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Abstract

In this paper, we use a Bayesian spatial model to spatially interpolate forest in-

ventory data from the Timiskaming and Abitibi River forests in Ontario, Canada. We

consider a Bayesian Generalized Linear Geostatistical Model and implement a Markov

Chain Monte Carlo algorithm to sample from its posterior distribution. How spatial

predictions for new sites in the forests change as the amount of training data is reduced

is studied and compared with a Bayesian Logistic Regression model without a spatial

effect. Finally, we discuss a stratified sampling approach for selecting subsets of data

that allows for potential better predictions.
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1 Introduction

1.1 The forest inventory problem

The forest industry is a substantial part of the economies of many countries, and a ”forest

inventory” is an estimate of monetary value of the timber resources in a specific managed

area. The value of a timber resource depends on different features of trees such as size,

species, age, defects, etc. Tree species have different types of wood with different qualities,

and hence influence the timber value.

Tree species have two main categories, hardwood (deciduous) trees and softwood (conif-

erous) trees, with hardwood trees generally having wider leaves that are lost annually, while

softwood trees have smaller leaves and retain their leaves throughout the year. Hardwood

trees provide much longer lasting wood compared to softwood trees, with slower growth rates

which makes them more expensive compared to softwood. Hence, knowing the number of

hardwood trees in a forest is valuable information. Collecting data on forests requires hiring

workers to travel to different sites around the forests and measure the quantities needed,

which can be costly and time consuming.

Remote sensing technologies can overcome this issue. Although they are cheap and

efficient and can cover a wide range of geographical areas, they can suffer from lack of

accuracy. Geostatistical models are powerful tools for analyzing and predicting such spatial

data, and can be used to calibrate remotely sensed data (see Curran & Atkinson, 1998).

Existing literatures by Giorgi et al. (2017); Shaby & Reich (2012); Abellan et al. (2007) are

examples of the importance of statistical models for spatial analysis. The focus of this paper

will also be to take advantage of statistical tools to predict the number of hardwood trees

using geostatistical models that take into account the spatial factor.
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1.2 Model-based geostatistics

In the past few decades, spatial statistics has become an established field of statistics with

well developed models applied to many real-world problems. Conventional geostatistical

models for Gaussian spatial data were first popularized by Matheron (1962) and later on

built upon by Cressie (1993). The generalization of these models for non-Gaussian data were

introduced by Diggle et al. (1998).

Let Yi be the observed spatial data at location si, with arbitrary distribution f that has

mean λ and possible additional parameters γ. Consider X(si) as the covariates at location

si. Modelling this data with the Generalized Linear Geostatistical Model (GLGM) described

in Diggle et al. (1998) and Diggle & Ribeiro (2007), will be as following:

Yi|U(si), λ(si), γ ∼ f [λ(si), γ]

g[λ(si)] = µ+ βX(si) + U(si)

(1)

where g(.) is the link function (i.e. logit or log). Here U(s) is a Gaussian random field U

evaluated at location s, which is characterized by the joint multivariate normal distribution:

[U(s1), ..., U(sN)]
T ∼ MVN(0,Σ)

where the elements of Σ are defined by a spatial correlation function ρ as

Σij = cov[U(si), U(sj)] = σ2ρ(||si − sj||/ϕ, ν)

where ϕ is a range parameter and ν is a vector of other possible parameters. The range

parameter ϕ controls the rate at which the correlation decreases with distance. There are

many possible parametric functions for ρ, with Matérn correlation function (see Stein, 1999)
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being the most commonly used. The Matérn correlation is defined as:

ρ(h;ϕ, κ) =
1

2κ−1Γ(κ)

( ||h||
ϕ

)κ

Kκ

( ||h||
ϕ

)
, (2)

where Γ(.) is the gamma function and Kκ(.) is the modified Bessel function of the second

kind of order κ > 0 (κ being a shape parameter). This function is particularly interesting,

as it is flexible in the differentiability of the Gaussian process U(s) by adjusting κ (Stein,

1999).

Bayesian inference is the dominant paradigm for use with GLGM’s due to the difficulty

in computing Maximum Likelihood Estimates. Although methods for Frequentist inference

are now well developed and software available, the Bayesian treatment of parameter uncer-

tainty remains a strong justification for Bayesian inference in many circumstances. Bayesian

inference via Markov Chain Monte Carlo (MCMC) methods (Brooks et al., 2011; Craiu

& Rosenthal, 2014) has many advantages as discussed in Diggle et al. (1998). The Inte-

grated Nested Laplace Approximation (INLA) algorithm introduced by Rue et al. (2009), is

an alternative to MCMC for Bayesian Inference on latent Gaussian models. In particular

INLA makes numerical approximations to the marginal posterior distributions rather than

the joint distributions which we will describe in detail in section 2.5. There are facilities in

the R-INLA software for producing approximate joint posterior samples, but the properties

of these samples have yet to be explored.

1.3 The motivating problem

In this paper, we will analyze the spatial hardwood tree count data collected from the

Timiskaming & Abitibi River forests in Ontario, Canada. Our analysis is constructed in a

Bayesian framework for a binomial geostatistical model to predict the proportion of hard-

wood trees from remotely sensed elevation and vegetation data. For posterior simulations,

we implement an MCMC method using the Langevin-Hastings (see Roberts & Rosenthal,
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1998) and the Random-Walk Metropolis Hastings (see Roberts et al., 1997; Roberts & Rosen-

thal, 2001) algorithms. By reducing the amount of training data fitted to the model, and

evaluating the out-of-sample predictive performance for the same validation set (which also

accounts for model misspecification), we are able to mimic a scenario where fewer ground

truth measurements are collected and assess the usefulness and accuracy of less costly forest

inventories. We will show that with training data size as small as 10 spatial locations, despite

the increase in uncertainty, the true number of hardwood trees lies within a 95% prediction

interval. This conclusion is very valuable as it will significantly reduce costs of collecting

ground truth data. We will also compare our results with a Bayesian Logistic Regression

model where there is no spatial effect.

A secondary consideration is to evaluate the need for a well considered spatial sampling

design, which can potentially increase the cost of data collection by requiring visites to

inaccessible locations. Many existing papers (see Wang et al., 2012; Brus & De Gruijter,

1997) discuss the importance of design-based sampling for spatially correlated data in order

to improve estimation of population parameters. Therefore we also explore a stratified

sampling approach in choosing the training data that will show a potential improvement in

the predictions.

The paper is organized as follows. The spatial data from the Timiskaming & Abitibi

River Forests are described in section 2.1. Section 2 describes the geostatistical model used

for our data and the MCMC algorithm applied to perform Bayesian Inference. In addition,

we explain our stratified approach and describe the measurements we will use to compare

and assess predictions. Section 3 discusses the numerical results from fitting the data, where

comparisons are also made with the Bayesian Logistic Regression. At last, we summarize

our results in Section 4. The Appendix includes details of the implementation of the MCMC

algorithm, and results from different simulations are presented in the Supplemental Docu-

ment.
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2 Methods

2.1 Description of Data
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(a) Sample locations
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(b) Proportions of hardwood trees

Figure 1: Locations of 162 forest plots in the Timiskaming and Abitibi River Forests (back-
ground Natural Resources Canada).

The Timiskaming and Abitibi River forests are geographically located next to one-another

in northern Ontario, Canada. The First Resource Management Group Inc. has provided

detailed data from 162 individual forest plots inside these adjacent forests. Each forest plot

is 11.28m in radius to provide a 400m2 circular surface. The geographical locations of these

162 sites are shown in Figure 1.

The data from each site consists of information on the total number of trees, whether

each tree is living or dead, and the species of each tree. Figure 1b shows the proportion

of live trees which are hardwood from the 162 sites. As can be seen, many sites have no

hardwood trees and such sites are scattered throughout the forests.

The remotely sensed data considered includes elevation values from satellite data pro-

vided by the SRTM program (Figure 2a). A measure of forest vegetation was provided by

the First Resource Management Group Inc. using the proprietary remote sensing technol-
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(b) SkyForestTM vegetation index

Figure 2: Elevation & Vegetation index around the Timiskaming and Abitibi River Forests
(Background ©Stamen Design).

ogy “SkyForestTM”, which is shown in Figure 2b. This vegetation measure is predicted by

SkyForestTM across the forest landscape by selecting an arithmetic transformation of spec-

tral bands (ATSB) from a candidate list of ATSBs. The ATSBs are constructed similarly to

well known vegetation indices such as the Normalized Difference Vegetation Index (NDVI),

with some of them being multi-temporal. It is thus expected that hardwood trees are located

where this measure is high.

In the next section, we will describe the geostatistical model for our dataset, along with

the steps taken to perform a Bayesian analysis.

2.2 Logistic Regression

Before describing the full geostatistical model for our data, a simple Logistic Regression

model with binomial response will be outlined. Consider Yi to be the count of hardwood

trees in forest plot i, and write Yi ∼ Binom(ni, pi), where ni is the total number of live trees

at site i (si) and pi is the probability of a tree in plot i being hardwood. Elevation and
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the SkyForestTM index are covariates in the model. The SkyForestTM covariate is treated

as a linear effect with change point at 0.3 (approximately its average value), giving some

additional flexibility to this covariate in the regression model. The elevation values are also

centered at the average value of about 320. For computational reasons, we normalize the

covariates by dividing by the standard deviation. The model is:

Yi ∼ Binom(ni, pi) i = 1, ..., 162

log
( pi
1− pi

)
= X(si)β

(3)

Writing A(s) as the SRTM-measured altitude at location s and V (s) as the SkyForestTM

vegetation index, the normalized vector of covariates X(s) is constructed by:

X1(s) = 1

X2(s) =
A(s)− 320

50

X3(s) =
min(V (s)− 0.3, 0)

0.05

X4(s) =
max(V (s)− 0.3, 0)

0.05

2.3 The geostatistical model

Spatial dependence in the prevalence of hardwood trees should be expected as sites in the

forests close to one another may benefit from the same soil, weather, etc, and hence may

have similar tree types. Thus we expect a geographical effect to play an important role

in explaining such data with a more sophisticated model such as the Generalized Linear

Geostatistical Model (GLGM). A geostatistical model for our spatial data will have an extra
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spatial term U(s) and an independent term Z compared to the model in (3), resulting:

Yi ∼ Binom(ni, pi) i = 1, ..., 162

log
( pi
1− pi

)
= ti = X(si)β + U(si) + Zi (4)

where Zi’s are mutually independent zero-mean Gaussian variables which are also indepen-

dent of U(si):

Zi
i.i.d.∼ N(0, τ 2),

U(s) ∼ N(0, σ2),

cov(U(s+ h), U(s)) = σ2ρ(||h||;ϕ, κ)

This model is equivalent to (1) where f is Binomial and g is a logit link function.

2.4 Out of sample predictions

For our analysis, we explore reducing the size of the training data fitted to the model, to

observe and examine the trade-off between prediction accuracy and costs of collecting ground

truth data. More specifically, if we were only given data from 25 or 10 plots on the ground,

could useful predictions still be made? To answer this question, the 162 plots in the dataset

were divided into 100 training and 62 validations sets. Keeping the 62 validation set fixed,

we examine the performance of results generated by fitting 100, 25, and 10 training data

to the model. For this purpose, we can do this by two different approaches, 1) choosing

random subsets of data and 2) choosing stratified subsets of data. Since the spatial data

is correlated, choosing the subset of data with a stratified approach should be expected to

improve the results, as it can force the training plots to be as scattered as possible. Both

elevation and vegetation covariates are taken into account for choosing the 25 and 10 dataset

from the 100. Hence, we begin by looking at the elevation from all the 100 training data
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(first simulation) as shown in Figure 3a.
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(a) Elevation for 100 training data (b) Stratified regions

Figure 3: Plots of elevation from 100 training data, along with the plot of stratified regions.

The 100 plots are stratified into three groups based on their spatial locations as well as

extreme elevation values (min, mid-point, max) (shown in Figure 3b). Keeping the propor-

tion of the data from each strata constant, we systematically sample 25 plots from the 100

by sorting the vegetation index in each strata and taking every j − th element depending

on the number of data needed (similarly for the 10 data points from the 25). The Results

section will explore how stratified sampling can (potentially) improve prediction accuracy

with smaller training data fitted to the model, compared to random sampling.

2.5 Inference

We will apply a Bayesian approach to the model in (4), and this methodology will be re-

ferred to as the Bayesian Generalized Linear Geostatistical Model (BGLGM). Let βT =

(β0, β1, β2, β3), θT = (σ2, ϕ, τ), and tT = (t1, ..., tn) with ti = X(si)β + U(si) + Zi, be the

three sets of parameters. We treat κ as fixed at 1.5, since it is not of direct interest and

according to Zhang (2004), not all the parameters (σ2, ϕ, and κ) are consistently estimable.
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We define priors for each parameter as

θ ∼ π1(.) & β|θ ∼ π2(.) = N(µ, σ2Ω) & t|β, θ ∼ π3(.) = MVN(Xβ,Σ(θ))

where the prior distribution π1(.) on θ is the product of the prior distributions on σ2, ϕ, and

τ . Thus the joint posterior distribution will be given as:

π(β, θ, t|y) ∝ π1(θ)π2(β|θ)π3(t|β, θ)f(y|t) (5)

where f(y|t) =
∏n

i=1 fi(yi|ti) is the likelihood function. Here Σ(θ) is the covariance matrix

with diagonal elements equal to σ2 + τ 2 and off-diagonal elements of σ2ρ(||si − sj||;ϕ, κ)

where ρ is the Matérn correlation function. We consider Exponential(λ = 0.5) priors for σ

and τ , and a Gamma(α′ = 3, β′ = 35) prior for ϕ.

The INLA methodology from Rue et al. (2009) has become the dominant tool for infer-

ence with the BGLGM, and some explanation as to why INLA is not suitable for the forest

inventory problem is warranted. The defining feature of INLA is it computes only marginal

posterior distributions such as π(βp|y) and π[U(si)|y] and linear combinations of the latent

variables, but not the joint posterior distributions π[βp, U(si)|y]. Inferring the prevalence

of hardwood trees involves non-linear functions of the random effect U(s) evaluated for all

locations s, specifically sums of inverse logit transforms of the ti. Obtaining posterior distri-

butions of non-linear quantities is easily accomplished with MCMC algorithms, as MCMC

outputs samples from the joint posterior distribution π(t|y) and these samples can be used

to compute any quantity of interest.

The main drawback of MCMC methods as compared to INLA is the former are compu-

tationally more intensive, and for this application computational concerns have proven to be

minor. The number of ground truth plots si is small (10 to 100) and the intention for this

methodology is to be applied to problems on the lower end of this range. Making spatial

predictions over the entire region of interest is a high-dimensional problem, although this
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can be done outside of the MCMC algorithm using a thinned set of posterior samples.

The recently developed PrevMap package (Giorgi & Diggle, 2017) uses a Hamiltonian

Monte Carlo method to generate joint posterior draws, and has demonstrate impressive per-

formance for a variety of practical spatial problems. Unfortunately the PrevMap package

has struggled with our specific problem of forest inventories, particularly when the number

of data points fitted were very small (as shown in section 3.1), and a customized MCMC

algorithm was developed specifically for this application.

The bespoke MCMC method was implemented through the reparameterizations recom-

mended by Christensen et al. (2006) that has shown to help facilitate the choice of proposal

densities as well as reducing the correlation between variables that will significantly improve

mixing and convergence of the MCMC algorithm.

Algorithm 1: MCMC algorithm
1 Initialize θ, β, and t

2 Transform to θ̃, β̃, and t̃

3 Update θ̃1, θ̃2 and θ̃3 using a RWMH, each with standard deviation si calculated
iteratively as:

si = si−1 + c1i
−c2(αi − 0.45)

where c1 > 0 and c2 ∈ (0, 1] are constants, and αi is the acceptance probability up
to i− th iteration with optimal acceptance probability of 0.45.

4 Update β̃ using a RWMH
5 Update t̃ with a Langevin-Hastings algorithm, i.e. t̃′ ∼ MVN(t̃+ 0.5h∇ log π(t̃), hI)

where h is recommended to be 1.652/n1/3.
6 Repeat steps 3-5 until the desired number of samples are collected.
7 Transform samples of θ̃, β̃, and t̃ back to θ, β, and t.

Denoting θ̃, β̃, and t̃ as the transformed variables from (5) (the details of all calculations

are included in the appendix), we have implemented a Metropolis-Hastings-within-Gibbs

sampling method that updates each blocks of θ̃, β̃, and t̃ at a time. However, for high-

dimensional parameters, it is more suitable to use the Langevin-Hastings algorithm as they

will have much faster convergence rates (Roberts & Rosenthal, 1998; Roberts & Tweedie,

1996; Møller et al., 1998). For our model and data, t̃ has the highest dimension, hence we
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will use Langevin-Hastings algorithm to update t̃. For the remaining blocks we will use the

Random-Walk Metropolis Hastings (RWMH) algorithm. The summary of the steps used to

run the MCMC algorithm are shown in the diagram above.

2.6 Prediction & Assessment

After running our MCMC algorithm on the BGLGM, we will combine the posterior samples

for each parameter to generate posterior distributions for hardwood probabilities at each

of the 62 validation locations. We will then emphasize on assessing the predictions from

the number of hardwood counts rather than proportions, since the observed proportions are

often 0 or 1, while predictions are 0 < p < 1. Below we describe the various assessments we

have considered:

1. Coverage Probability: For each of the 62 validation points, we generate posterior sam-

ples of hardwood counts from the corresponding posterior probability samples, then

examine whether the true hardwood count is inside the (say) 95% posterior inter-

val. The coverage probability will be the proportion of 62 points that are inside their

posterior intervals, i.e.:

#(true hardwood count ∈ posterior interval of hardwood counts)/62

2. Cross-entropy: We will use a cross-entropy loss to measure the dissimilarity between

observed and estimated hardwood probabilities from both BGLGM and Bayesian Lo-

gistic Regression (BayLog), as calculated by:

CrossEntropy = − 1

62

62∑
j=1

[
yj log p̂j + (nj − yj) log (1− p̂j)

]

where p̂j is the mean posterior predicted hardwood probability in BayLog and BGLGM.
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3. RMSE (root mean squared error): We will also compare RMSE of hardwood prob-

abilities from both BGLGM and BayLog (Bayesian Logistic Regression), calculated

as:

RMSE =

√√√√ 1

62

62∑
j=1

(p̂j − pj)2

where pj is the true proportion of hardwoods in plot i (often 0 or 1) and p̂j is the mean

posterior predicted hardwood probability in BayLog and BGLGM.

4. Total hardwood count distribution: We also consider the distribution of the total num-

ber of hardwoods in all 62 validation sites and examine whether the true total hard-

wood counts is covered within the 95% posterior interval. Unlike the posterior distri-

butions of hardwood counts in each of the 62 plot, the total count has a reasonably

symmetric distribution. In addition, we have compared this to the corresponding dis-

tribution generated from BayLog.

3 Results

For the main analysis we have ran the MCMC algorithm for 2,000,000 iterations with

1,000,000 burnin and 100 thinning. Runs consist of fitting 100, 25, and 10 sites as training

data, both via random and stratified sampling, with predictions made for the 62 validation

data. We have repeated this procedure for five different simulations by randomly choosing

five different validation sets of size 62.

14



0 200 400 600 800 1000

−
6

−
5

−
4

−
3

−
2

Samples(a) PrevMap, Intercept
0 200 400 600 800 1000

−
20

−
15

−
10

−
5

0

Samples(b) Bespoke MCMC, Intercept

0 200 400 600 800 1000

−
0.

4
0.

0
0.

4
0.

8

Samples(c) PrevMap, elevation
0 200 400 600 800 1000

−
4

0
2

4
6

8

Samples(d) Bespoke MCMC, elevation

Figure 4: Comparing trace plots of β0 and β1 from the bespoke MCMC implementation and
the PrevMap package.

3.1 MCMC Convergence and Mixing

Figure 4 shows, as a simple initial evaluation of the methodology implemented, a comparison

of trace plots from the bespoke MCMC (right panels) and the PrevMap package (let panels),

using only 10 training sites. PrevMap trace plots exhibit strong autocorrelation and different

values of PrevMap’s tuning parameters did not result in improvement. There could well be

some combination of tuning parameters which would rectify PrevMap, although it is notable

that the purpose built MCMC was successful with minimal tuning.

Figures 5a, 5b, and 5c are showing the MCMC trace plots from the bespoke MCMC for

the τ parameter with 100, 25, and 10 data fitted to the model respectively. All trace plots

show that the MCMC is mixing well and thus, the chains have converged. In addition, more

variability in the trace plots is expected with less training data because the sample size is

smaller. The remaining trace plots for other parameters as well as other simulations are

included in the Supplemental Document.

15



0 2000 4000 6000 8000 10000

1.
5

2.
0

2.
5

3.
5

Samples

τ

(a) 100 training sites — τ

0 2000 4000 6000 8000 10000

1
2

5

Samples

τ

(b) 25 training sites — τ

0 2000 4000 6000 8000 10000

0.
2

0.
5

2.
0

5.
0

20
.0

Samples

τ

(c) 10 training sites — τ

Figure 5: Trace plots of 10,000 MCMC posterior samples for τ (simulation 1).

For quantitively verifying this variability between different training data size, we have

compared the numerical values of posterior mean, 2.5 %, and 97.5 % quantiles of all model

parameters in Table 1. While the posterior means remain almost unchanged, the 95% pos-

terior intervals for each model parameter (except ϕ), become wider with less training data

fitted to the model, indicating more uncertainty in parameter estimation.

3.2 Parameter posteriors & spatial surfaces

The prior and posterior densities of model parameters from the first simulation are shown in

Figures 6 and 7. From these figures we can ascertain that with fewer training data, posterior

densities become wider and hence result in more uncertainty of predictions. The posterior

distributions of σ suggest small spatial random effects for this dataset, as they have modes

concentrated at smaller values. Posterior densities of ϕ are all similar and remain unchanged
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Parameters # of training Mean 2.5% quantile 97.5% quantile

100 -3.47 -4.33 -2.65
Intercept - β0 25 -3.54 -5.67 -1.66

10 -2.37 -6.38 1.31

100 0.53 0.07 0.99
Elevation - β1 25 0.12 -1.03 1.13

10 2.16 -0.96 6.38

100 2.89 1.19 4.87
SkyF<0.3 - β2 25 2.09 -0.50 5.26

10 3.38 -1.39 10.42

100 2.61 2.10 3.17
SkyF>0.3 - β3 25 3.02 1.86 4.44

10 4.20 1.85 7.70

100 0.04 0.02 0.11
Spatial sd - σ 25 0.04 0.02 0.12

10 0.06 0.02 0.17

100 1.98 1.52 2.55
Indep. sd - τ 25 2.38 1.36 4.05

10 3.09 1.04 7.23

100 104.94 21.89 255.14
Range(km) - ϕ 25 105.42 22.00 252.93

10 105.06 21.30 255.27

Table 1: Comparison of posterior mean, 2.5 %, and 97.5 % quantiles of model parameters, for
different sizes of training data. These results are from only the first of five training samples.

for different training data, as small σ implies a weak spatial signal which provides little

information on ϕ.

One surprising feature of Figure 7b, is the posterior density with 10 training data points

does not resemble the prior. Even the smallest training dataset considered provides clear

evidence that there is more variation in the observed counts than the covariates predict,

which is manifest in the results as τ has a posterior distribution concentrated away from

zero. There is also evidence that this extra variation is not spatially structured, since σ is

clearly much smaller than τ .

The main goal is to predict the composition of trees at unmeasured sites in the forests
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Figure 6: Prior and posterior distributions of parameters from the first simulation.

via simulating posterior samples of U(gℓ) for new locations gℓ : ℓ = 1 . . . L, conditional

on MCMC posteriors {U(si) + Z(si) : i = 1 . . . n}. Considering a 100 × 100 grid with

L = 10, 000 cells inside the forests as our new locations, we can simulate U(gℓ) using the

the RandomFields package and make predictions for hardwood probabilities p(gℓ) for each

cell. The RandomFields package has very efficient algorithms for simulating from conditional

distributions of spatial processes without using the full variance matrix. Thus assuming we

have grid cells g1, ..., gL, we simulate [U(g1), ..., U(gL)|Y ] and independent Z1, ..., ZL along

with the use of other posterior samples to generate [p(g1), ..., p(gL)|Y ].
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Figure 7: Priors and posteriors from the first simulation.

Figure 8 shows images of three different posterior samples along with posterior means (in

each column) generated from fitting different training data sizes. With fewer training data

the posterior rasters appear to become smoother, possibly indicating less precise predictions.
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Figure 8: Three posterior samples of the hardwood proportion surface p(s) along with their
posterior means from different training data sizes (Background ©Stamen Design).
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Figure 9: Posterior distributions of hardwood counts from two validation plots.

The 62 validation sites with their ground truth number of hardwood trees are used

to evaluate predictions by summarizing results over all corresponding sites. The number of

hardwood trees in each validation site is predicted and their coverage probabilities calculated

from posterior intervals of hardwood counts. Table 2 shows the corresponding coverage

probabilities of 95%, 80%, and 50% Posterior Credible Intervals (CI) for different training

data size, averaged over five different simulations. Note that many observed proportions are

0 or 1, and the hardwood count posteriors will not be symmetric. To illustrate this, Figure

9 shows the histograms of hardwood count posteriors for two validation plots where in one

all are hardwoods and in the other none. We calculate the narrowest credible intervals for

each validation plot, and compute their average coverages and widths as shown in Table 2.

Empirical Coverage of CI Average CI Width
#ofTrain 95 % 80 % 50 % 95 % 80 % 50 %
100 Sites 97 % 87 % 59 % 19.98 11.42 4.41
25 Sites 96 % 86 % 55 % 21.91 12.12 4.49
10 Sites 95 % 78 % 55 % 26.64 13.71 4.35

Table 2: Empirical Coverage of Posterior Credible Intervals and their Average Width. All
results are averaged over 5 different simulations.
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The empirical coverage probabilities tend to exceed their theoretical values, meaning

the intervals provided are on the conservative side. Overall, coverage probabilities are all

at a desirable value. Table 2 also includes the average width of the posterior intervals,

which shows on average wider intervals with fewer training data, as expected. The coverage

probabilities from the smaller training datasets are, somewhat surprisingly, closer to their

theoretical values than those from the large training datasets. Part of this could be simply

due to sampling variation, with a particularly fortunate selection of the 10 training sites in

each of the 5 subsamples. It is also possible that model becomes a less accurate approximation

to the ’real’ underlying natural process when the size of the dataset (and hence information

about the natural process) grows.

3.3 Comparison of BGLGM with Bayesian Logistic Regression

In this section we will discuss the difference in performances between BGLGM and a simple

non-spatial Logistic Regression where non-statistical audience commonly use (i.e. foresters).

To consistently compare with the BGLGM model, we fit a Bayesian Logistic Regression

model using the BayesLogit package in R. We will compare their performance through Root

Mean Square Error (RMSE) and cross entropy calculated via their posterior mean, as well

as the coverage of their predictive distributions.

Table 3 reports the RMSEs and cross entropy measures of hardwood probabilities for

the 62 validation sites, computed from runs with 100, 25, and 10 training data, for five

different subsamples of validation sites. Both measures are calculated using posterior means

of predicted proportions. On average RMSE and cross entropy of BGLGM are smaller

compared to Bayesian Logistic Regression, indicating more accurate predictions. RMSE and

cross entropy increase with less ground truth data fitted to the model, consistent with the

results shown in the previous section.

Predictive distributions of the total hardwood counts from all 62 validation sites were also

computed for both BayLog and BGLGM, using the relevant 10,000 MCMC posterior sam-
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model sim 1 sim 2 sim 3 sim 4 sim 5 average
RMSE

100 BGLGM 0.228 0.207 0.210 0.198 0.157 0.200
BayLog 0.233 0.206 0.214 0.197 0.158 0.202

25 BGLGM 0.228 0.211 0.234 0.199 0.227 0.220
BayLog 0.249 0.226 0.246 0.201 0.257 0.236

10 BGLGM 0.291 0.243 0.364 0.208 0.247 0.271
BayLog 0.361 0.279 0.485 0.237 0.316 0.336

Cross entropy
100 BGLGM 17.744 13.126 11.351 13.896 12.925 13.809

BayLog 18.258 13.048 11.536 14.220 13.024 14.017
25 BGLGM 17.588 13.373 12.314 14.056 15.361 14.539

BayLog 19.294 13.714 12.838 13.880 16.026 15.150
10 BGLGM 20.946 14.747 16.522 14.698 16.447 16.672

BayLog 32.550 17.565 38.269 14.485 19.029 24.380

Table 3: Root mean square error (RMSE) and cross entropy of predicted hardwood proba-
bilities for the Bayesian Generalized Geostatistical Model (BGLGM) and Bayesian logistic
regression model (Bay Log), for training samples of size 100, 25 and 10.

ples. Figures 10a and 10b show these distributions for the first subsample of training plots.

Although the distributions from BayLog are narrower compared to those from BGLGM, the

BGLGM posterior distributions with all training data sizes capture the true value shown in

green within their 95% intervals, while BayLog with 10 and even 100 training data points

fails to do so. In addition, we also observe that the posterior distributions become wider

with less training data as expected. In conclusion, the BGLGM is a more reliable method

compared to the BayLog, in terms of both prediction accuracy and the ability of explain-

ing uncertainties. Note that this process has been repeated for four other simulations with

figures shown in the Supplemental Document.

3.3.1 Stratified Sampling of training data

Figures 10a and 10c compares the posterior distributions of the total hardwood trees from

both random sampling and stratified sampling on the first of five simulations. Prediction

intervals from all five simulations are shown in Figure 10d. The posterior distributions

all contain the true value within their 95% posterior interval, however the uncertainty is
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and 100 (black) training data points.
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generally less under stratified sampling in most cases. In Figure 10d it is notable that the

stratified posterior with 10 training data contains the true value near its mode, while with the

random posterior it is covered around the tail area. In simulations 2 and 4 results are roughly

comparable, while in simulation 3 the stratified posterior with 10 data points captures the

true value around its mode. On the other hand, in simulation 5, the stratified posterior with

10 data points becomes more dispersed while 25 is narrower. Overall, the stratified sampling

approach shows some potential for improving predictive accuracy when the sample size is

small, and a more thorough assessment of possible spatial sampling designs is warranted.

4 Discussion

In this paper, we analyzed the spatial data from the Timiskaming and Abitibi River forests

in Ontario, Canada. We have studied the prediction of the proportions of hardwood trees

using satellite-derived elevation and vegetation data. A bespoke MCMC algorithm for pos-

terior simulation of a Bayesian Generalized Linear Geostatistical Model (BGLGM) was im-

plemented in order to make spatial predictions for new sites in the forests using the given

dataset. We compared BGLGM with a Bayesian Logistic Regression model and although the

dataset is imbalanced and contains many zero hardwood counts, the BGLGM provided un-

biased estimates with reasonable prediction intervals, while the Bayesian Logistic Regression

showed less accurate estimates with underestimated uncertainty associated with the predic-

tions. More importantly, with ground truth data as small as 10 points, BGLGM captured

the true value of hardwood tree counts within its 95% posterior intervals, while Bayesian

Logistic Regression failed even with 100 training points.

The motivating research question for this work was assessing the feasibility of performing

forest inventories with combination of satellite data and a small number of ground truth

measurements. The answer to this question has proven to be yes and no. The BGLGM

is able to make unbiased predictions with as few as 10 training data points, and posterior
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distributions provide a useful quantification of how accurate these predictions are. However,

the uncertainty associated with the predictions is considerable, and the prediction intervals

associated with 10 training points are arguably too wide to be useful. A stratified sample

improved on the simple random sample of ground truth sites for some but not all of the

simulations performed. A sample size of 25 ground truth sites was, however, consistently

competitive with samples of 100 ground truth sites. Other forest management areas will have

different characteristics from the Timiskaming and Abitibi River forests considered here, but

these results suggest that a few dozen ground truth sites (more than a handfull, less than a

hundred) is the right order of magnitude for a data collection effort.

As future work, one can further extend this model for multiple forests, where forests with

similar features are considered to have high correlation indicated within priors and hence

facilitate future spatial predictions for similar forests. This will significantly help reduce the

redundant collection of data from similar forests.
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A Appendix

A.1 Reparameterizations Details of section 2.4

As reparamterization and standardization help reduce correlation between variables, they will

be play an important role in improving the mixing and convergence of MCMC algorithms.

The transformations applied to all the model parameters in (5) follow the recommendations

of Christensen et al. (2006) which we will briefly describe here.

Let Λ(t) be a diagonal matrix with elements −∂2/∂t2i log f(yi|ti) for i = 1, ..., n, and

denote t̂i = argmax f(yi|ti). Assuming a prior N(µ,Ω) for β, let Σ̃ = (Σ−1 + Λ(t̂))−1 and

Ω̃ = (Ω−1 +XT (Σ−1 −Σ−1Σ̃Σ−1)X)−1. Then by factorizing the posterior distribution in (5)

into two parts: π(β, θ, t|y) ∝ π1(θ)f(t, β|θ, y), we will be able to simplify the second factor

f(t, β|θ, y) as following:

log f(t, β|θ, y) ≈ −0.5(t− t̂)TΛ(t̂)(t− t̂)− 0.5(t−Xβ)TΣ−1(t−Xβ)− 0.5(β − µ)TΩ−1(β − µ)

(A.1)

= −0.5(t− Σ̃(Λ(t̂)t̂+ Σ−1Xβ))T Σ̃−1(t− Σ̃(Λ(t̂)t̂+ Σ−1Xβ)) (A.2)

− 0.5(β − Ω̃(XTΣ−1Σ̃Λ(t̂)t̂+ Ω−1µ))T Ω̃−1(β − Ω̃(XTΣ−1Σ̃Λ(t̂)t̂+ Ω−1µ))

(A.3)

where the first expression −0.5(t − t̂)TΛ(t̂)(t − t̂) is derived from the Taylor expansion of

log f(y|t) around t̂. From equation (A.3), we can simply use the transformations:

t̃ = (Σ̃1/2)−1(t− Σ̃(Λ(t̂)t̂+ Σ−1Xβ)) (A.4)

β̃ = (Ω̃1/2)−1(β − Ω̃(XTΣ−1Σ̃Λ(t̂)t̂+ Ω−1µ)) (A.5)

where t̃1, ..., t̃n and β̃1, ..., β̃p are now approximately uncorrelated with mean zero and variance

one. These parameters are also uncorrelated with θ and hence there will be no posterior

dependence between t̃, β̃, and θ. However, according to Christensen et al. (2006) and Giorgi
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& Diggle (2017), there is posterior dependence within the parameters of θT = (θ1, θ2, θ3) =

(σ2, ϕ, τ), and hence a reparameterization is proposed as following:

θ̃ = (θ̃1, θ̃2, θ̃3) = (log σ, log σ2/ϕ2κ, log τ 2)

Tables

Parameters # of training Mean 2.5% quantile 97.5% quantile

100 -3.47 -4.33 -2.65
Intercept - β0 25 -3.54 -5.67 -1.66

10 -2.37 -6.38 1.31

100 0.53 0.07 0.99
Elevation - β1 25 0.12 -1.03 1.13

10 2.16 -0.96 6.38

100 2.89 1.19 4.87
SkyF<0.3 - β2 25 2.09 -0.50 5.26

10 3.38 -1.39 10.42

100 2.61 2.10 3.17
SkyF>0.3 - β3 25 3.02 1.86 4.44

10 4.20 1.85 7.70

100 0.04 0.02 0.11
Spatial sd - σ 25 0.04 0.02 0.12

10 0.06 0.02 0.17

100 1.98 1.52 2.55
Indep. sd - τ 25 2.38 1.36 4.05

10 3.09 1.04 7.23

100 104.94 21.89 255.14
Range(km) - ϕ 25 105.42 22.00 252.93

10 105.06 21.30 255.27

Table 4: Table 1 Comparison of posterior mean, 2.5 %, and 97.5 % quantiles of model
parameters, for different sizes of training data. These results are from only the first of five
training samples.
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Empirical Coverage of CI Average CI Width
#ofTrain 95 % 80 % 50 % 95 % 80 % 50 %
100 Sites 97 % 87 % 59 % 19.98 11.42 4.41
25 Sites 96 % 86 % 55 % 21.91 12.12 4.49
10 Sites 95 % 78 % 55 % 26.64 13.71 4.35

Table 5: Table 2: Empirical Coverage of Posterior Credible Intervals and their Average
Width. All results are averaged over 5 different simulations.

model sim 1 sim 2 sim 3 sim 4 sim 5 average
RMSE

100 BGLGM 0.228 0.207 0.210 0.198 0.157 0.200
BayLog 0.233 0.206 0.214 0.197 0.158 0.202

25 BGLGM 0.228 0.211 0.234 0.199 0.227 0.220
BayLog 0.249 0.226 0.246 0.201 0.257 0.236

10 BGLGM 0.291 0.243 0.364 0.208 0.247 0.271
BayLog 0.361 0.279 0.485 0.237 0.316 0.336

Cross entropy
100 BGLGM 17.744 13.126 11.351 13.896 12.925 13.809

BayLog 18.258 13.048 11.536 14.220 13.024 14.017
25 BGLGM 17.588 13.373 12.314 14.056 15.361 14.539

BayLog 19.294 13.714 12.838 13.880 16.026 15.150
10 BGLGM 20.946 14.747 16.522 14.698 16.447 16.672

BayLog 32.550 17.565 38.269 14.485 19.029 24.380

Table 6: Table 3: Root mean square error (RMSE) and cross entropy of predicted hardwood
probabilities for the Bayesian Generalized Geostatistical Model (BGLGM) and Bayesian
logistic regression model (Bay Log), for training samples of size 100, 25 and 10.
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