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Abstract
Background: Affymetrix 3' GeneChip microarrays are widely used to profile the expression of
thousands of genes simultaneously. They differ from many other microarray types in that
GeneChips are hybridised using a single labelled extract and because they contain multiple 'match'
and 'mismatch' sequences for each transcript. Most algorithms extract the signal from GeneChip
experiments in a sequence of separate steps, including background correction and normalisation,
which inhibits the simultaneous use of all available information. They principally provide a point
estimate of gene expression and, in contrast to BGX, do not fully integrate the uncertainty arising
from potentially heterogeneous responses of the probes.

Results: BGX is a new Bioconductor R package that implements an integrated Bayesian approach
to the analysis of 3' GeneChip data. The software takes into account additive and multiplicative
error, non-specific hybridisation and replicate summarisation in the spirit of the model outlined in
[1]. It also provides a posterior distribution for the expression of each gene. Moreover, BGX can
take into account probe affinity effects from probe sequence information where available. The
package employs a novel adaptive Markov chain Monte Carlo (MCMC) algorithm that raises
considerably the efficiency with which the posterior distributions are sampled from. Finally, BGX
incorporates various ways to analyse the results, such as ranking genes by expression level as well
as statistically based methods for estimating the amount of up and down regulated genes between
two conditions.

Conclusion: BGX performs well relative to other widely used methods at estimating expression
levels and fold changes. It has the advantage that it provides a statistically sound measure of
uncertainty for its estimates. BGX includes various analysis functions to visualise and exploit the
rich output that is produced by the Bayesian model.

Background
Oligonucleotide microarrays allow biomedical research-

ers to estimate the expression of thousands of genes
simultaneously through their mRNA transcripts. A
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labelled, fragmented version of the RNA may be hybrid-
ised onto an array containing hundreds of thousands of
complementary oligonucleotides and then scanned.
Affymetrix 3' GeneChip arrays represent genes by sets of
probe pairs, each of which consists of an oligonucleotide
of length 25 which matches a corresponding RNA subse-
quence perfectly (PM) and an identical probe with an
inverted oligonucleotide on position 13 (MM) that is
intended to measure non-specific hybridisation.

The BGX model [1] is an integrated approach to the anal-
ysis of GeneChip microarrays in which correction for non-
specific hybridisation and gene expression level estima-
tion are performed simultaneously. Posterior distribu-
tions of parameters in the model may be obtained
numerically. Based on these distributions, a powerful
method for detecting differential expression has been
developed [2].

The probes on Affymetrix GeneChips have been found to
exhibit varying propensities to "shine" according to the
base composition of their sequences [3] and methods for
estimating expression levels from GeneChips that incor-
porate probe affinity effects have shown demonstrable
advances over methods in which these effects are ignored
(see, e.g. [4]). We present a new Bioconductor [5] package
that implements the BGX model, includes an extension to
incorporate probe affinity effects, employs novel algorith-
mic techniques to sample effectively from posterior distri-
butions, and provides various analysis and plotting
functions.

Implementation
Basic model
BGX [1] explicitly models probe intensities as arising
partly from specific hybridisation, S (the signal), and
partly from non-specific hybridisation, H, with only a
fraction, φ, of the signal occuring at a PM probe also occur-
ring at the corresponding MM probe. The Ss and Hs are
gene (g), probe (j), condition (c) and replicate (r) specific,
and the intensities are assumed to be affected by an addi-
tive array-specific noise:

The log-transformed signal parameter, log(Sgjcr + 1), is
assumed to follow a gene and condition specific distribu-
tion, while the log-transformed non-specific hybridisa-
tion term, log(Hgjcr + 1), is assumed to arise from an array-
specific distribution:

where TN denotes the truncated normal distribution,
truncated to the positive axis. The central parameter of
equation (3), μgc, acts as the BGX expression measure, and
equations (1) to (4) represent the basic BGX model.

The core of the model is implemented in the C++ pro-
gramming language for efficiency and uses MCMC to
sample from the full posterior distributions of each
parameter. Parameters are estimated using Gibbs sam-
pling where possible (φ and τ) and a Random Walk
Metropolis-Hastings algorithm elsewhere (S, H, μ, σ, λ
and η). Three C++ class templates are used to instantiate
zero, one and two-dimensional MCMC update objects for
each parameter according to the dimensionality of the
corresponding suffixes. Each of the instantiated objects is
updated in sequence using references to all other neces-
sary parameters during a burn-in period, which is dis-
carded, and a sampling period, which is used for the
posterior distributions.

Probe affinity extension
It has been observed that the propensity of probes to
hybridise to mRNA is affected by their base composition
[3]. In particular, probes with a high number of cytosine
bases have a high propensity to hybridise while probes
with a high number of adenine bases exhibit the opposite
tendency. Moreover, the nearer the bases are to the centre
of the oligonucleotide, the greater the effect. We account
for this in an extension to the core model that incorporate
affnity effects in the modelling of non-specific hybridisa-
tion. We categorise probes in the following way: let α be a
function which, for each gene and probe pair, (g, j), gives
the affnity category of a given probe: α : (g, j) → {1, ..., K}
(defined below). We refine equation (4) by allowing for a
category and array specific distribution of the non-specific
hybridisation parameter:

The extended model, which we denote GCBGX, is based
on equations (1), (2), (3) and (5).

The probes on the arrays are, prior to analysis, grouped
into a number of probe affinity categories. This is done by:
(a) calculating the probe affinities using the gcrma Biocon-
ductor package [4], (b) rounding them to the first decimal
place, (c) assigning each value to a preliminary probe
affinity category and (d) ensuring that the final categories
contain a sufficient number of probes by collapsing small
preliminary categories together. We enumerate the result-
ing probe affinity categories 1, ... , K by increasing affinity.
Once categorised, the affinity-specific parameters are esti-

PM gjcr gjcr gjcr crN S H~ ( , ),+ τ 2 (1)

MM gjcr gjcr gjcr crN S H~ ( , ).φ τ+ 2 (2)

log( ) ~ ( , ),S TNgjcr gc gc+1 2μ σ (3)

log( ) ~ ( , ),H TNgjcr cr cr+1 2λ η (4)

log( ) ~ ( , ).( , )H TNgjcr cr
g j

cr+1 2λ ηα (5)
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mated from the data, simultaneously with all other
parameters.

In some cases, Affymetrix do not directly provide the
sequences for all probesets due to licensing restrictions
and, consequently, there are Bioconductor probe pack-
ages that do not contain complete sequence information.

For example, hgu95aprobe (version ≤ 1.16.2) lacks
sequences for probes belonging to 172 probesets. We

tackled this problem by treating α(g, j) as a random vari-
able, taking values from 1 to K, with prior probability
equal to the observed frequency of the categories,

, where Nk is the number of probes in category k

and .

Adaptive MCMC
The full conditional distributions of S, H, μ, σ, λ and η are
updated by drawing new values from a proposal distribu-
tion, typically a Random Walk (RW) Gaussian proposal
centred on the current value with a chosen variance. A typ-
ical experiment consists of several hundred thousand
probes, resulting in potentially millions of S and H com-
ponents and tens of thousands of μ and σ components.
Each component of a given parameter has a different sup-
port and consequently a different optimal RW proposal
variance. Using a fixed variance for all components results
in excessively low or high acceptance ratios for a large pro-
portion of components, leading to highly autocorrelated
chains.

In order to tackle this problem, we implemented the novel
Adaptive Metropolis-Within-Gibbs algorithm recently
proposed by Roberts and Rosenthal [6,7]. We used a
unique proposal variance for each object, which adapts to
its optimal value after successive batches of 50 iterations.
The aim is to achieve an acceptance ratio of around 0.44,
which has been shown to be optimal for one-dimensional
proposals in certain settings [8,9], and is commonly
accepted as being a sensible benchmark. An acceptance
rate that is close to zero implies inefficient mixing, while
an acceptance rate that is close to one implies the proba-
bility space is not efficiently explored. The algorithm pro-
ceeds as follows:

• For each component c of parameter p, assign a parame-
ter-specific starting value to the corresponding proposal

variance, 

• Choose a sequence δ (n) → 0. We chose δ (n) =
min(0.01, n-1/2)

• Start the MCMC simulation

• After the nth batch of 50 iterations, calculate the accept-
ance ratio over the last batch

• If the acceptance ratio is less than the optimal value of

0.44, increase log( ) by δ (n), else decrease it by δ (n)

The algorithm preserves ergodicity as long as each kernel
has the right stationary distribution; the total variation
distance between successive kernels tends to zero in prob-
ability; and the convergence time of each kernel is
bounded in probability [6].

R package
The C++ component of BGX is compiled as a shared
object which is loaded and executed automatically from
within the R package [10]. BGX integrates standard Bio-
conductor classes such as AffyBatch to store raw micro-
array data and ExpressionSet to store processed gene
expression measures. Users interested in running BGX
programmatically from a shell script, for instance, or in a
more memory-efficient manner, also have the choice to
run a standalone binary version of the program.

Results and Discussion
Usage
The bgx package and its dependencies, affy and gcrma, may
be installed automatically from the Bioconductor reposi-
tory from an R shell. The package contains documentation
and executable examples in a "vignette" file available
using openVignette(). Users who wish to compile bgx
from source will require the Boost C++ libraries [11] and
the hgu95av2cdf Bioconductor package. The core func-
tionality of the package is contained in the bgx function,
which takes an AffyBatch object instantiated from one
or more GeneChip CEL files as its first argument and
returns an ExpressionSet object containing expression
values for each gene and condition:

aData <- Read
Affy("chip1.CEL","chip2.CEL")

eset <- bgx(aData)

assayData(eset)$exprs # Returns expression
values

assayData(eset)$se.exprs # Returns stand
ard errors for expression values

Optional arguments include samplesets, which speci-
fies the experimental design; genes, which specifies a sub-
set of genes to analyse; burnin and iter, which specify

pk
Nk
N=

N Nkk

K= =∑ 1

σ cp
2

σ cp
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the number of iterations for the burn-in and post burn-in
phases of the algorithm respectively; probeAff, which
specifies whether or not to use the probe affinity exten-
sion to the original BGX model, and adaptive, which
specifies whether or not to use Metropolis-Within-Gibbs
step adaptation. Full documentation for the bgx function
is available by running help(bgx).

Although the point measures returned in the Expres
sionSet object are useful, the distinctive power of the
BGX method is that it provides samples from the full pos-
terior distributions of the expression parameter, μgc. These
samples are, by default, saved in directories named
run.1, run.2, etc. in R's current working directory,
although this may be overridden with the rundir argu-
ment. They may be read into R in order to analyse the
results of a simulation as follows:

bgxOutput <- readOutput.bgx("run.1")

The bgxOutput object is assigned to a list containing val-
ues from the full posterior distributions of μgc (bgxOut
put$mu), their expected values (bgxOutput$muave)
and the gene names (bgxOutput$geneNames). This
object can be passed to a number of functions to analyse
the results. In particular, this object provides a direct
measure of the variance of gene expression, a quantity
which is only sometimes available when fitting robust lin-
ear models (e.g. using the AffyPLM Bioconductor pack-

age). The difference in expression between two
conditions, μg2 - μg1, may be visualised with the plotEx
pressionDensity and plotDEDensity functions
(Figure 1). plotDEHistogram fits a spline to the histo-
gram of P(μg2 - μg1 < 0) using Poisson regression, estimates
the null distribution by spline fitting of the central part of
the histogram, and uses the difference between the histo-
gram fit and the null distribution to give a preliminary
estimate of the number of differentially expressed genes
(Figure 2) [2]. A more thorough approach to the problem
of classifying genes by differential expression may be
found in the BGmix Bioconductor package — an imple-
mentation of a fully Bayesian mixture model for differen-
tial expression – which can analyse BGX output directly
(Lewin, Bochkina and Richardson: Fully Bayesian mixture
model for differential gene expression: simulations and
model checks, submitted). rankByDE returns a matrix
that ranks genes by their standardised BGX differences
between two conditions (see Equation (7)) and specifies
each gene's name, index and differential expression meas-
ure. More information on each function is available via
help(analysis.bgx).

For the purposes of this paper, BGX was run with the
"gold standard" of 16 k burn-in iterations and 64 k sam-
pling iterations. However, the recommended 8 k burn-in
iterations and 16 k sampling iterations are sufficient to
provide good estimates of μg (Additional File 1). Under
these settings, BGX takes approximately one hour per

Expression and differential expression densitiesFigure 1
Expression and differential expression densities. plotExpressionDensity plots the density of    the posterior dis-
tribution of a given gene under each condition    (left). plotDEDensity plots the density of the difference in    the posterior 
distributions of a given gene between two conditions    (right).  
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array on a standard 64-bit 3 GHz computer. Analyses of
up to 100 arrays ought to "fit" in a computer equipped
with 4 GB of memory. However, BGX may be run sepa-
rately for each condition, and the output subsequently
combined in R by passing multiple output directories to
the readOutput.bgx function. Since φ, the only param-
eter that is shared between conditions, is very stable for a
given type of array, the impact on the output of running
BGX separately on each condition is negligible.

Estimation of non-specific hybridisation

The GCBGX model groups MM probes into categories that
have similar probe affinities based on their oligonucle-
otide content. Instead of using a single array-specific

parameter, λcr (Equation (4)), we associate an appropriate

 component with each probe (Equation (5)),

which should correlate positively with probe affinity cate-
gories. Figure 3 shows a colour-coded density plot of the

 parameter obtained in an analysis of the Golden

Spike data [12]. As probe affinity categories increase, the
distributions shift from left to right. The black density line

corresponds to the λcr distribution in the original BGX

model and highlights the discriminatory power of the
probe affinity extension.

Probes with unknown sequences have their affinity cate-
gories estimated from the data. In order to check the effec-
tiveness of this approach, we performed cross-validation
on one out of every 100 genes from the Golden Spike data
set, and compared the median estimated category to its
true value. Figure 4 shows a positive correlation between
estimated and true categories, particularly for high-affinity
probes.

Performance of adaptive MCMC

BGX is a computationally intensive program and it is
therefore desirable to use an MCMC algorithm that mixes
efficiently. One quantity of interest in this respect is the
integrated autocorrelation time (IACT), which inflates the

variance of the sample mean, [13]. To be precise, the
variance of the sample mean may be expressed as follows
[14]:
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Distributions of λ for each probe affinity categoryFigure 3
Distributions of λ for each probe affinity category. 

Colour-coded density plot of the  parameter of an 

analysis of the Golden Spike data set. As probe affinity cate-
gories increase, the distributions shift from left to right. The 
black density line is the λcr distribution from the original BGX 
model and illustrates the discriminatory power of the probe 
affinity extension.
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Estimating the number of differentially expressed genesFigure 2
Estimating the number of differentially expressed 
genes. plotDEHistogram plots a histogram of P(μg2 - μg1 
< 0), which is used to estimate the number of up and down-
regulated genes between two conditions using a routine 
incorporated in the package.
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where X is an autocorrelated sample of size n with empir-

ical mean , , and a(X) is the

integrated autocorrelation time (IACT), defined as

where

Evidently, if the sample is not autocorrelated, then Pj = 0

for all j, a(X) collapses to 1 and var( ) becomes equal to
the familiar expression for an IID sample, E [S2(X)/n].
From (6), the IACT of a chain relates positively with the
variability of its mean, and thus highly autocorrelated
chains lead to poor estimates of our gene expression
measure.

One way of improving our estimates is to increase the
number of iterations while maintaining a fixed subsample
size. This translates to subsamples being further apart on
the original chain and therefore less correlated. It is faster
and more attractive, however, to use an adaptive algo-
rithm that explores the probability space more efficiently.
Using the Golden Spike data set [12] for our investigation,
we found that the adaptive method led to a range of opti-
mal proposal magnitudes for the Metropolis-Hastings
parameters. Figure 5 illustrates this with a histogram of
the optimal log variance for S proposals on one array and
the original fixed step size overlaid in black. Figure 6 (left
& centre) shows a dramatic reduction in the IACT of the S
parameters and a milder improvement on the μg parame-
ters of expressed genes. A similar improvement was
observed for the IACT of the H parameters, this time for
all genes (Figure 6 right).

Differential expression can be quantified by the standard-
ised BGX differences between two conditions:
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Estimating the affinity of probes with unknown sequenceFigure 4
Estimating the affinity of probes with unknown sequence. Sequence information was artificially removed from one out 
ever 100 genes from the Golden Spike data set and the corresponding probes' affinity categories were estimated from the data. 
There is a positive correlation between estimated and true categories, particularly for high-affinity probes.
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where, from (6), var( ) is estimated by

dg = μg2 - μg1, g = 1 ..., G, that is, samples from the posterior

distribution of the difference in the BGX expression meas-

ure for each gene, and , the estimate of the Monte

Carlo standard error, is calculated using Sokal's adaptive
truncated periodogram estimator [?]. Our z-score differs
from the measure used in [2] by a factor of

, which takes into account the autocor-

relation structure of the sequence of values generated by
the algorithm. Since the adaptive MCMC algorithm has
the effect of decreasing a(dg) for expressed genes while

keeping it approximately constant for non-expressed

genes, it leads to an increase in the ranking of expressed
genes and consequently in BGX's capacity to detect differ-
ential expression.

Performance on spike-in datasets
We illustrate the performance of bgx by presenting
detailed results from analyses of arrays from the Affyme-
trix Latin Square data [15] and the Golden Spike data set
[12].

Latin Square data
Affymetrix published two data sets for assessing the per-
formance of expression algorithms on their microarrays.
The HGU95A data set consists of 16 genes spiked in at
known concentrations ranging from 0 to 1024 pM and
arrayed in a Latin Square format. We considered 16
instead of the original 14 genes described by Affymetrix
because we included two extra spike-ins, 546_at and
33818_at, as reported in [16]. We used two replicates and
14 unique concentration configurations labelled A to M
and Q. 2716 of the probes in this data set had no sequence
information and therefore their probe affinity categories
were estimated from the data as part of the model. The
HGU133A data set consists of 64 genes spiked in at
known concentrations ranging from 0 to 512 pM. We con-
sidered 64 instead of the original 42 genes described by
Affymetrix because we included 22 extra spike-ins, as
reported in [17]. We used all 3 replicates for each of the 14
concentration groups.

The data from these experiments were analysed using
BGX, GCBGX, RMA [18], GCRMA [4] and MAS5 [?], and
the average expression for each concentration level was
recorded. Figure 7 (left) shows a steeper gradient at levels
lower than 4 pM in the HGU95A data set using GCBGX
instead of BGX, pointing to an increased ability to detect
concentration changes. For both data sets, BGX and
GCBGX are more sensitive to changes within the low
range than RMA, GCRMA or MAS5 (Figure 7 left & right).

Golden Spike data set
The Golden Spike data set consists of six DrosGenome1
GeneChips, with three technical replicates from two con-
ditions: C and S. There are 14010 probe sets in each array
representing 14010 genes. 2535 of these are expressed
equally under both conditions while 1331 genes are up-
regulated in S relative to C. The data is highly valuable for
comparing chip analysis methods because it is fully con-
trolled and contains very realistic noise. Due to the asym-
metry of the spike-ins, a normalisation of the posterior
distributions similar to that advocated in [12] was carried
out by fitting a loess curve to the MA plot [19] of the pos-
terior mean values of μgc for the non-differentially
expressed genes, predicting a curve from the fit for all
genes, and subtracting the curve from the posterior distri-
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Adapting the size of MCMC proposal stepsFigure 5
Adapting the size of MCMC proposal steps. When the 
adaptive MCMC algorithm is used, the variance of the 
Metropolis-Hastings proposal step is adapted independently 
for each S component. The plot shows a histogram of the 
optimal log variance for S proposals and the fixed step size 
used in the non-adaptive version overlaid in black, highlight-
ing that a wide range of proposal variances are needed.
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Decreasing the IACT of expressed genesFigure 6
Decreasing the IACT of expressed genes. The plots show a dramatic reduction in the IACT of the S parameter and a 
milder improvement on the μ parameter of expressed genes (left & centre). A similar improvement was observed for the 
IACT of the H parameter, for all genes (right).
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Performance on the Latin Square dataFigure 7
Performance on the Latin Square data. Log concentration vs. mean log estimated expression    of spike-in genes in the 
HGU95A (left) and HGU133A (right) Latin    Square data sets. There is an increased ability to detect    concentration changes 
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MAS5. The MAS5 concentration    line was shifted down by 2.5 units to facilitate the comparison of its    gradient with those of 
the other lines.

�2 0 2 4 6 8 10

2
4

6
8

10
12

Concentration plots � HGU95a

Log spike�in concentration

M
ea

n 
lo

g 
es

tim
at

ed
 e

xp
re

ss
io

n

bgx
gcbgx
rma
gcrma
mas5

�2 0 2 4 6 8

2
4

6
8

10
12

Concentration plots � HGU133atag

Log spike�in concentration

M
ea

n 
lo

g 
es

tim
at

ed
 e

xp
re

ss
io

n

bgx
gcbgx
rma
gcrma
mas5
Page 8 of 10
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:439 http://www.biomedcentral.com/1471-2105/8/439
butions of the differences in expression. The RMA,
GCRMA and MAS5 expression measures were similarly
adjusted using loess normalisation at the probeset level
instead of the default quantile normalisation at the probe
level.

Receiver operating characteristic (ROC) curves depict the
observed false discovery rate vs. the true positive rate as
the cut-off of a ranked gene list is varied. Figure 8 (left)
shows average ROC curves for the nine single-array com-
parisons between condition C and condition S while Fig-
ure 8 (right) shows ROC curves for three-replicate
comparisons. GCBGX has a small advantage over BGX
and both models perform well. In the single-array com-
parisons, BGX and GCBGX outperform RMA, GCRMA
and MAS5 for false discovery rates below 30%. The
number of differentially expressed genes (DEGs) were
estimated by running plotDEHistogram on the output
of the nine comparisons involving one array from condi-
tion C versus one array from condition S. The number of
genes detected as up-regulated with GCBGX ranged from
681 to 883 (mean 783) and for BGX from 560 to 867
(mean 742). Both methods produced an average true pos-
itive rate across the nine comparisons of over 97% for up-
regulated genes. In the three-replicate comparisons, BGX
and GCBGX outperform RMA, GCRMA and MAS5 for
false discovery rates below 20%. An analysis of a three-

replicate comparison yielded 1002 and 958 DEGs with
96.6% and 95.7% true positive rates using GCBGX and
BGX respectively.

Conclusion
BGX is a new Bioconductor R package for analysing 3'
Affymetrix GeneChips. BGX implements a fully integrated
Bayesian hierarchical model with the option to take into
account sequence-dependent probe affinities. BGX uses a
novel adaptive MCMC algorithm that improves the effi-
ciency with which the posterior distributions of parame-
ters are sampled from. BGX compares favourably to RMA
and GCRMA at detecting differential expression, particu-
larly at low concentration levels.

Availability and requirements
Project name: BGX

Project homepage: http://bgx.org.uk

Operating systems: Platform independent

Programming language: C++, R

Other requirements: R, Bioconductor

License: GNU GPL

Performance on the Golden Spike dataFigure 8
Performance on the Golden Spike data. Nine single-array comparisons (left) and three-   replicate comparisons (right) 
between condition C and S were performed    using BGX, GCBGX, RMA, GCRMA and MAS5. The ROC curves show that 
GCBGX    has a small advantage over BGX and that both models perform well. For    false discovery rates below 20%, BGX 
and GCBGX outperform RMA, GCRMA    and MAS5.  
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