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Abstract. The Likelihood Inflating Sampling Algorithm (LISA) (Entezari et al.,
2016) is a new communication-free parallel method for posterior sampling of big
datasets. In a divide and conquer strategy, LISA partitions the dataset into dif-
ferent “batches” and runs Markov Chain Monte Carlo (MCMC) methods on each
batch of data independently using different processors. The results from all pro-
cessors are then combined. In this discussion paper, we examine the performance
of LISA when applied to the Bayesian Regression Trees model with tree proposals
introduced by Pratola (2016). Our results show that LISA yields empirical distri-
bution functions which are indistinguishable from those from Pratola’s algorithm,
even though it first divides the data into K batches and can thus be used with
datasets which are too large to fit into a single machine’s memory.
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1 Introduction

We congratulate Matthew Pratola (henceforth, MP) for his innovative algorithm designed for Bayesian
Regression Tree (BART) models. The latter are often used to analyze large datasets and this can pose
seriously challenges as the run time for BART can be prohibitively slow. We discuss the use of MP’s
novel algorithm together with a parallel and communication-free method, the likelihood inflating sam-
pling algorithm (LISA) that we have recently proposed (Entezari et al., 2016) to sample from posterior
distributions arising from datasets which are too large to fit into a single machine’s memory.

2 Divide and Conquer Analysis via BART and LISA

In order to apply LISA, the data is divided into K batches and for each batch j we compute the partial
posterior πj(θ|~x(j)) ∝ p(θ)[L(θ|~x(j))]K where p(θ) is the model’s prior and L(θ|~x(j)) is the likelihood for
the data in the jth batch. Samples obtained from each partial posterior are combined to perform inference
about π(θ), the full data posterior.

Previously, Entezari et al. (2016) applied LISA to BART using the methods proposed in Chipman
et al. (2010, 1998), and Kapelner and Bleich (2013), and concluded that by taking a weighted average
of batch-draws that were generated with a minor modification to LISA (modLISA), one can produce
indistinguishable posterior distributions from the full posterior distribution of BART.

In this discussion paper, we will apply modLISA to BART using the tree proposals presented by
Pratola (2016) to examine consistency in results and time savings.

We consider the Friedman’s test function (Friedman, 1991):

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5,

and simulate 20,000 observations y ∼ N(f(x), σ2) where σ = 0.1, and x = (x1, . . . , x10) are uniformly
drawn from (0, 1). The sample size is chosen so that we can still run MP’s algorithm to sample the

∗Department of Statistical Sciences, University of Toronto
†entezari@utstat.toronto.edu
‡craiu@utstat.toronto.edu, url: http://www.utstat.toronto.edu/craiu/
§jeff@math.toronto.edu, url: http://probability.ca/jeff/

c© 2016 International Society for Bayesian Analysis DOI: 0000

imsart-ba ver. 2014/10/16 file: LISA_Discussion_b.tex date: June 29, 2016

http://bayesian.org
mailto:entezari@utstat.toronto.edu
mailto:craiu@utstat.toronto.edu
http://www.utstat.toronto.edu/craiu/
mailto:jeff@math.toronto.edu
http://probability.ca/jeff/
http://dx.doi.org/0000


2

full-data posterior in reasonable time. We have used the implementation of BART by Pratola (2016) to
apply modLISA to this dataset with K = 30 batches.

Table 1 is comparing the results of 1000 posterior samples generated from modLISA after 1000 burn-in
iterations, to the SingleMachine which ran MP’s algorithm on the full dataset on one single machine.
Note that we also simulated an additional 5000 observations as test data to fully compare the methods.
Table 1 contains root mean squared error (RMSE) of f(x) for both train and test data as well as the
mean σ estimate. Both methods were performed with 30% rotate proposals without any adaptation.
As seen in Table 1 the parallel algorithm produces results that are very similar to the ones produced
by SingleMachine. This is in line with the findings in Entezari et al. (2016). Table 2 shows, for each
algorithm, the empirical test data coverage of the 90% credible interval for f(x), average tree depth,
total run time and the inverse product of Test RMSE and running time which can be thought of as a
measure of computational efficiency. Interestingly, modLISA has higher coverage and lower average tree
depth than SingleMachine. Total run time is more than 10 times faster for modLISA.

Table 1: Results of training data RMSE, test data RMSE and mean post burn-in σ̂ from each method
with 30% rotate proposals. There are K = 30 batches in total.

Method Train RMSE Test RMSE Mean σ̂

modLISA 0.137 0.147 0.176
SingleMachine 0.075 0.087 0.123

Table 2: Computational efficiency comparison between modLISA and SingleMachine

Method Test Coverage Avg tree depth Total Run Time (secs) 1/(Test RMSE × Time)

modLISA 70.8 % 1.01 121.6 0.056
SingleMachine 63.7 % 2.07 1585.5 0.007

Figure 1 compares the empirical distribution functions of f̂(x) in modLISA to SingleMachine for
two different observations in the test data. As it is seen, the two empirical distribution functions are
indistinguishable. Overall, modLISA for BART with the new tree proposals introduced by MP, performs
well in terms of accuracy and timing which shows consistent results with the ones found in Entezari et al.
(2016). This illustrates the ability of modLISA to effectively sample from posterior distributions even
when the datasets are too large and need to be divided into K batches before proceeding.
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Figure 1: Comparing empirical distribution functions of f̂(x) in modLISA weighted average with K = 30
to SingleMachine BART for two different test observations.
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