
A Appendix

A.1 Proof of Theorem 1

For simplicity, assume n = N/K is the number of observations in each batch and consider

θ to be a one-dimensional parameter. We will show Theorem 1’s statements separately

for LISA and CMC.

LISA:

Proof. Given assumption A1, ∀ j w.p.1:

∀ ε(j)1 > 0 ∃ M1 > 0 s.t. ∀ n > M1 |θ̂(j)n,L − θL| < ε
(j)
1 (1)

hence with the continuous assumption in A3, we have ∀ j w.p.1:

∀ γ(j)1 > 0 ∃ M1 > 0 s.t. ∀ n > M1

∣∣∣∣ log
(
πj,LISA(θ̂

(j)
n,L|Y

(j))
)
−log

(
πj,LISA(θL|Y (j)

)∣∣∣∣ < γ
(j)
1

(2)

We know that
(
πFull(θ|YN)

)K ∝∏K
j=1 πj,LISA(θ|Y (j)), hence:

log
(
πFull(θ|YN)

)
=

1

K

K∑
j=1

log
(
πj,LISA(θ|Y (j))

)
+ c (3)

where c is a constant. This implies that

log
(
πFull(θ|YN)

)∣∣∣∣∣
θ=θ̂N

=
1

K

K∑
j=1

log
(
πj,LISA(θ̂N |Y (j))

)
+ c (4)

Since θ̂N is the full posterior mode:

[
1

K

K∑
j=1

log
(
πj,LISA(θ̂N |Y (j))

)]
−
[

1

K

K∑
j=1

log
(
πj,LISA(θL|Y (j))

)]
≥ 0 (5)

1



and because θ̂
(j)
n,L is the mode of πj,LISA:

1

K

K∑
j=1

log
(
πj,LISA(θ̂N |Y (j))

)
≤ 1

K

K∑
j=1

log
(
πj,LISA(θ̂

(j)
n,L|Y

(j))
)

(6)

and thus from (5) and (6), we will have:

0 ≤
[

1

K

K∑
j=1

log
(
πj,LISA(θ̂N |Y (j))

)]
−
[

1

K

K∑
j=1

log
(
πj,LISA(θL|Y (j))

)]

≤
[

1

K

K∑
j=1

log
(
πj,LISA(θ̂

(j)
n,L|Y

(j))
)]
−
[

1

K

K∑
j=1

log
(
πj,LISA(θL|Y (j))

)]
(7)

Taking absolute values from last inequality in (7) and using the triangle inequality, we

have w.p.1:

1

K

∣∣∣∣∣
K∑
j=1

[
log
(
πj,LISA(θ̂N |Y (j))

)
− log

(
πj,LISA(θL|Y (j))

)]∣∣∣∣∣ ≤
1

K

∣∣∣∣∣
K∑
j=1

[
log
(
πj,LISA(θ̂

(j)
n,L|Y

(j))
)
− log

(
πj,LISA(θL|Y (j))

)]∣∣∣∣∣ ≤
1

K

K∑
j=1

∣∣∣∣ log
(
πj,LISA(θ̂

(j)
n,L|Y

(j))
)
− log

(
πj,LISA(θL|Y (j))

)∣∣∣∣ ≤ 1

K

K∑
j=1

γ
(j)
1 = γ1 (8)

The last inequality in (8) is followed by (2). From inequality (8) and the fact that the

posteriors are unimodal as stated in assumption A3, we can conclude w.p.1:

|θ̂N − θL| −→ 0 as N →∞ (9)

From (9) and assumption A1, we can conclude ∀ j w.p.1:

|θ̂N − θ̂(j)n,L| −→ 0 as n→∞ (10)
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And from (10) and assumption A3, wp.1, ∀ j:

∣∣∣∣∣ ∂2∂θ2 log
(
πj,LISA(θ|Y (j))

)∣∣∣∣
θ=θ̂N

− ∂2

∂θ2
log
(
πj,LISA(θ|Y (j))

)∣∣∣∣
θ=θ̂

(j)
n,L

∣∣∣∣∣ −→ 0 as n→∞

(11)

In addition from (10), we can also conclude that for any i and j such that i 6= j:

|θ̂(i)n,L − θ̂
(j)
n,L| −→ 0 as n→∞ (12)

And thus benefitting from (11), (12), and the structural form of sub-posterior distri-

butions in LISA (or assumption A2) for i 6= j, we have w.p.1:

∣∣∣∣∣ ∂2∂θ2 log
(
πi,LISA(θ|Y (i))

)∣∣∣∣
θ=θ̂

(i)
n,L

− ∂2

∂θ2
log
(
πj,LISA(θ|Y (j))

)∣∣∣∣
θ=θ̂

(j)
n,L

∣∣∣∣∣ −→ 0 as n→∞

(13)

Now take the second derivative with respect to θ from both sides of (3) evaluated at

θ = θ̂N :

−ÎN :=
∂2

∂θ2
log
(
πFull(θ|YN)

)∣∣∣∣∣
θ=θ̂N

=
1

K

K∑
j=1

∂2

∂θ2
log
(
πj,LISA(θ|Y (j))

)∣∣∣∣∣
θ=θ̂N

(14)

Denoting:

−Î(j)n,L :=
∂2

∂θ2
log
(
πj,LISA(θ|Y (j))

)∣∣∣∣∣
θ=θ̂

(j)
n,L

(15)
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Using (11), (13), and (14), will result in:

|ÎN − Î(j)n,L| =

∣∣∣∣∣ ∂2∂θ2 log
(
πj,LISA(θ|Y (j))

)∣∣
θ=θ̂

(j)
n,L
− 1

K

K∑
i=1

∂2

∂θ2
log
(
πi,LISA(θ|Y (i))

)∣∣
θ=θ̂N

∣∣∣∣∣
≤ 1

K

∣∣∣∣∣ ∂2∂θ2 log
(
πj,LISA(θ|Y (j))

)∣∣
θ=θ̂

(j)
n,L
− ∂2

∂θ2
log
(
πj,LISA(θ|Y (j))

)∣∣
θ=θ̂N

∣∣∣∣∣+
1

K

∣∣∣∣∣∑
i 6=j

[
∂2

∂θ2
log
(
πi,LISA(θ|Y (i))

)∣∣
θ=θ̂N

− ∂2

∂θ2
log
(
πj,LISA(θ|Y (j))

)∣∣
θ=θ̂

(j)
n,L

]∣∣∣∣∣ −→ 0 (16)

w.p.1 ∀ j.

CMC:

Proof. In CMC, since πFull(θ|YN) ∝
∏K

j=1 πj,CMC(θ|Y (j)), we will have

log
(
πFull(θ|YN)

)
=

K∑
j=1

log
(
πj,CMC(θ|Y (j))

)
+ c (17)

where c is a constant. Thus, using A1 through A3 with a similar proof as in LISA, we

can show that w.p.1:

|θ̂N − θC | −→ 0 as N →∞ (18)

and hence ∀ j w.p.1:

|θ̂N − θ̂(j)n,C | −→ 0 as n→∞ (19)

|θ̂(i)n,C − θ̂
(j)
n,C | −→ 0 as n→∞ for i 6= j (20)
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Similarly, from (19) and assumption A3, wp.1, ∀ j:

∣∣∣∣∣ ∂2∂θ2 log
(
πj,CMC(θ|Y (j))

)∣∣∣∣
θ=θ̂N

− ∂2

∂θ2
log
(
πj,CMC(θ|Y (j))

)∣∣∣∣
θ=θ̂

(j)
n,C

∣∣∣∣∣ −→ 0 as n→∞

(21)

And again benefitting from (20), (21), and the structural form of sub-posterior distri-

butions in CMC (or assumption A2), for i 6= j, we have w.p.1:

∣∣∣∣∣ ∂2∂θ2 log
(
πi,CMC(θ|Y (i))

)∣∣∣∣
θ=θ̂

(i)
n,C

− ∂2

∂θ2
log
(
πj,CMC(θ|Y (j))

)∣∣∣∣
θ=θ̂

(j)
n,C

∣∣∣∣∣ −→ 0 as n→∞

(22)

Now taking the second derivative with respect to θ from both sides of (17) evaluated

at θ = θ̂N :

−ÎN :=
∂2

∂θ2
log
(
πFull(θ|YN)

)∣∣∣∣∣
θ=θ̂N

=
K∑
j=1

∂2

∂θ2
log
(
πj,CMC(θ|Y (j))

)∣∣∣∣∣
θ=θ̂N

(23)

Denoting:

−Î(j)n,C :=
∂2

∂θ2
log
(
πj,CMC(θ|Y (j))

)∣∣∣∣∣
θ=θ̂

(j)
n,C

(24)

Using (21), (22), and (23), will similarly result in:

| ÎN
K
− Î(j)n,C | =

∣∣∣∣∣ ∂2∂θ2 log
(
πj,CMC(θ|Y (j))

)∣∣
θ=θ̂

(j)
n,C
− 1

K

K∑
i=1

∂2

∂θ2
log
(
πi,CMC(θ|Y (i))

)∣∣
θ=θ̂N

∣∣∣∣∣
≤ 1

K

∣∣∣∣∣ ∂2∂θ2 log
(
πj,CMC(θ|Y (j))

)∣∣
θ=θ̂

(j)
n,C
− ∂2

∂θ2
log
(
πj,CMC(θ|Y (j))

)∣∣
θ=θ̂N

∣∣∣∣∣+
1

K

∣∣∣∣∣∑
i 6=j

[
∂2

∂θ2
log
(
πi,CMC(θ|Y (i))

)∣∣
θ=θ̂N

− ∂2

∂θ2
log
(
πj,CMC(θ|Y (j))

)∣∣
θ=θ̂

(j)
n,C

]∣∣∣∣∣ −→ 0 (25)

5



w.p.1 ∀ j.

A.2 BART

In this section we will use a similar explanation and notation given by Kapelner and

Bleich (2013) to derive the acceptance ratios of the Metropolis-Hastings step in updating

trees of BART. We will further extend these calculations for LISA and CMC.

The Metropolis-Hastings algorithm is used to draw samples from conditional distribu-

tion given in equation (14)

p(T | R, σ) ∝ p(T )

∫
p(R | M,T, σ) p(M | T, σ) dM

Assume we propose T∗, then the acceptance ratio will be:

r =
P (T∗ → T )

P (T → T∗)︸ ︷︷ ︸
transition ratio

× P (R | T∗, σ2)

P (R | T, σ2)︸ ︷︷ ︸
likelihood ratio

× P (T∗)

P (T )︸ ︷︷ ︸
tree structure ratio

We will calculate r for each possible proposal:

GROW Proposal:

• Transition ratio: Consider growing one of the b terminal nodes of tree T , say node

η, to two children nodes. Then we will have:

P (T → T∗) = P (GROW ) P (choosing η) P (choosing a predictor to split on)×

P (choosing a splitting value)

= P (GROW )
1

b

1

p(η)

1

np(η)

where p(η) denotes the number of predictors left available to split on at node η
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(there must be at least two unique values in each predictor to consider), and np(η)

denotes the number of unique splitting values left in the chosen pth attribute.

In addition, we have:

P (T∗ → T ) = P (PRUNE) P (choosing η to prune) = P (PRUNE)
1

w∗

where w∗ is the number of nodes with two terminal nodes in the new tree T∗. Hence

the transition ratio will be:

P (T∗ → T )

P (T → T∗)
=
P (PRUNE)

P (GROW )

b p(η) np(η)

w∗

• Likelihood ratio: For computing the likelihood ratio, we have:

P (R1, ..., Rn | T, σ2) =
b∏
l=1

P (Rl1 , ..., Rlnl
| σ2)

since the data are partitioned across all b terminal nodes of tree T . Rlj denotes the

j-th data (residual) in the l-th terminal node and nl is the number of observations

in the l-th terminal node. From BART we know that µl ∼ N(0, σ2
µ), hence we will

have:

P (Rl1 , ..., Rlnl
| σ2) =

∫
R

P (Rl1 , ..., Rlnl
| µl, σ2) P (µl;σ

2
µ) dµl.
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By completion of the square this will equal to:

P (Rl1 , ..., Rlnl
| σ2) =

1

(2πσ2)nl/2

√
σ2

σ2 + nlσ2
µ

exp

(
− 1

2σ2

[ nl∑
i=1

(Rli − R̄l)
2 − R̄l

2
nl

2

nl + σ2

σ2
µ

+ nlR̄l
2

])
,

(26)

where R̄l is the average residual at terminal node l. Note that the likelihood is

specified by all terminal nodes, and since T differs from T∗ only at its l-th terminal

node which splits into two terminal children lL and lR, the probability terms from

other terminal nodes will be canceled in the likelihood ratio which results in (using

(26)):

P (R | T∗, σ2)

P (R | T, σ2)
=

√
σ2(σ2 + nlσ2

µ)

(σ2 + nlLσ
2
µ)(σ2 + nlRσ

2
µ)
×

exp

(
σ2
µ

2σ2

[
(
∑nlL

i=1RlL,i)
2

σ2 + nlLσ
2
µ

+
(
∑nlR

i=1 RlR,i)
2

σ2 + nlRσ
2
µ

− (
∑nl

i=1Rl,i)
2

σ2 + nlσ2
µ

])
, (27)

where RlL and RlR are residuals in the left and right child (respectively) with cor-

responding number of observations nlL and nlR .

• Tree Structure ratio: Recall the descriptions given in BART related to the prob-

ability that node η at depth dη is non-terminal:

PSplit(η) =
α

(1 + dη)β
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with probability of assigning a rule given as:

PRule(η) =
1

p(η)

1

np(η)

Hence, the prior on each tree will be:

P (T ) =
∏

η ∈ non-terminal nodes

PSplit(η) PRule(η) ×
∏

η ∈ terminal nodes

(1− PSplit(η))

which will result in the following tree structure ratio:

P (T∗)

P (T )
= α

(1− α
(2+dη)β

)2

((1 + dη)β − α) p(η) np(η)
. (28)

PRUNE Proposal:

• Transition ratio: A similar description as in the GROW step will lead to:

P (T∗ → T )

P (T → T∗)
=

P (GROW )

P (PRUNE)

w

(b− 1) p(η∗) np(η∗)

where w is the number of nodes with two terminal nodes in tree T . Note that tree

T∗ has one less terminal nodes (b− 1).

• Likelihood ratio: This is the inverse of the likelihood ratio in the GROW proposal.

• Tree Structure ratio: This is also the inverse of the tree structure in the GROW

proposal.

CHANGE Proposal:
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• Transition ratio: As described by Kapelner and Bleich (2013), for simplicity, we

will only change the rule assignments for nodes with two terminal children. Hence:

P (T → T∗) = P (CHANGE) P (choosing η) P (choosing a predictor to split on)×

P (choosing a splitting value)

with the first three terms canceling in the transition ratio given as:

P (T∗ → T )

P (T → T∗)
=
np∗(η∗)

np(η)
.

• Likelihood ratio: T∗ differs from T only from the two terminal children effected

by the changed rules from their parents. Hence, by canceling the probabilities from

other terminal nodes, we will achieve the likelihood ratio:

P (R | T∗, σ2)

P (R | T, σ2)
=

√√√√( σ
2

σ2
µ

+ n1)(
σ2

σ2
µ

+ n2)

( σ
2

σ2
µ

+ n∗1)(
σ2

σ2
µ

+ n∗2)
×

exp

(
1

2σ2

[
(
∑n1∗

i=1R1∗,i)
2

σ2

σ2
µ

+ n∗1
+

(
∑n2∗

i=1R2∗,i)
2

σ2

σ2
µ

+ n∗2
− (
∑n1

i=1R1,i)
2

σ2

σ2
µ

+ n1

− (
∑n2

i=1R2,i)
2

σ2

σ2
µ

+ n2

])
, (29)

where subscripts 1 and 2 denote the two terminal children, while the asterisk refers

to the proposed tree T∗.

• Tree Structure ratio: Following the definition of P (T ), we will have:

P (T∗)

P (T )
=

np(η)

np∗(η∗)
.

Note that:

P (T∗ → T )

P (T → T∗)
× P (T∗)

P (T )
= 1.
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A.3 LISA for BART

GROW Proposal:

• Transition ratio: No change.

• Likelihood ratio: Equation (26) changes to:

P (Rl1 , ..., Rlnl
| σ2) =

1

(2πσ2)nl/2

√
σ2

σ2 +Knlσ2
µ

exp

(
− K

2σ2

[ nl∑
i=1

(Rli − R̄l)
2 − KR̄l

2
nl

2

Knl + σ2

σ2
µ

+ nlR̄l
2

])
.

(30)

Thus the likelihood ratio will change to:

P (R | T∗, σ2)

P (R | T, σ2)
=

√
σ2(σ2 +Knlσ2

µ)

(σ2 +KnlLσ
2
µ)(σ2 +KnlRσ

2
µ)
×

exp

(
K2σ2

µ

2σ2

[
(
∑nlL

i=1RlL,i)
2

σ2 +KnlLσ
2
µ

+
(
∑nlR

i=1 RlR,i)
2

σ2 +KnlRσ
2
µ

− (
∑nl

i=1Rl,i)
2

σ2 +Knlσ2
µ

])
. (31)

• Tree Structure ratio: No change.

PRUNE Proposal:

• Transition ratio: No change.

• Likelihood ratio: This is the inverse of the likelihood ratio in the GROW proposal.
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• Tree Structure ratio: No change.

CHANGE Proposal:

• Transition ratio: No change.

• Likelihood ratio:

P (R | T∗, σ2)

P (R | T, σ2)
=

√√√√( σ
2

σ2
µ

+Kn1)(
σ2

σ2
µ

+Kn2)

( σ
2

σ2
µ

+Kn∗1)(
σ2

σ2
µ

+Kn∗2)
×

exp

(
K2

2σ2

[
(
∑n1∗

i=1R1∗,i)
2

σ2

σ2
µ

+Kn∗1
+

(
∑n2∗

i=1R2∗,i)
2

σ2

σ2
µ

+Kn∗2
− (
∑n1

i=1R1,i)
2

σ2

σ2
µ

+Kn1

− (
∑n2

i=1R2,i)
2

σ2

σ2
µ

+Kn2

])
. (32)

• Tree Structure ratio: No change.

The conditional posterior of σ2 and Mj changes to:

• σ2 | (T1,M1), ..., (Tm,Mm), Y,X ∝ Inv −Gamma(ρ, γ)

where ρ = ν+Kn
2

and γ = 1
2

[ K
∑n

i=1 (yi −
∑m

j=1 g(xi;Mj, Tj))
2

+ λν ].

• For the conditional posterior Mj | Tj, Rj, σ, we have:

µij | Tj, Rj, σ ∼ N

 σ2

σ2
µ
µµ + KniR̄j(i)

σ2

σ2
µ

+ Kni
,

σ2

σ2

σ2
µ

+ Kni

 ,

where R̄j(i) denotes the average residual (computed without tree j) at terminal node

i with total number of data ni. Note that we can consider µµ = 0.
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A.4 CMC for BART

GROW Proposal:

• Transition ratio: No change.

• Likelihood ratio: Equation (26) changes to:

P (Rl1 , ..., Rlnl
| σ2) =

1

(2πσ2)nl/2

(√
2πσ2

µ

)1− 1
K

√
σ2

σ2

K
+ nlσ2

µ

×

exp

(
− 1

2σ2

[ nl∑
i=1

(Rli − R̄l)
2 − R̄l

2
nl

2

nl + σ2

Kσ2
µ

+ nlR̄l
2

])
(33)

Thus the likelihood ratio will change to:

P (R | T∗, σ2)

P (R | T, σ2)
= (
√

2πσ2
µ)1−

1
K

√√√√ σ2(σ
2

K
+ nlσ2

µ)

(σ
2

K
+ nlLσ

2
µ)(σ

2

K
+ nlRσ

2
µ)
×

exp

(
σ2
µ

2σ2

[
(
∑nlL

i=1RlL,i)
2

σ2

K
+ nlLσ

2
µ

+
(
∑nlR

i=1 RlR,i)
2

σ2

K
+ nlRσ

2
µ

− (
∑nl

i=1Rl,i)
2

σ2

K
+ nlσ2

µ

])
(34)

• Tree Structure ratio: The tree structure ratio will be raised to the power 1/K:

[
P (T∗)

P (T )

] 1
K

.

PRUNE Proposal:

• Transition ratio: No change.

• Likelihood ratio: This is the inverse of the likelihood ratio in the GROW proposal.
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• Tree Structure ratio: This is also the inverse of the tree structure ratio in the

GROW proposal.

CHANGE Proposal:

• Transition ratio: No change.

• Likelihood ratio:

P (R | T∗, σ2)

P (R | T, σ2)
=

√√√√( σ2

Kσ2
µ

+ n1)(
σ2

Kσ2
µ

+ n2)

( σ2

Kσ2
µ

+ n∗1)(
σ2

Kσ2
µ

+ n∗2)
×

exp

(
1

2σ2

[
(
∑n1∗

i=1R1∗,i)
2

σ2

Kσ2
µ

+ n∗1
+

(
∑n2∗

i=1R2∗,i)
2

σ2

Kσ2
µ

+ n∗2
− (
∑n1

i=1R1,i)
2

σ2

Kσ2
µ

+ n1

− (
∑n2

i=1R2,i)
2

σ2

Kσ2
µ

+ n2

])
. (35)

• Tree Structure ratio: The tree structure ratio will be raised to the power 1/K.

Now the product of transition ratio and tree structure ratio is not 1 anymore:

P (T∗ → T )

P (T → T∗)
× P (T∗)

P (T )
= np(η)

1
K
−1 np∗(η∗)1−

1
K .

The conditional posterior of σ2 and Mj changes to:

• σ2 | (T1,M1), ..., (Tm,Mm), Y,X ∝ Inv −Gamma(ρ, γ)

where ρ = ν+2+K(n−2)
2K

and γ = 1
2

[
∑n

i=1 (yi −
∑m

j=1 g(xi;Mj, Tj))
2

+ λν
K

].
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• For the conditional posterior Mj | Tj, Rj, σ, we have:

µij | Tj, Rj, σ ∼ N (

σ2

Kσ2
µ
µµ + niR̄j(i)

σ2

Kσ2
µ

+ ni
,

σ2

σ2

Kσ2
µ

+ ni
)

where we can consider µµ = 0.
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