if over selection from one of the
boundary scale proposals is detected. Thus, even if proposal scales are not perfect but
good enough, they would not change much under this adaptive design.

22

The increase in CPU time is the price we pay for the added flexibility of having
multiple proposals and the ability to dynamically choose the ones that fit the region of
the space so that acceptance rate and mixing rates are improved. And while this tends
to attenuate the ACMTM’s efficiency, one cannot find among the algorithms we used
for comparison in this paper one that is performing better on average even after taking
CPU time into account. However, we recommend using ACMTM in difficult sampling
problems (e.g. multimodal target, variable variances for the conditional distributions
across the sample space) when other approaches do not perform well.

Finally, it is the authors belief that AMCMC samplers will be used in practice more if
their motivation is intuitive and their implementation is easy enough. We believe that the
ACMTM fulfills these basic criteria and further modifications can be easily implemented
once new needs are identified.

Acknowledgement

We thank the Editor, the Associate Editor and three anonymous referees for insightful
comments that have greatly improved the paper. Funding support for this work was
provided by individual grants to RC and JSR from the Natural Sciences and Engineering
Research Council of Canada.

23

References

Andrieu, C., and Atchadé, Y. F. (2007), “On the efficiency of adaptive MCMC algo-
rithms,” Electronic Communications in Probability, 12(33), 336–349.

Andrieu, C., and Moulines, E. (2006), “On the ergodicity properties of some adap-
tive Markov Chain Monte Carlo algorithms,” The Annals of Applied Probability,
16(3), 1462–1505.

Andrieu, C., and Thoms, J. (2008), “A tutorial on adaptive MCMC,” Statist. Comput.,
18, 343–373.

Atchadé, Y. F., and Rosenthal., J. S. (2005), “On adaptive Markov Chain Monte Carlo
algorithms,” Bernoulli, 11(5), 815–828.

Bai, Y., Craiu, R. V., and Di Narzo, A. (2011), “Divide and C onquer: A mixture-based
approach to regional adaptation for MCMC,” J. Comput. Graph. Statist., 20(1), 63–79.

Box, G. E. P., and Tiao, G. C. (1973), Bayesian inference in statistical analysis Addison-
Wesely, Reading, MA.

Casarin, R., Craiu, R. V., and Leisen, F. (2013), “Interacting multiple try algorithms
with different proposal distributions,” Statistics and Computing, 23(2), 185–200.

Craiu, R. V., Gray, L., Latuszynski, K., Madras, N., Roberts, G. O., and Rosenthal, J. S.
(2015), “Stability of Adversarial Markov Chains, with an Application to Adaptive
MCMC Algorithms,” Annals of Applied Probability, 25(6), 3592–3623.

Craiu, R. V., and Lemieux, C. (2007), “Acceleration of the multiple-try Metropolis algo-
rithm using antithetic and stratified sampling,” Statistics and Computing, 17(2), 109–
120.

Craiu, R. V., Rosenthal, J. S., and Yang, C. (2009), “Learn from thy neighbor: Parallel-
Chain Adaptive and Regional MCMC,” J. Amer. Statist. Assoc., 104(488), 1454–1466.

Davies, O. L. (1967), Statistical methods in research and production Oliver & Boyd,
Edinburgh and London.

Fort, G., Moulines, E., and Priouret, P. (2011), “Convergence of adaptive and interacting
Markov chain Monte Carlo algorithms,” The Annals of Statistics, 39(6), 3262–3289.

Gelman, A., Roberts, G. O., and Gilks, W. R. (1996), “Efficient Metropolis jumping
rules,” in Bayesian Statistics, ed. J. M. B. et al., Vol. 5 Oxford University Press,
pp. 599–607.

Geyer, C. J. (1992), “Practical Markov chain Monte Carlo,” Statistical Science, 7(4), 473–
483.

Giordani, P., and Kohn, R. (2010), “Adaptive independent Metropolis–Hastings by fast
estimation of mixtures of normals,” Journal of Computational and Graphical Statistics,
19(2), 243–259.

24

Haario, H., Laine, M., Mira, A., and Saksman, E. (2006), “DRAM: efficient adaptive
MCMC,” Statistics and Computing, 16(4), 339–354.

Haario, H., Saksman, E., and Tamminen, J. (1999), “Adaptive proposal distribution for
random walk Metropolis algorithm,” Computational Statistics, 14(3), 375–396.

Haario, H., Saksman, E., and Tamminen, J. (2001), “An adaptive Metropolis algorithm,”
Bernoulli, 7(2), 223–242.

Haario, H., Saksman, E., and Tamminen, J. (2005), “Componentwise adaptation for high
dimensional MCMC,” Computational Statistics, 20(2), 265–273.

Hastings, W. K. (1970), “Monte Carlo sampling methods using Markov chains and their
applications,” Biometrika, 57(1), 97–109.

Liu, J. S., Liang, F., and Wong, W. H. (2000), “The multiple-try method and local
optimization in Metropolis sampling,” Journal of the American Statistical Association,
95(449), 121–134.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.
(1953), “Equation of state calculations by fast computing machines,” The journal of
chemical physics, 21(6), 1087–1092.

Neiswanger, W., Wang, C., and Xing, E. (2013), “Asymptotically exact, embarrassingly
parallel MCMC,” arXiv preprint arXiv:1311.4780, .

Reihaneh, E., Craiu, R. V., and Rosenthal, J. S. (2016), “Likelihood inflating sampling
algorithm,” arXiv preprint arXiv:1605.02113, .

Roberts, G. O., and Rosenthal, J. S. (2001), “Optimal scaling for various Metropolis-
Hastings algorithms,” Statistical science, 16(4), 351–367.

Roberts, G. O., and Rosenthal, J. S. (2004), “General state space Markov chains and
MCMC algorithms,” Probability Surveys, 1, 20–71.

Roberts, G. O., and Rosenthal, J. S. (2007), “Coupling and ergodicity of adaptive Markov
chain Monte Carlo algorithms,” Journal of Applied Probability, 44(2), 458–475.

Roberts, G. O., and Rosenthal, J. S. (2009), “Examples of adaptive MCMC,” Journal of
Computational and Graphical Statistics, 18(2), 349–367.

Rosenthal, J. S., and Yang, J. (2016), Ergodicity of Discontinuous Adaptive MCMC
Algorithms,. Submitted for publication. Available at http://probability.ca/jeff/
ftpdir/adversarial.pdf.

Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H., George, E., and McCulloch,
R. (2013), Bayes and big data: The consensus Monte Carlo algorithm,, in EFaBBayes
250 conference, Vol. 16.

Turro, E., Bochkina, N., Hein, A. M. K., and Richardson, S. (2007), “BGX: a Biocon-
ductor package for the Bayesian integrated analysis of Affymetrix GeneChips,” BMC
bioinformatics, 8(1), 439–448.

25

Vihola, M. (2012), “Robust adaptive Metropolis algorithm with coerced acceptance rate,”
Statistics and Computing, 22(5), 997–1008.

Wang, X., and Dunson, D. B. (2013), “Parallelizing MCMC via Weierstrass sampler,”
arXiv preprint arXiv:1312.4605, .

26

