
Convergence and Efficiency of Adaptive MCMC

by

Jinyoung Yang

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Statistical Sciences
University of Toronto

c© Copyright 2016 by Jinyoung Yang

Abstract

Convergence and Efficiency of Adaptive MCMC

Jinyoung Yang

Doctor of Philosophy

Graduate Department of Statistical Sciences

University of Toronto

2016

Adaptive Markov Chain Monte Carlo (MCMC) algorithms attempt to ‘learn’ from the

results of past iterations so the Markov chain can converge quicker. Unfortunately, adaptive

MCMC algorithms are no longer Markovian, so their convergence is difficult to guarantee.

The first part of this thesis approaches the problem via finite adaption. We develop new

diagnostics to determine whether the adaption is still improving the convergence. We present

an algorithm which automatically stops adapting once it determines further adaption will

not increase the convergence speed. Our algorithm allows the computer to tune a ‘good’

Markov chain through multiple phases of adaption, and then run conventional non-adaptive

MCMC. In this way, the efficiency gains of adaptive MCMC can be obtained while still

ensuring convergence to the target distribution.

The second part of the thesis proves convergence to stationarity of adaptive MCMC algo-

rithms, assuming only simple easily-verifiable upper and lower bounds on transition densities.

In particular, the transition and proposal densities are not required to be continuous, thus

improving on the previous ergodicity results of Craiu et al. (2015).

The third part of the thesis develops an adaptive algorithm which can locally adjust to

an irregularly-shaped target distribution. When the target distribution of a Markov chain

is irregularly shaped, a ‘good’ proposal distribution for one part of the state space might be

ii

a ‘poor’ one for another part of the state space. We consider a component-wise multiple-try

Metropolis (CMTM) algorithm that can automatically choose a better proposal out of a set

of proposals from different distributions. The computational efficiency is increased using an

adaptation rule for the CMTM algorithm that dynamically builds a better set of proposal

distributions as the Markov chain runs. We also demonstrated theoretically the ergodicity

of the adaptive chain.

iii

Contents

1 Introduction 1

2 Adaptive MCMC 5

2.1 Why MCMC? . 5

2.2 Markov Chain Theory . 6

2.3 Metropolis-Hastings Algorithm . 8

2.3.1 Optimal Acceptance Rate . 9

2.4 Some Adaptive MCMC Algorithms . 10

2.4.1 Adaptive Metropolis Algorithm . 10

2.4.2 Single Component Adaptive Metropolis Algorithm 11

2.4.3 Adaptive Metropolis-within-Gibbs Algorithm 13

2.5 Convergence of Adaptive MCMC . 13

3 Automatically Tuned General-Purpose MCMC via New Adaptive Diag-

nostics 16

3.1 Introduction . 16

3.2 Approach . 18

3.3 Background . 22

3.4 Technical Details . 24

iv

3.4.1 1st Adaption Phase . 26

3.4.2 Transient Phase . 28

3.4.3 2nd Adaption Phase . 29

3.4.4 Sampling Phase . 30

3.4.5 Extension for Strongly Multimodal Targets 31

3.5 Applications . 35

3.5.1 Multivariate Normal Distribution . 36

3.5.2 Logistic Regression . 39

3.5.3 Pump Failure Data . 42

3.5.4 Variance Components Model (VCM) 47

3.5.5 A Strongly Multimodal Example . 53

3.6 Discussion . 57

3.6.1 Acceptance Rate . 57

3.6.2 Significance of Transient and 2nd Adaption Phase 58

3.6.3 Comparison with a Full-dimensional Metropolis 59

3.6.4 Initial Value for a Markov Chain . 61

4 Ergodicity of Combocontinuous Adaptive MCMC Algorithms 63

4.1 Introduction . 63

4.2 Background about Adaptive MCMC . 65

4.3 Combocontinuous Functions . 66

4.4 The Bounded Adaption Metropolis (BAM) Algorithm 69

4.5 More General Conditions . 70

4.6 Main Result . 74

4.7 Generalisation of Dini’s Theorem . 75

4.8 Lemmas About Combocontinuity . 77

v

4.9 Proof of Theorem 1 . 89

4.10 Numerical examples . 90

4.10.1 Application: 9-dimensional Multivariate Normal Distribution 90

4.10.2 Application: Pump Failure Model . 91

5 Adaptive Component-wise Multiple-Try Metropolis Sampling 95

5.1 Introduction . 95

5.2 Component-wise Multiple-Try Metropolis . 99

5.2.1 Algorithm . 99

5.2.2 Optimal α . 101

5.3 Adaptive Component-wise Multiple-Try Metropolis 105

5.3.1 CMTM Favours Locally ‘Better’ Proposal Distributions 105

5.3.2 Comparison with a Mixture Transition Kernel 106

5.3.3 The Adaptive CMTM . 109

5.3.4 To Adapt or Not To Adapt? . 111

5.3.5 Convergence of Adaptive CMTM . 113

5.4 Applications . 116

5.4.1 Variance Components Model . 116

5.4.2 “Banana-shaped” Distribution . 120

5.4.3 Orange Tree Growth Data . 122

5.5 Comparsion of Adaptive Algorithms . 126

5.6 Conclusion and Discussion . 131

6 Conclusion 134

Bibliography 137

vi

List of Tables

3.1 Results of MCMC: Multivariate Normal. Results of 10 independent runs of

full algorithm in Section 3.4. 37

3.2 Summary Statistics for the Estimates in Table 3.1: Multivariate Normal. µ is

the true mean of the target distribution. 38

3.3 Results of MCMC:Logistic Regression. Results of 10 independent runs of full

algorithm in Section 3.4. 41

3.4 Summary Statistics for the Estimates in Table 3.3: Logistic Regression. Re-

sults of a run from R package ‘mcmc’ and GLM estimates are also presented,

for comparison. 41

3.5 Pump Failure Data . 42

3.6 Results of MCMC: Pump Failure Data. Results of 10 independent runs of full

algorithm in Section 3.4. 44

3.7 Summary Statistics for the Estimates in Table 3.6: Pump Failure Data. Re-

sults from the OpenBUGS website, obtained via Gibbs sampler, are also pre-

sented, for comparison. 45

3.8 Results of MCMC:VCM, flat inverse gamma priors. Results of 10 independent

runs of full algorithm in Section 3.4. 48

vii

3.9 Summary Statistics for the Estimates in Table 3.8: VCM, flat inverse gamma

priors. Results from a Gibbs sampler run are also presented, for comparison. 49

3.10 Results of MCMC:VCM, concentrated inverse gamma priors. Results of 10

independent runs of full algorithm in Section 3.4. 51

3.11 Summary Statistics for Estimates in Table 3.10: VCM, concentrated inverse

gamma priors. Results from Gibbs sampler are also presented, for comparison. 52

3.12 Results of MCMC: Multimodal Distribution. Results of 10 independent runs

of full algorithm in Section 3.4.5. 55

3.13 Summary Statistics for the Estimates in Table 3.12: Multimodal Distribution.

µ is the true mean of target distribution. 55

4.1 Pump Failure Data . 92

5.1 Proportion of selected proposals . 105

5.2 Acceptance rate of selected proposals . 105

5.4 Acceptance rate on selected proposals . 108

5.5 Performance comparison (averaged over 100 runs) 108

5.3 CMTM. Proportion of proposal distribution selected 108

5.6 Ending σk,j’s . 112

5.7 Performance comparisons (averaged over 100 runs) 112

5.8 Proportion of proposal distribution selected 112

5.9 Acceptance rate on selected proposals . 113

5.10 Dyestuff Batch Yield (in grams) . 117

5.11 σk,j’s used in comparing the standard CMTM and the standard component-

wise Metropolis. Variance components model 119

5.12 Growth of Orange Trees . 123

viii

5.13 σk,j’s used in comparing the standard CMTM and the standard component-

wise Metropolis. Orange tree growth data 125

ix

List of Figures

3.1 Algorithm flowchart . 19

3.2 Trace Plots for Multivariate Normal . 39

3.3 Trace Plots for Logistic Regression. Each coordinate corresponds to the pa-

rameters listed in Table 3.3 as ordered. 42

3.4 Trace Plots for Pump Failure Data. Each coordinate corresponds to the pa-

rameters listed in Table 3.6 as ordered. 46

3.5 Trace Plots for Variance Components Model. Each coordinate corresponds to

the parameters listed in Table 3.8 as ordered. 50

3.6 Trace Plots for Variance Components Model. Each coordinate corresponds to

the parameter listed in Table 3.10 as ordered. 53

3.7 Trace Plots for Mixture of Three 3-Dimensional Multivariate Normals. Each

row represents each coordinate and each column represents each chain trapped

in different mode until the sampling phase. 56

4.1 Two ways of truncating a normal density: with (a) a “firm” truncation (left),

or (b) a “linear” truncation (right). 67

x

4.2 Trace plots for a Bounded Adaption Metropolis (left) versus a Standard

Metropolis algorithm with proposal kernelN(Xn, Id) (right), on a 9-dimensional

multivariate normal target distribution, showing the superiority of the BAM

algorithm. 91

4.3 Trace plots for the Pump Failure Model example for a Bounded Adaption

Metropolis algorithm (top left), compared to Standard Metropolis algorithms

with proposal distributions whose Gaussian covariance matrices are the d-

dimensional identity (top right), 0.01 times this identity (bottom left), and

0.001 times this identity (bottom right). 93

5.1 Target density plot. 2-dimensional mixture of two normals 102

5.2 Proportion of proposal distribution selected. Coordinate 1: Red, Blue, Green,

Orange and Purple lines show behaviour when σk,j = 1, 2, 4, 8, 16, respectively. 102

5.3 Two-Dimensional Mixture of two Gaussians: Mean squared jumping distance

vs. α for one run (left panel) and averaged over 100 runs (right panel). . . . 103

5.4 4-Dimensional Mixture of two Gaussians: Means squared jumping distance

vs. α for one run (left panel) and averaged over 100 runs (right panel). . . . 104

5.5 Adaptive CMTM vs. non-adaptive CMTM. Variance components model. The

red represents the adptive CMTM runs and the blue represents the non-

adaptive CMTM runs. ESS is calculated after averaging ACT over 50 in-

dependently replicated runs. 118

5.6 Standard (non-adaptive) CMTM vs. standard component-wise Metropolis.

Variance components model. The red represents the CMTM runs and the

blue represents the component-wise Metropolis runs. ESS is calculated after

averaging ACT over 100 replicative runs. 119

xi

5.7 Adaptive CMTM vs. non-adaptive CMTM. “Banana-shaped” distribution.

The red represents the adptive CMTM runs and the blue represents the non-

adaptive CMTM runs. ESS is calculated after averaging ACT over 50 replica-

tive runs. 121

5.8 Standard (non-adaptive) CMTM vs. standard component-wise Metropolis.

“Banana-shaped” distribution. The red represents the CMTM runs and the

blue represents the component-wise Metropolis runs. ESS is calculated after

averaging ACT over 50 replicative runs. 122

5.9 Adaptive CMTM vs. non-adaptive CMTM. Orange tree growth data. The red

represents the adptive CMTM runs and the blue represents the non-adaptive

CMTM runs. ESS is calculated after averaging ACT over 50 replicative runs. 124

5.10 Standard (non-adaptive) CMTM vs. standard component-wise Metropolis.

Orange tree growth data. The red represents the CMTM runs and the blue

represents the component-wise Metropolis runs. ESS is calculated after aver-

aging ACT over 100 replicative runs . 126

5.11 Comparison of ESS for different adaptive schemes. The red represents the

ACMTM algorithm; the purple represents the AMwG algorithm; the green

represents the SCAM algorithm; and the orange represents the AM algorithm.

In each row, the right panel is a close up that identifies features that cannot

be clearly seen in the left panel. ESS is calculated after averaging ACT over

50 independently replicated runs. 129

xii

5.12 Comparison of ESS/CPUtime for different adaptive schemes. The red rep-

resents the ACMTM algorithm; the purple represents the AMwG algorithm;

the green represents the SCAM algorithm; and the orange represents the AM

algorithm. In each row, the right panel is a close up that identifies features

that cannot be clearly seen in the left panel. ESS is calculated after averaging

ACT over 50 independently replicated runs. 130

xiii

Chapter 1

Introduction

Markov Chain Monte Carlo (MCMC) methods provide a powerful tool to analyze complex

probability distributions. The development of MCMC has freed researchers to build complex

statistical models if necessary. MCMC methods are widely used in various fields such as

computational physics, computational biology and computational linguistics, to name a few.

MCMC also helped in the growth of Bayesian inference by introducing a mean to analyze

posterior distributions derived from complex hierarchical models.

One of the main issue in MCMC algorithms is their speed of convergence. MCMC

methods relies on the Markov chain convergence theorem, which guarantees the eventual

convergence of the Markov chain to the target distribution, the distribution in interest. The

time and resource constraint in practice requires more than the eventual convergence of

the algorithm to the target distribution. One way to improve the efficiency of the MCMC

algorithms are adaptive MCMC methods. It is a method that modify the Markov chain ‘on

the fly’ so the Markov chain can achieve the quicker convergence. The rational behind an

idea of adaptive method is: First, the observation that some Markov chains converges quicker

than others for a specific target distribution. Second, the history of Markov chain provide

some information with regards to what would be ‘better’ Markov chain for the particular

1

target distribution. This makes sense intuitively. If a Markov chain proposes a new value at

each iteration drawn from a distribution that resembles the target distribution, the chain is

going to converge to the target distribution quicker than the one which proposes a new value

from a distribution that is alot different with the target distribution. And since Markov

chain converges to target distribution, as the chain runs, the collection of the past and

current states becomes more like a sample from a target distribution. The adaptive MCMC

methods have been extensively studied by many researchers, and it has been shown that the

adaptive MCMC algorithms can significantly improve the efficiency of an MCMC algorithm.

(e.g. Haario et al. 2001, 2006; Roberts and Rosenthal 2009; Giordani and Kohn 2010; Vihola

2012; Turro et al. 2007)

Many of adaptive MCMC algorithms use historical information obtained during the run

to modify the chain. This destroys the ‘Markov’ property of the chain, so the conventional

Markov chain convergence theorem is cannot be applied. Proving the convergence of an

adaptive algorithm has been a challenge. Many have attempted and proved the convergence

of an adaptive algorithm (e.g. Haario et al. 2001, 2006; Giordani and Kohn 2010; Vihola

2012; Atchadé and Rosenthal. 2005; Andrieu and Moulines 2006; Andrieu and Atchadé 2007;

Roberts and Rosenthal 2007; Fort et al. 2011), but the conditions they presented to assure

the convergence is not always easy to verify in practice. There have been efforts to develop

more easily checkable conditions to ensure the convergence of an adaptive MCMC algorithm.

In Roberts and Rosenthal (2007), it was shown that any adaptive MCMC algorithm

converges to its target distribution if it satisfies two conditions: Diminishing Adaptation,

which suggests the algorithm to adapt less and less as the chain moves along, and Con-

tainment, which suggests the convergence time of the algorithm is bounded in probability.

Diminishing adaptation is easily achievable through the stage of the chain construction, but

Containment is in many incidence hard to verify. Craiu et al. (2015) shows the efforts to

2

develop easy-to-verify condition for Containment, and in return easy-to-apply conditions to

show a particular adaptive MCMC algorithm is guaranteed to converge.

In this thesis, we develop a couple of MCMC algorithms which are demonstrated to

be more efficient than pre-existing algorithms on several MCMC examples. We also make

contribution on developing general conditions to guarantee the convergence of an adaptive

MCMC algorithm.

In Chapter 2 of this thesis, we introduces the MCMC and adaptive MCMC theories and

algorithms, which gives the background knowledge to understand the findings presented in

following the chapters.

In Chapter 3 (available as a separate paper in Yang and Rosenthal (2016)), we develop

a finitely adapting algorithm, which can be generally applied to most of existing MCMC

problems. The motivation behind this algorithm is as follows. We want the possible efficiency

improvement from an adaptive MCMC algorithm. However, verifying the convergence of an

adaptive MCMC algorithm is not always an easy task, and the conditions found by the

researchers to ensure convergence are more restrictive than conditions for standard MCMC

algorithms. Our approach to this problem is to develop adaptive diagnostics which detects

if the chain has gained most of benefit from adaption so we know when to stop the adaption

and take the chain parameters from the adaption. Essentially, we stop the chain once our

diagnostics says the chain is now ‘tuned’, and we run the standard MCMC algorithm after

with those tuned parameters. As a result, we sure know our algorithm will converge to its

target distribution with a improved convergence speed through tuning from the adaption.

In Chapter 4 (available as a separate paper in Rosenthal and Yang (2016)), we extend

on the findings from Roberts and Rosenthal (2007) to make the conditions which guarantee

the convergence of an adaptive MCMC algorithm more general. We first define the concept

of ‘combocontinuous’ function, which is a generalization of piecewise-continuous function.

3

Continuity of the transition kernel densities is one of the conditions Roberts and Rosenthal

(2007) imposes for an adaptive MCMC algorithm to be guaranteed to converge, which is

somewhat restrictive. Thus, we relax the continuity assumption of the transition densities to

‘combocontinuity’ so we can easily verify the convergence of wider range of adaptive MCMC

algorithms.

In Chapter 5 (available as a separate paper in Yang et al. (2016)), we develop an adap-

tive algorithm for the component-wise multiple-try Metropolis (CMTM) algorithm. Our

motivation starts from the concern that many target distributions have irregular shape, thus

a Markov chain that works well in one part of the state space might not work so well for

another part of the state space as the shapes of the target distribution in these areas are

quite different. We applied a component-wise multiple-try Metropolis algorithm(CMTM)

to solve this problem. We found that when the CMTM selects a transition kernel out of

multiple kernels available, it accounts for the local shape of the target distribution around

the current state. We then develop an adaptive algorithm for the CMTM to provide the

algorithm a good set of transition kernels it can choose from. We prove the convergence of

the adaptive CMTM algorithm with the theorem from Chapter 4.

We conclude this thesis in Chapter 6.

4

Chapter 2

Adaptive MCMC

2.1 Why MCMC?

Markov Chain Monte Carlo (MCMC) methods are widely used to analyze complex proba-

bility distributions. We show here in a simple way how MCMC helps in this regards.

Let’s say there is a random variable X, which has a distribution function G defined on a

state space X . Let Gu be the unnormalized version of G and gu be the density function for

Gu. Assume 0 <
∫
X gu(x)dx <∞. Suppose we want to know the value of E[f(X)] for some

function f : X → R. To calculate E[f(X)], we have to calculate the integral

E[f(X)] =

∫
X f(x)gu(x)dx∫
X gu(x)dx

It is not always possible to find a value of some integral. An alternative way to find (ap-

proximately) the value of E[f(X)] is calculating 1
M
f(Xi),, where a large number, M , of Xi

to be drawn from Xi ∼ G(X). Then, by the law of large number, for a large M ,

E[f(X)] ≈ 1

M
f(Xi).

5

Still, there exists another problem. For many of distribution functions, it is not possible

to directly sample from them. MCMC algorithm takes an advantage of the property of

Markov chain convergence to sample from any distribution G. Thus, even with a complex

Bayesian hierarchical model with a complex posterior function, we can calculate necessary

functional values via MCMC algorithms.

We next introduce some definitions and theorems related to Markov chain, which have

been foundations to build MCMC methods.

2.2 Markov Chain Theory

A sequence of random variables X0, X1, . . . , is a Markov chain if

P[Xn+1 ∈ A |X0, X1, . . . , Xn] = P[Xn+1 ∈ A |Xn] .

A Markov chain has three components: state space, initial distribution, and transition

probability. State space X is the collection of possible values a random variable Xi can

take. Initial distribution is the marginal distribution of X0. Transition probabilities are

P (x, y) = P[Xn+1 = y|Xn = x] for all x, y ∈ X .

Next, we introduce some of the definitions and theorems of Markov chain, which are

essential to understand MCMC algorithms. Let X be the state space with a corresponding

Borel σ-algebra F

Definition 1. A probability distribution π defined on (X ,F) is a stationary distribution for

a Markov chain on (X ,F) if

∫
X
π(dx)P (x,A) = π(A) , ∀A ∈ F

6

Definition 2. A Markov chain defined on (X ,F) is reversible with respect to some probability

distribution π also defined on (X ,F) if

π(dx)P (x, dy) = π(dy)P (y, dx) , ∀x, y ∈ X .

Theorem 1. Consider a Markov chain is defined on (X ,F). If the Markov chain is reversible

with respect to some probability distribution π also defined on (X ,F), then π is a stationary

distribution for the Markov chain.

Definition 3. Let ψ be some non-zero, σ-finite measure on (X ,F). A Markov chain on

(X ,F) is φ-irreducible if

P(τA <∞|X0 = x) > 0 , ∀x ∈ X , ∀A ∈ F with ψ(A) > 0 ,

where τA = inf{n ≥ 1 : Xn ∈ A}.

Definition 4. A Markov chain defined on (X ,F) is aperiodic if there does not exist disjoint

subsets X1,X2, . . .Xd ⊂ X with ∪di=1Xi = X , d ≥ 2, such that P (x,Xi+1) = 1 for ∀x ∈ Xi

and P (x,X1) = 1 for ∀x ∈ Xd.

Theorem 2 (Markov Chain Convergence Theorem). Consider an aperiodic, φ-irreducible

Markov chain defined on (X ,F), which has a stationary distribution π. Then, for π-almost

every x ∈ X , the Markov chain converges to π in total variation distance, i.e.

lim
n→∞

sup
A∈F
|P(Xn ∈ A)− π(A)| = 0 .

7

2.3 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm (Metropolis et al. 1953; Hastings 1970) is one of the most

well-known, popular algorithms in MCMC. It works as follows.

Let X1, X2, ... be the states of a Markov chain defined on a state space X . Let πu be the

possibly unnormalized target density on X . At each iteration n, a new value Yn+1 is drawn

from a proposal distribution Q(Xn, ·). The new proposal Yn+1 is accepted with a probability

a(Xn, Yn+1) defined as

a(x, y) = min(1,
πu(y)q(y, x)

πu(x)q(x, y)
) ,

where q is a density of the proposal distribution Q. If the new proposal Yn+1 is accepted,

then Xn+1 = Yn+1. If Yn+1 is rejected, then Xn+1 = Xn.

The convergence of the Metropolis-Hastings algorithm can be proved through the re-

versibility (i.e. π(dx)P (x, dy) = π(dy)P (y, dx)).

Theorem 3. A φ-irreducible, full-dimensional Metropolis-Hastings algorithm converges to

the target distribution π in total variation distance.

Instead of updating all coordinates at once as in the full-dimensional Metropolis-Hastings

algorithm, one can update only one coordinate at a time. This is called the component-

wise Metropolis Hastings (CMH) algorithm, or sometimes called Metropolis-within-Gibbs

(MwG) algorithm(Metropolis et al. 1953; Tierney 1994). The CMH algorithm proposes a

new value for the next state by updating only one coordinate at a time. This can improve

the computational efficiency in high dimension compared to a full-dimensional Metropolis-

Hastings algorithm.

Let j index for the jth coordinate. Let X0, X1, . . . , Xn be a d-dimensional Markov chain.

Draw Yn+1,j from the proposal distributionQ(Xn,j, ·). The new update (Xn,1, . . . , Xn,j−1, Yn+1,j, Xn,j+1 . . . , Xn,d)

8

is accepted with a probability

aj = min(1,
q(Xn.j, Yn+1,j)πu(Xn,1, . . . , Xn,j−1, Yn+1,j, Xn,j+1 . . . , Xn,d)

q(Xn.j, Yn+1,jπu(Xn,1, . . . , Xn,j−1, Xn,j, Xn,j+1 . . . , Xn,d)
)

The CMH algorithm can update coordinates sequentially, from j = 1 to j = d and repeat

from j = 1 again, or it can randomly choose a coordinate j to update each iteration.

2.3.1 Optimal Acceptance Rate

The Metropolis-Hastings algorithm accepts or rejects a new proposal at every iteration. We

can calculate the acceptance rate for the algorithm, which is the rate at each iteration a new

proposal is accepted. Intuitively, if the rate is too low, this implies new proposals are barely

accepted, and the chain is stuck at the same value for a long period of time. This is not ideal

for a Markov chain to efficiently search through the state space. If the acceptance rate is

too high, this implies each proposal only moves from the current state in a small magnitude,

and even though the acceptance rate is high, the chain overall does not move through the

state space quickly.

Roberts et al. (1997) theoretically proved the optimal acceptance rate for a d-dimensional

random walk Metropolis algorithm on Rd with a Gaussian proposal distribution N(Xn, σ
2Id)

and with a target density function in the form of

π(x) =
d∏
i=1

f(xi) (2.1)

is 0.234 as d→∞.

Roberts and Rosenthal (2001) extended on the findings of Roberts et al. (1997) and

showed that the asymptotic optimal acceptance rate is still 0.234 if the form of the target

9

density function is

π(x) =
d∏
i=1

Cif(Cixi)

in which {Ci > 0} are are arbitrary scaling factors. {Ci} are assumed to be i.i.d. positive

random variables from some distribution.

Numerical studies also showed that the optimal acceptance rate 0.234 is quite robust

since it holds for d as low as 5 (Gelman et al. 1996; Roberts and Rosenthal 2001) and for the

target density not exactly in the form of 2.1 or 2.2 (Roberts and Rosenthal 2001). Gelman

et al. (1996) and Roberts and Rosenthal (2001) also showed through simulation that for one

dimensional random walk Metropolis algorithm, the asymptotic optimal acceptance rate is

0.44.

Haario et al. (2001) suggested that to increase the efficiency of the random walk Metropo-

lis algorithm with Gaussian proposal distribution, let the proposal kernel to be N(Xn, cΣp)

whereΣp is the covariance matrix of the target distribution. c = 2.382/d is shown to yield

the optimal acceptance rate (Roberts et al. 1997).

2.4 Some Adaptive MCMC Algorithms

2.4.1 Adaptive Metropolis Algorithm

Haario et al. (2001) introduced the Adaptive Metropolis (AM) algorithm. The core idea

under the adaption scheme of the AM algorithm is to speed up the convergence by tuning the

covariance matrix of the proposal distribution so it resembles that of the target distribution.

Let Yn+1 be a new proposal at iteration n, drawn from a Gaussian proposal distribution

N(Xn, cΣn). Yn+1 is then accepted the same way as the Metropolis-Hastings algorithm with

10

a probability

a(Xn, Yn+1) = min(1,
πu(Yn+1)

πu(Xn)
) .

Note that since the proposal distribution is symmetric and q(Xn, Yn+1 and q(Yn+1, Xn) are

canceled out .

Σn is found by

Σn =


Σ0, n ≤ n0

Cov(X0, . . . , Xn) + εId, n > n0

Σ0 is the initial covariance matrix based on the best prior knowledge from the users, and

n0 is arbitrary burn-in period to collect the enough sample to calculate the first empirical

covariance matrix. εId is to prevent the covariance matrix to become singular. And the

constant c is the scaling parameter and assume the value c = (2.38)2/d from Gelman et al.

(1996).

Haario et al. (2001) showed the recursion formula for Σn,

Σn =
n− 1

n
Σn−1 +

1

n
(nXn−1X

T

n−1 − (n+ 1)XnX
T

n +XnX
T

n + εId ,

so the user can save some computational cost to update the empirical covariance matrix Σn

at every iteration. (It is easy to see that Xn = 1
n+1

∑n
i=1Xi can also be updated iteratively.)

2.4.2 Single Component Adaptive Metropolis Algorithm

The Single Component Adaptive Metropolis (SCAM) algorithm was introduced by Haario

et al. (2005). It has the same intuition with the AM algorithm, but this time it finds the

11

empirical variance for each coordinate rather than the empirical covariance matrix for full-

dimension. Basically, it runs the AM algorithm on each coordinate separately. A new state

Xn+1 is updated coordinate-by-coordinate, and once every coordinate is updated then Xn+1

is considered to be updated.

Draw Yn+1,j from the proposal distributionN(Xn,j, svn). The new update (Xn+1,1, . . . , Xn+1,j−1, Yn+1,j, Xn,j+1 . . . , Xn,d)

is accepted with a probability

aj = min(1,
πu(Xn+1,1, . . . , Xn+1,j−1, Yn+1,j, Xn,j+1 . . . , Xn,d)

πu(Xn+1,1, . . . , Xn+1,j−1, Xn,j, Xn,j+1 . . . , Xn,d)
) .

vn,j is determined by

vn,j =


v0 ,j , n ≤ n0

V ar(X0,j, . . . , Xn,j) + ε, n > n0

v0 ,j is the initial variance of the proposal distribution for the coordinate j, which is chosen

by the best prior knowledge from the users. n0 is arbitrary burn-in period, same as the AM

algorithm, and ε this time is to prevent the variance to become zero. The constant s is set up

as s = 2.382 based on Gelman et al. (1996). Again, Haario et al. (2005) provided a recursive

formula for the variance to save the computational cost. If one denotes gn = V ar(x0, . . . , xn),

then the recursive formula for the variance is

gn =
n− 1

n
gn−1x

2
n−1 +

1

n
x2
n −

n+ 1

n
x2
n.

where xn = 1
n+1

∑n
i=0 xi ,

12

2.4.3 Adaptive Metropolis-within-Gibbs Algorithm

The Adaptive Metropolis-within-Gibbs (AMwG) algorithm is introduced in Roberts and

Rosenthal (2009). The algorithm is built based on the idea that there is ‘optimal’ acceptance

rate for a random walk Metropolis algorithm, which yields ‘optimal’ mixing of the chain.

The AMwG algorithm updates Xn component-by-component, and the proposal distribu-

tion for each coordinate is N(Xn,j, σ
2
n,j), where j indexes for coordinate. It modifies the the

proposal variance σ2
n,j based on the acceptance rate of the proposals for the chain.

Let lsj be the logarithm of σn,j. Set the initial value of lsj = 0 for all j. lsj for

each coordinate is adjusted upward or downward by δ(n) after each of nth “batch” of 50

iterations. The adjustment is based on the acceptance rate of the last nth batch. The

adaption mechanism tries to achieve the ‘optimal’ acceptance rate of 0.44 for one dimensional

random walk Metropolis algorithm Thus, δ(n) is added if the acceptance rate calculated is

greater than 0.44 and subtracted if the acceptance rate is less than 0.44.

δ(n) is set to be δ(n) = min(0.01,
√
n) so the δ(n) approaches 0 as n grows large. This

is to achieve one of two conditions to ensure the convergence of an adaptive MCMC algo-

rithm, which we will discuss further in this chapter. Also, lsj is restricted in [−M,M] for a

really large constant M , so the algorithm can satisfy the other condition to guarantee the

convergence. We will introduce two conditions that ensure the convergence of an adaptive

algorithm in next section.

2.5 Convergence of Adaptive MCMC

Roberts and Rosenthal (2007) developed two conditions which ensures for an adaptive

MCMC algorithm to converge to its target distribution. They are Diminishing Adaptation

condition and Containment condition. Diminishing Adaptation implies the adaption itself

13

converges to zero for an adaptive MCMC algorithm. Containment implies the convergence

times of the algorithm to the target distribution is bounded in probability.

Before we introduce more formal mathematical definitions for two concepts from Roberts

and Rosenthal (2007), we introduce the notation for a general adaptive MCMC algorithm.

Let X be the state space with a corresponding Borel σ-algebra F , and the target distri-

butio π is defined on X . Let Y be the index set of the collection of all the Markov chain

kernels for the adaptive MCMC algorithm in consideration, and let γ be the element of Y .

Denote the each transition kernel for the adaptive MCMC algorithm Pγ(x, ·), and we assume

each Pγ leaves π stationary and Harris ergodic. An adaptive MCMC algorithm at iteration

n chooses Γn based on the information collected through X0, X1, . . . , Xn and/or auxiliary

randomness. Thus, the transition probability for the adaptive MCMC algorithm for each

x ∈ X and A ∈ F ,

P[Xn+1 ∈ A | Xn = x,Γn = γ,X0, . . . , Xn−1,Γ0, . . . ,Γn−1] = Pγ(x,A) .

With this notation, the mathematical definition of Diminishing Adaptation requires

lim
n→∞

sup
x∈X
‖PΓn+1(x, ·)− PΓn(x, ·)‖ = 0 . (2.2)

Let’s define

Mε(x, γ) := inf{n ≥ 1 : ‖P n
γ (x, ·)− π(·)‖ ≤ ε} .

In words, Mε(x, γ) is the time required to get to within ε of the stationary distribution π

from the state x with a fixed transition kernal Pγ.

14

Containment requires, for all ε > 0,

{Mε(Xn,Γn)}∞n=1 is bounded in probability , (2.3)

Theorem 4 (Roberts and Rosenthal (2007)). Consider an adaptive MCMC algorithm de-

fined on (X ,F). Assume Every transition kernel Pγ is Harris ergodic with a stationary

probability distribution π. (i.e. limn→∞ supA∈F |P n(x,A)− π(A)| = 0 for all x ∈ X). If the

algorithm satisfies both Diminishing Adaptation condition and Containment condition, then

the algorithm converges to π as in

lim
n→∞

sup
A∈F
|P(Xn ∈ A)− π(A)| = 0 .

15

Chapter 3

Automatically Tuned

General-Purpose MCMC via New

Adaptive Diagnostics

3.1 Introduction

Markov Chain Monte Carlo (MCMC) is a technique widely used to sample from complex

probability distributions, leading to numerous applications and methodological developments

and theoretical advances (see e.g. Brooks et al. 2011). It is well-known that some Markov

chains work much better than others in terms of convergence speed, asymptotic variance

and/or mixing speed (see e.g. Rosenthal 2011), leading to questions of how to find more

efficient chains.

Adaptive MCMC algorithms attempt to improve the Markov chain ‘on the fly’, using

information from past iterations of the chain. This can significantly improve efficiency in

practice (e.g. Haario et al. 2001, 2006; Roberts and Rosenthal 2009; Giordani and Kohn

16

2010; Vihola 2012; Turro et al. 2007). Unfortunately, most adaptive MCMC algorithms

are no longer Markovian, so convergence of the algorithm to the target distribution is much

more difficult to establish and can sometimes fail (see e.g. Rosenthal 2004). This question has

been investigated extensively, and researchers have proved the ergodicity of adaptive MCMC

algorithms under various conditions (e.g. Haario et al. 2001, 2006; Giordani and Kohn 2010;

Vihola 2012; Atchadé and Rosenthal. 2005; Andrieu and Moulines 2006; Andrieu and Atchadé

2007; Roberts and Rosenthal 2007; Fort et al. 2011). However, these results all require

assumptions such as “Containment” or “simultaneous polynomial drift conditions” which

are virtually impossible to verify directly in practical applications, and there aren’t many

widely applicable convergence results with easily-checkable assumptions. This means that

when using adaptive MCMC in practice, there are usually no guarantees of even asymptotic

convergence, and the user must simply “hope” that aberrant behaviour such as that exhibited

in Rosenthal (2004) does not arise.

In this chapter, we present an algorithm which uses new adaptive diagnostics to deter-

mine when ‘enough’ adaption has already been done, i.e. when further adaption is not likely

to lead to significant further improvements in efficiency. At this point, the adaption ceases,

and the algorithm runs an ordinary non-adaptive MCMC algorithm for which convergence is

guaranteed. In this way, our algorithm achieves the efficiency gains of adaptive MCMC, while

avoiding the theoretical obstacles of typical adaptive MCMC algorithms which continue to

adapt indefinitely. For definitiveness, we focus here on improving the proposal distribution

for the Metropolis-Hastings algorithm (Metropolis et al. 1953; Hastings 1970), though sim-

ilar ideas could also be applied in other adaptive MCMC contexts. We have developed a

companion software package ‘atmcmc’ (Yang 2014), written in the R computer language (R

Core Team 2014), to implement the algorithm introduced herein.

We note that various other software packages for adaptive MCMC are already available.

17

One example is ‘AMCMC’ (Rosenthal 2007a,b) which employs an Adaptive Metropolis-

within-Gibbs algorithm from Roberts and Rosenthal (2009). Another is the package ‘Grapham’

(Vihola 2010a,b) for Adaptive Metropolis-within-Gibbs for graphical models with arbitrary

block decompositions. Another example is ‘adapMCMC’ by Scheidegger (2012), which is

based on the adaptive MCMC algorithm proposed by Vihola (2012) which tries to learn the

shape of the target distribution while coercing the acceptance rate at the same time. A

fourth example is ‘FME’ by Soetaert and Petzoldt (2014), based on Soetaert and Petzoldt

(2010), whose function ‘modMCMC’ is an implementation of the Delayed Rejection Adaptive

Metropolis (DRAM) method of Haario et al. (2006). These packages are all promising and

useful, but they all involve infinite adaption, and thus require careful conditions to ensure

convergence – in contrast to the algorithm herein which stops adapting once a ‘good’ proposal

distribution is obtained and thus must converge by traditional Markov chain properties.

Section 2 of this chapter explains the idea behind the our algorithm. Section 3 provides

some background information for our algorithm. Section 4 presents the details of the algo-

rithm including all of the phases involved. Section 5 applies the algorithm to a number of

MCMC examples. Section 6 provides some concluding comments.

3.2 Approach

It is well-known that a discrete-time Markov chain on a general state space converges even-

tually to its stationary distribution if it is φ-irreducible and aperiodic (e.g. Roberts and

Rosenthal 2004). In practice, with time and resource constraints, we can’t just rely on this

eventual convergence and run a Markov chain to infinity. One concern is the time required

to reach convergence.

18

Figure 3.1: Algorithm flowchart

19

Some Markov chains take unreasonably long time to reach convergence, especially in

high dimension. We can improve the efficiency of a MCMC algorithm considerably by

adapting. Since adaption destroys the Markov property of a Markov chain, the convergence

of an adaptive MCMC algorithm has to be proven case-by-case. We want a more general

algorithm so the user doesn’t have to prove the convergence of an adaptive MCMC algorithm

every time he tries different example, which sometimes is challenging. Thus, our goal here

to make an algorithm which stops adapting once it obtains a ‘good’ proposal distribution,

or, in other words, once the chain is tuned to improve the speed of the convergence.

Our focus in this chapter is to find a way to approximate the point where the adaption is

not adding much value to the chain, thus allowing us to stop the adaptive algorithm. Also,

to efficiently utilize the adaption which takes the past and current values of the chain to

mimic the target distribution, we decide to take some pre-steps before the final adaption.

The actual methods of adaption are not the main impotance here. You can change the

adaption methods.

Since we are interested in a finite adaption here, we have to decide when to stop the

adaption. To verify if the adaption is indeed improving the convergence speed of a Markov

chain, we calculate the squared jumping distance, (Xn − Xn−1)2, for each iteration n. We

want a Markov chain to explore the sample space of the target distribution quickly. In

other words, we want a Markov chain to have a high mixing speed. The average squared

jumping distances is one measure to show how well the chain is mixing by averaging the

magnitudes of the movements from one state to the next. If we see a general increase in

the squared jumping distances as the adaptive algorithm runs, we presume the mixing of

the chain is getting better. Since we have to account for random fluctuations in squared

jumping distances, we calculate the average of squared jumping distances for a fixed number

of iterations and see if they are increasing. The more the chain moves for each iteration,

20

the faster the chain will converge because it implies that the chain moves well throughout

the entire state space, reducing the time to explore the full state space. Therefore, once

the average squared jumping distance stops increasing, we assume further adaption would

not significantly improve the mixing of the chain. We then stop the adaption, take the

proposal distribution we get from the adaption, and run a standard MCMC algorithm for

which all the properties and theories of a true Markov chain apply. We will use the Gelman-

Rubin convergence diagnostic (Gelman and Rubin 1992; Brooks and Gelman 1998), which

is explained briefly in Section 3.3, to check for the convergence of the chain when we run a

standard MCMC algorithm.

However, in the collection of past values we use to modify the chain, we don’t want to

include too many values which have low probabilities of occurring in the target distribution.

Thus, we want to discard a burn-in period until the chain reaches the mode of target distri-

bution. We call this step to find the mode of the target distribution Transient phase. Only

after then, we want to collect the values from the chain to fine-tune the chain.

At the same time we don’t want our chain to take forever to reach the mode of the target

distribution due to the bad proposal distribution for a specific target distribution. Thus,

before we let the chain to find the mode of the target distribution, or before Transient phase,

we make the algorithm quickly and roughly adjust the chain using some adaptive method.

We call this 1st adaption phase.

Thus, our method consists of 1st adaption phase, Transient phase, 2nd adaption phase,

and the sampling phase which we run the standard MCMC algorithm while checking for

the convergence with Gelman-Rubin diagnostic. Figure 3.1 summarizes the key idea of our

method.

21

3.3 Background

For Metropolis-Hastings algorithms, we can consider the acceptance rate, i.e. the rate at

which a new proposed value at each iteration is accepted. We don’t want the acceptance

rate to be too high, which implies each proposed move is too small so the chain moves slowly

throughout the whole state space. At the same time, we don’t want the acceptance rate to

be too low, either, since then the chain tends to get stuck at one value and hardly moves from

it. In Roberts et al. (1997) it was shown that, for the symmetric random walk Metropolis

algorithm with proposal distribution N(0, σ2Id), the optimal asymptotic acceptance rate

is 0.234 as d → ∞ if the target density function has the form π(x) =
∏d

i=1 f(xi) on Rd.

In Roberts and Rosenthal (2001), it was proved that the optimal acceptance rate is still

0.234 as d → ∞ if the target density has the form of π(x) =
∏d

i=1Cif(Cixi) where the

{Ci} are selected as i.i.d. positive random variables from some fixed probability distribution.

Numerical studies also showed the optimal acceptance rate 0.234 is quite robust as it holds

if d is as low as 5 (Gelman et al. 1996; Roberts and Rosenthal 2001) or the target density

doesn’t exactly have the form required to prove the theorem (Roberts and Rosenthal 2001).

It was also found by numerical studies that the optimal asymptotic acceptance rate of one

dimensional MCMC algorithm is 0.44 not 0.234 (Gelman et al. 1996; Roberts and Rosenthal

2001). Note that Gelman et al. (1996) and Roberts and Rosenthal (2001) demonstrated that

it is not worth tuning for the exact optimal acceptance rate of 0.234, since if the average

acceptance rate is between 0.15 and 0.5 then the Markov chain is at least 80% efficient

compared to the optimal.

Another way to improve the convergence speed of a Markov chain is, for the symmetric

random walk Metropolis algorithm with proposal distribution N(0,Σp), to get the Σp pro-

portional to the estimated covariance matrix of target distribution. This strategy was first

suggested in Haario et al. (2001) and justified in Roberts and Rosenthal (2001). Intuitively,

22

this strategy seems promising since the more the proposal distribution is similar to the target

distribution, the more likely the chain would propose a value that the target distribution

would propose at each iteration given the current value Xn, and it wouldn’t need as long a

run of the Markov chain to converge to the target distribution. It is shown in Roberts et al.

(1997) that if the target covariance matrix is multiplied by 2.382/d to obtain the covariance

matrix Σp, then as d → ∞, the proposal distribution N(0,Σp) gives optimal convergence

(again with acceptance rate 0.234) among all Gaussian proposal distributions.

Of course, in practice we don’t know the target covariance matrix. However, we can use

the empirical covariance matrix calculated from past chain values instead. That is, after some

burn-in period, we use past values of the chain to estimate the covariance of the proposal

distribution, and then multiply this empirically estimated matrix by 2.382/d and use that

as our proposal covariance matrix (Haario et al. 2001; Roberts and Rosenthal 2009). As the

chain runs for a long time, the collection of the past values from the chain gets closer to a

sample from the true target distribution, and therefore the estimated covariance get closer

to the true target covariance.

One last problem is that even when running a standard MCMC algorithm, we don’t

know when is good time to stop the chain. In other words, we don’t know when the chain

convergence is achieved and we can take the values generated from the chain as a sample from

the target distribution. Gelman and Rubin (1992) proposed a method to detect convergence

of a Markov chain. They run several replicative Markov chains from a overdispersed starting

distribution. They discard values from first half of the chains and take the second half as a

sample and diagnose convergence. They assume convergence is achieved if R̂c := (V̂ /W)(c.f.)

is close to 1, where

V̂ =
n− 1

n
W +

B

n
+

B

nm
,

W is the average sample variance from each replicative chain, and B/n is the variance of

23

sample mean from each chain. Here n is the sample size of each chain, m is the number of

replicative chains, and the correction factor (c.f.) accounts for the difference in variances

between the Student’s t distribution and the normal distribution. If R̂c is close to 1, this

implies the variance of the sample mean from each chain is almost negligible, which hopefully

indicates convergence to stationarity. The idea behind the Gelman-Rubin diagnostic is that

if chains started from all over the state space each give us samples with similar distributions,

then each chain must have reached the same distribution, the target. Therefore, starting the

replicative chains from an ‘overdispersed’ starting distribution is crucial.

One pitfall of the Gelman-Rubin diagnostic is that they implicitly assume normality of

the target distribution, in the sense that they only monitor means and variances to compare

distributions of the replicative chains. To complement this shortcoming there is another

paper by Brooks and Gelman (1998) extending the Gelman-Rubin diagnostic. It suggests

either to check the higher moments of the samples from the replicative chains, or to look

at the (1 − α) ∗ 100% confidence interval to see if the average of the intervals from each of

replicative chain is close to the interval found when all points from all replicative chains are

thrown together as one sample.

We next present the details of our algorithm, which combines all of the above ideas

together to automatically tune MCMC, and hopefully achieve efficient convergence without

sacrificing MCMC’s theoretical guarantees.

3.4 Technical Details

The major breakdown of our algorithm is as follows. It consists of a number of distinct

phases. We start with an Adaptive Metropolis-within-Gibbs algorithm (Roberts and Rosen-

thal 2009) to get a rough idea of scaling for each coordinate of the Markov chain (“1st

24

adaptive phase”). We continue this phase until we get an acceptance rate of every coordi-

nate in the neighbourhood of 0.44 (the optimal acceptance rate for one dimensional Markov

chain). Note that we only need a very rough scaling estimate, so the neighbourhood range

can be quite large. Then, we run a fixed (non-adaptive) Metropolis-within-Gibbs algorithm

with this scaling (“transient phase”), and diagnose whether the chain has reached the mode

of the target distribution. We do this by fitting a regression line to see if the chain values

are trending, and continue until the regression signals that the chain becomes flat in every

coordinate. Next, we employ an Adaptive Metropolis algorithm (Haario et al. 2001; Roberts

and Rosenthal 2009) which adaptively updates the full-dimensional proposal covariance ma-

trix Σp (“2nd adaptive phase”). As mentioned earlier, the increase in the averaged squared

jumping distance is used as a measure of the adaption improving the chain. We continue the

Adaptive Metropolis algorithm until the average squared jumping distance stops increasing.

At this point, we run a conventional Metropolis algorithm (“sampling phase”), and apply a

Gelman-Rubin convergence diagnostic to divide the remaining run into two halves, one for

burn-in and one for actual sampling from the target distribution.

We now describe the details of these various phases, one by one. The phases do involve

various choices of approach and parameters, but they all appear to work well in practice

and to be robust to different target distributions. Thus, the algorithm described below can

be implemented directly (using our companion software package ‘atmcmc’ (Yang 2014)),

without requiring any additional adjusting or tweaking by the user. And, as mentioned,

since our algorithm uses only a finite amount of adaption followed by a conventional MCMC

algorithm, asymptotic convergence to the target distribution is automatically guaranteed,

without requiring the sorts of specialised arguments which are needed for most adaptive

MCMC algorithms.

25

3.4.1 1st Adaption Phase

To begin, we start with the Adaptive-Metropolis-within Gibbs algorithm introduced in

Roberts and Rosenthal (2009) to get a rough idea on what is ‘good’ scale for each coor-

dinate of a Markov chain. We call this step 1st adaption phase. Let X0, X1, X2, . . ., be a

Markov chain process and Y be a new value proposed by a certain proposal distribution at

each iteration. Given a current value of a Markov chain, Xn, Y is proposed by substituting

Xn,j with Yj drawn by Yj ∼ N(Xn,j, σ
2
j) where Xn,j and Yj are the jth coordinate of Xn and

Y , respectively, and σ2
j is the variance of the proposal distribution for the jth coordinate.

Then Y is either accepted (Xn+1 = Y) or rejected (Xn+1 = Xn) by the Metropolis rule. In

short,


Xn+1 = Y if U < min(1, π(y)/π(x))

Xn+1 = Xn if U ≥ min(1, π(y)/π(x))

where U ∼ U(0, 1) and π(·) is the target density function. This is done for every coordinate

j, sequentially. Note that when πu(x) = 0, we always accept the new proposal y. Thus, we

don’t want πu(x) = 0 situation because we accept the new proposal y even if πu(y) = 0,

making πu(x) = 0 for next iteration. In this case, there is a chance a Markov chain end up

drifting to the ‘wrong’ direction. To prevent this, we will stop the whole MCMC run if a

certain number of iterations has πu(x) = 0 consecutively, and this rule will be applied not

just for this phase but for any other phase, whether the target distribution is unimodal or

not, if the Metropolis rule is used to accept or reject.

To begin, a single Markov chain is run from the randomly chosen initial point X0. With

adaption, for each coordinate j of a Markov chain, we try to achieve the acceptance rate of

0.44, which is known to be an approximately optimal acceptance rate for one dimensional

26

Markov chain (Roberts and Rosenthal 2001). As in Roberts and Rosenthal (2009), we change

the variance of the proposal distribution to alter the acceptance rate of a Markov chain since

a proposal distribution with a larger variance tend to propose larger values, which would get

rejected more often than values proposed by a proposal distribution with a smaller variance,

and vice versa. Thus, for every 100 iteration, we calculate the acceptance rate of the past

100 iterations for each coordinate j, and we add ε = 0.05 to log(σj) if the acceptance rate is

higher than 0.44, and subtract ε from log(σj) if the acceptance rate is lower than 0.44. We

do this until the acceptance rate for every coordinate of the Markov chain falls between 0.28

and 0.60. If we get the acceptance rate for every coordinate in between 0.28 and 0.60, we run

100 more iterations with same σj’s, which have made the acceptance rates to fall between

0.28 and 0.60, and monitor the acceptance rate for the past 200 iterations. If at least one

acceptance rate from the coordinates falls outside of 0.28 and 0.60, then we adjust log(σj)

for every 200 iterations until the acceptance rate for every coordinate comes between 0.28

and 0.60. Once we have the acceptance rate for every coordinate fall between 0.28 and 0.60,

we run 200 more iterations with σj’s unchanged and monitor the acceptance rate for past

400 iterations. If at least one acceptance rate falls outside of 0.28 and 0.60, we adjust log(σj)

for every 400 iterations until the acceptance rate for every coordinate fall between 0.28 and

0.60. If the acceptance rate for every coordinate from past 400 iterations falls between 0.28

and 0.60, we stop the chain and save σj for every coordinate.

Note that here the acceptance rate is a continuous function of proposal variance. If we

want to increase (decrease) the acceptance rate by a bit, we have to decrease (increase) the

proposal variance by a bit accordingly. We can always get the acceptance rate fall into some

desired range (easier if the range is big) as long as the target density and the proposal density

is positive everywhere in the state space and the shift in the proposal variance is not too big

at each adjustment.

27

3.4.2 Transient Phase

Next, we try to find if there is any transient phase for the Markov chain since we don’t want

to start final adaption when the values generated, which will be used for the adaption, are

far from where the major mass of the target distribution is. We want a burn-in phase to

discard the part of the chain, which mostly consists of values in the low probability zones

under the target distribution. We call this transient phase.

We employ a standard Metropolis-within-Gibbs algorithm with proposals for each coor-

dinate drawn from Yj ∼ N(Xn, σ
2
j) with σ2

j determined by the 1st adaption phase. To check

if the chain is moving towards the mode of target distribution, for every 200 iteration, the

values generated for each coordinate j of X are averaged, and with 5 different averages for

each coordinate j, a linear model is fitted to see if there is any trend in the jth coordinate of

the chain. The specific values 200 and 5 are somewhat arbitrary choices, but we have found

that they work well when we run the algorithm. The user has flexibility to pick some other

numbers, as long as he/she makes sure the algorithm has enough points (for example, 5) to

run a regression but also at the same time two numbers (for example, 200 and 5) are not

too big so it doesn’t take too long to test whether the chain is trending or not.

We use a regression method to make sure the chain values are moving to only one direc-

tion, neither increasing nor deceasing. If a regression method confirms that the chain values

show a linear trend, we presume that the chain is still moving to a local mode. The p-value

for the slope coefficient is used to determine whether there is any linear trend. If p-value for

every coordinate is greater than 0.1, the chain gets stopped and this phase ends. We have

found that a p-value of 0.1 is a reasonable cutoff for our purpose. The p-value below 0.1

is the point where people start to talk about any sign of significance in statistics, although

many prefer a lot lower p-value than 0.1 to actually claim the significance in practice. Here,

we are detecting non-significance, so 0.1 seems to be a convenient threshold which appears

28

to be robust in practice. Plus, if for some reason, the p-value cutoff misses a trending chain

(which we believe has a very low chance of happening), we still have the last phase which will

run a standard MCMC algorithm. Therefore, at a minimum, the algorithm will converge to

the target distribution even though we might lose some efficiency.

3.4.3 2nd Adaption Phase

Here, we slightly modify the Adaptive Metropolis algorithm introduced in Haario et al.

(2001) and Roberts and Rosenthal (2009)) to find the proposal distribution that has a similar

covariance structure with the target distribution. This phase is called 2nd adaption phase.

The proposal, Y , is drawn from Y ∼ N(Xn, cΣn), and again the accept/reject is by the

Metropolis rule. Σn is found by calculating the covariance matrix of all past values generated

by the chain from the point the trending stops in the transient phase to Xn−1, and a constant

we multiply to Σn is c = 2.382/d. After 200 iterations in this phase, if the acceptance rate

is too low (less than 0.02), then we reduce c by a factor of d, to 2.382/d2, to make the

scale of the proposal distribution smaller thus increasing the acceptance rate, and start this

phase again with the last value from the transient phase as the starting value. We want

to stop the adaption when further adaption does not improve the chain. To check whether

the adaption is improving the chain or not, for every 200 iteration, we calculate the average

squared jumping distance for each coordinate j, and again with 5 different averages for each

coordinate j, we fit a linear model to see if there is any trend in squared jumping distance

for each coordinate. If average squared jumping distance stops to increase, we presume the

mixing of the chain stops to improve, and we stop this phase. Thus, we stop this phase

when, for every coordinate, the p-value for the slope coefficient of the regression is greater

than 0.1.

29

3.4.4 Sampling Phase

Finally, we apply the symmetric random walk Metropolis algorithm with proposal Y drawn

from Y ∼ N(Xn,Σp). Σp is the last Σn obtained from the 2nd adaption phase multiplied by

the constant c. We use Gelman-Rubin diagnostic and extension of Gelman-Rubin diagnostic

to monitor convergence of the Markov chain. We use both R̂c and R̂interval, since R̂interval

doesn’t require the normality assumption that R̂c does. To apply these diagnostics, we run

k = 10 replicative chains simultaneously. Besides the last value of the 2nd adaption phase

used as the initial point of one replicative chain, the initial points for each of k−1 replicative

chains are drawn from U(dj − (ej − dj)/4, ej + (ej − dj)/4) for each coordinate where dj and

ej are the minimum and maximum value, respectively, for each coordinate j of the chain

found from the point the trending stops in the transient phase to the end of the 2nd adaption

phase. After some burn-in period, we discard the values from the first half of this phase,

and calculate R̂s with the values from the second half of the phase. When both R̂s for every

coordinate are close to 1, we stop the chain and take the values from the second half of this

phase as our sample from the target distribution. For our runs of the algorithm, including

runs on the examples described in Section 3.5, we stopped the algorithm if R̂c and R̂interval

falls in between 0.9 and 1.1. The user of our algorithm can make the cutoff values more

strict if he/she desires. We call this phase sampling phase. Note that we throw values from

all replicative chains together in our sample.

Note that most of numerical values used in the algorithm can be changed by the user in

the R package ‘atmcmc’. The choice of these numerical values does affect the performance

of MCMC, and the numbers specified in this section are the default values built in the R

package. For details, see the reference manual of the R package ‘atmcmc’ (Yang 2014).

30

3.4.5 Extension for Strongly Multimodal Targets

Suppose a target distribution has multiple local modes, and there is at least one mode that

is strongly separated from any of other modes. In other words, the region between this

mode and any other modes is at low density. Since accepting a proposal value that is at

much lower density region compared to the current state is a low probability event, unless

a direct proposal of a point in another mode occurs from time to time, there is a chance a

Markov chain gets stuck in that mode. We will call a target distribution like this is ‘strongly

multimodal’.

With a ‘strongly multimodal’ target distribution, we run multiple Markov chains with

different initial points drawn randomly from U(a, b), a, b ∈ Rd, for the 1st adaption phase and

transient phase as the chains find different modes. It is important to run enough number of

chains with widespread initial points to find all modes in the target distribution. (Note that

we do not assume that we know the location of the modes in advance, nor even the number

of modes.) Once all these different chains find different modes, we calculate the mean and

standard deviation of each Markov chain from the segment off the transient phase where

the chain is not trending, and we use these means and standard deviations to determine if

the chains found different modes. For any two chains, for at least one coordinate, if the

difference in two chain means is greater than at least one of two chain standard deviations,

we consider two chains reached different modes. With this selection process, we only collect

the chains with different modes.

Then we go into the 2nd adaption phase with the chains we are left with after the selection

process. Once each of these chains stops in the 2nd adaption phase, we get different Σi for

each chain. Again, with the values generated from the 2nd adaption phase, we check if each

Markov chain still stays at the different mode to each other.

After this, we start with some initial point, and run a MCMC algorithm that we are

31

about to describe. The initial points are the last point of the 2nd adaption phase from each

chain and some randomly drawn points from
∑r

i=1 U(ai, bi)/r, where i indexes for each of r

chains with different modes and (ai, bi) are decided based on the values generated from the

2nd adaption phase. We don’t use values from the flat part of the transient phase here since

there is a chance that two or more chains with different modes merge during the 2nd adaption

phase, giving us a different number of ‘unique’ chains after the 2nd adaption phase than right

after transient phase. Keep in mind that we want the overdispersed starting distribution for

the Gelman-Rubin diagnostic. As the Markov chain run, we need to evaluate which mode

the current value Xn = x is the closest to. The rule for determining this is

mode(x) = argmin
i

Di

where Di = max
j
dij with dij = |xj − mij|/σij. Here i indexes the multiple chains with

different modes, and j indexes for the coordinate of X. Also mij and σij are the mean and

standard deviation of chain i, i ∈ {1, ..., r}, and coordinate j, j ∈ {1, ..., s}, calculated from

the values generated from 2nd adaption phase. Again, we don’t include values from the flat

part of the transient phase when calculating the mean and standard deviation of each chain

i.

Suppose mode(Xn) = k. Then we update the Markov chain in the sampling phase as

follows.

1. With a 1− α probability, we propose Y by

Y |Xn ∼ N(Xn, cΣk)

where Σk is the variance obtained from the 2nd adaption phase for the chain k. We shall

32

write q1k(x, y) for the probability of proposing y given x using this rule. That is,

q1k(x, y) =


1√

(2π)s|cΣk|
exp

(
− 1

2c
(y − x)TΣk

−1(y − x)
)
, if mode(x) = mode(y) = k

0, otherwise

Note that here q1k(x, y) = q1k(y, x), since q1k depends only on |y − x|. y is rejected if

mode(x) 6= mode(y). Otherwise, y is accepted or rejected based on the Metropolis rule.

2. With a α probability, we propose Y by proposing each coordinate of Y as

Yj|Xn,j =
σlj
σkj

(Xn,j −mkj) +mlj

Here l is a random draw from all different chain i’s excluding chain k, where the probability

of drawing some chain l is uniform. Thus, σlj is the univariate standard deviation of the

chain l and the coordinate j, from the sample obtained for the 2nd adaption phase, and σkj

is the univariate standard deviation of the chain k and the coordinate j. In other words, if

there are r different chains with all different modes,

q2(x, y) =


1
r−1

, if yj =
σlj
σkj

(xj −mkj) +mlj, j = 1, ..., s, l = 1, ..., r, l 6= k

0, otherwise

where q2(x, y) is the probability of suggesting y given x using this rule. Note that for all

(x, y), q2(x, y) = q2(y, x). y is rejected if mode(x) = mode(y). Otherwise, y is accepted or

rejected based on the Metropolis rule.

33

Thus, if P (x, ·) is the transition probability for x and mode(x) = mode(y) = k, then

π(dx)P (x, dy) = [s−1πu(x)dx][q(x, y)a(x, y)dy]

= [s−1πu(x)][(1− α)q1k(x, y)][min(1, c−1πu(y)/c−1πu(x))]dxdy

= s−1[(1− α)q1k(x, y)][min(πu(x), πu(y))]dxdy

= s−1[(1− α)q1k(y, x)][min(πu(y), πu(x))]dxdy

= [s−1πu(y)dy][q(y, x)a(y, x)dx]

= π(dy)P (y, dx)

for some normalizing constant s for πu(·), an unnormalized density function of π. q(x, y) is

the probability of suggesting y given x for the Markov chain of interest, and a(x, y) is the

probability of accepting y given x.

If mode(x) 6= mode(y), then

π(dx)P (x, dy) = [s−1πu(x)dx][q(x, y)a(x, y)dy]

= [s−1πu(x)][αq2(x, y)][min(1, c−1πu(y)/c−1πu(x))]dxdy

= s−1[αq2(x, y)](min(πu(x), πu(y)))dxdy

= s−1[αq2(y, x)](min(πu(y), πu(x)))dxdy

= [s−1[πu(y)dy][q(y, x)a(y, x)dx]

= π(dy)P (y, dx) .

Recall that when πu(x) = 0, we always accept the new proposal y. If πu(x) = 0 and

πu(y) 6= 0, then π(dx)P (x, dy) = π(dy)P (y, dx) = 0 since P (y, dx) = 0 and vice versa. If

πu(x) = 0 and πu(y) = 0, then it is trivial.

34

To sum up, the Markov chain we construct above is reversible with respect to π(·).

In our runs of the proposed scheme, we used α = 0.05. α cannot be too big since it is not

desired the the mode-to-mode jump happening too frequently, and it cannot be too small

resulting mode-to mode-jump happening only few times, which reduces the effectiveness of

our algorithm for the ‘strongly multimodal’ targets. The user of our scheme (and the user

of the R package ‘atmcmc’) has some freedom to choose α as long as it is not too big or too

small due to the reasons just described.

Convergence of the Markov chain is still diagnosed the same way explained in main

algorithm, and, again, the final sample obtained is the collection of all values from the second

half of all replicative chains created for Gelman-Rubin diagnostics. We assume throwing all

points from all replicative chains together will not distort the end result as we believe the

convergence test by Gelman-Rubin can be only passed when the mixing of each replicative

Markov chain is ‘good’.

3.5 Applications

In this section, we present a number of different applications of our algorithm. The plots of

the sampling phases come from one replicative chain out of 10, which uses the last value of

the 2nd adaption phase as the starting point for the sampling phase. For ease of identification,

each phase is coloured differently in the trace plots: purple for the 1st adaption phase, orange

for the transient phase, red for the 2nd adaption phase, and blue and green for the first and

second halves of the sampling phase. Thus, the green segment in each trace plot is what we

take as our actual sample, and is also what we use to calculate the displayed acceptance rates

in the tables. Also note that in the trace plots, the iteration number for the 1st adaption

and transient phases is counted coordinate-by-coordinate as the trace plots are presented

35

coordinate-by-coordinate. More clearly, the first update of coordinate 1 is labeled iteration

1 in the trace plot for coordinate 1, and the first update of the coordinate 2 (second update

for the whole algorithm) is labeled iteration 1 in the trace plot for the coordinate 2 and so

on.

In each example, two tables are given. First one displays the 10 estimates of parameters

obtained from 10 independent runs of the full algorithm in Section 3.4. The second one

displays the summary statistics of these 10 estimates: mean, standard deviation, minimum

and maximum. The second tables also contain the true values of the parameters being

estimated or estimates of the parameters using by some other method, so the reader can

compare and see how the algorithm presented in this chapter has performed.

Note that all the starting points for the 1st adaption phases are arbitrary chosen as 0.1∗1,

except in the ‘strongly multimodal’ case. For the examples presented in Section 3.5.1, 3.5.2,

3.5.3, and 3.5.4, we did not use the scheme for ‘strongly multimodal targets’ from Section

3.4.5. Only for the example in Section 3.5.5 the scheme from Section 3.4.5 was applied.

3.5.1 Multivariate Normal Distribution

First, we take a 9-dimensional multivariate normal distribution as our target distribution.

Each component of target mean, µ, was randomly drawn from N(0, 10002) and target vari-

ance were constructed by ΣΣt where each component of Σ was drawn from N(0, 202). The

target distribution of interest is N(µ,ΣΣt). The results of 10 different runs are shown in

Table 3.1 and Table 3.2.

36

Table 3.1: Results of MCMC: Multivariate Normal. Results of 10 independent runs of full
algorithm in Section 3.4.

Estimates

µ

106.41 104.39 100.40 103.95 103.68 100.95 105.98 102.33 99.95 102.40

-525.14 -524.19 -524.41 -524.70 -526.58 -525.22 -525.52 -524.31 -522.74 -523.95

-863.71 -863.87 -859.42 -856.61 -862.88 -862.62 -866.63 -859.77 -868.21 -866.57

407.99 403.73 403.35 404.56 406.61 409.45 409.35 406.99 406.59 404.20

976.56 971.01 975.57 967.18 975.00 976.11 977.07 974.82 979.93 975.85

-451.47 -448.95 -449.23 -445.73 -449.28 -446.40 -450.20 -445.58 -446.73 -451.32

641.23 640.33 637.31 636.82 643.90 644.32 646.91 641.47 648.55 644.17

-556.63 -557.20 -559.81 -564.46 -560.43 -561.50 -561.68 -562.48 -562.97 -556.53

796.44 797.07 794.05 797.12 795.07 787.79 798.65 792.79 791.75 796.50

Acceptance Rates

0.2685 0.2565 0.2616 0.2771 0.2469 0.2750 0.2765 0.2755 0.2775 0.3031

Runtime (in seconds)

30.28 29.54 28.90 28.95 33.64 29.59 30.08 29.55 31.54 31.28

37

Table 3.2: Summary Statistics for the Estimates in Table 3.1: Multivariate Normal. µ is the
true mean of the target distribution.

Mean of Estimates SD of Estimates Min Estimate Max Estimate µ

103.04 2.23 99.95 106.41 103.54

-524.68 1.03 -526.58 -522.74 -524.46

-863.03 3.63 -868.21 -856.61 -862.79

406.28 2.25 403.35 409.45 405.96

974.91 3.50 967.18 979.93 974.04

-448.49 2.23 -451.47 -445.58 -448.01

642.50 3.81 636.82 648.55 642.51

-560.37 2.79 -564.46 -556.53 -561.15

794.72 3.23 787.79 798.65 796.02

As we see from Table 3.2, the estimates from the runs look to be close enough with the

true mean µ. Trace plots for the first run can be found in Figure 4.2. The mixing of Markov

Chain for the sampling phase, the blue and green phase in the figure, look to be good.

38

Figure 3.2: Trace Plots for Multivariate Normal

3.5.2 Logistic Regression

Next, we run a MCMC with a simple logistic regression model. The data used here is

from data(logit) in the R package ‘mcmc’ (Geyer and Johnson 2014). It is a simulated

logistics regression dataset, with a hundred data points and five variables. We name the five

39

variables y, x1, x2, x3 and x4. y is a Bernoulli response and x1, x2, x3 and x4 are quantitative

predictors. We know the basic structure of a logistic regression is


f(y1, ..., yn|β,X) =

∏n
i=1 P (yi = 1|β,X)yiP (yi = 0|β,X)1−yi

P (yi = 1|β,X) = 1/(1 + exp(−η))

η = ln[P (yi = 1|β,X)/P (yi = 0|β,X)] = βX.

If we put a prior β = (β0, β1, ..., βk)
T ∼ N(0, 4), the posterior distribution of interest is

f(β|y1, ..., yn, X) ∝ exp(−
∑

β2
j /8)[(

1

1 + exp(−βX)
)
∑
yi][(1− 1

1 + exp(−βX)
)n−

∑
yi].

Again, the results of 10 different runs are shown in Table 3.3 and Table 3.4, and the

trace plots for the first run are shown in Figure 3.3. We see our algorithm worked fine as we

compare its results with MCMC estimates via R package ‘mcmc’ and with GLM estimates.

Trace plots show a good mixing of the Markov chain.

40

Table 3.3: Results of MCMC:Logistic Regression. Results of 10 independent runs of full
algorithm in Section 3.4.

Estimates

β0 0.6618 0.6469 0.6671 0.6498 0.6486 0.6494 0.6678 0.6566 0.6654 0.6541

β1 0.7975 0.7878 0.8240 0.7982 0.8129 0.8039 0.8216 0.8089 0.8082 0.8191

β2 1.1848 1.2173 1.1621 1.1729 1.1761 1.1593 1.1635 1.1804 1.1574 1.1583

β3 0.5192 0.5039 0.5120 0.5127 0.5016 0.5063 0.4967 0.5114 0.5077 0.4873

β4 0.7095 0.7188 0.6875 0.7174 0.7148 0.7192 0.7347 0.7093 0.7229 0.7180

Acceptance Rates

0.2728 0.2925 0.2927 0.2901 0.3028 0.2863 0.2876 0.2901 0.2786 0.2891

Runtime (in seconds)

6.22 6.47 6.18 6.06 6.24 6.16 6.21 6.18 6.33 6.05

Table 3.4: Summary Statistics for the Estimates in Table 3.3: Logistic Regression. Results
of a run from R package ‘mcmc’ and GLM estimates are also presented, for comparison.

Mean of Estimates SD of Estimates Min Estimate Max Estimate Rpackage mcmc GLM

β0 0.6567 0.0082 0.6469 0.6678 0.6634 0.6328

β1 0.8082 0.0117 0.7878 0.8240 0.7629 0.7390

β2 1.1732 0.0183 1.1574 1.2173 1.2074 1.1137

β3 0.5059 0.0091 0.4873 0.5192 0.5315 0.4781

β4 0.7152 0.0121 0.6875 0.7347 0.7408 0.6944

41

Figure 3.3: Trace Plots for Logistic Regression. Each coordinate corresponds to the param-
eters listed in Table 3.3 as ordered.

3.5.3 Pump Failure Data

This is the data from Gaver and O’Muircheartaigh (Gaver and O’Muircheartaigh 1987). It

is shown in Table 4.1

Table 3.5: Pump Failure Data

Obs. no. 1 2 3 4 5 6 7 8 9 10

yi 5 1 5 14 3 19 1 1 4 22

ti 94.320 15.720 62.880 125.760 5.240 31.440 1.048 1.048 2.096 10.480

We followed the Bayesian set-up from George et al. (1993) to construct the posterior

42

distribution.

f(y1, ..., yn|λ1, ..., λn) =
n∏
i=1

Poisson(λiti)

where n=10, λi ∼ G(α, β), α ∼ exp(1) and β ∼ G(0.1, 1). Thus, the posterior distribu-

tion of the parameters is

f(λ1, ..., λn, α, β|y1, ..., yn) ∝ e−αβ0.1−1e−β
n∏
i=1

βα

Γ(α)
λα−1e−βλ(λiti)

yie−λiti

The results are shown in Table 3.6, Table 3.7 and Figure 4.3. We bring the results from

OpenBUGS website (Lunn et al. 2009) to compare with our estimates.

43

Table 3.6: Results of MCMC: Pump Failure Data. Results of 10 independent runs of full
algorithm in Section 3.4.

Estimates

λ1 0.0579 0.0626 0.0598 0.0591 0.0603 0.0593 0.0589 0.0595 0.0574 0.0598

λ2 0.1023 0.1042 0.1014 0.1077 0.1011 0.1042 0.0938 0.1033 0.0965 0.1065

λ3 0.0889 0.0911 0.0926 0.0923 0.0873 0.0869 0.0903 0.0856 0.0900 0.0870

λ4 0.1159 0.1163 0.1165 0.1160 0.1126 0.1176 0.1173 0.1150 0.1153 0.1187

λ5 0.5629 0.6008 0.5884 0.5700 0.5936 0.5954 0.5947 0.6074 0.6090 0.5966

λ6 0.6030 0.6071 0.5956 0.6140 0.6085 0.5955 0.5941 0.6101 0.6122 0.5973

λ7 0.9148 0.8865 0.8217 0.8945 0.8879 0.8324 0.8332 0.8539 0.8697 0.8685

λ8 0.9548 0.8217 0.8764 0.8093 0.8847 0.8935 0.9589 0.9104 0.9402 0.9671

λ9 1.5930 1.5932 1.5768 1.6202 1.5692 1.4670 1.5332 1.5542 1.6088 1.6102

λ10 2.0065 1.9909 1.9897 2.0038 1.9872 2.0169 1.9948 1.9624 1.9961 2.0507

α 0.6963 0.7026 0.7009 0.7123 0.6864 0.6878 0.7039 0.6965 0.6996 0.6817

β 0.9183 0.9355 0.9080 0.9497 0.9152 0.9498 0.9453 0.8963 0.9304 0.9180

Acceptance Rates

0.1690 0.1837 0.1660 0.1612 0.1694 0.1533 0.1558 0.1593 0.1740 0.1978

Runtime (in seconds)

31.79 24.53 24.23 23.03 25.06 23.64 25.22 22.69 25.95 30.55

44

Table 3.7: Summary Statistics for the Estimates in Table 3.6: Pump Failure Data. Results
from the OpenBUGS website, obtained via Gibbs sampler, are also presented, for comparison.

Mean of Estimates SD of Estimates Min Estimate Max Estimate BUGS

λ1 0.0595 0.0014 0.0574 0.0626 0.05986

λ2 0.1021 0.0042 0.0938 0.1077 0.1015

λ3 0.0892 0.0024 0.0856 0.0926 0.08899

λ4 0.1161 0.0017 0.1126 0.1187 0.1156

λ5 0.5919 0.0149 0.5629 0.6090 0.6043

λ6 0.6037 0.0076 0.5941 0.6140 0.6121

λ7 0.8663 0.0306 0.8217 0.9148 0.899

λ8 0.9017 0.0557 0.8093 0.9671 0.9095

λ9 1.5726 0.0458 1.4670 1.6202 1.587

λ10 1.9999 0.0229 1.9624 2.0507 1.995

α 0.6968 0.0092 0.6817 0.7123 0.6867

β 0.9267 0.0184 0.8963 0.9498 0.9024

45

Figure 3.4: Trace Plots for Pump Failure Data. Each coordinate corresponds to the param-
eters listed in Table 3.6 as ordered.

46

3.5.4 Variance Components Model (VCM)

The Variance Components Model (VCM) is a well-known example in Bayesian statistics.

The structure of the model can be found in Roberts and Rosenthal (2004) and Gelfand and

Smith (1990). In short, the model is constructed as:

yij|θi, σ2
e ∼ N(θi, σ

2
e), i = 1, 2, ..., K, j = 1, 2, ..., J

where θi|µ, σ2
θ ∼ N(µ, σ2

θ). θi|µ, σ2
θ are independent of each other. The distributions of

hyperparameters are: σ2
θ ∼ IG(a1, b1), σ2

e ∼ IG(a2, b2) and µ ∼ N(µ0, σ
2
0). Thus, the full

posterior for the VCM is

f(σ2
θ , σ

2
e , µ, θi|yij) ∝ (σ2

θ)
−(a1+1)e−b1/σ

2
θ (σ2

e)
−(a2+1)e−b2/σ

2
ee−(µ−µ0)2/2σ2

0

×
K∏
i=1

eθi−µ)2/2σ2
θ

σθ

K∏
i=1

J∏
j=1

e(yij−θi)2/2σ2
e

σe

First, we set a1 and a2 to 0.001, b1 and b2 to 1000, µ0 to 0, and σ2
0 to 1010, making the

inverse gamma priors flat and uninformative. The results can be found in Table 3.8, Table

3.9 and Figure 3.5. We compare our estimates to the estimates from Gibbs samplers ran

for 1.1 million iterations (which is a lot higher than the number of iterations in any of our

algorithm runs in Table 3.8) with last 0.1 million iterations used as a sample. One small

problem we found was that our model underestimated σ2
θ compared to the Gibbs sampler.

This error is correctable if we apply tighter cutoffs for the R̂c and R̂interval of Gelman-Rubin

diagnostics, to make our algorithm run longer. For consistency, we here let the cutoffs for

the R̂c and R̂interval be the same as other examples. Other than that, our estimates and

trace plots show that our model worked fine.

47

Table 3.8: Results of MCMC:VCM, flat inverse gamma priors. Results of 10 independent
runs of full algorithm in Section 3.4.

Estimates

σ2
θ 3687.3 4113.2 4039.6 3273.6 3907.1 3710.9 3291.5 3346.2 3714.8 3771.4

σ2
e 2763.2 2832.4 2649.5 2729.7 2713.0 2773.8 2810.0 2779.7 2764.6 2760.1

µ 1527.9 1528.0 1529.7 1527.2 1529.8 1529.5 1527.0 1527.1 1527.3 1528.1

θ1 1509.7 1509.1 1506.6 1508.9 1509.0 1509.0 1509.7 1510.2 1509.1 1509.8

θ2 1527.4 1525.7 1528.4 1528.7 1527.0 1527.3 1529.8 1527.6 1528.3 1529.0

θ3 1556.1 1556.4 1558.3 1556.9 1558.2 1557.2 1557.1 1556.5 1555.8 1557.1

θ4 1504.2 1505.0 1504.0 1505.2 1503.9 1503.9 1503.5 1504.1 1503.6 1502.7

θ5 1586.4 1584.9 1587.3 1585.8 1585.7 1587.6 1584.8 1585.6 1585.6 1587.7

θ6 1480.6 1482.3 1479.3 1481.6 1480.1 1481.2 1481.6 1481.5 1482.8 1479.8

Acceptance Rates

0.1714 0.1891 0.1557 0.2001 0.1822 0.2203 0.2037 0.2135 0.1728 0.1413

Runtime (in seconds)

37.27 28.69 20.36 21.28 21.55 21.22 35.58 52.48 24.66 20.09

48

Table 3.9: Summary Statistics for the Estimates in Table 3.8: VCM, flat inverse gamma
priors. Results from a Gibbs sampler run are also presented, for comparison.

Mean of Estimates SD of Estimates Min Estimate Max Estimate Gibbs

σ2
θ 3685.6 299.3 3273.6 4113.2 3891.8

σ2
e 2757.6 51.2 2649.5 2832.4 2769.1

µ 1528.2 1.1 1527.0 1529.8 1527.4

θ1 1509.1 1.0 1506.6 1510.2 1509.5

θ2 1527.9 1.2 1525.7 1529.8 1527.9

θ3 1557.0 0.8 1555.8 1558.3 1556.8

θ4 1504.0 0.7 1502.7 1505.2 1503.8

θ5 1586.1 1.1 1584.8 1587.7 1585.6

θ6 1481.1 1.1 1479.3 1482.8 1481.2

49

Figure 3.5: Trace Plots for Variance Components Model. Each coordinate corresponds to
the parameters listed in Table 3.8 as ordered.

This time, we set a1 and a2 to 300, b1 and b2 to 100 while everything else remained

same as before. This makes the inverse gamma priors really concentrated, and the results

are shown in Table 3.10, Table 3.11 and Figure 3.6. As we can see from Figure 3.6, in this

example, the transient phase was crucial to find the mode so in the 2nd adaption phase we

50

can avoid using ‘bad’ values to estimate the covariance of the target distribution.

Table 3.10: Results of MCMC:VCM, concentrated inverse gamma priors. Results of 10
independent runs of full algorithm in Section 3.4.

Estimates

σ2
θ 3.5057 3.4959 3.4998 3.5326 3.5163 3.5169 3.5004 3.5144 3.5067 3.5008

σ2
e 171.38 171.76 170.70 170.55 171.16 171.31 171.07 170.58 171.38 171.55

µ 1527.5 1527.3 1527.3 1527.7 1527.5 1527.9 1527.6 1527.4 1527.5 1527.7

θ1 1525.3 1525.3 1525.3 1525.5 1525.4 1525.8 1525.4 1525.3 1525.3 1525.6

θ2 1527.6 1527.5 1527.3 1527.6 1527.5 1527.8 1527.4 1527.3 1527.6 1527.7

θ3 1531.0 1530.7 1530.7 1531.1 1531.0 1531.2 1530.8 1530.8 1531.0 1531.0

θ4 1524.7 1524.8 1524.6 1524.8 1524.7 1525.1 1524.7 1524.4 1524.7 1524.9

θ5 1534.2 1534.2 1534.0 1534.4 1534.3 1534.7 1534.1 1534.2 1534.3 1534.4

θ6 1522.2 1522.1 1522.0 1522.1 1522.2 1522.7 1522.2 1521.7 1522.3 1522.3

Acceptance Rates

0.2659 0.2631 0.2559 0.2520 0.2705 0.2858 0.2972 0.2635 0.2673 0.2816

Runtime (in seconds)

18.33 17.28 18.57 18.20 24.06 23.33 20.54 16.83 21.69 14.16

51

Table 3.11: Summary Statistics for Estimates in Table 3.10: VCM, concentrated inverse
gamma priors. Results from Gibbs sampler are also presented, for comparison.

Mean of Estimates SD of Estimates Min Estimate Max Estimate Gibbs

σ2
θ 3.5089 0.0111 3.4959 3.5326 3.5060

σ2
e 171.14 0.42 170.55 171.76 171.08

µ 1527.5 0.2 1527.3 1527.9 1527.5

θ1 1525.4 0.2 1525.3 1525.8 1525.4

θ2 1527.5 0.2 1527.3 1527.8 1527.5

θ3 1530.9 0.2 1530.7 1531.2 1530.8

θ4 1524.7 0.2 1524.4 1525.1 1524.7

θ5 1534.3 0.2 1534.0 1534.7 1534.2

θ6 1522.2 0.2 1521.7 1522.7 1522.1

52

Figure 3.6: Trace Plots for Variance Components Model. Each coordinate corresponds to
the parameter listed in Table 3.10 as ordered.

3.5.5 A Strongly Multimodal Example

The ‘strongly multimodal’ target density function we work with is

53

1

3
∗N(µ1,ΣΣt) +

1

3
∗N(µ2,ΣΣt) +

1

3
∗N(µ3,ΣΣt)

where each component of Σ is randomly drawn from N(0, 1). The parameter values are


µ1 = (21.62166,−10.00424, 15.49878)T

µ2 = (9.671977,−28.515220,−12.744802)T

µ3 = (26.0518930, 0.2331812,−0.3433256)T

ΣΣt =


1.2742983 0.1801673 −1.353580

0.1801673 2.6300580 1.451527

−1.3535803 1.4515267 4.861334

 .

We first ran 10 different chains with the starting values of the 1st adaption phase chosen

randomly from U(−30, 30) for every coordinate of each chain. Since we want only one chain

for one particular mode, once every chain ran for both 1st adaption phase and transient

phase, we reduced the number of chains down, based on the criteria described in Section

3.4.5, leaving us with 3 different chains. Then, we ran for the 2nd adaption phases for all

3 chains, separately. Once this is done, we once again checked every chain had different

modes with the values generated in the 2nd adaption phase. Then we randomly chose 7

starting points as described in Section 3.4.5. With 10 different starting points in total (7

starting values randomly chosen and the last values from the 3 different chains), we created

10 replicative chains to run for the sampling phase. The plots for the sampling phase in

Figure 3.7 are from one replicative chain which used the last values of the 2nd adaption

phase of the chain started with ‘mode 1’ as the starting point of the sampling phase. We

54

did 10 different runs with the same starting values for the 1st adaption phase, and the end

results we got from the runs are shown in Table 3.12, Table 3.13 and Figure 3.7.

Table 3.12: Results of MCMC: Multimodal Distribution. Results of 10 independent runs of
full algorithm in Section 3.4.5.

Estimates

µ

18.764 18.170 20.413 18.965 18.853 19.746 19.690 18.687 19.241 20.200

-13.440 -14.311 -9.723 -12.907 -13.093 -11.551 -11.769 -13.604 -12.467 -10.825

0.9235 -0.1113 2.7895 0.3334 -0.0131 1.0996 1.8526 1.1745 0.9141 1.5964

Acceptance Rates

0.3374 0.3489 0.3057 0.3449 0.3464 0.3370 0.3627 0.3472 0.3448 0.3471

Runtime (in seconds)

72.04 71.40 70.26 72.93 70.31 74.74 71.33 72.50 72.20 71.29

Table 3.13: Summary Statistics for the Estimates in Table 3.12: Multimodal Distribution.
µ is the true mean of target distribution.

Mean of Estimates SD of Estimates Min Estimate Max Estimate µ

19.273 0.719 18.170 20.413 19.115

-12.369 1.401 -14.311 -9.723 -12.762

1.0559 0.8827 -0.1113 2.7895 0.804

55

Figure 3.7: Trace Plots for Mixture of Three 3-Dimensional Multivariate Normals. Each row
represents each coordinate and each column represents each chain trapped in different mode
until the sampling phase.

As we see from Figure 3.7, the mixing of the Markov chain for the sampling phase looks

to be good and not just occurs within one mode as in the previous phases.

56

3.6 Discussion

This chapter has presented a new algorithm, implemented in the R package ‘atmcmc’ (Yang

2014), to run adaptive MCMC for a finite amount of time, diagnose when the adaption

is sufficient, and then run conventional MCMC with standard convergence diagnostics to

get good target distribution convergence and estimates. The algorithm was illustrated on a

number of examples, and found to perform quite well in each case.

We finish by discussing a number of related issues.

3.6.1 Acceptance Rate

Our algorithm makes heavy use of the fact (Roberts et al. 1997; Roberts and Rosenthal 2001)

that for the symmetric random walk Metropolis algorithm on certain target densities, the

optimal asymptotic acceptance rate is 0.234, which can be achieved if we use the proposal

distribution N(Xn,Σp) where Σp = (2.382/d)∗Σ and Σ is the target covariance matrix. Now,

for certain truncated (discontinuous) target densities, the optimal acceptance rate is actually

0.1353 (Neal et al. 2012), and the true optimal value of the multiple to Σ is unknown. We

used the multiple 2.382/d whether the target density is truncated or not. The acceptance

rates we found in Table 3.1, Table 3.3 and Table 3.6 are slightly higher than the optimal

acceptance rates, which is reasonable as our Markov chains have dimensions far from infinity.

The acceptance rates for the Variance Components Model (VCM) look to be more puzzling,

as they vary between 0.1353 and 0.234 in Table 3.8 but are close to 0.234 in Table 3.10. In

VCM some coordinates are truncated and some are not, and there is little known about the

optimal asymptotic acceptance rate in this case. Also, note that for the ‘strongly multimodal’

algorithm extension, the acceptance rates are a lot higher than 0.234 as seen in Table 3.12,

which is due to the fact that direct jumps between the modes are allowed in this case.

57

3.6.2 Significance of Transient and 2nd Adaption Phase

One question is whether our 2nd adaption phase helps in terms of convergence speed, or

whether our 1st adaptive phase alone would be sufficient. To check this, we removed the 2nd

adaption phase from the full algorithm and ran each unimodal example three times, with

starting values for Gelman-Rubin diagnostics picked based on the flat part of the transient

phase. The runtimes we got for 3 different runs of the 9-dimensional multivariate normal

example are 121.07, 79.89, and 76.13 seconds, respectively. These runtimes are all larger

than any of runtimes we got for our full MCMC model in Table 3.1. Estimates from all three

runs came out reasonable. For the logistic regression example, we got 8.78, 6.84 and 9.43

seconds for 3 runs; for pump failure data, we got 5330.87, 5007.72 and 1490.13 seconds; for

VCM with flat inverse gamma priors, we got 72.65, 149.96 and 80.34 seconds, and for VCM

with concentrated inverse gamma priors, we got 202.66, 89.36 and 153.84 seconds. Estimates

from all these runs came out reasonably good except σ2
θ for VCM with flat inverse gamma

priors was even more underestimated (about 2700 - 3200) than results in Table 3.9 from

full algorithm. We conclude that runtimes were larger (most times by a lot) without a 2nd

adaption phase than with our full algorithm.

As another test, we tried removing both the transient phase and the 2nd adaption phase,

and again ran each unimodal example three times. (Here the starting values for the Gelman-

Rubin diagnostic were chosen based on the values from the 1st adaption phase, since we had

neither a transient phase nor a 2nd adaption phase; that is, we had to pick starting values

for the sampling phase without having a rough idea on the range of target distribution.) For

the 9-dimensional multivariate normal example, we got runtimes of 101.70, 80.22 and 69.03

seconds; for logistic regression, we got 8.47, 8.19 and 7.53 seconds; for pump failure data, we

got 10756.04, 2593.72 and 2866.11 seconds; for VCM with flat inverse gamma priors, we got

6227.88, 744.50 and 72.83 seconds, and for VCM with concentrated inverse gamma priors,

58

we got 918.97, 2774.98 and 2551.30 seconds. The estimates again came out reasonable. But

once again, all runtimes were larger than the corresponding ones for our full algorithm.

3.6.3 Comparison with a Full-dimensional Metropolis

We next consider how our algorithm fares against a full-dimensional Metropolis algorithm.

Notice that we are not comparing our algorithm to the full-dimensional Metropolis with a re-

ally good proposal distribution. Finding a good proposal distribution for the full-dimensional

Metropolis algorithm is the goal of the first three phases of our algorithm, and if we know

a good proposal distribution from the start, there is no need to adapt the chain. However,

in most cases of MCMC examples, we have little to no idea on the target distribution, and

picking a good proposal distribution out of all possible choices is virtually impossible without

adaption.

Since our algorithm runs replicative chains in the sampling phase to check for the con-

vergence, it wouldn’t be fair to compare our algorithm to one full-dimensional Metropolis

chain in terms of runtime. Also, if we only run one full-dimensional Metropolis chain, we

have to find a way to figure out when the full-dimensional Metropolis chain achieved the

same level of convergence as the chain by our algorithm. Thus, we compare our algorithm

with the full-dimensional Metropolis algorithm in terms of number of iterations they run

for, and we run the same number of replicative chains for the full-dimensional Metropolis

algorithm to check for the convergence through Gelman-Rubin diagnostics, using the same

R̂c and R̂interval cutoffs with our algorithm.

We ran the full-dimensional Metropolis on the pump failure data from Section 3.5.3

and the VCM from Section 3.5.4. The proposal distributions for the Metropolis algorithm

are N(Xn, I) for the pump failure data and the VCM with flat inverse gamma priors and

N(Xn, 10I) for the VCM with concentrated inverse gamma priors, where Xn is the current

59

state value and I is the identity matrix. We took the initial value 0.1 ∗ 1 for the Metropolis

algorithm, which is the initial value of the runs of our algorithm for all unimodal examples

in Section 3.5. We also ran the same number of replicative chains, 10, as what we used in

the runs of our algorithm in Section 3.5 for the Gelman-Rubin diagnostics, with the same R̂c

and R̂interval cutoffs. With pump failure data, we ran the full-dimensional Metropolis for 2

million iterations, but the algorithm failed to achieve the convergence by the Gelman-Rubin

diagnostics. Our algorithm was proved to be significantly more efficient in this case in terms

of number of iterations since all of the runs in Section 3.5.3 converged in between 81200 and

126200 iterations. For VCM with flat inverse gamma priors, the Metropolis algorithm again

didn’t achieve the convergence for 2 million iterations by the Gelman-Rubin diagnostics.

All the runs of our algorithm for the same example, shown in Section 3.5.4, achieved the

convergence in between 156800 and 299600 iterations. For VCM with concentrated inverse

gamma priors, the Metropolis algorithm achieved the convergence in 1775200 iterations, and

the comparative runs in Section 3.5.4 converged somewhere in between 77200 and 210200

iterations. Thus, we conclude that our algorithm performed notably better in these particular

cases.

Even if the proposal distribution is not as bad as what we just described, our algorithm

still beat the full-dimensional Metropolis algorithm with a decent proposal distribution.

When we removed both transient and 2nd adaption phase from our algorithm in Section

3.6.2, we practically ran the full-dimensional Metropolis algorithm with a roughly-tuned

diagonal proposal covariance matrix. So, we took the run with the fewest iterations for the

1st adaption phase out of three runs from Section 3.6.2 to compare the efficiency of our

algorithm to the full-dimensional Metropolis with a roughly tuned proposal distribution.

This comparison is really not fair to our algorithm since we counted the number of iterations

for the 1st adaption phase against our algorithm but gave the tuned proposal distribution

60

obtained from the 1st adaption phase of our algorithm to the full-dimensional Metropolis

from the start. However, our algorithm still did better.

For pump failure data example, two chains with the fewest number of iterations for the

1st adaption phase from Section 3.6.2 took 664200 and 333800 iterations, respectively, count-

ing only for the sampling phase, or in other words the standard full-dimensional Metropolis

phase. Thus, the full-dimensional Metropolis algorithm took 2.65 to 8.18 times more itera-

tions to reach the same level of the convergence compared to the runs in Section 3.5.3. For

VCM with flat inverse gamma priors, the number of iterations for the run with the fewest 1st

adaption period from Section 3.6.2 was 547400. Our algorithm ran 1.83 to 3.49 times faster

in terms of number of iterations. For VCM with the concentrated inverse gamma priors,

our algorithm was 1.58 to 4.57 times better than the full-dimensional Metropolis run from

Section 3.6.2.

3.6.4 Initial Value for a Markov Chain

One important issue for improving Markov chain convergence speed is getting a good starting

value. This problem is solved naturally for unimodal target distributions in our algorithm

since we go through all the different phases, including the mode-finding transient phase,

before starting the final sampling phase. The information we obtain in the first 3 phases are

used to get a rough idea about the target distribution, and hence to pick good starting values

for the sampling phase. The situation is a bit more problematic for a ‘strongly multimodal’

target distribution. There it is important to have well-dispersed starting points to find all

the modes in the target distribution, right from the beginning. If we fail to find some modes,

our resulting estimates will be compromised. Of course, similar concerns apply to virtually

all MCMC algorithms and diagnostic approaches.

61

Implementing MCMC in practice does have some difficulties depending on the target dis-

tribution one is dealing with. We hope that the algorithm presented in this chapter, and

implemented in the R package ‘atmcmc’ (Yang 2014), will provide a simple and efficient

approach that can be applied to most target distributions which arise in practice.

62

Chapter 4

Ergodicity of Combocontinuous

Adaptive MCMC Algorithms

4.1 Introduction

Markov Chain Monte Carlo (MCMC) algorithms are very widely used to analyze complex

probability distributions (see e.g. Brooks et al. 2011). Adaptive MCMC algorithms adjust the

Markov chain transition probabilities on the fly, in an attempt to improve efficiency, based

on the past and/or current information from the chain. Adaptive MCMC algorithms can

be quite effective in practice (see e.g. Haario et al. 2001, 2006; Roberts and Rosenthal 2009;

Giordani and Kohn 2010; Vihola 2012; Turro et al. 2007), but the chain usually loses the

Markovian property so that convergence to the target (stationary) distribution is no longer

guaranteed (see e.g. Rosenthal 2004). Many papers present conditions which assure this

convergence (e.g. Haario et al. 2001, 2006; Giordani and Kohn 2010; Vihola 2012; Atchadé

and Rosenthal. 2005; Andrieu and Moulines 2006; Andrieu and Atchadé 2007; Roberts and

Rosenthal 2007; Fort et al. 2011), but these conditions are usually difficult to verify in prac-

63

tice. By contrast, the results of Craiu et al. (2015) provide more easily checkable conditions

that guarantee convergence of adaptive MCMC algorithms, however they require continu-

ity of all of the transition densities which makes their application somewhat awkward in

practice.

It was shown in Roberts and Rosenthal (2007) that the convergence of an adaptive

MCMC algorithm is implied by the two conditions of Diminishing Adaptation and Contain-

ment (explained herein). In practice, Diminishing Adaptation is easily satisfied simply by

constructing the adaptive mechanism appropriately. Unfortunately, the Containment con-

dition is a lot harder to establish (see e.g. Bai et al. 2011b). Craiu et al. (2015) introduced

several simple assumptions about upper and lower bounds on transition densities which,

assuming continuity, guarantee the Containment condition and thus make ergodicity much

easier to verify.

In this chapter, we relax one of the assumptions in Craiu et al. (2015) which is required

to guarantee the Containment of an adaptive MCMC algorithm. The results of Craiu et al.

(2015) require the transition kernel densities (or proposal kernel densities for the Metropolis-

Hastings algorithm) of an adaptive MCMC algorithm to be continuous. We here show that

the continuity assumption on the kernel densities can be relaxed to a weaker assumption

which we call “combocontinuity”, which includes the usual piecewise-continuity assumption

as a special case, and which allows for e.g. truncated densities. We prove our result by

generalising Dini’s Theorem (about uniform convergence of compactly-supported functions)

to the combocontinuous case, and then applying that theorem to the case of combocontinuous

transition densities.

Below, Sections 4.2 and 4.3 present background about Adaptive MCMC and about com-

bocontinuity. Section 4.4 presents a special case of our new algorithm, and Sections 4.5

and 4.6 present our general result. This result is proved in Section 4.9, together with Sec-

64

tion 4.7 which generalises Dini’s Theorem, and Section 4.8 which proves two lemmas about

combocontinuity. Finally, Section 4.10 illustrates our results with two numerical examples

of adaptive Metropolis-Hastings algorithms with combocontinuous proposal kernel densities.

4.2 Background about Adaptive MCMC

Consider a general state space X with a corresponding Borel σ-algebra F , on which is defined

a target probability distribution π. Suppose that for each γ in some index set Y , Pγ is a valid

MCMC algorithm, i.e. a time-homogeneous Markov chain kernel which leaves π stationary

and is Harris ergodic so that limn→∞ ‖P n
γ (x, ·) − π(·)‖ = 0 for each fixed x ∈ X . (Here

‖P n
γ (x, ·) − π(·)‖ := supA∈F |P n

γ (x,A) − π(A)| is the total variation distance to the target

distribution π after n iterations of Pγ.)

An adaptive MCMC algorithm {Xn} uses some specified rule to select an index value Γn

at each iteration, based on current and/or past information from the chain and/or auxiliary

randomness. It then updates Xn according to the Markov kernel PΓn , so that for each x ∈ X

and A ∈ F ,

P[Xn+1 ∈ A | Xn = x,Γn = γ,X0, . . . , Xn−1,Γ0, . . . ,Γn−1] = Pγ(x,A) .

If the adaption rule is chosen wisely, to attempt to achieve some sort of optimality, then

adaptive MCMC algorithms sometimes provide very dramatic speed-ups in efficiency and

convergence to stationarity (e.g. Roberts and Rosenthal 2009). However, allowing Γn to

depend on previous values of the {Xn} can introduce biases so that the limiting distribution

of Xn, if it exists at all, might be quite different than π (cf. Rosenthal 2004, and Example 4 of

Roberts and Rosenthal 2007). This raises the question of what conditions assure convergence

65

in distribution of {Xn} to π, i.e. ensure that

lim
n→∞

sup
A∈F
|P(Xn ∈ A)− π(A)| = 0. (4.1)

There have been many recent results about convergence of adaptive MCMC, as mentioned

in the Introduction. Here we focus on the theorem of Roberts and Rosenthal (2007) which

states that the convergence of an adaptive MCMC algorithm is ensured by two conditions:

Diminishing Adaptation and Containment. Diminishing Adaptation requires the algorithm

to adapt less and less as the chain moves along, or more formally that

lim
n→∞

sup
x∈X
‖PΓn+1(x, ·)− PΓn(x, ·)‖ = 0 . (4.2)

Containment requires the convergence times of the algorithm to remain bounded in proba-

bility, or more formally that for all ε > 0,

{Mε(Xn,Γn)}∞n=1 is bounded in probability , (4.3)

where Mε(x, γ) := inf{n ≥ 1 : ‖P n
γ (x, ·) − π(·)‖ ≤ ε} is the time required to get to within

ε of the stationary distribution π when beginning at the state x and proceeding according

to the fixed Markov chain kernal Pγ. Now, since the adaptive rule can be specified by the

user, satisfying Diminishing Adaptation is usually straightforward to ensure. On the other

hand, the Containment condition is often difficult to verify in practice, requiring substantial

specialised effort (e.g. Bai et al. 2011b).

4.3 Combocontinuous Functions

Craiu et al. (2015) introduced several simple assumptions about upper and lower bounds on

66

Figure 4.1: Two ways of truncating a normal density: with (a) a “firm” truncation (left), or
(b) a “linear” truncation (right).

67

transition densities which, assuming strong continuity conditions, guarantee the Containment

condition and thus make ergodicity much easier to verify. However, the required continuity

conditions are inconvenient. For one simple example, if using a truncated normal distribution

(as is often used in this context), it is not permitted to use a “firm” truncation (Figure 4.1(a)),

but rather it is necessary to linearly interpolate the truncation (Figure 4.1(b)), which is

not difficult but which requires additional programming to implement. The present chapter

avoids this challenge by allowing for a more general notation of “combocontinuous” functions,

a generalisation of piecewise-continuous functions.

We define a function f on a space S to be combocontinuous if it can be written as a

finite combination of continuous functions, i.e. if f(x) = gI(x)(x) for some m ∈ N, some

index function I : S → {1, 2, . . . ,m}, and some finite collection g1, g2, . . . , gm of continuous

functions on S.

If I is constant on intervals, e.g. I(x) = 1 for a ≤ x ≤ b and I(x) = 2 for b < x ≤ c,

then combocontinuity reduces to the usual notion of piecewise-continuity. In particular, firm

truncations (as in Figure 4.1(a)) are always combocontinuous. On the other hand, if desired,

a combocontinuous function could be much more complicated than a piecewise continuous

function; for example, if I(x) = 1 for rational x, and I(x) = 2 for irrational x, then different

proposals will be used from rational and from irrational states. In this chapter, we mostly

focus on the case of truncated densities.

Note that combocontinuous functions share many properties of continuous functions. For

example, if the space S is compact, then a combocontinuous function f must be bounded

above and below (since each gi is), and if each gi is positive then also infx∈S f(x) > 0.

68

4.4 The Bounded Adaption Metropolis (BAM) Algo-

rithm

To illustrate our results in a simple but useful case, consider the following Bounded Adaption

Metropolis (BAM) Algorithm, which is an easier-to-implement version of the similarly-named

algorithm presented in Craiu et al. (2015).

Let X = Rd, let K ⊆ X be a (large) bounded region, let π be a continuous positive

density on X , and let D > 0 be a (large) constant. Let Y be any compact collection of

d-dimensional positive-definite matrices, and fix some specific Σ∗ ∈ Y .

Define a process {Xn} as follows: X0 = x0 for some fixed x0 ∈ K. Then for n = 0, 1, 2, . . .,

given Xn, we generate a proposal Yn+1 by: (a) if Xn 6∈ K, then Yn+1 ∼ N(Xn, Σ∗); or (b) if

Xn ∈ K, then Yn+1 ∼ N(Xn, Σn+1), where the matrix Σn+1 ∈ Y is selected in some fashion,

perhaps depending on Xn and on the chain’s entire history. Once Yn+1 is chosen, then if

|Yn+1 − Xn| > D, the proposal is rejected so Xn+1 = Xn. Otherwise, if |Yn+1 − Xn| ≤ D,

then with probability min[1, π(Yn+1)
π(Xn)

] the proposal is accepted so Xn+1 = Yn+1, or with the

remaining probability the proposal is rejected so Xn+1 = Xn.

For example, Σn+1 could be chosen to be (2.38)2Vn/d where Vn is the empirical covariance

matrix of X0, . . . , Xn from the process’s previous history (except restricted to some compact

set Y), since that choice approximates the optimal proposal covariance, cf. Haario et al.

(2001); Roberts and Rosenthal (2009).

Special case Vn = Cov(〈X0〉, 〈X1〉, . . . , 〈Xn〉) + εId for some arbitrarily small constant

ε > 0. 〈Xi〉 is a shrunken version of Xi, i.e. 〈Xi〉j = max(−L,min(L,Xi,j)) for some (large)

constant L > 0, with j indexing for jth coordinate. This idea of defining Vn is from Section

12.3 of Craiu et al. (2015).

For this algorithm, our results herein prove that the Containment condition holds, and

69

hence convergence to stationarity also holds assuming Diminishing Adaptation:

Theorem 5. The above BAM algorithm satisfies Containment (4.3). Hence, if the selection

of the Σn satisfies Diminishing Adaptation (4.2), then convergence to stationarity (4.1) holds.

This stands in contrast to other situations in which it is very difficult or impossible to

establish convergence of adaptive MCMC algorithms. Theorem 5 is proved in Section 4.9

below, as a special case of our more general results.

4.5 More General Conditions

The above BAM algorithm already has good flexibility to design efficient adaptive MCMC

algorithms. However, our results prove ergodicity in much greater generality, subject to

certain conditions as we now discuss.

Let X be a general state space, equipped with a Borel σ-algebra F , and a metric η.

Assume there is some “origin” point 0 ∈ X . Let P be a fixed transition kernel for a

time-homogeneous Markov chain on X , which is Harris ergodic to a stationary probability

distribution π. Consider a stochastic process {Xn} on X with the following properties:

(a) The process {Xn} never moves more than some fixed finite distance D > 0 in any one

step, i.e.

P
(
|Xn+1 −Xn| > D

)
= 0 ,

so in particular the kernel P satisfies that

P
(
x, {y ∈ X : η(x, y) ≤ D}

)
= 1, x ∈ X .

70

(b) The process {Xn}moves by the fixed transition kernel P whenever the current stateXn =

x is outside of a fixed compact subset K ⊂ X , i.e. P[Xn+1 ∈ A |Xn = x,Xn−1, . . . , X0] =

P (x,A) for x 6∈ K. Inside of K, the chain can move arbitrarily, subject only to measur-

ability, to anywhere within KD, where Kr = {x ∈ X | η(x,K) ≤ r}.

(c) The fixed kernel P is bounded above by P (x, dy) ≤ Mµ∗(dy) for some finite constant

M > 0, for all x ∈ KD\K and all y ∈ K2D\KD, where µ∗ is any probability measure

concentrated on K2D\KD.

(d) The fixed kernel P is bounded below by P n0(x,A) ≥ εν∗(A) for some probability measure

ν∗ on X , some n0 ∈ N, and some constant ε > 0, for all x ∈ K2D\KD and all A ∈ F .

ν∗ should be either (1) ν∗ = µ∗ or (2) ν∗ can be any probability measure on X if P is

reversible with respect to π and µ∗ = π|K2D\KD . (µ∗ here is the µ∗ in (c) above.)

(Note that in the case of a Metropolis-Hastings algorithm, if the corresponding proposal

kernels Qγ and Q satisfy the assumptions (a), (b) and (c), then Pγ and P automatically

satisfy them too.)

By Theorem 5 of Craiu et al. (2015), if a stochastic process {Xn} satisfies the above

conditions, then it is bounded in probability, i.e.

lim
L→∞

sup
n∈N

P(η(Xn, 0) > L |X0 = x0) = 0.

Furthermore, by Proposition 6 of Craiu et al. (2015), if X is an open subset of Rd, then

condition (d) above, with ν∗ = Uniform(K2D\KD), is implied by the following condition

(d’):

(d’) The fixed kernel P is bounded below by P (x, dy) ≥ εLeb(dy) whenever x, y ∈ J with

|y − x| < δ for some ε > 0 and δ > 0, where J is any bounded rectangle with J ⊃

71

K2D\KD.

We will give a special attention to a Metropolis-Hastings algorithm (Metropolis et al.

1953; Hastings 1970). The algorithm works as follows. At each iteration n, conditioned on

the current state Xn, the Markov chain proposes Yn+1 from some proposal kernel Qγ(Xn, ·).

The new proposal Yn+1 is accepted with probability

α(Xn, Yn+1) = min
[
1,
π(Yn+1)qγ(Yn+1, Xn)

π(Xn)qγ(Xn, Yn+1)

]
,

or Yn+1 is rejected with probability 1 − α(Xn, Yn+1). If Yn+1 is accepted, Xn+1 = Yn+1, if

not, Xn+1 = Xn.

We introduce a sub-Metropolis-Hastings algorithm (see Roberts and Rosenthal 2008) to

describe the BAM algorithm presented in Section 4.4. The sub-Metropolis-Hastings algo-

rithm has a transition kernel

Pγ(x, dy) = α(x, y)Qγ(x, dy) + r(x)δx(dy),

where r(x) = 1 −
∫
X α(x, y)Qγ(x, dy) and δx(·) is a point-mass at x. With probability∫

X Q(x, dy) ≤ 1, it follows the usual Metropolis-Hastings algorithm with a proposal kernel

Qγ(x, y)/
∫
X Qγ(x, dy). With probability 1 −

∫
X Qγ(x, dy), it stays at the current state,

i.e.Xn+1 = Xn. If a proposal kernel of a Metropolis-Hastings algorithm is truncated such as

the BAM algorithm (e.g. Yn+1 rejected if η(Yn+1, Xn) > D for some constant D > 0), it is a

sub-Metropolis-Hastings algorithm.

A φ-irreducible, full-dimensional Metropolis-Hastings algorithm is known to be Harris

recurrent (see e.g. Tierney 1994; Roberts and Rosenthal 2006). A Markov chain on (X ,F)

is φ-irreducible if P(τA < ∞|X0 = x) > 0 for all x ∈ X and all A ∈ F with ψ(A) > 0, for

some non-zero, σ-finite measure ψ, where τA = inf{n ≥ 1 : Xn ∈ A}. A Metropolis-Hastings

72

algorithm with a centered normal proposal kernel (e.g. N(Xn,Σ)) is φ-irreducible since the

chain can reach anywhere in the state space X no matter where the Markov chain starts.

It is still φ-irreducible even though Yn+1 rejected if η(Yn+1, Xn) > D if the target density is

everywhere positive. Thus, a full-dimensional Metropolis-Hastings algorithm with a centered

truncated normal proposal kernel is Harris recurrent if the target density is everywhere

positive. Indeed, for any reversible Markov chain with stationary distribution π, if the

transitions are truncated at some fixed distance, then π remains stationary.

To prove Containment for an adaptive MCMC algorithm, an additional condition is

needed besides {Xn} being bounded in probability. One way to proceed is in terms of

density functions. We shall assume that with respect to some reference measure λ(·) on X ,

π has a density g so that π(dy) = g(y)λ(dy), and furthermore either each kernel Pγ has

a density pγ with respect to λ(·) so Pγ(x, dy) = pγ(x, y)λ(dy), or each Pγ is a Metropolis-

Hastings algorithm whose proposal kernel Qγ has a density qγ with respect to λ(·) so that

Qγ(x, dy) = qγ(x, y)λ(dy).

In terms of these assumed densities, we introduce an additional assumption (e) as follows.

(e) In terms of the above assumed densities and reference measure, g is a continuous positive

density function for π. Furthermore, either:

(e1) The mapping γ 7→ pγ(x, y) is continuous in γ for each fixed (x, y), and pγ(x, y) is

combocontinuous in x in the sense that: pγ(x, y) = αγ,I(x)(x, y)1η(x,y)≤D for some

index function I : X → {1, 2, . . . ,m} for some m ∈ N. Here, αγ,i(x, y) is continuous

in x ∈ X for each fixed y ∈ X , and
∫
X αγ,i(x, y)λ(dy) = 1 for i = 1, . . . ,m.

(e2) Or, in the case of a Metropolis-Hastings algorithm: The proposal densities qγ(x, y)

are continuous in γ for each fixed (x, y) and combocontinuous in x as above (i.e.,

upon substituting qγ(x, y) for pγ(x, y) in the above conditions).

73

Notice that in (e) we do not assume anything at all about continuity in y of the transition

(or proposal) kernel densities. (In Craiu et al. (2015), a version of assumption (e) was used

in which λ was assumed to be Lebesgue measure, and full continuity was assumed in place of

combocontinuity, thus leading to inconvenient application as discussed in Section 4.3 above.)

Out of two assumptions in (e), (e2) probably carries most of practical relevance. However,

for the generality of our result, we also prove the case of (e1).

4.6 Main Result

In terms of the above conditions, we have the following theorem which guarantees Contain-

ment, and hence also convergence provided Diminishing Adaptation is satisfied.

Theorem 6. Consider an adaptive MCMC algorithm as above. If the algorithm satisfies

the assumptions (a), (b), (c), (d), and (e), and if the space Y of Markov kernel indices

is compact, then the algorithm satisfies the Containment condition (4.3). Hence, if it also

satisfies the Diminishing Adaptation condition (4.2), then it converges to stationarity as in

(4.1).

Proof. First, by Theorem 5 of Craiu et al. (2015), we know that the process {Xn} is bounded

in probability since it satisfies conditions (a), (b), (c), and (d).

Next, it follows from Lemmas 8 and 9 in Section 4.8 below that for each n ∈ N, the

mapping

(x, γ) 7→ ∆(x, γ, n) := ‖P n
γ (x, ·)− π(·)‖ (4.4)

is a combocontinuous mapping, and each ‘piece’ is a non-increasing function of n which

converges to 0. Then, by applying Theorem 7 (Generalised Dini’s Theorem) in Section 4.7

74

below to the function fn(x, γ) = ∆(x, γ, n+ 1), we obtain that

lim
n→∞

sup
x∈C

sup
γ∈Y

∆(x, γ, n) = 0

for any compact set C ⊂ X .

The rest of proof to show the Containment condition holds is the same as the last part of

the proof of Proposition 23 in Craiu et al. (2015). To repeat here, with any ε > 0, we can find

n such that supx∈C supγ∈Y ∆(x, γ, n) < ε. Thus, supx∈C supγ∈YMε(x, γ) < ∞ for any ε > 0.

If {Xn} is bounded in probability, then for any δ > 0, there is a compact subset C such that

P (Xn 6∈ C) ≤ δ for all n. Let L := supx∈C supγ∈YMε(x, γ). Then P (Mε(Xn,Γn) > L) ≤ δ

for all n. Therefore, the Containment condition holds, i.e. (4.3) is satisfied.

Finally, if the adaptive MCMC algorithm also satisfies the Diminishing Adaptation con-

dition, then by Roberts and Rosenthal (2007), the algorithm converges to π in total variation

distance, i.e. (4.1) holds.

It remains to prove the Generalised Dini’s Theorem and the technical lemmas used in

the proof of Theorem 6 above, which we do next.

4.7 Generalisation of Dini’s Theorem

Dini’s Theorem may be stated as follows (see e.g. Theorem 7.13 in Rudin 1976). Let {fn}

be a sequence of continuous real-valued functions defined on a compact set C, which is non-

decreasing (i.e. fn(x) ≤ fn+1(x) for each fixed n and x ∈ C), and which converges pointwise

to a continuous function f (i.e. limn→∞ fn(x) = f(x) for each fixed x ∈ X). Then the

convergence is uniform, i.e. limn→∞ supx∈C |fn(x)− f(x)| = 0.

In this section, we generalise Dini’s Theorem to the combocontinuous case, so that the

theorem can be applied to prove Theorem 6.

75

Theorem 7. (Generalised Dini’s Theorem)

Suppose a set C is compact, and {fn} is a sequence of real-valued functions on C, and f

is a continuous real-valued function on C, and:

1. For each n ∈ N, fn can be expressed as fn(z) = fn,I(z)(z) for some index function

I(z) ∈ J = {1, 2, . . . ,m}, and some m ∈ N, and some collection fn,i of functions.

2. Each of these fn,i is a continuous real-valued function on Ci, the closure of the subset

Ci = {z ∈ C | I(z) = i}.

3. For each i ∈ J , {fn,i} converges pointwise to f on Ci.

4. For each i ∈ J , fn,i(z) ≥ fn+1,i(z) for all z ∈ Ci, n = 1, 2, 3,

Then fn → f uniformly on C, i.e. limn→∞ supx∈C |fn(x)− f(x)| = 0.

Proof. Intuitively, this follows by applying the original Dini’s Theorem separately on each

subset Ci. More formally, let gn,i = fn,i − f for each i ∈ J . Let, for z ∈ C, gn(z) =

gn,I(z)(z) = fn,I(z)(z) − f(z) with I(x) ∈ J . Since {fn,i}, i ∈ J , converges pointwise to a

continuous function f on Ci, {gn,i}, i ∈ J converges pointwise to 0 on Ci. Also, for each

i ∈ J , since fn,i(z) ≥ fn+1,i(z) for all z ∈ Ci, gn,i ≥ gn+1,i for all z ∈ Ci.

Let ε > 0 and Cn,i = {z ∈ Ci|gn,i(z) ≥ ε}, i ∈ J . Then Cn,i is closed, since gn,i = fn,i−f

is continuous on Ci, and the continuous inverse image of any closed set is closed (e.g. Rudin,

1976, Theorem 4.8 Corollary). Hence, Cn,i is compact, since closed subsets of compact sets

are compact (e.g. Rudin, 1976, Theorem 2.35).

Next, note that Cn,i ⊃ Cn+1,i, since gn,i ≥ gn+1,i on Ci. Pick z ∈ Ci. Since gn,i → 0 on

Ci, z 6∈ Cn,i if n is sufficiently large. Thus, for every z ∈ Ci, we have that z 6∈ ∩∞n=1Cn,i. It

follows that ∩∞n=1Cn,i is the empty set. Hence, by the finite intersection property (e.g. Rudin,

1976, Theorem 2.36, Corollary), there must be some Ni ∈ N such that CNi,i is empty.

76

Therefore, 0 ≤ gn,i(z) < ε for all z ∈ Ci and for all n ≥ Ni. Hence, 0 ≤ gn(z) < ε for all

z ∈ C and for all n ≥ max(N1, . . . , Nm). Since ε is arbitrary, fn → f uniformly on C.

Remark. In Theorem 7, it does not suffice to assume only that fn,i converges pointwise

to f on Ci, i.e. the closure Ci really is required. For example, let C = [0, 2], and m = 2,

with I(x) = 1 for x ∈ [0, 1) and I(x) = 2 for x ∈ [1, 2]. Then let fn,1(x) = xn, and

fn,2(x) = f(x) = 0. Then fn,1 → 0 pointwise on C1 := [0, 1), but supC1
fn,1 = 1 for each n,

so the convergence of fn to f is not uniform.

4.8 Lemmas About Combocontinuity

We here show that, under the assumptions of Theorem 6, the total variation distance map-

ping (4.4) is combocontinuous, and each ‘piece’ converges to 0. Then we can apply Theorem

7 (Generalisation of Dini’s Theorem) to the mapping (4.4).

Lemma 8. Consider an adaptive MCMC algorithm as in Section 4.2, with assumed densities

as in Section 4.5. Assume conditions (a) and (e1). Then, for each n ≥ 2, the function

fn,γ(x) := ‖P n
γ (x, ·)− π(·)‖ is

1. continuous in γ ∈ Y for each fixed x,

2. combocontinuous in x in the sense that: fn,γ(x) = fn,γ,I(x)(x) for some index function

I : X → {1, 2, . . . ,m} for some m ∈ N where fn,γ,i(x) is continuous in x, and

3. for each fixed (x, γ, i), fn,γ,i(x) converges pointwise to 0 on X as n → ∞ and is a

non-increasing function in n.

Proof. For ease of notation, we assume in condition (e1) that m = 2; the extension to larger

m is then straightforward.

77

By (e1), the mapping γ 7→ pγ(x, y) is continuous in γ for each fixed (x, y), and pγ(x, y)

is combocontinuous in x in the sense that:

pγ(x, y) =


αγ,1(x, y), if x ∈ S1 & η(x, y) ≤ D

αγ,2(x, y), if x ∈ S2 & η(x, y) ≤ D

where D > 0 is some (large) constant; {S1, S2} is a partition of X ; αγ,i(x, y) is continuous in

x ∈ X ; and
∫
X αγ,1(x, y)λ(dy) =

∫
X αγ,2(x, y)λ(dy) = 1. Remind that, by (a), pγ(x, y) = 0

when η(x, y) > D.

First, we prove ‖P n
γ (x, ·)− π(·)‖ is continuous in γ for each fixed x. By definition,

‖P n
γ (x, ·)− π(·)‖ = 0.5 ∗

∫
X
|pnγ(x, y)− g(y)|λ(dy) (4.5)

Define a set An(x,y,D) as

An(x,y,D) = {(z1, . . . ,zn) ∈ X n|η(x, z1) ≤ D, η(zj−1, zj) ≤ D,

η(zj, zj+1) ≤ D, η(zn, y) ≤ D, j = 2, . . . , n− 1}.

An(x,y,D) is the set of sequences of length n of states in X which is placed in between x and y

and never moves more than a distance D. With An(x,y,D) defined above, for n ≥ 2, the n-step

transition probability density pnγ(x, y) of a Markov chain can be written as

pnγ(x, y) =

∫
· · ·
∫

An−1
(x,y,D)

pγ(x, y1)pγ(y1, y2) . . . pγ(yn−1, y)λ(dy1) . . . λ(dyn−1) (4.6)

Notice that 0 ≤ pγ(x, y) ≤ 1 and λ(An−1
(x,y,D)) is finite. Then, by the Bounded Convergence

Theorem, the mapping γ → pnγ(x, y) is continuous in γ for each fixed (x, y) since the mapping

78

γ 7→ pγ(x, y) is continuous in γ for each fixed (x, y).

Fix γ0 ∈ Y . Let a sequence {γk} → γ0, k = 1, . . ., where γk ∈ Y . Note that pnγ(x, y) = 0

if η(x, y) > nD. Again, by the Bounded Convergence Theorem, as k →∞,

∣∣∣‖P n
γk

(x, ·)− π(·)‖ − ‖P n
γ0

(x, ·)− π(·)‖
∣∣∣

=
∣∣∣0.5 ∗ ∫

{y∈X|η(x,y)≤nD}
|pnγk(x, y)− g(y)|λ(dy) + 0.5 ∗

∫
{y∈X|η(x,y)>nD}

|g(y)|λ(dy)

− 0.5 ∗
∫
{y∈X|η(x,y)≤nD}

|pnγ0(x, y)− g(y)|λ(dy)− 0.5 ∗
∫
{y∈X|η(x,y)>nD}

|g(y)|λ(dy)
∣∣∣

→ 0

since the mapping γ → pnγ(x, y) is continuous in γ for each fixed (x, y). Thus, for each fixed

x, ‖P n
γk

(x, ·) − π(·)‖ → ‖P n
γ0

(x, ·) − π(·)‖ as k → ∞. In other words, ‖P n
γ (x, ·) − π(·)‖ is

continuous in γ for each fixed x.

Next, we prove ‖P n
γ (x, ·)− π(·)‖ is combocontinuous in x. We write pnγ(x, y) as

pnγ(x, y) =


hn,γ,1(x, y), if x ∈ S1

hn,γ,2(x, y), if x ∈ S2.

Then we can write (4.5) as

‖P n
γ (x, ·)− π(·)‖ =


0.5 ∗

∫
X |hn,γ,1(x, y)− g(y)|λ(dy), if x ∈ S1

0.5 ∗
∫
X |hn,γ,2(x, y)− g(y)|λ(dy), if x ∈ S2

=


fn,γ,1(x), if x ∈ S1

fn,γ,2(x), if x ∈ S2.

(4.7)

79

We rearrange (4.6) as

pnγ(x, y)

=

∫
{y1∈X|η(x,y1)≤D}

pγ(x, y1)
(∫
· · ·
∫

An−2
(y1,y,D)

pγ(y1, y2) . . . pγ(yn−1, y)λ(dy2) . . . λ(dyn−1)
)
λ(dy1)

=

∫
{y1∈X|η(x,y1)≤D}

pγ(x, y1)bγ(y1, y)λ(dy1)

Then, for n ≥ 2, we can define hn,γ,1(x, y) as

hn,γ,1(x, y) =

∫
· · ·
∫

An−1
(x,y,D)

αγ,1(x, y1)pγ(y1, y2) . . . pγ(yn−1, y)λ(dy1) . . . λ(dyn−1)

=

∫
{y1∈X|η(x,y1)≤D}

αγ,1(x, y1)bγ(y1, y)λ(dy1)

Fix x0 ∈ X . Let a sequence {xk} → x0, k = 1, . . ., where xk ∈ X . Note that hn,γ,1(x, y) =

0 if η(x, y) > nD. Hence, we only prove the continuity of the function hn,γ,1(x, y) when

restricted to the subset {(x, y) : η(x, y) ≤ nD}.

Suppose a Markov chain moves from the current state (either xk or x0) to the next state,

y1 ∈ X . Let’s group possible y1’s into

U1 = {y1 ∈ X |η(xk, y1) ≤ D & η(x0, y1) ≤ D}

U2 = {y1 ∈ X |η(xk, y1) > D & η(x0, y1) > D}

U3 = {y1 ∈ X |η(xk, y1) ≤ D & η(x0, y1) > D}

U4 = {y1 ∈ X |η(xk, y1) > D & η(x0, y1) ≤ D}

We want to check hn,γ,1(xk, y) → hn,γ,1(x0, y) as k → ∞. Note that hn,γ,1(xk, y1) =

hn,γ,1(x0, y1) = 0 for y1 ∈ U2; hn,γ,1(x0, y1) = 0 for y1 ∈ U3; and hn,γ,1(xk, y1) = 0 for

80

y1 ∈ U4. Also note that U3, U4 → ∅ as k →∞.

Then, for n ≥ 2, as k →∞, by the Bounded Convergence Theorem,

|hn,γ,1(xk, y)− hn,γ,1(x0, y)|

=
∣∣∣ ∫

y1∈U1

αγ,1(xk, y1)bγ(y1, y)λ(dy1) +

∫
y1∈U3

αγ,1(xk, y1)bγ(y1, y)λ(dy1)

−
∫
y1∈U1

αγ,1(x0, y1)bγ(y1, y)λ(dy1)−
∫
y1∈U4

αγ,1(x0, y1)bγ(y1, y)λ(dy1)
∣∣∣

≤
∣∣∣ ∫

y1∈U1

αγ,1(xk, y1)bγ(y1, y)λ(dy1)−
∫
y1∈U1

αγ,1(x0, y1)bγ(y1, y)λ(dy1)
∣∣∣

+
∣∣∣ ∫

y1∈U3

αγ,1(xk, y1)bγ(y1, y)λ(dy1)
∣∣∣+
∣∣∣ ∫

y1∈U4

αγ,1(x0, y1)bγ(y1, y)λ(dy1)
∣∣∣

→
∣∣∣ ∫

y1∈U1

αγ,1(xk, y1)bγ(y1, y)λ(dy1)−
∫
y1∈U1

αγ,1(x0, y1)bγ(y1, y)λ(dy1)
∣∣∣

→ 0.

since αγ,1(x, y) is continuous in x ∈ X ; 0 ≤ αγ,1(x, y), bγ(y1, y) ≤ 1; bγ(y1, y) doesn’t depend

on x; and λ(U1) is finite.

We prove now
∫
X |hn,γ,1(x, y) − g(y)|λ(dy) is continuous in x. Again, fix x0 ∈ X . Let

a sequence {xk} → x0, k = 1, . . ., where xk ∈ X . We mentioned above hn,γ,1(x, y) = 0 if

η(x, y) > nD. Similarly as before, we group y’s into

Un
1 = {y ∈ X |η(xk, y) ≤ nD & η(x0, y) ≤ nD}

Un
2 = {y ∈ X |η(xk, y) > nD & η(x0, y) > nD}

Un
3 = {y ∈ X |η(xk, y) ≤ nD & η(x0, y) > nD}

Un
4 = {y ∈ X |η(xk, y) > nD & η(x0, y) ≤ nD}

81

Note Un
3 , U

n
4 → ∅ as k →∞. Thus, by the Bounded Convergence Theorem, as k →∞,

∣∣∣ ∫
X
|hn,γ,1(xk, y)− g(y)|λ(dy)−

∫
X
|hn,γ,1(x0, y)− g(y)|λ(dy)

∣∣∣
≤
∣∣∣ ∫

Un1

|hn,γ,1(xk, y)− g(y)|λ(dy)−
∫
Un1

|hn,γ,1(x0, y)− g(y)|λ(dy)
∣∣∣

+
∣∣∣ ∫

Un3

|hn,γ,1(xk, y)− g(y)|λ(dy)
∣∣∣+
∣∣∣ ∫

Un4

|hn,γ,1(x0, y)− g(y)|λ(dy)
∣∣∣

+
∣∣∣ ∫

Un2

|g(y)|λ(dy)−
∫
Un2

|g(y)|λ(dy)
∣∣∣

→ 0

since hn,γ,1(xk, y) → hn,γ,1(x0, y) on the subset {(x, y) : η(x, y) ≤ nD} as k → ∞ and∫
Un2
|g(y)|λ(dy) −

∫
Un2
|g(y)|λ(dy) = 0. Thus, fn,γ,1(x) from (4.7) is continuous in x ∈ X .

Same proof applies for fn,γ,2(x). Therefore, ‖P n
γ (x, ·)− π(·)‖ is combocontinuous in x.

Lastly, we want to prove {fn,γ,1} and {fn,γ,2} from (4.7) converge to 0 on X and are

non-increasing functions in n. Note that we need {fn,γ,1} and {fn,γ,2} from (4.7) to converge

to 0 on X not just on S1 and S2, respectively. (This is because when we apply Theorem 7

(Generalisation of Dini’s Theorem), we need the convergence on S1 and S2, respectively, not

just on S1 and S2.) Hence, we need more than just stating Pγ is Harris ergodic to π. With

Pγ, only {x ∈ S1} ({x ∈ S2}) feeds into the function fn,γ,1(x) (fn,γ,2(x)).

Notice that, for each fixed γ, hn,γ,i(x, y) is a n-step transition probability density of a

Markov chain. This chain moves by a fixed transition kernel Pγ after 1st iteration. No matter

which state on X the chain jumps to by the 1st iteration, which should be within the distance

D from the initial state, from that point it ““‘converges to its stationary distribution π since

Pγ is Harris ergodic to π. Hence, {fn,γ,1} and {fn,γ,2} from (4.7) with each fixed (x, γ)

converge to 0 on X and are non-increasing functions in n for n ≥ 2 (e.g. Proposition 3(c) of

Roberts and Rosenthal 2004). The result follows.

82

Next, we consider a Metropolis-Hastings algorithm with combocontinuous proposal kernel

densities as defined in Section 4.5.

Lemma 9. Consider an adaptive Metropolis-Hastings algorithm algorithm as in Section 4.2,

with assumed densities as in Section 4.5. Assume conditions (a) and (e2). Then, for each

n ≥ 2, the function fn,γ(x) := ‖P n
γ (x, ·)− π(·)‖ is

1. continuous in γ ∈ Y for each fixed x,

2. combocontinuous in x in the sense that: fn,γ(x) = fn,γ,I(x)(x) for some index function

I : X → {1, 2, . . . ,m} for some m ∈ N where fn,γ,i(x) is continuous in x, and

3. for each fixed (x, γ, i), fn,γ,i(x) converges pointwise to 0 on X as n → ∞ and is a

non-increasing function in n.

Proof. For ease of notation, we assume in condition (e2) that m = 2; the extension to larger

m is then straightforward.

By (e2), the mapping γ 7→ qγ(x, y) is continuous in γ for each fixed (x, y), and qγ(x, y) is

combocontinuous in x in the sense that:

qγ(x, y) =


βγ,1(x, y), if x ∈ T1 & η(x, y) ≤ D

βγ,2(x, y), if x ∈ T2 & η(x, y) ≤ D

(4.8)

where D > 0 is some (large) constant; {T1, T2} is a partition of X ; βγ,i(x, y) is continuous in

x ∈ X ; and
∫
X βγ,1(x)λ(dy) =

∫
X βγ,2(x)λ(dy) = 1. Remind that, by (a), qγ(x, y) = 0 when

η(x, y) > D.

First, we prove ‖P n
γ (x, ·)−π(·)‖ is continuous in γ for each fixed x. (Note that the proof

for this part is similar with the proof of Corollary 11 of Roberts and Rosenthal (2007).)

83

Let aγ(x) be the acceptance probability of a proposal from x ∈ X in this Metropolis-

Hastings algorithm. We write aγ(x) as

aγ(x) =

∫
{y∈X|η(x,y)≤D}

min
[
1,
g(y)qγ(y, x)

g(x)qγ(x, y)

]
qγ(x, y)λ(dy)

By the Bounded Convergence Theorem, aγ(x) is continuous in γ for each fixed x ∈ X . Now,

the transition kernel Pγ(x, dy) of this algorithm can be written as

Pγ(x, dy) = [1− aγ(x)]δx(dy) + wγ(x, y)λ(dy).

where δx(·) is a point-mass at x and wγ(x, y) = qγ(x, y) min
[
1, g(y)qγ(y,x)

g(x)qγ(x,y)

]
. The mapping

γ → qγ(x, y) is continuous in γ for each fixed (x, y). Thus, the mapping γ → wγ(x, y) is also

continuous in γ for each fixed (x, y).

The n-step transition kernel P n
γ (x, dy) is then

P n
γ (x, dy) = [1− aγ(x)]nδx(dy) + wnγ (x, y)λ(dy)

where we define

wnγ (x, y) =
∑
S 6=∅

wn,Sγ (x, y).

Here the sum is over all non-empty subsets S ⊆ {1, 2, ..., n}, and wn,Sγ (x, y) is the sub-density

corresponding to getting from x to y in n steps while accepting moves only at the times in S

(while rejecting moves at all times not in S). For example, if n = 5 and S = {2, 4, 5}, then

w
5,{2,4,5}
γ (x, y) corresponds to transitioning from x to y in 5 steps, while the first and third

proposals are rejected and the others are accepted. The transition density w
5,{2,4,5}
γ (x, y) can

84

be thus written as

w5,{2,4,5}
γ (x, y) =

∫∫
A2

(x,y,D)

[1− aγ(x)]wγ(x, y1)[1− aγ(y1)]wγ(y1, y2)wγ(y2, y)λ(dy1)λ(dy2)

Note [1 − aγ(x)] is continuous in γ for each fixed x, and wγ(x, y) is continuous in γ

for each fixed (x, y). Also note that, when calculating wn,Sγ (x, y), the intermediate values

(y1, . . . , yl−1) (where (l − 1) is the number of accepted proposals before the n-th proposal)

are integrated over, and the whole space for the integration is restricted to Al−1
(x,y,D) (the set

is defined in the proof of Lemma 8). Furthermore, λ(Al−1
(x,y,D)) is finite for all (k, x, y,D), and

0 ≤ wγ(x, y) ≤ 1 for all (x, y), and 0 ≤ [1 − aγ(x)] ≤ 1 for all x. Hence, by the Bounded

Convergence Theorem, wn,Sγ (x, y) is a continuous function of γ for each fixed S and (x, y).

Thus, wnγ (x, y) is continuous in γ for each fixed (x, y).

Now, we write ‖P n
γ (x, ·)− π(·)‖ as

‖P n
γ (x, ·)− π(·)‖ = [1− aγ(x)]n + 0.5 ∗

∫
X
|wnγ (x, y)− g(y)|λ(dy). (4.9)

We proved in Lemma 8 that the latter part of (4.9) is continuous in γ for each fixed x when

the mapping γ → wnγ (x, y) is continuous in γ for each fixed (x, y). Trivially, if aγ(x) is

continuous in γ for each fixed x, [1 − aγ(x)]n is continuous in γ for each fixed x. Hence,

‖P n
γ (x, ·)− π(·)‖ for this Metropolis-Hastings algorithm is continuous in γ for each fixed x.

85

Next, we prove ‖P n
γ (x, ·)− π(·)‖ is combocontinuous in x. We rewrite (4.9) as

‖P n
γ (x, ·)− π(·)‖

=


[1− aγ,1(x)]n + 0.5 ∗

∫
X |hn,γ,1(x, y)− g(y)|λ(dy), if x ∈ T1

[1− aγ,2(x)]n + 0.5 ∗
∫
X |hn,γ,1(x, y)− g(y)|λ(dy), if x ∈ T2

=


fn,γ,1(x), if x ∈ T1

fn,γ,2(x), if x ∈ T2.

(4.10)

Remind again wγ(x, y) = qγ(x, y) min
[
1, g(y)qγ(y,x)

g(x)qγ(x,y)

]
. qγ(x, y) is combocontinuous in x as

defined in (4.8), so we write wγ(x, y) as

wγ(x, y) =


αγ,1(x, y) = βγ,1(x, y) min

[
1, g(y)qγ(y,x)

g(x)βγ,1(x,y)

]
, if x ∈ T1 & η(x, y) ≤ D

αγ,2(x, y) = βγ,2(x, y) min
[
1, g(y)qγ(y,x)

g(x)βγ,2(x,y)

]
, if x ∈ T2 & η(x, y) ≤ D

(4.11)

Notice that we don’t express qγ(y, x) as either βγ,1(y, x) or βγ,2(y, x) in the numerators of the

fractions in (4.11). This is because we don’t want to specify whether y belong to T1 or T2.

Hence, we keep the notation qγ(y, x). Here, αγ,1(x, y) and αγ,2(x, y) are continuous in x only

if y is fixed because qγ(y, x), when η(x, y) ≤ D, is only continuous in x if y is fixed. qγ(y, x)

follows different curves depends on whether y ∈ T1 or y ∈ T2. If y is not fixed, qγ(y, x) could

be discontinuous in x at the boundaries of T1 and T2 for y.

Now, we prove the continuity of the function hn,γ,i(x, y) when it is restricted to the subset

{(x, y) : η(x, y) ≤ lD}. The proof is similar to that of Lemma 8, but this time y1 is the first

proposal accepted after the current state x.

Fix x0 ∈ X . Let a sequence {xk} → x0, k = 1, . . ., where xk ∈ X . We group possible y′1s

86

into

U1 = {y1 ∈ X |η(xk, y1) ≤ D & η(x0, y1) ≤ D}

U2 = {y1 ∈ X |η(xk, y1) > D & η(x0, y1) > D}

U3 = {y1 ∈ X |η(xk, y1) ≤ D & η(x0, y1) > D}

U4 = {y1 ∈ X |η(xk, y1) > D & η(x0, y1) ≤ D}.

Similarly as before, |hn,γ,i(xk, y)− hn,γ,i(x0, y)| → 0 as k →∞ since: U3, U4 → ∅ as k →∞;

hn,γ,i(xk, y) = hn,γ,i(x0, y) for y1 ∈ U2; λ(U1) is finite so that we can apply the Bounded

Convergence Theorem for the set U1.

Once we prove the continuity of hn,γ,i(x, y) when restricted to the subset {(x, y) : η(x, y) ≤

lD}, we prove the combocontinuity for the latter part of (4.9). The proof is essentially the

same as the proof of Lemma 8 except this time y is grouped based on the distance lD not

nD. We used the Bounded Convergence Theorem to prove the combocontinuity in the proof

of Lemma 8, and the Bounded Convergence Theorem assumes for the pointwise convergence

of the function inside the integral, which allows us to fix y here. Thus, similarly as we proved

in Lemma 8, the latter part of (4.9) is combocontinuous in x.

We next show that [1− aγ,1(x)]n and [1− aγ,2(x)]n are continuous in x ∈ X . We define

aγ(x) =


aγ,1(x), if x ∈ T1

aγ,2(x), if x ∈ T2.

Then, aγ,i(x) can be written as

aγ,i(x) =

∫
{y∈X|η(x,y)≤D}

min
[
1,

g(y)qγ(y, x)

g(x)βγ,i(x, y)

]
βγ,i(x, y)λ(dy) (4.12)

87

for i = 1, 2. Fix x0 ∈ X . Let a sequence {xk} → x0, k = 1, . . ., where xk ∈ X . Let’s group

possible y’s into

U1 = {y ∈ X |η(xk, y) ≤ D & η(x0, y) ≤ D}

U2 = {y ∈ X |η(xk, y) > D & η(x0, y) > D}

U3 = {y ∈ X |η(xk, y) ≤ D & η(x0, y) > D}

U4 = {y ∈ X |η(xk, y) > D & η(x0, y) ≤ D}

Similarly as in the proof of Lemma 8, when k → ∞, U3, U4 → ∅; aγ,1(x) = 0 on U2;

min
[
1, g(y)qγ(y,x)

g(x)βγ,1(x,y)

]
βγ,1(x, y) is continuous in x for each fixed y when restricted to the subset

{(x, y) : η(x, y) ≤ D}; 0 ≤ min
[
1, g(y)qγ(y,x)

g(x)βγ,1(x,y)

]
βγ,1(x, y) ≤ 1; λ(U1) is finite. Thus, aγ,1(xk)→

aγ,1(x0) as k → ∞ by the Bounded Convergence Theorem; i.e. aγ,1(x) is continuous in x

and so is [1 − aγ,1(x)]n. Same proof applies for [1 − aγ,2(x)]n. We conclude that aγ(x) is

combocontinuous in x with the same index function as qγ(x, y) (I : X → {1, 2} here).

Lastly, we want to prove {fn,γ,1} and {fn,γ,2} from (4.10) converge to 0 on X and are

non-increasing functions in n. Same with the last part of the proof of Lemma 8, we want to

prove {fn,γ,1} and {fn,γ,2} from (4.10) converge to 0 on X , not just on T1 and T2, respectively.

To prove this, we apply the same logic as in the proof of Lemma 8. {fn,γ,1} and {fn,γ,2}

are the total variation distance of a Metropolis-Hastings algorithm, which moves by a fixed

transition kernel Qγ(x, ·) after 1st iteration. No matter which state the chain is at after

1st iteration (which is within the distance of D from the initial state), from that point it

converges to its stationary distribution π. Thus, both {fn,γ,1} and {fn,γ,2} with each fixed

(x, γ) converge to 0 on X and are non-increasing functions in n for n ≥ 2. The result

follows.

88

4.9 Proof of Theorem 1

Denote the density of π as g with respect to Lebesgue measure. Denote the proposal kernels

for x ∈ K as {Q∗γ(x, ·)}γ∈Y and the proposal kernel for x 6∈ K as Q(x, ·). We then define Qγ

as

Qγ(x, ·) =


Q∗γ(x, ·) x ∈ K

Q(x, ·) x 6∈ K

Since we reject a proposal y from x if |x− y| > D, Qγ(x, dy) = 0 if |x− y| > D. Let Pγ(x, ·)

be a corresponding transition kernel for Qγ(x, ·).

The BAM algorithm with a fixed proposal kernel Qγ is reversible with respect to π. Thus,

π is a stationary distribution for the algorithm. As noted in Section 4.5, a full-dimensional

Metropolis-Hastings algorithm with a centered truncated normal proposal kernel is Harris

recurrent. Thus, the BAM algorithm with a fixed proposal kernel Qγ is Harris recurrent.

Since it is also aperiodic, it follows that the BAM algorithm with each fixed Qγ is Harris

ergodic to π.

As constructed, the BAM algorithm determines γ (or Σn+1) of {Qγ(x, ·)}γ∈Y at each

iteration n based on the past and present states from the Markov chain. And Y is compact.

(Since we use the shrunken version of Xi’s to find the empirical covariance matrix of Vn, this

ensures that the set Y of all possible Σn+1 is compact.) It follows that the BAM algorithm

follows the set-up of Section 4.2.

We also need to check if the algorithm satisfies the assumptions (a), (b), (c), (d) and

(e) from Section 4.5. As noted in Section 4.5, we only need the corresponding Qγ and Q to

satisfy the assumptions (a), (b) and (c), to ensure that Pγ and P also satisfy them. The

proposal kernels of the above BAM algorithm have bounded jumps since Qγ(x, dy) = 0 when

89

|x − y| > D. Thus, it satisfies the assumption (a). The chain moves by a fixed transition

kernel, Q, outside of a compact subset K, satisfying the assumption (b). The fixed proposal

kernel Q is bounded above as described in (c) since it is a normal distribution.

The state space X of the algorithm is a open subset of Rd, so we can use the assumption

(d’) to imply the assumption (d). Since Q is a normal distribution and π is continuous on X ,

the assumption (d’) is satisfied. We can easily see that the proposal kernel densities qγ(x, y)

of Qγ(x, dy) is continuous in γ and combocontinuous in x as in (e2).

Furthermore, the algorithm satisfies the Diminishing Adaptation condition by construc-

tion since, as n → ∞, the impact of Xn on Σn+1 approaches zero. Therefore, by Theorem

6, the BAM algorithm is guaranteed to converge to π in total variation distance, i.e. (4.1),

thus proving Theorem 5.

4.10 Numerical examples

In this section, we run the BAM algorithm described in Section 4.4 above, on two specific

statistical examples, and compare its performances with those of non-adaptive Metropolis

algorithms. The first example is in dimension d = 9, and the second one is in dimension d =

12. In both cases, our compact setK is defined as the d-dimensional cube [−100000, 100000]d,

and our step size bound is D = 100000. The fixed proposal kernel for the BAM algorithm

when Xn 6∈ K is Q ∼ N(Xn, Id).

4.10.1 Application: 9-dimensional Multivariate Normal Distribu-

tion

We first consider the target distribution is N(µ,Σ), where µ ∈ Rd with d = 9, and Σ ∈ Rd×d

are fixed and arbitrary (subject to Σ being positive-definite; in fact we set Σ = MM t where

90

the matrix M was generated with iid normal entries). The starting value for the MCMC

algorithm is µ itself. The trace plots for a BAM algorithm and a standard Metropolis

algorithm (with proposal kernal N(Xn, Id)) are shown in Figure 4.2.

Bounded Adaption Metropolis Standard Metropolis, N(Xn, Id)

Figure 4.2: Trace plots for a Bounded Adaption Metropolis (left) versus a Standard Metropo-
lis algorithm with proposal kernel N(Xn, Id) (right), on a 9-dimensional multivariate normal
target distribution, showing the superiority of the BAM algorithm.

We can see the mixing of the BAM algorithm is a lot better than the standard Metropolis.

In the trace plots of the BAM algorithm, we see an increase in the average jumping distance

from one state to the next state in the first a few thousands iterations, which implies the

adaption was indeed effective.

4.10.2 Application: Pump Failure Model

We next consider a BAM algorithm for a true Bayesian statistical model, applied to the

number of failures of pumps at a nuclear power plant. This model was first introduced by

Gaver and O’Muircheartaigh (1987); we use the slightly different set-up from George et al.

91

Table 4.1: Pump Failure Data

Obs. no. 1 2 3 4 5 6 7 8 9 10
yi 5 1 5 14 3 19 1 1 4 22
ti 94.320 15.720 62.880 125.760 5.240 31.440 1.048 1.048 2.096 10.480

(1993). The resulting posterior density is

f(λ1, ..., λn, α, β|y1, ..., yn) ∝ e−αβ0.1−1e−β
n∏
i=1

βα

Γ(α)
λα−1e−βλ(λiti)

yie−λiti .

This follows from the assumption that the number of failures follow the distribution

f(y1, ..., yn|λ1, ..., λn) =
n∏
i=1

Poisson(λiti),

where λi is the failure rate of pump i, ti is the length of operation time (in thousands of

hours), and n is the number of pumps, and furthermore λi ∼ Gamma(α, β), α ∼ Exp(1),

and β ∼ Gamma(0.1, 1). Here n = 10, so since λ1, ..., λn, α, β > 0, the state space is (0,∞)d

with dimension d = n+2 = 12. The data for the model are the values of the yi and ti, which

are reproduced in Table 4.1 herein.

We run both Bounded Adaption Metropolis and standard Metropolis algorithm to com-

pare them. For ease of comparison, each run uses initial values given by the estimates of

each parameter obtained from a previous standard MCMC run.

92

Bounded Adaption Metropolis

Standard Metropolis, N(Xn, 0.01Id)

Standard Metropolis, N(Xn, Id)

Standard Metropolis, N(Xn, 0.001Id)

Figure 4.3: Trace plots for the Pump Failure Model example for a Bounded Adaption
Metropolis algorithm (top left), compared to Standard Metropolis algorithms with proposal
distributions whose Gaussian covariance matrices are the d-dimensional identity (top right),
0.01 times this identity (bottom left), and 0.001 times this identity (bottom right).

Figure 4.3 shows the trace plots for the pump failure model with the BAM algorithm,

93

and with the standard Metropolis algorithm with proposal kernels N(Xn, Id), N(Xn, 0.01 Id),

and N(Xn, 0.001 Id).

For the non-adaptive algorithm with a fixed proposal kernel N(Xn, Id), not a single

proposal was accepted for the whole 15000 iterations. This is a combination of a couple of

factors. First, it is a rare event for 12 univariate normal proposal kernels suggest all positive

numbers when the variance for the each proposal kernel is 1 and the starting value, X0, for

each coordinate ranges from 0.6 to 2. Also, X0 is the estimates from a previous MCMC run,

so the evaluation of X0 under the target density would be greater than most of the other

points in the state space. Thus, accepting a new proposal, a point in the state space, over

X0 does not exactly have a high probability of happening unless the move is really small.

The BAM algorithm overcomes this problem as it adjusts the proposal variance to suit for

the target distribution of interest.

If we reduce down the scale of our proposal kernel for non-adaptive algorithms toN(Xn, 0.01Id)

or N(Xn, 0.001Id), then the proposals are accepted more often. However, the mixing of the

chains for these non-adaptive algorithms are still clearly not as good as for BAM. This

indicates that our new Bounded Adaption Metropolis (BAM) adaptive MCMC algorithm

performs better than standard Metropolis algorithms, even if their proposal scalings are

adjusted manually to allow for reasonable acceptance rates.

It is our hope that the easily-verifiable ergodicity conditions presented herein will allow

MCMC practitioners to make more widespread use of such adaptive MCMC algorithms,

and thus benefit from their computational speed-ups without suffering from burdensome or

uncheckable technical conditions.

94

Chapter 5

Adaptive Component-wise

Multiple-Try Metropolis Sampling

5.1 Introduction

Markov chain Monte Carlo (MCMC) methods are widely used to analyze complex probability

distributions, especially within the Bayesian inference paradigm. One of the most used

MCMC algorithms is the Metropolis-Hastings (MH) algorithm, first developed by Metropolis

et al. (Metropolis et al. 1953), and later expanded by Hastings (Hastings 1970). At each

iteration the MH algorithm samples a candidate new state from a proposal distribution

which is subsequently accepted or rejected. When the state space of the chain is high

dimensional or irregularly shaped, finding a good proposal distribution that can be used to

update all the components of the chain simultaneously is very challenging, often impossible.

The optimality results for the acceptance rate of the Metropolis-Hastings algorithm (Gelman

et al. 1996; Roberts and Rosenthal 2001) have inspired the development of the so-called

adaptive MCMC (AMCMC) samplers that are designed to adapt their transition kernels

95

based on the gradual information about the target that is collected through the very samples

they produce. Successful designs can be found in Haario et al. (2001), Haario et al. (2006),

Turro et al. (2007),Roberts and Rosenthal (2009), Craiu et al. (2009), Giordani and Kohn

(2010), and Vihola (2012) among others. Theoretical difficulties arise because the adaptive

chains are no longer Markovian so ergodicity properties must be proven on a case-by-case

basis. Attempts at streamlining the theoretical validation process for AMCMC samplers

have been increasingly successful including Atchadé and Rosenthal. (2005), Andrieu and

Moulines (2006), Andrieu and Atchadé (2007), Roberts and Rosenthal (2007), Fort et al.

(2011) and Craiu et al. (2015). For useful reviews of AMCMC we refer to Andrieu and

Thoms (2008) and Roberts and Rosenthal (2009). Despite many success stories, it is our

experience that existing adaptive strategies for MH may take a very long time to “learn” good

simulation parameters or may be remain inefficient in high dimensions and with irregular

shaped targets.

One can increase the computational efficiency if instead of using a full MH to update

all the components at once, one chooses to update the components of the chain one-at-a-

time. In this case the update rule follows the MH transition kernel but the acceptance or

rejection is based on the target’s conditional distribution of that component given all the

other ones. More precisely, if we are interested in sampling from the continuous density

π(x) : X ⊂ Rd → R+; the component-wise MH (CMH) will update the ith component of

the chain, xi, using a proposal yi ∼ Ti(·|xi) and setting the next value of the chain as

z =

 (x1, . . . , xi−1, yi, xi+1, . . . , xd) w.p. αi

x w.p. 1− αi

where

αi = min

{
1,
T (xi|yi)π(yi|x[−i])

T (yi|xi)π(xi|x[−i])

}
,

96

and π(·|x[−i]) is the target conditional distribution of the ith component given all the other

components x[−i] = (x1, . . . , xi−1, xi+1, . . . , xd). One can see that the CMH replaces the

difficult problem of finding one good proposal in d dimensions with an apparently easier

problem of finding d good 1-dimensional proposals. However, the latter task can also prove

difficult if the conditional density π(·|x[−i]) turns out to have different properties as x[−i]

varies. Intuitively, imagine that for a region of the sample space of x[−i] the proposal Ti

should have a higher spread for the chain to mix well and for the remaining support Ti

should have a smaller spread. Some success has been obtained in lower dimensions or for

distributions with a well-known structure using the regional adaptive MCMC strategies

of Craiu et al. (2009) or Bai et al. (2011a), but extending those approaches will be very

cumbersome when d is even moderately large and the geography of π exhibits unknown

irregularities. Other adaptive MCMC ideas proposed for the CMH too include Haario et al.

(2005) where the authors propose to use component-wise random walk Metropolis (RWM)

and to use the component-specific sample variance to tune the proposal’s variance, along the

same lines that were used by Haario et al. (2001) to adapt the proposal distribution for the

joint RWM. Another intuitive approach is proposed in Roberts and Rosenthal (2009). The

algorithm we propose here will be compared with these existing algorithms in the simulations

section.

The strategy we propose here aims to close the gap that still exists between AMCMC

and efficient CMH samplers. When contemplating the problem, one may be tempted to

try to “learn” each conditional distribution π(·|x[−i]), but parametric models are likely not

flexible enough and nonparametric models will face the curse of dimensionality even for

moderate values of d. Note that here the difficult part is understanding how the conditional

distribution changes as x[−i] varies, which is a d− 1-dimensional problem.

Before getting to the technical description of the algorithm, we present here the intuitive

97

idea behind our design. Within the CMH algorithm imagine that for each component we

can propose m candidate moves, each generated from m different proposal distributions.

Naturally, the latter will be selected to have a diverse range of variances so that we generate

some proposals close to the current location of the chain and some that are further away. If we

assume that the transition kernel for each component is such that among the proposed states

it will select the one that is most likely to lead to an acceptance, then one can reasonably

infer that this approach will improve the mixing of the chain provided that the proposal

distributions are reasonably calibrated. To mirror the discussion above, in a region where

Ti should have small spread, one wants to have among the proposal distributions a majority

with small variances, and similarly in regions where Ti should be spread out we want to

include among our proposal densities a majority with larger variances.

This intuition can be put to rigorous test using an approach based on the Multiple-try

Metropolis (MTM) that originated with Liu et al. (2000) and was further generalized by

Casarin et al. (2013). The theoretical validity of the sampler is demonstrated using the

results in Craiu et al. (2015) and the refinement brought by Rosenthal and Yang (2016).

Section 5.2 introduces a component-wise multiple-try Metropolis (CMTM) algorithm; in

Section 5.3 we add the adaptive flavour to CMTM so the proposal distributions will modify

according to the local shape of the target distribution and we prove the validity of our

construction. Section 5.4 applies the adaptive CMTM algorithm to numerical examples.

Section 5.5 compares the efficiency of the adaptive CMTM algorithm to other adaptive

Metropolis algorithms.

98

5.2 Component-wise Multiple-Try Metropolis

5.2.1 Algorithm

Assume that a Markov chain {Xn} is defined on X ⊂ Rd with a target distribution π, and

T1, . . . , Tm are proposal distributions, each of which generates a new proposal yj at every

iteration. The transition rule for the MTM algorithm is described below.

1. Let Xn = x. Draw proposals y1, . . . , ym where yj ∼ Tj(·|x).

2. Compute

wj(yj, x) = π(yj)Tj(x|yj)λj(yj, x), (5.1)

for each yj, where λj(x, y) is a nonnegative symmetric function and λj(x, y) > 0 whenever

Tj(y|x) > 0.

3. Select one y = ys out of y1, . . . , ym with probabilities proportional to wj(yj, x).

4. Draw x∗1, . . . , x
∗
s−1, x

∗
s+1, . . . , x

∗
m where x∗j ∼ Tj(·|y) and let x∗s = x

5. Accept y with a probability

ρ = min
[
1,
w1(y1, x) + . . .+ wm(ym, x)

w1(x∗1, y) + . . .+ wm(x∗m, y)

]

Throughout the chapter, we use the component-wise multiple-try Metropolis (CMTM)

algorithm in which each coordinate is updated using an MTM transition kernel with Gaus-

sian proposals for each coordinate. More precisely, suppose that we are updating the kth

component of the current state x using m 1-dimensional proposals, Tj(·|x), 1 ≤ j ≤ m.

Then a candidate yj ∼ Tj(·|x) is generated by sampling zk ∼ N(xk, σ
2
k,j) and by replacing

the kth coordinate of current state x with zk, i.e. yj = (x1, . . . , xk−1, zk, xk+1, . . . , xd). Sim-

ilarly, within the same iteration we get x∗j ∼ Tj(·|y), by replacing kth coordinate of y with

99

z∗k ∼ N(yk, σ
2
k,j).

Whether a proposal distribution is ‘good’ or not will depend on the current state of

the Markov chain, especially if the target distribution π has irregular shaped support. In

addition to choosing the m proposals, an added flexibility of the CMTM algorithm is that

we can choose any nonnegative symmetric map λ with λj(x, y) > 0 whenever Tj(y|x) > 0.

In subsequent sections we show that the CMTM algorithm with a particular form of the

function λ(x, y) influences positively the mixing of the chain and its effects depend in a

subtle manner on the local shape, i.e. the geography of the target distribution around the

current state, and the proposal’s scale.

Our choice of λ is guided by a simple and intuitive principle. Between two candidate

moves y1 and y2 that are equally far from the current state we favour y1 over y2 if π(y1) is

greater than π(y2), but if π(y1) is similar to π(y2), we would like CMTM to favour whatever

candidate is further away from the current state. These simple rules lead us to consider

λj(x, y) = Tj(y|x)−1‖(y − x)‖α, (5.2)

where ‖ · ‖ is the Euclidean norm. Note that this choice of λ is possible because Tj(y|x) is a

symmetric function in x and y as it involves only one draw from a normal distribution with

mean xk.

Replacing (5.2) in the weights equation (5.1) results in

wj(yj, x) = π(yj)Tj(x|yj)λj(yj, x)

= π(yj)‖(y − x)‖α. (5.3)

With this choice of λ, the selection probabilities are only dependent on the value of the

target density at the candidate point yj and the size of the potential jump of the chain, were

100

this candidate accepted. From (5.2) we can see that the size of α will balance of importance

of the attempted jump distance from the current state over the importance of the candidate

under π. However, while we understand the trade-off imposed by the choice of α for selecting

a candidate move, it is less clear how it will impact the overall performance of the CMTM,

e.g acceptance rate or average jump distance.

Therefore, it is paramount to gauge what are good choices for the parameter α for the

mixing of the CMTM chain. In the next section we tackle this using the average squared

jumping distance as the measure of performance of a Markov chain. An estimate is obtained

by averaging over the realized path of the chain. If a new proposal is rejected and (Xn+1 −

Xn)2 is equal to zero, that contribution is not discarded. Because of this, the measure of

efficiency takes into account not only the jump distance but also the acceptance rate, a

combination that has turned out to be useful in other AMCMC designs (see for instance

Craiu et al. 2009).

5.2.2 Optimal α

In order to study the influence of the parameter α on the CMTM efficiency we have conducted

a number of simulation studies, some of which are described here.

We considered first a 2-dimensional mixture of two normal distributions

101

1

2
∗N(µ1,Σ1) +

1

2
∗N(µ2,Σ2) (5.4)

where 

µ1 = (5, 0)T

µ2 = (15, 0)T

Σ1 = diag(6.25, 6.25)

Σ2 = diag(6.25, 0.25)

Figure 5.1: Target density plot. 2-
dimensional mixture of two normals

An iid sample of size 2000 from (5.4) is plotted in Figure 5.1. We run the CMTM algo-

rithm repeatedly with λj(x, yj) functions in (5.2) while changing the value of α from 0.1 to

15. We choose m = 5 as the number of proposals for each coordinate, while the proposal

variances σk,j’s are for each coordinate 1, 2, 4, 8 and 16.
As we see in Figure 5.2, the propor-

tion of each proposal distribution selected in-

creases/decreases as α changes. As expected,

when α increases we see the selection per-

centages of the proposal distributions with

smaller σk,j’s drop and those with larger σk,j’s

increase. Figure 5.2 shows, with larger α’s,

our algorithm favours proposal distributions

with larger scales, which makes sense based

on the equation (5.3).

Figure 5.2: Proportion of proposal distri-
bution selected. Coordinate 1: Red, Blue,
Green, Orange and Purple lines show be-
haviour when σk,j = 1, 2, 4, 8, 16, respectively.

Figure 5.3 shows how the average squared jumping distance changes as the value of α

changes. From Figure 5.3a, we see that the average squared jumping distance peaks in-

102

between α = 2 and α = 4. Next, we run the CMTM algorithm independently 100 times for

each of α = 2.0, 2.1, . . . , 3.5 and average the average squared jumping distances over the 100

runs. From Figure 5.3b we can infer that the highest efficiency is achieved for α ∈ (2.5, 3.2).

(a) (b) (averaged over 100 runs)

Figure 5.3: Two-Dimensional Mixture of two Gaussians: Mean squared jumping distance vs.
α for one run (left panel) and averaged over 100 runs (right panel).

We also examined a 4-dimensional mixture of two normal distributions as our target

density:

1

2
∗N(µ1,Σ1) +

1

2
∗N(µ2,Σ2),

where 

µ1 = (5, 5, 0, 0)T

µ2 = (15, 15, 0, 0)T

Σ1 = diag(6.25, 6.25, 6.25, 0.01)

Σ2 = diag(6.25, 6.25, 0.25, 0.01).

103

The number of proposals, m = 5 and σk,j’s of the set of proposal distributions for each

coordinate are 0.5, 1, 2, 4 and 8. Figure 5.4 shows the results. Figure 5.4a shows the average

squared jumping distance is the largest between α = 2 and α = 4. After 100 independent

replicates for each α = 2.0, 2.1, . . . , 3.5, we can see from Figure 5.4b that the average squared

jumping distances are largest for α ∈ (2.5, 3.2).

(a) (b) (averaged over 100 runs)

Figure 5.4: 4-Dimensional Mixture of two Gaussians: Means squared jumping distance vs.
α for one run (left panel) and averaged over 100 runs (right panel).

Other numerical experiments not reported here agree with the two examples presented

and suggest that optimal values of α are between 2.5 and 3.2. Henceforth we fix α = 2.9 in

all simulations involving CMTM.

104

5.3 Adaptive Component-wise Multiple-Try Metropo-

lis

5.3.1 CMTM Favours Locally ‘Better’ Proposal Distributions

The intuition behind our construction as described in the Introduction, relies on the idea

that CMTM will automatically tend to choose the “right” proposal among the m possible

ones. In this section we verify empirically that this is indeed the case.

We consider the same 2-dimensional mixture of normal distributions from Section 5.2.2

as our target distribution and run the CMTM algorithm. The simulation parameter are

the same, m = 5 and σk,j = 1, 2, 4, 8, 16. As shown in Figure 5.1, the shape of our target

distribution is quite different between the two regions of {Xn,1 < 10} and {Xn,1 ≥ 10}.

Table 5.1: Proportion of selected proposals

coordinate 1

σk,j

1 2 4 8 16

Xn,1 < 10 0.05 0.15 0.28 0.31 0.22

Xn,1 ≥ 10 0.04 0.12 0.25 0.34 0.25

coordinate 2

σk,j

1 2 4 8 16

Xn,1 < 10 0.06 0.19 0.33 0.26 0.16

Xn,1 ≥ 10 0.37 0.29 0.19 0.11 0.05

Table 5.2: Acceptance rate of selected proposals

coordinate 1

σk,j

1 2 4 8 16

Xn,1 < 10 0.39 0.50 0.51 0.53 0.50

Xn,1 ≥ 10 0.40 0.44 0.44 0.45 0.38

coordinate 2

σk,j

1 2 4 8 16

Xn,1 < 10 0.46 0.52 0.50 0.47 0.44

Xn,1 ≥ 10 0.44 0.41 0.30 0.28 0.28

Tables 5.1 and 5.2 present the proportion of candidate selection and acceptance rates for

105

each proposal. We compare the proportion of proposals selected in the regions {Xn,1 ≥ 10}

and {Xn,1 < 10}. While these regions are defined based on knowing the target exactly, they

do not enter in any way in the design of the CMTM and are used here only to verify that the

sampler indeed automatically adapts to local characteristics of the target. We can see that

the CMTM favours the proposal distributions with smaller σk,j’s in the region {Xn,1 ≥ 10}

which seems appropriate given that in that region larger moves for the second coordinate

will tend to be rejected. This pattern does not hold for the first coordinate for which larger

moves are appropriate throughout the sample space. In addition, Table 5.1 shows that in the

region where {Xn,1 < 10} the proportions of proposal distribution selected are similar for

the two coordinates. This is in line with what is expected since the target variances (= 6.25)

are the same in both directions in that region.

This suggests that indeed the CMTM algorithm tends to choose the ‘better’ proposal

distribution out of the available choices provided at each iteration. Also, as shown in Table

5.2, none of proposal distributions once selected has too high or too low acceptance rate

even though their variances are quite different. This also hints that the CMTM assigns a

selection probability to the multiple proposals at each iteration in such a way that improves

the efficiency of the Markov chain by avoiding too low and too high acceptance rate. This

observation will help us design the adaptive version of the CMTM.

5.3.2 Comparison with a Mixture Transition Kernel

An astute reader may wonder about a different strategy for using the different proposals that

one may have at one’s disposal. Maybe the most natural alternative is a random mixture of

the component-wise Metropolis algorithms. The set of proposal distributions used in both

algorithms is the same and we assign equal weights for the proposal distributions in the

mixture. This comparison is to see empirically how automatically adjusting the selection

106

probabilities of proposal distributions in the CMTM algorithm improves the efficiency of a

MCMC algorithm compared to the uniform selection of proposal distributions. Our target

distribution is the 4-dimensional mixture of two normals introduced in Section 5.2.2. The

σk,j’s for both algorithms are 0.5, 1, 2, 4 and 8 for each coordinate, and each independent run

has 60000 iterations (15000 updates per coordinate) in total.

A useful comparison of the efficiency of MCMC algorithms is based on estimates of

integrated autocorrelation time (ACT) which can be calculated using

τ = 1 + 2
∞∑
k=1

ρk,

where ρk = Cov(X0, Xk)/V ar(X0) is the autocorrelation at lag k. Higher ACT for a Markov

chain implies successive samples are highly correlated, which reduces the effective information

contained in any given number of samples produced by the chain.

To compare the efficiency of two algorithms, we compare the ACT calculated from the

runs of two algorithms. We also look at the CPU time taken for the runs (for the same

number of iterations) and the average squared jumping distances. We calculate the ACT

only from the second-half the chain since we discard the first-half as burn-in, but we calculate

the average squared jumping distance for the whole length of the chain.

Table 5.3 shows the proportion of each proposal distribution selected for the CMTM

algorithm. It is quite different from what can be obtained by the uniform sampling, which

is used for the random mixture of the component-wise Metropolis algorithm. By assigning

different selection probabilities than uniform, the CMTM algorithm controls the acceptance

rate, avoiding too high and too low acceptance rate, as shown in Table 5.4.

107

Table 5.4: Acceptance rate on selected proposals

(a) Mix. of component-wise Metropolis

σk,j

0.5 1 2 4 8

coord1 0.94 0.88 0.76 0.56 0.36

coord2 0.94 0.89 0.76 0.58 0.35

coord3 0.83 0.70 0.54 0.38 0.23

coord4 0.25 0.12 0.06 0.04 0.02

(b) CMTM

σk,j

0.5 1 2 4 8

coord1 0.41 0.49 0.55 0.53 0.47

coord2 0.40 0.49 0.55 0.53 0.45

coord3 0.48 0.47 0.50 0.50 0.47

coord4 0.27 0.27 0.27 0.31 0.29

Table 5.5: Performance comparison (averaged over 100 runs)

(a) Mix. of component-wise Metropolis

Min. Median Mean Max.

cputime(s) 14.92 19.08 19.98 29.94

sq. jump 1.443 1.555 1.553 1.650

coord1 coord2 coord3 coord4

ACT 1109.67 1105.99 39.93 68.74

(b) CMTM

Min. Median Mean Max.

cputime(s) 126.3 144.3 146.0 197.5

sq. jump 4.657 4.913 4.921 5.131

coord1 coord2 coord3 coord4

ACT 316.79 318.28 9.68 13.59

Table 5.3: CMTM. Proportion of proposal dis-
tribution selected

σk,j

0.5 1 2 4 8

coord1 0.02 0.07 0.22 0.37 0.32

coord2 0.02 0.07 0.21 0.36 0.34

coord3 0.13 0.20 0.23 0.25 0.19

coord4 0.56 0.24 0.12 0.06 0.03

Table 5.5 compares the performance of

two algorithms. We see that the aver-

age squared jumping distance significantly

improves with the CMTM compared to

the random mixture of the component-wise

Metropolis. We can also see that the ACT

is smaller for the CMTM than the random

mixture of the component-wise Metropolis.

Thus, we conclude that a selection probabil-

ity assignment by the CMTM algorithm through the wj(yj|x) function in (5.3) improves the

108

efficiency of the CMTM algorithm. One concern for the CMTM is the increased computa-

tion cost. We see in Table 5.5 the runtime for the CMTM is about 7 to 8 times longer than

the random mixture of the component-wise Metropolis. We will discuss the efficiency issue

further in Section 5.5.

5.3.3 The Adaptive CMTM

Given its propensity to choose the best candidate put forward by the proposal distributions,

it is reasonable to infer that CMTM’s performance will be roughly aligned with the most

suitable proposal for the region where the chain current state lies. The other side of the coin

is that a whole set of bad proposals will compromise the efficiency of the CMTM algorithm.

Therefore, we focus our efforts in developing an adaptive CMTM (AMCTM) design that aims

to minimize, possibly annihilate, the chance of having at our disposal only poorly calibrated

proposal distributions in any region of the space.

The adaptation strategy is centred on finding well-calibrated values for the set Sk =

{σk,j : 1 ≤ j ≤ m} for every coordinate 1 ≤ k ≤ d. Note that Sk varies across coordinates.

Consider an arbitrarily fixed coordinate and suppose we label the m proposal distribu-

tions such that σk,1 < σk,2 < . . . < σk,m. Changes in the kernel occur at fixed points in

the simulation process, called adaption points. The changes will occur only if an alarm is

triggered at an adaption point. An alarm is triggered only if we notice that the candidates

generated by the proposal distributions with the smallest scale σk,1 or the largest one σk,m

are over-selected. For instance, suppose that in an inter-adaptation time interval the can-

didates generated by σk,1 are selected more than 40% of the time. The latter threshold the

latter threshold is more than double the selection percentage for the least selected candidate

since, if we denote pj the frequency of selecting the candidate generated using σk,j we have∑
pj

= 1 ≥ mmin pj and m = 5 in our implementation. The high selection percentage for

109

σk,1 suggests that the chain tends to favour, when updating the kth coordinate, proposals

with smaller scale so the ACMTM design requires to: 1) half the value of σk,1; 2) not mod-

ify the largest element in Sk; 3) recalculate the intermediate values, σk,2, . . . , σk,m−1 to be

equidistant between σk,1 and σk,m on the log-scale.

Similarly, if the largest element in Sk, σk,m, produces proposals that are selected with

frequency higher than 40% we consider this indicative of the chain requiring larger scale

proposals for the kth coordinate and we replace σk,m by its double, we keep the smallest

value in Sk and the intermediate values are recalculated to be equidistant on log-scale.

If neither the smallest nor the largest elements in Sk produce proposals that are selected

more than 40% of the time, we wait until the algorithm reaches the next ‘adaption point’

and recalculate the proportion of each proposal candidate being selected during the last

inter-adaption time interval.

An adaptive algorithm must adapt less and less as the simulation proceeds, a condition

known as diminishing adaptation (DA) and long recognized to be essential for the chain’s

valid asymptotic behaviour (Roberts and Rosenthal 2007). However, the adaption strategy

proposed above may not diminish in the long run, so we ensure the DA condition is satisfied

by allowing a modification at the rth adaption point with probability pr ≤ 1 where

pr = max(0.99r−1,
1√
r

), r = 1, 2, 3, . . . (5.5)

We chose pr in (5.5) so that it is decreasing slowly and has high values at the beginning

of the run when most calibrations will take place. The form of (5.5) along with the Borel-

Cantelli lemma allows the adaption to keep occurring for as long as we run the chain since∑∞
r=1 pr =∞.

There are three minor technical details required in our adaptive CMTM algorithm to

ensure the convergence of the algorithm. Those details are to satisfy the conditions listed in

110

Rosenthal and Yang (2016), which extends the theory developed by Craiu et al. (2015). The

convergence of our adaptive CMTM algorithm is proved in Section 5.3.5.

1. Fix a (large) constant D > 0. We reject Yn+1 if |Yn+1 −Xn| > D. If |Yn+1 −Xn| < D,

we accept/reject Yn+1 by the usual rule for the CMTM algorithm described in Section

5.2.1.

2. Fix a (large) constant L > 0 and a (really small) constant ε > 0. Let σn,k,j be the σk,j

used at n-th iteration in our adaptive CMTM algorithm. If σn,k,j obtained from the

adaption is greater than L, set σn,k,j = L. If σn,k,j obtained from the adaption is less

ε, set σn,k,j = ε. (Of course the initial σn,k,j, σ0,k,j, should be ε ≤ σ0,k,j ≤ L.)

3. Define a non-empty bounded (large) subset K ⊂ X . If Xn 6∈ K, then Yn+1,k,j ∼

N(Xn,k, σ
∗2
k,j), where Yn,k and Xn,k is the kth coordinate of Yn and Xn respectively and

σ∗k,j is fixed with ε ≤ σ∗k,j ≤ L. If Xn ∈ K, then Yn+1,k,j ∼ N(Xn,k, σ
2
n,k,j).

5.3.4 To Adapt or Not To Adapt?

We compare the ACMTM algorithm with the CMTM algorithm without adaption to see

if the adaption indeed improves the efficiency of the algorithm. We use the 4-dimensional

mixture of two normal distributions from Section 5.2.2 as our target distribution. The σk,j’s

for the non-adaptive algorithm are given in Table 5.6a and they are the same with the

starting σk,j’s for the adaptive algorithm. We also provide in Table 5.6b the final versions of

the σk,j’s obtained after the last adaption in one random run of ACMTM. For this particular

run, the last adaption occurred right after 3600 iterations out of 40000 iterations in total.

The comparison is based on 100 independent replicates, each of which yields the average

squared jumping distance and the ACT.

Performance comparison is shown in Table 5.7.

111

Table 5.6: Ending σk,j’s

(a) Non-adaptive CMTM

coord1 coord2 coord3 coord4

prop1 16 16 16 1

prop2 32 32 32 2

prop3 64 64 64 4

prop4 128 128 128 8

prop5 256 256 256 16

(b) Adaptive CMTM

coord1 coord2 coord3 coord4

prop1 2.0000 2.0000 0.2500 0.0625

prop2 6.7272 6.7272 1.4142 0.2500

prop3 22.6274 22.6274 8.0000 1.0000

prop4 76.1093 76.1093 45.2548 4.0000

prop5 256.0000 256.0000 256.0000 16.0000

Table 5.7: Performance comparisons (averaged over 100 runs)

(a) Non-adaptive CMTM

Min. Median Mean Max.

cputime(s) 79.21 90.98 92.88 114.60

sq. jump 3.463 3.688 3.683 4.036

coord1 coord2 coord3 coord4

ACT 336.82 332.02 19.39 26.00

(b) Adaptive CMTM

Min. Median Mean Max.

cputime(s) 77.85 92.49 92.61 120.10

sq. jump 4.180 4.715 4.693 5.181

coord1 coord2 coord3 coord4

ACT 249.08 249.96 13.56 11.47

Table 5.8: Proportion of proposal distribution selected

(a) Non-adaptive CMTM

coord1 coord2 coord3 coord4

prop1 0.56 0.55 0.56 0.57

prop2 0.24 0.25 0.24 0.24

prop3 0.11 0.12 0.11 0.11

prop4 0.06 0.05 0.06 0.05

prop5 0.03 0.03 0.03 0.03

(b) Adaptive CMTM

coord1 coord2 coord3 coord4

prop1 0.33 0.33 0.17 0.31

prop2 0.46 0.45 0.44 0.50

prop3 0.16 0.16 0.32 0.14

prop4 0.05 0.05 0.06 0.04

prop 5 0.01 0.01 0.01 0.01

112

Table 5.9: Acceptance rate on selected proposals

(a) Non-adaptive CMTM

coord1 coord2 coord3 coord4

prop1 0.23 0.24 0.16 0.17

prop2 0.23 0.23 0.17 0.16

prop3 0.24 0.22 0.15 0.18

prop4 0.27 0.24 0.16 0.18

prop5 0.24 0.21 0.17 0.22

(b) Adaptive CMTM

coord1 coord2 coord3 coord4

prop1 0.49 0.47 0.43 0.45

prop2 0.41 0.41 0.44 0.42

prop3 0.37 0.39 0.41 0.38

prop4 0.34 0.40 0.35 0.37

prop5 0.33 0.34 0.39 0.46

We notice that ‘prop1’ was the most favoured proposal distribution for every coordinate

if there was no adaption (Table 5.8a) whereas with adaption it was ‘prop2’ selected most

often (Table 5.8b). The σk,j’s got smaller with adaption (Table 5.6), and the two smallest

σk,j’s obtained only after the multiple adaptions are the most favoured ones in the adaptive

run (Table 5.8b). In return, the acceptance rates in the adaptive algorithm increase to the

range of 0.36 to 0.50 compared to 0.15 to 0.27 in the non-adaptive algorithm, as shown in

Table 5.9. It is important to note that the increase in acceptance rates is coupled with an

increase in average square distance, as shown in Table 5.7. Altogether we can see from the

same Table that these result in important reductions for the ACT. The runtime between

the non-adaptive and the adaptive algorithm is pretty much the same as seen in Table 5.7.

Altogether, the results show that using an adaptive strategy made a significant difference.

5.3.5 Convergence of Adaptive CMTM

To confirm the convergence of the adaptive CMTM algorithm described in Section 5.3.3, we

verify the conditions listed in Theorem 2 of Rosenthal and Yang (2016). As explained in

Section 5.3.3, Diminishing Adaptation condition holds by the construction of the adaption

mechanism.

113

Theorem 10. Consider the adaptive CMTM algorithm in Section 5.3.3 to sample from state

space X that is an open subset of Rd for some d ∈ N. Let π be a target probability distri-

bution, which has a continuous positive density on X with respect to the Lebesgue measure.

Then, the adaptive CMTM algorithm converges to stationarity as in

lim
n→∞

sup
A∈F
|P(Xn ∈ A)− π(A)| = 0. (5.6)

Proof. To prove the convergence of the algorithm as in (5.6), we follow the Theorem 2 of

Rosenthal and Yang (2016).

Let m be the number of proposals at each iteration. Let Y be the collection of all

d × m matrices which elements are positive real numbers in [ε, L] which implies that Y is

compact. Let γ ∈ Y and Qγ be a set of d × m Markov chain proposal kernels with each

kernel Qk,j corresponding to the jth proposal kernel for kth coordinate. By the description

of the adaptive algorithm in Section 5.3.3, Qγ = Q∗ whenever Xn 6∈ K, where Q∗ is the set

of d ×m proposal kernels with each kernel Q∗k,j fixed throughout the simulation. Also, for

all Qk,j’s and Q∗k,j’s, the densities of them equals to zero whenever |Yn+1 −Xn| > D. Then

{Qγ}γ∈Y is the collection of all possible sets of proposal kernels to update all d coordinates

in the adaptive CMTM algorithm. Based on the adaption rule, choosing which set of Qγ’s

to be on at each iteration n is determined by the past and/or current information obtained

from the chain.

As long as the Metropolis-Hastings algorithm is reversible and π is everywhere positive

on X , the transitions being truncated at some fixed distance D does not affect the ergodicity

to π if the Metropolis-Hastings algorithm with the proposal kernels before truncated was

ergodic to π. (Rosenthal and Yang (2016)) Thus, a non-adaptive CMTM algorithm with

any Qγ, even though the proposal kernels are truncated, is ergodic to π (Casarin et al. (2013),

Liu et al. (2000)).

114

The condition (a), (b), (c), (d) and (e) from Rosenthal and Yang (2016) are verified as

follows:

• Condition (a), the bounded jump condition, is satisfied because we reject Yn+1 if |Yn+1−

Xn| > D > 0.

• Condition (b), no adaption outside of a non-empty bounded subset K ⊂ X , is satisfied

since, as described in Section 5.3.3, we generate Yn+1,k,j ∼ N(Xn,k, σ
∗2
k,j) with σ∗k,j ∈ Y

fixed whenever Xn 6∈ K.

• Also, we need to meet the condition (c) and (d) that the fixed proposal kernel Q∗k,j

is bounded above and below. Q∗k,j(x, dy) needs to be bounded above by MLeb(dy)

for some M > 0 for ∀x ∈ KD\K and ∀y ∈ K2D\K, where Ka is a set containing all

x ∈ X with η(x,K) ≤ a. (η is a metric defined on X , e.g. the Euclidean distance when

X ⊂ Rd.) Indeed, Q∗k,j(x, dy) ≥ MLeb(dy) everywhere since our transition kernel

Q∗k,j has a truncated normal density, satisfying condition (c) of Rosenthal and Yang

(2016). We also need Q∗k,j(x, dy) to be bounded below. More specifically, we need some

ε′, δ′ > 0 such that Q∗k,j(x, dy) ≥ ε′Leb(dy) whenever |y−x| < δ′ and x, y ∈ J , where J

is some bounded rectangle with K2D\KD ⊂ J ⊂ X . It is condition (d’) in Rosenthal

and Yang (2016), which implies condition (d) in our case since X is an open subset of

Rd. Because Q∗k,j is a normal distribution and π has a continuous positive density on

X satisfies condition (d’), we conclude that condition (d) is satisfied.

• Our proposal density functions satisfy condition (e) from Rosenthal and Yang (2016)

since they satisfy their conditions for combocontinuous (in particular, truncated) func-

tions.

Since the ACMTM algorithm satisfies the diminishing adaptation condition as explained

in Section 5.3.3, we can conclude that it satisfies all the conditions listed by Theorem 2 in

115

Rosenthal and Yang (2016) so the adaptive CMTM algorithm converges to π as in (5.6).

5.4 Applications

In the following examples we compare the CMTM and the AMCTM when started with the

same set of σk,j’s.

In a second comparison we also consider the CMTM and the CMH samplers in which

we use the σk,j’s identified by the ACMTM adaptive process in the following way: we run

one ACMTM sampler started at σk,j = 2j for 1 ≤ j ≤ m and 1 ≤ k ≤ d and we use the

final σk,j’s from the run to set up the CMTM and the m CMH samplers. If we assume

the labelling such that for each coordinate k we have σk,1 ≤ . . . ≤ σk,m then the jth CMH

sampler uses σk,j to generate moves in the kth coordinate, 1 ≤ k ≤ d. For the CMTM we

use all the σk,j’s identified by the adaptive process. Throughout this section we use m = 5.

For all the examples we use the effective sample size (ESS) to compare the efficiency of

MCMC algorithms. Since ESS = w/τ , where w is the number of samples obtained from a

Markov chain and τ is the ACT, one can see that ESS is tightly connected to the degree

of correlation of the samples. One may intuitively interpret ESS the number of iid samples

from the target that would contain the same amount of information about the target as the

MCMC sample. Only the second half of the chain’s run is used to calculate the ACT. We

average the ACT over 50 or 100 independent runs, and with that average we calculate ESS.

5.4.1 Variance Components Model

The Variance Components Model (VCM) is a typical hierarchical model, well-used in Bayesian

statistics community. Here, we use the data on batch to batch variation in dyestuff yields.

The data were introduced in Davies (1967) and later analyzed by Box and Tiao (1973). The

116

Bayesian set-up of the Variance Components Model on dyestuff yields is also well-described

in Roberts and Rosenthal (2004). The data records yields on dyestuff of 5 samples, from

each of 6 randomly chosen batches. The data is shown in Table 5.10.

Table 5.10: Dyestuff Batch Yield (in grams)

Batch 1 1545 1440 1440 1520 1580

Batch 2 1540 1555 1490 1560 1495

Batch 3 1595 1550 1605 1510 1560

Batch 4 1445 1440 1595 1465 1545

Batch 5 1595 1630 1515 1635 1625

Batch 6 1520 1455 1450 1480 1445

Let yij be the yield on the dyestuff batch, with i indicating which batch it is from and

j indexing each individual sample from the batch. The Bayesian model is then constructed

as:

yij|θi, σ2
e ∼ N(θi, σ

2
e), i = 1, 2, ..., K, j = 1, 2, ..., J

where θi|µ, σ2
θ ∼ N(µ, σ2

θ). θi’s are conditionally independent of each other given µ, σ2
θ . The

priors for the σ2
θ , σ

2
e and µ are: σ2

θ ∼ IG(a1, b1), σ2
e ∼ IG(a2, b2) and µ ∼ N(µ0, σ

2
0). Thus,

the posterior density function of this VCM model is

f(σ2
θ , σ

2
e , µ, θi|yij, a1, a2, b1, b2, σ

2
0) ∝

(σ2
θ)
−(a1+1)e−b1/σ

2
θ (σ2

e)
−(a2+1)e−b2/σ

2
ee−(µ−µ0)2/2σ2

0

K∏
i=1

e(θi−µ)2/2σ2
θ

σθ

K∏
i=1

J∏
j=1

e(yij−θi)2/2σ2
e

σe

We set the hyperparameters a1 = a2 = 300 and b1 = b2 = 1000, making inverse gamma

priors very concentrated. We also set σ2
0 = 1010.

117

Figure 5.5 shows ESS of the CMTM algorithms with and without adaption. For both

CMTM algorithms (with and without adaption), the starting σk,j’s are 0.1, 0.2, 0.4, 0.8 and

1.6 for every coordinate.

Figure 5.5: Adaptive CMTM vs. non-adaptive CMTM. Variance components model. The
red represents the adptive CMTM runs and the blue represents the non-adaptive CMTM
runs. ESS is calculated after averaging ACT over 50 independently replicated runs.

Note that ACMTM yields ESS’s that are considerably larger than the corresponding

values for CMTM.

Next, we want to compare the standard (non-adaptive) CMTM algorithm with the stan-

dard CMH.

The σk,j’s used to set up the CMH and CMTM samplers can be found in Table 5.11.

With this proposal scales, we run the standard CMTM and the standard component-wise

Metropolis and compare the ESS from these two algorithms, averaged over 100 runs.

118

Table 5.11: σk,j’s used in comparing the standard CMTM and the standard component-wise
Metropolis. Variance components model

coord1 coord2 coord3 coord4 coord5 coord6 coord7 coord8 coord9

prop1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

prop2 3.36 4.76 2.83 2.38 3.36 3.36 3.36 3.36 3.36

prop3 11.31 22.63 8.00 5.66 11.31 11.31 11.31 11.31 11.31

prop4 38.05 107.63 22.63 13.45 38.05 38.05 38.05 38.05 38.05

prop5 128.00 512.00 64.00 32.00 128.00 128.00 128.00 128.00 128.00

Figure 5.6: Standard (non-adaptive) CMTM vs. standard component-wise Metropolis. Vari-
ance components model. The red represents the CMTM runs and the blue represents the
component-wise Metropolis runs. ESS is calculated after averaging ACT over 100 replicative
runs.

Figure 5.6 shows that if we ignore the CPUtime loss for the CMTM algorithm compared

to the component-wise Metropolis algorithm, the CMTM algorithm is the most efficient one

based on ESS. However, when we divide ESS by CPUtime to account for the computation

time, the CMTM becomes the third best algorithm compared with the 5 different component-

wise Metropolis algorithms. We will discuss about this efficiency issue further in Section 5.5.

119

5.4.2 “Banana-shaped” Distribution

The “Banana-shaped” distribution was originally presented in Haario et al. (1999) as an

irregularly-shaped target that may call for different proposal distributions for the different

parts of the state space.

The target density function of the “banana-shaped” distribution is constructed as fB =

f◦φB, where f is the density of d−dimensional multivariate normal distributionN(0, diag(100, 1, 1, . . . , 1))

and φB(x) = (x1, x2 +Bx2
1− 100B, x3, . . . , xd). B > 0 is the nonlinearity parameter and the

non-linearity or “bananacity” of the target distribution increases with B. The target density

function is

fB(x1, x2, . . . , xd) ∝ exp[−x2
1/200− 1

2
(x2 +Bx2

1 − 100B)2 − 1

2
(x2

3 + x2
4 + . . .+ x2

d)].

We set B = 0.01 and d = 10 and set the starting σk,j’s equal to 0.1, 0.2, 0.4, 0.8 and 1.6

for every coordinate. The results are shown in Figure 5.7. You see that the ESS is larger in

every coordinate for the adaptive CMTM algorithm compared to the non-adaptive CMTM

algorithm, confirming that the adaption improved the efficiency in this example.

120

Figure 5.7: Adaptive CMTM vs. non-adaptive CMTM. “Banana-shaped” distribution. The
red represents the adptive CMTM runs and the blue represents the non-adaptive CMTM
runs. ESS is calculated after averaging ACT over 50 replicative runs.

In the second comparison we notice that in 45 out of 50 independently replicated runs,

the starting σk,j’s did not change under the adaptive CMTM algorithm. Therefore, we take

1,2,4,8,16 for every coordinate as our default σk,j’s for the standard CMTM algorithm we run

here. And for the standard CMH algorithms, we run with five different sets of proposal stan-

dard deviation, (1, 1, · · · , 1), (2, 2, · · · , 2), (4, 4, · · · , 4), (8, 8, · · · , 8), and (16, 16, · · · , 16),

with one set at a time. As we see in Figure 5.8, ESS is larger in every coordinate for the

CMTM compared to the component-wise Metropolis if CPUtime is ignored. If we look at

ESS/CPUtime, the CMTM is in the middle of the pack in terms of efficiency.

121

Figure 5.8: Standard (non-adaptive) CMTM vs. standard component-wise Metropolis.
“Banana-shaped” distribution. The red represents the CMTM runs and the blue repre-
sents the component-wise Metropolis runs. ESS is calculated after averaging ACT over 50
replicative runs.

5.4.3 Orange Tree Growth Data

The orange tree growth data was first presented by Draper and Smith (1981) and was further

analyzed by Lindstrom and Bates (1990). Here, we follow the Bayesian model set-up specified

in Craiu and Lemieux (2007). The data consists of the measures of trunk circumferences

of five different orange trees on seven different time points. You can find the data in Table

5.12.

122

Table 5.12: Growth of Orange Trees

Age (days)
Circumference (mm)

Tree1 Tree2 Tree3 Tree4 Tree5

118 30 33 30 32 30

484 58 69 51 62 49

664 87 111 75 112 81

1004 115 156 108 167 125

1231 120 172 115 179 142

1372 142 203 139 209 174

1582 145 203 140 214 177

Let yij be the trunk circumference measure, where i = 1, . . . , 5 indexes for the five

different trees and j = 1, . . . , 7 indexes for the seven different time points. The logistic

growth model has yij ∼ N(µij, σ
2
c) where

µij =
exp(θi1)

1 + (exp(θi2)− 1)exp(−exp(θi3)xj)

with xj being the time point. The priors for the σ2
c and the θik, k = 1, 2, 3, are: σ2

c ∼

IG(0.001, 0.001) and θik ∼ N(0, 100). Note that θik’s are independent of each other and yij

are conditionally independent of each other given µij and σ2
c . Thus, the posterior density of

interest is

f(θik, σ
2
c |yij, xj) ∝ (σ2

c)
−(0.001+1)e−0.001/σ2

c

5∏
i=1

3∏
k=1

e(θik)2/200

10

×
5∏
i=1

7∏
j=1

e
(yij−

exp(θi1)

1+(exp(θi2)−1)exp(−exp(θi3)xj)
)2/2σ2

c

σc
.

First, we compare the adaptive CMTM with the non-adaptive CMTM. The starting σk,j’s

here for the both algorithms are 1, 2, 4, 8, and 16 for every coordinate and the results, shown

123

in Figure 5.9, confirm that the ESS is larger in every coordinate for the adaptive CMTM

algorithm.

Figure 5.9: Adaptive CMTM vs. non-adaptive CMTM. Orange tree growth data. The red
represents the adptive CMTM runs and the blue represents the non-adaptive CMTM runs.
ESS is calculated after averaging ACT over 50 replicative runs.

When comparing the CMTM with the CMH the proposal scales used can be found in

Table 5.13

124

Table 5.13: σk,j’s used in comparing the standard CMTM and the standard component-wise
Metropolis. Orange tree growth data

coord1 coord2 coord3 coord4 coord5 coord6 coord7 coord8

prop1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

prop2 2.38 2.83 2.83 2.38 2.83 2.38 2.38 2.83

prop3 5.66 8.00 8.00 5.66 8.00 5.66 5.66 8.00

prop4 13.45 22.63 22.63 13.45 22.63 13.45 13.45 22.63

prop5 32.00 64.00 64.00 32.00 64.00 32.00 32.00 64.00

coord9 coord10 coord11 coord12 coord13 coord14 coord15 coord16

prop1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

prop2 2.38 2.38 2.83 2.38 2.38 2.83 2.38 22.63

prop3 5.66 5.66 8.00 5.66 5.66 8.00 5.66 512.00

prop4 13.45 13.45 22.63 13.45 13.45 22.63 13.45 11585.24

prop5 32.00 32.00 64.00 32.00 32.00 64.00 32.00 262144.00

The results for the runs are shown in Figure 5.10. Again, ESS is larger in every coordi-

nate for the CMTM algorithm compared to the component-wise Metropolis algorithm, but

ESS/CPUtime is only the fourth largest for the CMTM algorithm.

125

Figure 5.10: Standard (non-adaptive) CMTM vs. standard component-wise Metropolis.
Orange tree growth data. The red represents the CMTM runs and the blue represents the
component-wise Metropolis runs. ESS is calculated after averaging ACT over 100 replicative
runs

5.5 Comparsion of Adaptive Algorithms

The CMTM algorithm has a higher computational cost compared to the standard component-

wise Metropolis algorithm. For the same number of iterations, CMTM takes longer CPU

time as it has to evaluate 2m − 1 points under the target distribution at each iteration

compared to 1 for the simple Metropolis algorithm. (m is the number of proposals for each

iteration.) On the other hand, CMTM does improve efficiency per iteration as implied by the

increase in ESS in Table 5.6, Table 5.8, and Table 5.10. In Section 5.4, the magnitude of ESS

difference between the CMTM and the standard component-wise Metropolis, or equivalently

the magnitude of efficiency gain, was dependent on the proposal variances of the standard

component-wise Metropolis. Moreover, finding the best or close to the best proposal scales

for the component-wise Metropolis is not always easy. If we fail to find a ‘good’ scale for the

component-wise Metropolis or even the full-dimensional Metropolis these samplers will do a

126

lot worse than the CMTM algorithm, even after accounting for the additional computation

cost with the CMTM. In a practical application one cannot know which one of the CMH’s

designed along the lines used in the previous section is better than the ACMTM until all

the CMH’s have been run and compared. Even then there is no guarantee that the most

efficient CMH will be surpass the ACMTM. In our applications we can see that the ACMTM

represents a solid bet in terms of efficiency even after accounting for CPU time.

Researchers have tried several adaptive Metropolis algorithms to find a ‘good’ scale for

the Metropolis algorithm. We compare a few known adaptive Metropolis algorithms with

the ACMTM algorithm.

The adaptive Metropolis algorithm we examine are: Adaptive Metropolis-within-Gibbs

(AMwG) algorithm from Roberts and Rosenthal (2009), Single Component Adaptive Metropo-

lis (SCAM) algorithm from Haario et al. (2005), and Adaptive Metropolis (AM) algorithm

from Haario et al. (2001). The AMwG algorithm uses the finding that the optimal accep-

tance rate for one-dimensional Metropolis algorithm is 0.44 (Gelman et al. (1996), Roberts

and Rosenthal (2001)) and adjusts the proposal variance to get the acceptance rate close to

0.44 for each coordinate. The SCAM algorithm finds the empirical variance for each coor-

dinate from the entire history of the Markov chain and tunes the proposal variance for each

coordinate based on this. The AM algorithm also looks at the entire history of the chain

and tunes the proposal’s full-dimensional covariance matrix using the empirical covariance

matrix calculated from the samples collected up to that iteration.

We look at the three examples from Section 5.4 and compare how these adaptive algo-

rithms fare against the ACMTM algorithm. For the latter the default σk,j’s are 0.1, 0.2, 0.4,

0.8 and 1.6 for every coordinate.

For the AMwG algorithm, the default σj is 1 for each coordinate, and it gets adjusted

upward if the acceptance rate is higher than 0.44 based on the recent “batch” of 100 iterations

127

and adjusted downward if the acceptance rate is lower than 0.44. The σj is adjusted by adding

or subtracting min(0.05,
√

(h)) in log scale based on the h-th “batch” of 100 iterations. One

can see how this strategy may not be ideal when the chain alternates between regions in

which the proposal must have different scales.

For the SCAM algorithm, the default σj for each coordinate is 1, and the chain runs

for 10d iterations (10 updates per coordinate) with the default σj’s. After 10d iterations,

the proposal variance is tuned based on the empirical variance for each coordinate from the

entire history of the chain, multiplied by the scaling parameter 2.382 given by Gelman et al.

(1996).

For the AM, the default Σ is an identity matrix, and after 100 iterations with default

Σ, the algorithm starts to tune the proposal covariance matrix by multiplying the empirical

covariance matrix with the choice of scaling parameter 2.382/d (d is the dimension of the

Markov chain.) given by Gelman et al. (1996). The results of the comparison of these four

adaptive algorithms are shown in Figure 5.11 and Figure 5.12.

128

(a) Variance components model

(b) “Banana-shaped” distribution

(c) Orange tree growth data

Figure 5.11: Comparison of ESS for different adaptive schemes. The red represents the
ACMTM algorithm; the purple represents the AMwG algorithm; the green represents the
SCAM algorithm; and the orange represents the AM algorithm. In each row, the right panel
is a close up that identifies features that cannot be clearly seen in the left panel. ESS is
calculated after averaging ACT over 50 independently replicated runs.

129

(a) Variance components model

(b) “Banana-shaped” distribution

(c) Orange tree growth data

Figure 5.12: Comparison of ESS/CPUtime for different adaptive schemes. The red represents
the ACMTM algorithm; the purple represents the AMwG algorithm; the green represents
the SCAM algorithm; and the orange represents the AM algorithm. In each row, the right
panel is a close up that identifies features that cannot be clearly seen in the left panel. ESS
is calculated after averaging ACT over 50 independently replicated runs.

130

Comparison between samplers is achieved by comparing the worst coordinate-wise ESS

and ESS/CPUtime. To be precise, we compare the

min
1≤k≤d

ESSk

and

min
1≤k≤d

ESSk
CPUtime

for each algorithm. We see in Figure 5.11 that if we disregard the additional computational

cost for the CMTM, adaptive CMTM is the best choice out of 4 adaptive algorithms in every

examples we run. To account for the computational cost, we calculate the ESS/CPUtime,

and the results are shown in Figure 5.12. Adaptive CMTM is not the best algorithm based

on this measure for each individual example. But, if we look at all three examples together,

it is hard to say which one is the best algorithm out of all. The SCAM algorithm is the

best one for the Orange tree growth data, but it is close to the worst one for the Variance

Components Model. The Adaptive Metropolis-within-Gibbs algorithm is the best algorithm

for the Variance Components Model, but it clearly did a lot worse than the CMTM algorithm

for the Orange tree growth data. The Adaptive Metropolis did worse than the CMTM

algorithm in two our of three examples. Once again, while not uniformly dominating, the

ACMTM seems to perform robustly in all examples thus minimizing the risk of using an

inefficient sampler in a given example.

5.6 Conclusion and Discussion

It is known that adaptive algorithms can be highly influenced by initial values given to

their simulation parameters and by the quality of the chain during initialization period, i.e.

131

the period during which no modifications of the transition kernel take place. ACMTM is no

exception, but there certain of its features can be thought of as means towards a more robust

behaviour. For instance, the fact that we can start with multiple proposals makes it less likely

that all five will be poor choices for a given coordinate. The motivation for ACMTM was

given by situations in which the sampler requires very different proposals across coordinates

and across regions of the state space. In such situations, traditional adaptive samplers are

known to fail unless special modifications are implemented (Craiu et al. 2009; Bai et al.

2011a), but even these tend to underperform when d is high.

The adaption mechanism is very rapid as, once an alarm is triggered, the scales can

change in multiple of 2’s. The adaption mechanism is also stable since modifications to the

kernel occur only if over selection from one of the boundary scale proposals is detected. Thus,

if proposal scales are not perfect but good enough, they wouldn’t be changing under this

adaptive design since it is hard to keep choosing one proposal distribution out of multiple

proposal distributions if each of them is useful in a big enough region of the state space.

In other words, once the adaption reaches a good level, the proposal distributions would be

stable and would not be constantly changing.

A general recommendation has been made by Craiu et al. (2009) to run, at least for a

while, a number of adaptive samplers in parallel in order to insulate against a poor explo-

ration of the state space during the initialization period. This idea can be extended easily

to the ACMTM, especially in this age in which parallel processing is the norm rather than

the exception. The increase in CPU time is the price we pay for the added flexibility of

having multiple proposals and the ability to dynamically choose the ones that fit the region

of the space so that acceptance rate and mixing rates are improved. And while this tend

to attenuate the ACMTM’s efficiency dominance, one cannot find among the algorithms

we used for comparison in this chapter one that is performing better on average even after

132

taking CPU time into account. This makes ACMTM a safe choice for multivariate MCMC

sampling.

Finally, it is the authors belief that AMCMC samplers will be more used in practice if

their motivation is intuitive and their implementation is easy enough. We believe that the

ACMTM fulfills these basic criteria and further modifications can be easily implemented

once new needs are identified.

Acknowledgement

Funding support for this work was provided by individual grants to RC and JSR from the

Natural Sciences and Engineering Research Council of Canada.

133

Chapter 6

Conclusion

In this thesis, we examined adaptive MCMC methods and made some contributions by de-

veloping adaptive diagnostics and an adaptive algorithm and further generalizing conditions

to ensure the convergence of a broad range of adaptive algorithms.

First, we introduced adaptive diagnostics to find out if the chain has been adapted enough

so the further adaption does not much more bring efficiency gain for the algorithm. With

this diagnostics, we developed a general-purpose MCMC algorithm which automatically

tunes its proposal distribution. This algorithm takes on the finite adaption method, so

we avoided proving the convergence of infinitely-adapting algorithm. Also, we expanded

our algorithm so it can more effectively handle ‘strongly multimodal’ target distributions,

which impose a risk for the chain to be stuck at one mode for a long period of time hurting

efficiency. We have applied our algorithm to several MCMC examples. By comparing with

the random walk Metropolis algorithm with proposal distributions not ‘tuned’ or in other

words not suitable for the particular target distributions, we showed that our algorithm

managed quicker convergence.

We also contributed to generalize the conditions developed to ensure convergence of an

adaptive MCMC algorithm. Craiu et al. (2015) suggested several conditions that guarantees

134

the convergence of an adaptive MCMC algorithm. One of the conditions is the continuity

of the target density function. We extended on this and proved that an adaptive MCMC

algorithm with a ‘combocontinuous’ target density function still converges to its target dis-

tribution if it satisfies other conditions imposed by Craiu et al. (2015). The concept ‘com-

bocontinuity’ is defined in Chapter 4.

Lastly, we developed an adaptive scheme for the component-wise multiple-try Metropolis

(CMTM) algorithm. We first showed that CMTM selects a proposal distribution out of

multiple proposal distributions based on the local shape of the target distribution around the

current state. This characteristic gives the CMTM an edge when encountering an irregularly-

shaped target distribution. However, if multiple proposal distributions given for the CMTM

are all bad ones for a particular target distribution, having a choice does not improve the

efficiency much. Thus, our adaptive component-wise multiple-try Metropolis (ACMTM)

algorithm adapts the set of proposal distributions given, based on the observation that the

worse probability distributions have lower chance of getting selected in the CMTM setting.

We then of course proved the convergence of ACMTM algorithm. We compared the ACMTM

with other adaptive algorithms (introduced in Chapter 2) on several MCMC examples and

showed that our algorithm displayed more robust performance than the adaptive algorithms

compared.

This thesis collects the contributions we have made to the advance of the MCMC methods.

There are still a lot more adaptive algorithms to be examined and developed, which can

possibly improve efficiency more than what we have done. Also, the conditions developed to

ensure the convergence of an adaptive MCMC algorithm can possibly be more generalized

and simplified. Beside adaptive methods, other MCMC problems still wait for improved

solutions (e.g. convergence diagnostics, multimodal targets). We hope future researches

further advances the field of MCMC, so the MCMC method can be more generally and

135

easily applied in practice, aiding statistical modelings of real-world problems.

136

Bibliography

Andrieu, C. and Atchadé, Y. F. (2007). On the efficiency of adaptive MCMC algorithms.

Electronic Communications in Probability, 12(33):336–349.

Andrieu, C. and Moulines, E. (2006). On the ergodicity properties of some adaptive Markov

Chain Monte Carlo algorithms. The Annals of Applied Probability, 16(3):1462–1505.

Andrieu, C. and Thoms, J. (2008). A tutorial on adaptive MCMC. Statist. Comput., 18:343–

373.

Atchadé, Y. F. and Rosenthal., J. S. (2005). On adaptive Markov Chain Monte Carlo

algorithms. Bernoulli, 11(5):815–828.

Bai, Y., Craiu, R. V., and Di Narzo, A. (2011a). Divide and C onquer: A mixture-based

approach to regional adaptation for MCMC. J. Comput. Graph. Statist., 20(1):63–79.

Bai, Y., Roberts, G. O., and Rosenthal, J. S. (2011b). On the containment condition for

adaptive Markov chain Monte Carlo algorithms. Advances and Applications in Statistics,

21(1):1–54.

Box, G. E. P. and Tiao, G. C. (1973). Bayesian inference in statistical analysis. Addison-

Wesely, Reading, MA.

137

Brooks, S., Gelman, A., Jones, G. L., and Meng, X., editors (2011). Handbook of Markov

Chain Monte Carlo. Taylor & Francis.

Brooks, S. P. and Gelman, A. (1998). General methods for monitoring convergence of

iterative simulations. Journal of computational and graphical statistics, 7(4):434–455.

Casarin, R., Craiu, R. V., and Leisen, F. (2013). Interacting multiple try algorithms with

different proposal distributions. Statistics and Computing, 23(2):185–200.

Craiu, R. V., Gray, L., Latuszynski, K., Madras, N., Roberts, G. O., and Rosenthal, J. S.

(2015). Stability of adversarial markov chains, with an application to adaptive mcmc

algorithms. Annals of Applied Probability, 25(6):3592–3623.

Craiu, R. V. and Lemieux, C. (2007). Acceleration of the multiple-try metropolis algorithm

using antithetic and stratified sampling. Statistics and Computing, 17(2):109–120.

Craiu, R. V., Rosenthal, J. S., and Yang, C. (2009). Learn from thy neighbor: Parallel-chain

adaptive and regional MCMC. J. Amer. Statist. Assoc., 104(488):1454–1466.

Davies, O. L. (1967). Statistical methods in research and production. Oliver & Boyd, Edin-

burgh and London.

Draper, N. and Smith, H. (1981). Applied regression analysis. John Wiley, New York.

Fort, G., Moulines, E., and Priouret, P. (2011). Convergence of adaptive and interacting

Markov chain Monte Carlo algorithms. The Annals of Statistics, 39(6):3262–3289.

Gaver, D. P. and O’Muircheartaigh, I. G. (1987). Robust empirical Bayes analyses of event

rates. Technometrics, 29(1):1–15.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating

marginal densities. Journal of the American statistical association, 85(410):398–409.

138

Gelman, A., Roberts, G. O., and Gilks, W. R. (1996). Efficient Metropolis jumping rules. In

et al., J. M. B., editor, Bayesian Statistics, volume 5, pages 599–607. Oxford University

Press.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple

sequences. Statistical science, 7(4):457–472.

George, E. I., Makov, U. E., and Smith, A. F. M. (1993). Conjugate likelihood distributions.

Scandinavian Journal of Statistics, 20(2):147–156.

Geyer, C. J. and Johnson, L. T. (2014). MCMC: Markov Chain Monte Carlo. R package

version 0.9-3. http://CRAN.R-project.org/package=mcmc.

Giordani, P. and Kohn, R. (2010). Adaptive independent Metropolis–Hastings by fast estima-

tion of mixtures of normals. Journal of Computational and Graphical Statistics, 19(2):243–

259.

Haario, H., Laine, M., Mira, A., and Saksman, E. (2006). DRAM: efficient adaptive MCMC.

Statistics and Computing, 16(4):339–354.

Haario, H., Saksman, E., and Tamminen, J. (1999). Adaptive proposal distribution for

random walk metropolis algorithm. Computational Statistics, 14(3):375–396.

Haario, H., Saksman, E., and Tamminen, J. (2001). An adaptive Metropolis algorithm.

Bernoulli, 7(2):223–242.

Haario, H., Saksman, E., and Tamminen, J. (2005). Componentwise adaptation for high

dimensional MCMC. Computational Statistics, 20(2):265–273.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their

applications. Biometrika, 57(1):97–109.

139

Lindstrom, M. J. and Bates, D. M. (1990). Nonlinear mixed effects models for repeated

measures data. Biometrics, 46:673–687.

Liu, J. S., Liang, F., and Wong, W. H. (2000). The multiple-try method and local optimiza-

tion in metropolis sampling. Journal of the American Statistical Association, 95(449):121–

134.

Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N. (2009). The BUGS project: Evolution,

critique, and future directions. Statistics in Medicine, 28(25):3049–3067. http://www.

openbugs.net.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).

Equation of state calculations by fast computing machines. The journal of chemical

physics, 21(6):1087–1092.

Neal, P. J., Roberts, G. O., and Yuen, W. K. (2012). Optimal scaling of random walk

Metropolis algorithms with discontinuous target densities. The Annals of Applied Proba-

bility, 22(5):1880–1927.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

Roberts, G. O., Gelman, A., and Gilks, W. R. (1997). Weak convergence and optimal scaling

of random walk Metropolis algorithms. The annals of applied probability, 7(1):110–120.

Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various Metropolis-Hastings

algorithms. Statistical science, 16(4):351–367.

Roberts, G. O. and Rosenthal, J. S. (2004). General state space Markov chains and MCMC

algorithms. Probability Surveys, 1:20–71.

140

Roberts, G. O. and Rosenthal, J. S. (2006). Harris recurrence of Metropolis-within-Gibbs and

trans-dimensional Markov chains. The Annals of Applied Probability, pages 2123–2139.

Roberts, G. O. and Rosenthal, J. S. (2007). Coupling and ergodicity of adaptive Markov

chain Monte Carlo algorithms. Journal of Applied Probability, 44(2):458–475.

Roberts, G. O. and Rosenthal, J. S. (2008). Variance bounding Markov chains. The Annals

of Applied Probability, pages 1201–1214.

Roberts, G. O. and Rosenthal, J. S. (2009). Examples of adaptive MCMC. Journal of

Computational and Graphical Statistics, 18(2):349–367.

Rosenthal, J. S. (2004). Adaptive MCMC Java applet. http://probability.ca/jeff/

java/adapt.html.

Rosenthal, J. S. (2007a). AMCMC: An R interface for adaptive MCMC. Computational

Statistics & Data Analysis, 51(12):5467–5470.

Rosenthal, J. S. (2007b). The AMCMC package. http://probability.ca/amcmc.

Rosenthal, J. S. (2011). Optimal proposal distributions and adaptive MCMC. In Brooks,

S., Gelman, A., Jones, G. L., and Meng, X., editors, Handbook of Markov Chain Monte

Carlo, pages 93–112. Taylor & Francis.

Rosenthal, J. S. and Yang, J. (2016). Ergodicity of discontinuous adaptive MCMC algo-

rithms. Submitted for publication. Available at http://probability.ca/jeff/ftpdir/

dini.pdf.

Rudin, W. (1976). Principles of mathematical analysis. McGraw-Hill New York, 3rd edition.

141

Scheidegger, A. (2012). adaptMCMC: Implementation of a generic adaptive Monte Carlo

Markov Chain sampler. R package version 1.1. http://CRAN.R-project.org/package=

adaptMCMC.

Soetaert, K. and Petzoldt, T. (2010). Inverse modelling, sensitivity and Monte Carlo analysis

in R using package FME. Journal of Statistical Software, 33(3):1–28.

Soetaert, K. and Petzoldt, T. (2014). FME: A Flexible Modelling Environment for Inverse

Modelling, Sensitivity, Identifiability, Monte Carlo Analysis. R package version 1.3.1.

http://CRAN.R-project.org/package=FME.

Tierney, L. (1994). Markov chains for exploring posterior distributions. the Annals of

Statistics, pages 1701–1728.

Turro, E., Bochkina, N., Hein, A. M. K., and Richardson, S. (2007). BGX: a Bioconductor

package for the Bayesian integrated analysis of Affymetrix GeneChips. BMC bioinformat-

ics, 8(1):439–448.

Vihola, M. (2010a). Grapham: graphical models with adaptive random walk Metropolis

algorithms. Computational Statistics and Data Analysis, 54(1):49–54.

Vihola, M. (2010b). The Grapham package. http://www.stats.ox.ac.uk/~mvihola/

grapham/.

Vihola, M. (2012). Robust adaptive Metropolis algorithm with coerced acceptance rate.

Statistics and Computing, 22(5):997–1008.

Yang, J. (2014). atmcmc: Automatically Tuned Markov Chain Monte Carlo. R package

version 1.0. http://CRAN.R-project.org/package=atmcmc.

142

Yang, J., Craiu, R. V., and Rosenthal, J. S. (2016). Adaptive component-wise multiple-try

metropolis sampling. Submitted for publication. Available at http://arxiv.org/pdf/

1603.03510.pdf.

Yang, J. and Rosenthal, J. S. (2016). Automatically tuned general-purpose MCMC via new

adaptive diagnostics. Submitted for publication. Available at http://probability.ca/

jeff/ftpdir/jinyoung1.pdf.

143

