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Abstract
Yang et al. proved that the symmetric random walk
Metropolis–Hastings algorithm for Bayesian variable
selection is rapidly mixing under mild high-dimensional
assumptions. We propose a novel Markov chain Monte
Carlo (MCMC) sampler using an informed proposal
scheme, which we prove achieves a much faster mixing
time that is independent of the number of covariates,
under the assumptions of Yang et al. To the best of
our knowledge, this is the first high-dimensional result
which rigorously shows that the mixing rate of informed
MCMC methods can be fast enough to offset the com-
putational cost of local posterior evaluation. Motivated
by the theoretical analysis of our sampler, we further
propose a new approach called ‘two-stage drift condi-
tion’ to studying convergence rates of Markov chains on
general state spaces, which can be useful for obtaining
tight complexity bounds in high-dimensional settings.
The practical advantages of our algorithm are illustrated
by both simulation studies and real data analysis.

K E Y W O R D S
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1 INTRODUCTION

Consider a variable selection problem where we observe an n × p design matrix X and a response
vector y; each column of X represents a covariate. The goal is to identify the set of all ‘influential’
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covariates which have non-negligible effects on y; we denote this set by 𝛾 . We are mostly interested
in a high-dimensional setting where p is much larger than the sample size n but most of the
covariates have either zero or negligible effects. Due to this sparsity assumption, we can choose
some threshold s0, which may grow with n, and assume that the unknown parameter 𝛾 takes
value in the space

(s0) = {𝛾 ⊆ {1, 2, … , p} ∶ |𝛾| ≤ s0},

where | ⋅ | denotes the cardinality of a set. By assigning a prior distribution on (s0) and
then updating it using the data, we can compute the posterior distribution of 𝛾 , denoted by
𝜋n(𝛾) (Chipman et al., 2001). One advantage of the Bayesian approach is that we can make
inferences by averaging over 𝜋n, a property known as model averaging (Kass & Raftery, 1995).
This is different from methods such as penalized regression, where we aim to find a single best
model that minimises some loss function. For theoretical results on Bayesian variable selection
in high-dimensional settings, see Johnson and Rossell (2012), Narisetty and He (2014), Castillo
et al. (2015), Jeong and Ghosal (2021), among many others.

1.1 Background and main contributions of this work

The calculation of 𝜋n is usually performed by Markov chain Monte Carlo (MCMC) sampling,
including both Metropolis–Hastings (MH) and Gibbs algorithms (Brown et al., 1998; George &
McCulloch, 1993, 1997; Guan & Stephens, 2011); see O’Hara and Sillanpää (2009) for a review.
For problems with extremely large p, the efficiency of the MCMC sampler largely depends on
how we propose the next state given current state 𝛾 . Zanella (2020) considered the so-called
locally informed proposal schemes on general discrete state spaces, which assign a proposal
weight to each neighboring state 𝛾 ′ using some function of𝜋n(𝛾 ′)∕𝜋n(𝛾). Though variable selection
was not discussed explicitly in Zanella (2020), similar ideas are utilized in most state-of-the-art
MCMC methods for variable selection. Examples include the tempered Gibbs sampler of Zanella
and Roberts (2019) and the ASI (adaptively scaled individual adaptation) proposal of Griffin
et al. (2021), both of which require calculating 𝜋n(𝛾 ′) (up to the normalizing constant) for each
𝛾
′ ∈1(𝛾) = {𝛾 ′ ∶ |𝛾△ 𝛾

′| = 1}, where △ denotes the symmetric set difference. In a similar
spirit, the Hamming ball sampler of Titsias and Yau (2017) performs an exact sampling according
to 𝜋n within a randomly selected subset of the neighbourhood of 𝛾 . For non-MCMC algorithms,
we note that the design of the shotgun stochastic search (Hans et al., 2007; Shin et al., 2018) bears
a striking resemblance to informed proposals.

Intuitively, informed proposals rely on the following idea: avoid visiting states with low poste-
rior probabilities by carefully tuning the proposal probabilities. Though this seems very appealing,
it naturally comes at the computational cost of evaluating the local posterior landscape around the
current state. For instance, an informed proposal that draws the next state from1(⋅) has com-
plexity linear in p. Whether such local evaluation of 𝜋n is worthwhile is theoretically unclear, and
convergence analysis of informed sampling algorithms (for variable selection) is very challeng-
ing because the landscape of 𝜋n is hard to characterise, especially in high-dimensional asymptotic
regimes. Indeed, even for the ‘uninformed’ random-walk MH algorithm (denoted by RW-MH
henceforth), its mixing rate has only been obtained recently by Yang et al. (2016) under mild
high-dimensional assumptions. The order of their upper bound on the mixing time is approxi-
mately pns2

0 log p (see Remark 2), which shows that RW-MH is rapidly mixing (i.e. the mixing time
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is polynomial in n and p). Then, the question is whether informed MCMC methods can achieve
sufficiently fast mixing rates that can at least offset the additional computation cost.

In this work, we rigorously derive a positive answer to the above question. We consider a
novel informed MH algorithm, named LIT-MH (Metropolis–Hastings with Locally Informed and
Thresholded proposal distributions), which assigns bounded proposal weights to the standard
add-delete-swap moves. Under the high-dimensional assumptions made in Yang et al. (2016),
LIT-MH achieves a mixing time that does not depend on p. To the best of our knowledge, this
is the first dimension-free mixing time result for an informed MCMC algorithm in a ‘general’
high-dimensional setting. (There exist similar results for special cases where the posterior distri-
bution has independent coordinates or the design matrix is orthogonal, which are not very useful
for real high-dimensional problems; see, e.g., Zanella & Roberts, 2019 and Griffin et al., 2021.) To
prove the mixing rate of LIT-MH, unlike most existing approaches based on path methods, we pro-
pose a ‘two-stage drift condition’ method, which provides theoretical insights into the behaviour
of MCMC methods for variable selection. General results for the two-stage drift condition are
derived, which can be useful to other problems where multiple drift conditions hold on different
parts of the state space. Simulation studies show that LIT-MH can efficiently explore the poste-
rior distribution under various settings. A real data example is also provided, where five genetic
variants associated with cup-to-disc ratio (CDR) are identified.

1.2 Motivation for the LIT-MH algorithm

One may expect that by using an informed proposal scheme that assigns larger proposal prob-
abilities to states with larger posterior, the resulting MH algorithm requires less iterations than
RW-MH to find high posterior regions. This is not always true, and surprisingly, it is even possible
that such an informed MH algorithm is slowly mixing while RW-MH is rapidly mixing.

Consider MH algorithms for variable selection that always propose the next state from1(⋅);
that is, we can either add or remove a covariate (we will consider swap moves later in Section 2.1).
Suppose we assign proposal weight 𝜋n(𝛾 ′)𝜈 to each 𝛾 ′ ∈1(𝛾) for some constant 𝜈 ≥ 0. That is,
we can express the proposal matrix K𝜈 as

K𝜈(𝛾, 𝛾 ′) =
𝜋n(𝛾 ′)𝜈

∑
𝛾̃∈1(𝛾)

𝜋n(𝛾̃)𝜈
11(𝛾)(𝛾

′), (1)

where 1 denotes the indicator function. When 𝜈 = 0, K𝜈(𝛾, ⋅) becomes the uniform distribution
on the set1(𝛾), which is uninformed. It seems desirable to choose some 𝜈 > 0 so that with high
probability we propose adding an influential covariate or removing a non-influential one. We give
a toy low-dimensional example below, which shows that for any 𝜈 > 0, the MH algorithm using
K𝜈 as the proposal can fail to work well when the sample size is sufficiently large.

Example 1. Suppose that there are only two influential covariates, X1 and X2, and
𝜋n({1, 2})≫ 𝜋n({i})≫ 𝜋n(∅)≫ 𝜋n({j}) for i = 1, 2 and 3 ≤ j ≤ p. Thus, if we start an MH
algorithm at the null model, we want the chain to first move to {1} or {2} and then move to
{1, 2}. By using some 𝜈 > 0, we can make the proposal probability K𝜈(∅, {1} ∪ {2}) close to
1. Let P𝜈 denote the transition matrix of the MH algorithm with proposal K𝜈 given in (1). To
bound the transition probability from ∅ to {1}, observe that K𝜈({1}, ∅) ≤ 𝜋n(∅)𝜈∕𝜋n({1, 2})𝜈 ,
since {1, 2} is a neighbor of {1}. It then follows from the Metropolis rule that
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P𝜈(∅, {1}) = K𝜈(∅, {1})min
{

1, 𝜋n({1})
𝜋n(∅)

K𝜈({1}, ∅)
K𝜈(∅, {1})

}

≤
𝜋n({1})
𝜋n(∅)

K𝜈({1}, ∅) ≤
{
𝜋n({1})
𝜋n(∅)

}1−𝜈{
𝜋n({1})
𝜋n({1, 2})

}𝜈

.

(2)

An analogous bound holds for P𝜈(∅, {2}). It is clear from (2) that if 𝜈 > 1, P𝜈(∅, {1}) can be
exceedingly small.

Next, we construct a concrete example to show that even if 𝜈 ∈ (0, 1], P𝜈 may still have
very poor mixing. Fix some 𝜈 ∈ (0, 1]. Let Xj denote the j th column of X . Suppose the design
matrix satisfies X⊤

j Xj = n for each j ∈ [p], X⊤

1 X2 = (𝜈 − 1)n, and X⊤

i Xj = 0 for any other i < j.
Assume that the response vector y is generated by y = X1 + X2 + z where z is a determin-
istic error vector such that z⊤z = n and X⊤z = 0. Choose some s0 ≥ 2, and let the posterior
distribution be given by (4) with hyperparameters 𝜅, g > 0 (see Section 2.1 for details). Fix
p, 𝜈, 𝜅, g and let n tends to infinity. In Section S5.1 in Appendix A, we show that

K𝜈(∅, {1} ∪ {2}) = 1 − O(e−a1n), P𝜈(∅, {1} ∪ {2}) = O(e−a2n),

where a1, a2 > 0 are some constants that only depend on 𝜈 and g. Hence, the chain must
be slowly mixing since P𝜈(∅, ∅) = 1 − O(e−a1n) − O(e−a2n). That is, the informed MH chain
can get stuck at the null model for exponentially many iterations, where we keep proposing
adding X1 or X2 but getting rejected. In contrast, one can use the path method of Yang
et al. (2016) to show that RW-MH is rapidly mixing (proof is omitted).

This toy example reveals that the real challenge in developing informed MH algorithms is to
bound the acceptance probability of informed proposals. From (2), we can see that in order to
make P𝜈(∅, {1}) large, we need K𝜈(∅, {1}) to be sufficiently large and K𝜈({1}, ∅)not to be too small.
This motivates us to use proposal weights that are bounded both from above and from below so
that the proposal probability of any neighboring state is bounded as well. Further, we partition the
neighbourhood of each 𝛾 according to the proposal type (e.g. addition, deletion or swap) and then
perform proposal weighting in each subset separately, which also helps control the acceptance
probability of informed proposal moves.

1.3 Two-stage drift condition

Drift-and-minorization methods have been used to show rapid mixing of various MCMC algo-
rithms (Fort et al., 2003; Johndrow et al., 2020; Qin & Hobert, 2019; Rosenthal, 1995; Roy &
Hobert, 2007; Vats, 2017; Yang & Rosenthal, 2022); see Jones and Hobert (2001) for a review.
These methods are particularly useful for studying Gibbs sampling algorithms on continuous
state spaces. One possible reason is that to establish the drift condition, we need to bound the
expected change in the drift function in the next MCMC iteration, which is easier if the next
sample is drawn from a smooth full conditional distribution. For problems like high-dimensional
variable selection, the posterior landscape is highly irregular and difficult to characterise. The con-
vergence analysis becomes even more challenging for informed MH algorithms since the proposal
distribution usually involves normalizing constants that do not admit simple expressions.

We prove the dimension-free mixing rate of the LIT-MH algorithm using a novel drift con-
dition. But unlike traditional drift-and-minorization methods which only involve a single drift
condition, we establish two drift conditions on two disjoint subsets of the state space separately.
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Our method is motivated by the forward-backward stepwise selection (An et al., 2008) and the
insights obtained in Yang et al. (2016). Let 𝛾∗ denote the model consisting of all influential covari-
ates. We say a model 𝛾 is overfitted if 𝛾∗ ⊆ 𝛾 ; otherwise, we say 𝛾 is underfitted. Under certain mild
conditions, we expect that the posterior probability mass will concentrate on 𝛾∗. It is then tempt-
ing to use a single drift condition that measures the distance between 𝛾 and 𝛾∗. Unfortunately, this
approach may not work. The most important reason is that for an underfitted 𝛾 , non-influential
covariates may appear to be influential due to the correlation with some truly influential covari-
ate(s) missing in 𝛾 (and similarly, some influential covariates may appear to be non-influential).
Nevertheless, as in the stepwise variable selection, once the model becomes overfitted, we expect
that all non-influential covariates can be easily removed. This observation suggests that we can
partition(s0) into underfitted and overfitted models. On the set of overfitted models, we may
construct a drift function using the distance from 𝛾

∗, and the corresponding drift condition should
reflect that the chain tends to move towards 𝛾∗ by removing non-influential covariates. On the
set of underfitted models, we need a different drift condition capturing the tendency of the chain
to add (possibly truly non-influential) covariates, in order to explain the variation in the response
variable.

We propose to use this two-stage drift condition as a general method for convergence anal-
ysis of Markov chains; all related results will be derived for general state spaces in Section 4.
The flexibility of this approach could be useful to other problems where the state space has a
complex topological structure. To derive a bound on the mixing time using the two-stage drift
condition, we use regeneration theory as in the classical drift-and-minorization methods (Roberts
& Tweedie, 1999), but it is more difficult in our case to bound the tail probability of the regen-
eration time. In our proof, we split the path of the Markov chain into disjoint segments using
an auxiliary sequence of geometric random variables and then apply a union bound argument
of Rosenthal (1995).

The use of the two-stage drift condition is critical to proving the dimension-free mixing of
LIT-MH. In Yang et al. (2016), the convergence rate of RW-MH is analysed by using canoni-
cal paths (Sinclair, 1992), a method widely used for Markov chains on discrete spaces (Levin
et al., 2017, chapter 14). A key step of their proof is to identify, for any 𝛾 ≠ 𝛾∗, a ‘high-probability’
path from 𝛾 to 𝛾∗ (‘high-probability’ means that each step of the path has a sufficiently large tran-
sition probability). A potential limitation of this approach is that for some 𝛾 ≠ 𝛾∗, there may exist
a large number of ‘high-probability’ paths leading to 𝛾∗, and if we only consider one of them, the
resulting mixing time bound may be loose. This is indeed the case for our LIT-MH algorithm. In
order to obtain a sharp bound on the mixing time, we need to invoke the drift condition to take into
account all possible moves, and the method of canonical paths will fail to yield a dimension-free
estimate for the mixing time of LIT-MH.

1.4 Organization of the paper

In Section 2.1 we formally introduce the Bayesian variable selection problem. Key results of Yang
et al. (2016) for the RW-MH algorithm are reviewed in Section 2.2, and our LIT-MH algorithm
is introduced in Section 2.3. In Section 3, we construct two drift conditions for LIT-MH and
then derive the mixing time bound in Theorem 1. In Section 4, we consider the two-stage drift
condition in a general setting, for which the main result is presented in Theorem 2. Simulation
studies are presented in Section 5, with some results provided in Section S4 in Appendix A. A real
data example is provided in Section 6, where we apply the LIT-MH algorithm to genome-wide
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association studies on glaucoma. Section 7 concludes the paper with some discussion on the
implementation and generalisation of LIT-MH and its differences from other MCMC methods.
All technical proofs are relegated to Appendix A.

2 RW-MH AND LIT-MH ALGORITHMS FOR VARIABLE
SELECTION

We first define some notation. Let [p] = {1, 2, … , p}. For 𝛾 ⊆ [p], let X𝛾 denote the submatrix of
X with columns indexed by 𝛾 , and 𝛽𝛾 denote the subvector with entries indexed by 𝛾 . Recall that
| ⋅ | denotes the cardinality of a set.

2.1 Model, prior and local proposals

Consider a sparse linear regression model,

y = X𝛾𝛽𝛾 + e, e ∼ MN(0, 𝜙−1In),

where MN denotes the multivariate normal distribution and In is the identity matrix. Hence, 𝛾
can be understood as the set of nonzero entries of 𝛽. We follow Yang et al. (2016) to consider the
following prior:

(g-prior) 𝛽𝛾 |𝛾 ∼ MN(0, g𝜙−1(X⊤

𝛾 X𝛾 )−1),
(precision prior) 𝜋0(𝜙) ∝ 𝜙−1

,

(sparsity prior) 𝜋0(𝛾) ∝ p−𝜅0|𝛾|1(s0)(𝛾),
(choice of g) 1 + g = p2𝜅1 ,

(3)

where 𝜅0, 𝜅1 > 0 are hyperparameters,𝜋0 denotes the prior probability density/mass function, and
we recall s0 is the maximum model size we allow. After integrating out 𝛽, the marginal posterior
probability of 𝛾 ⊆ [p] can be computed by

𝜋n(𝛾) ∝ p−𝜅|𝛾|
(

g−1y⊤y + y⊤P⊥𝛾 y
)−n∕2

1(s0)(𝛾), (4)

where 𝜅 = 𝜅0 + 𝜅1 and P⊥𝛾 denotes the projection matrix:

P⊥𝛾 = In − P𝛾 , P𝛾 = X𝛾 (X⊤

𝛾 X𝛾 )−1X⊤

𝛾 .

For two models 𝛾, 𝛾 ′, let B(𝛾, 𝛾 ′) denote their posterior probability ratio. It follows from (4) that

B(𝛾, 𝛾 ′) = 𝜋n(𝛾 ′)
𝜋n(𝛾)

= p𝜅(|𝛾|−|𝛾 ′|)
{

1 +
y⊤(P𝛾 − P𝛾 ′ )y

g−1y⊤y + y⊤P⊥𝛾 y

}−n∕2

. (5)

For MH algorithms on the space (s0), the most common approach is to use a proposal
scheme consisting of three types of local moves, ‘addition’, ‘deletion’ and ‘swap’, which induces an
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irreducible Markov chain on(s0). Explicitly, for every 𝛾 ∈(s0), define the addition, deletion
and swap neighborhoods of 𝛾 by

a(𝛾) = {𝛾 ′ ∈(s0) ∶ 𝛾 ′ = 𝛾 ∪ {j} for some j ∉ 𝛾},
d(𝛾) = {𝛾 ′ ∈(s0) ∶ 𝛾 ′ = 𝛾 ⧵ {k} for some k ∈ 𝛾},
s(𝛾) = {𝛾 ′ ∈(s0) ∶ 𝛾 ′ = (𝛾 ∪ {j}) ⧵ {k} for some j ∉ 𝛾, k ∈ 𝛾}. (6)

The three sets are disjoint, and for each 𝛾 ∈(s0), |a(𝛾) ∪d(𝛾)| ≤ p (the equality holds if
|𝛾| < s0) and |s(𝛾)| ≤ ps0. The definitions of these neighbourhoods can be generalised by allow-
ing changing more covariates at one time. Let (𝛾) =a(𝛾) ∪d(𝛾) ∪s(𝛾) denote the union
of the three neighbourhoods.

2.2 Rapid mixing of the RW-MH algorithm

Consider a proposal scheme defined by a transition probability matrix Krw ∶(s0) ×(s0)→
[0, 1] such that

Krw(𝛾, 𝛾 ′) =
ha(𝛾)1a(𝛾)(𝛾

′)
|a(𝛾)|

+
hd(𝛾)1d(𝛾)(𝛾

′)
|d(𝛾)|

+
hs(𝛾)1s(𝛾)(𝛾

′)
|s(𝛾)|

, (7)

where ha(𝛾), hd(𝛾), hs(𝛾) are non-negative constants that sum to 1; thus, ha(𝛾) is the probability of
proposing an addition move given current state 𝛾 . When ha, hd, hs are all constants independent of
𝛾 , we refer to the resulting MH algorithm as asymmetric RW-MH. If ha(𝛾) = |a(𝛾)|∕2p, hd(𝛾) =
|d(𝛾)|∕2p and hs(𝛾) = 1∕2, the resulting MH algorithm is called symmetric RW-MH, since
Krw(𝛾, 𝛾 ′) = Krw(𝛾 ′, 𝛾) for any 𝛾, 𝛾 ′ ∈(s0). We will now explain the main idea of the proof for
the rapid mixing of RW-MH given in Yang et al. (2016), which will be useful later for studying the
mixing time of LIT-MH. Note that though Yang et al. (2016) only considered symmetric RW-MH,
their argument can be easily extended to prove the rapid mixing of asymmetric RW-MH.

A key step in the mixing time analysis of RW-MH is to characterise the shape of 𝜋n. To this
end, suppose that the true model is given by y = X𝛽∗ + z where z ∼ MN(0, 𝜎2

z In) and define

𝛾
∗ = {j ∈ [p] ∶ |𝛽∗j | ≥ 𝛽min}, s∗ = |𝛾∗|, (8)

where 𝛽min > 0 is some threshold. Covariates in 𝛾∗ are called ‘influential’, and we assume s∗ ≤ s0
so that identification of 𝛾∗ is possible. We are interested in a high-dimensional asymptotic regime
where p can grow much faster than n but s0 log p = O(n); s0, s∗, 𝛾∗, 𝛽min are also allowed to depend
on n.

Assume the entries of 𝛽∗ corresponding to non-influential covariates are very close to zero
so that y − X𝛾∗𝛽

∗
𝛾∗ can be effectively treated as the noise. Denote by ys = X𝛾∗𝛽

∗
𝛾∗ the signal part of

y. For an overfitted model 𝛾 , the variation of the signal ys is fully explained, so non-influential
covariates in 𝛾 tend to be ‘useless’: they may happen to explain some noise, but the degree can
be controlled by concentration inequalities and mild eigenvalue conditions on the design matrix
X . Provided that the penalty on the model size is sufficiently large, we should be able to remove
non-influential covariates from an overfitted model. If 𝛾 is underfitted (i.e. 𝛾∗ ⊈ 𝛾), the analysis
becomes much more complicated due to the correlation among the covariates. Suppose for some
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j ∈ 𝛾∗, |𝛽∗j | is very large but Xj is not selected in the model 𝛾 . Then, non-influential covariates in
𝛾

c ⧵ 𝛾∗ that are slightly correlated with Xj may be added to the model, and similarly, influential
covariates in 𝛾∗ ∩ 𝛾 may be removed from 𝛾 due to correlation with Xj. However, a known result
from forward-backward stepwise selection (An et al., 2008) guarantees that an underfitted model
will eventually become overfitted in order to fully explain the signal, as long as the sample size n
and 𝛽min in (8) are sufficiently large relative to the collinearity in X .

The above reasoning implies that the following condition, under certain mild assumptions,
would hold true with high probability for a sufficiently large sample size, which was proved
in Yang et al. (2016, lemma 4).

Condition 1. There exist 𝛾∗ ∈(s0) and constants c0, c1 > 0 (not depending on 𝛾) such that the
following three conditions are satisfied. (We say 𝛾 is overfitted if 𝛾∗ ⊆ 𝛾 , and underfitted if
𝛾
∗
⊈ 𝛾 .)

(1a) For any overfitted 𝛾 ∈(s0) and j ∉ 𝛾 , B(𝛾, 𝛾 ∪ {j}) ≤ p−c0 .
(1b) For any underfitted 𝛾 ∈(s0), there exists some j ∈ 𝛾∗ ⧵ 𝛾 , which may not be unique,

such that B(𝛾, 𝛾 ∪ {j}) ≥ pc1 .
(1c) For any underfitted 𝛾 with |𝛾| = s0, there exist some j ∈ 𝛾∗ ⧵ 𝛾 and k ∈ 𝛾 ⧵ 𝛾∗, which

may not be unique, such that B(𝛾, (𝛾 ∪ {j}) ⧵ {k}) ≥ pc1 .

Though in the statement of lemma 4 of Yang et al. (2016), they set c0 = 2 and c1 = 3, their argu-
ment actually proved Condition 1 for at least c0 = 2 and c1 = 4, which suffices for the analysis to
be conducted in later sections. Indeed, by modifying the universal constants in their assumptions,
the same argument can prove the claim for any fixed c0, c1 > 0; see Section S3 in Appendix A,
where we state this result as Theorem S2 in Appendix A and provide a sketch of the proof. In the
proof, we treat the design matrix as fixed and do not make assumptions on how the columns of X
are generated. In particular, the design matrix may include interaction terms which can account
for potentially non-linear relationship between the response and explanatory variables.

If Condition 1 holds, given any 𝛾 ≠ 𝛾∗, we can increase the posterior probability by a local
move: if 𝛾 is overfitted, we can remove a non-influential covariate by Condition (1a); if 𝛾 is
underfitted, we can find an addition or swap move according to Condition (1b) and (1c). Thus,
Condition 1 essentially assumes that 𝜋n is unimodal on(s0)with respect to the add-delete-swap
neighbourhood relation; see the definition below.

Definition 1. Given a function  ∶(s0) → 2(s0), we say 𝛾 is a local mode (w.r.t.  ) if
𝜋n(𝛾) ≥ max𝛾 ′∈ (𝛾) 𝜋n(𝛾), and we say𝜋n is unimodal (w.r.t. ) if there is only one local mode
w.r.t. .

Another important consequence of Condition 1 is that, as long as c1 > 2c0 > 2, tails of 𝜋n
‘decay fast’, since for any integer k ≥ 1, we have 𝜋n(k) ≤ p1−c0𝜋n(k−1)where k = {𝛾 ∈(s0) ∶
|𝛾△ 𝛾

∗| = k} denotes the set of all models that have a Hamming distance of k from 𝛾
∗. This

fact is a byproduct of the rapid mixing proof and implies that as n tends to infinity, 𝜋n(𝛾∗) → 1
in probability with respect to the true data-generating probability measure, a property that is
often known as strong model selection consistency and has been proved for other spike-and-slab
priors (Narisetty & He, 2014). To prove the rapid mixing of RW-MH, we define an opera-
tor  ∶(s0) →(s0) such that  (𝛾∗) = 𝛾∗, and for any 𝛾 ∈(s0) ⧵ {𝛾∗},  (𝛾) ∈ (𝛾) and
B(𝛾,  (𝛾)) ≥ pc0∧c1 . Then, as shown in Yang et al. (2016), one can construct a canonical path
ensemble, which yields a bound on the spectral gap of the transition matrix of the RW-MH
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chain (Diaconis & Stroock, 1991; Sinclair, 1992). It is noteworthy that 𝜋n can still be highly ‘irregu-
lar’ under Condition 1 in the sense that its p coordinates may have a very complicated dependence
structure due to the collinearity in the design matrix.

2.3 The LIT-MH algorithm

The proposal distribution of the RW-MH algorithm is not ‘informed’ in the sense that it
is constructed without using information from 𝜋n. But as explained in Section 1.2, a naive
informed proposal scheme may lead to worse performance due to exceedingly small acceptance
probabilities.

We consider a more general setup where the proposal weighting can be performed for each
type of proposal separately. By modifying the transition matrix in (7), define Klit ∶(s0) ×
(s0)→ [0, 1] by

Klit(𝛾, 𝛾 ′) =
∑

⋆=‘a’, ‘d’, ‘s’

h⋆(𝛾)w⋆(𝛾 ′|𝛾)
Z⋆(𝛾)

1
⋆
(𝛾)(𝛾 ′),

Z⋆(𝛾) =
∑

𝛾̃∈
⋆
(𝛾)

w⋆(𝛾̃|𝛾), (9)

where w⋆(𝛾 ′|𝛾) ∈ [0,∞) denotes the proposal weight of 𝛾 ′ ∈⋆(𝛾) given current state 𝛾 . In
words, we first sample the type of move with probabilities given by ha(𝛾), hd(𝛾) and hs(𝛾). If an
addition move is to be proposed, we sample a state 𝛾 ′ ∈a(𝛾) with weight wa(𝛾 ′|𝛾). We propose
to use

w⋆(𝛾 ′|𝛾) = p𝓁⋆ ∨ B(𝛾, 𝛾 ′) ∧ pL
⋆ , for ⋆ = ‘a’, ‘d’, ‘s’, (10)

where −∞ ≤ 𝓁⋆ ≤ L⋆ ≤ ∞ are some constants that may depend on the type of move. This pro-
posal scheme has two desirable properties. First, states with larger posterior probabilities are more
likely to be proposed. Second, for any 𝛾 ′ ∈⋆(𝛾), we can bound its proposal probability from
below by

Klit(𝛾, 𝛾 ′) =
h⋆(𝛾)w⋆(𝛾 ′|𝛾)

Z⋆(𝛾)
≥

h⋆(𝛾)
|⋆(𝛾)|

p𝓁⋆−L
⋆ .

More generally, these two properties still hold if we replace B(𝛾, 𝛾 ′) in (10) with f (B(𝛾, 𝛾 ′)) for any
monotone function f ∶ (0,∞)→ (0,∞); some related discussion will be given in Section 7.2.

Calculating the normalizing constant Z⋆ requires evaluating B(𝛾, 𝛾 ′) for every 𝛾 ′ ∈⋆(𝛾).
We use the method described in Zanella and Roberts (2019, supplement B), and we note that
the Cholesky decomposition of X⊤

𝛾 X𝛾 can be obtained by efficient updating algorithms, which
only have complexity O(|𝛾|2) (George & McCulloch, 1997; Smith & Kohn, 1996). Assuming that
X⊤X and X⊤y are pre-computed, the complexity of each addition or deletion move has complex-
ity O(p|𝛾|2) for LIT-MH and complexity O(|𝛾|2) for RW-MH. We will discuss the implementation
of swap moves in Section 7.1. For extremely large p, one may first use marginal regression (i.e.
simple linear regression of y against Xj for each j) to select a subset of potentially influential
covariates (Fan & Lv, 2008). Denoting this subset by S, we then replace the weighting function wa
in (10) by
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w̃a(𝛾 ′|𝛾) =

{
p𝓁a ∨ B(𝛾, 𝛾 ′) ∧ pLa , if 𝛾 ′ ∈a(𝛾), 𝛾 ′ ⧵ 𝛾 ∈ S,

p𝓁a , if 𝛾 ′ ∈a(𝛾), 𝛾 ′ ⧵ 𝛾 ∉ S.
(11)

The function w̃s can be defined similarly. Note that the calculation of wd is much easier since
|d(𝛾)| = |𝛾| ≤ s0. In Section 6, we will see that such a practical implementation of the LIT-MH
algorithm works well for a real dataset with p = 328,129.

3 DIMENSION-FREE MIXING OF LIT-MH

In this section, we prove that, if the parameters of LIT-MH are properly chosen, the algorithm can
achieve a dimension-free mixing rate when 𝜋n satisfies Condition 1 (the actual data-generation
mechanism and the interpretation of 𝛾∗ as the set of all influential covariates as given in (8)
are irrelevant to our proof as long as Condition 1 is satisfied). To simplify the analysis, we only
consider swaps when |𝛾| = s0. For any 𝛾 with |𝛾| < s0, with probability 1∕2 we propose to add a
covariate, and with probability 1∕2 we propose to remove one; that is, we let ha(𝛾) = hd(𝛾) = 1∕2,
hs(𝛾) = 0 for the proposal matrix Klit given in (9). If |𝛾| = s0, we let hs(𝛾) = hd(𝛾) = 1∕2 and
ha(𝛾) = 0. Thus, Klit can be written as

Klit(𝛾, 𝛾 ′) =
wa(𝛾|𝛾 ′)
2Za(𝛾)

1a(𝛾)(𝛾
′) + wd(𝛾|𝛾 ′)

2Zd(𝛾)
1d(𝛾)(𝛾

′), if |𝛾| < s0,

Klit(𝛾, 𝛾 ′) =
ws(𝛾|𝛾 ′)
2Zs(𝛾)

1s(𝛾)(𝛾
′) + wd(𝛾|𝛾 ′)

2Zd(𝛾)
1d(𝛾)(𝛾

′), if |𝛾| = s0. (12)

This is different from the symmetric RW-MH algorithm, where the probability of proposing a
deletion move is only O(s0∕p) since states in a(𝛾) ∪d(𝛾) are proposed randomly with equal
probability.

For the weighting functions wa,wd,ws, we assume

wa(𝛾 ′|𝛾) = B(𝛾, 𝛾 ′) ∧ pc1 ,

wd(𝛾 ′|𝛾) = 1 ∨ B(𝛾, 𝛾 ′) ∧ pc0 ,

ws(𝛾 ′|𝛾) = ps0 ∨ B(𝛾, 𝛾 ′) ∧ pc1 , (13)

where B is the posterior probability ratio given in (5) and c0, c1 are constants given in Condition 1.
Clearly, they are special cases of the general form given in (10). Other choices of the threshold
values may also yield the same mixing rate. For example, one may use wa(𝛾 ′|𝛾) = B(𝛾, 𝛾 ′), and
the proof will be essentially the same. However, for wd and ws, the use of two-sided thresholds is
critical.

3.1 Two-stage drift condition for LIT-MH

Let Klit be as defined in (12) and (13) and Plit denote the corresponding transition matrix, which
is given by
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Plit(𝛾, 𝛾 ′) =
⎧
⎪
⎨
⎪
⎩

Klit(𝛾, 𝛾 ′)min
{

1, 𝜋n(𝛾 ′)Klit(𝛾 ′,𝛾)
𝜋n(𝛾)Klit(𝛾,𝛾 ′)

}

, if 𝛾 ′ ≠ 𝛾,

1 −
∑
𝛾 ′≠𝛾 Plit(𝛾, 𝛾 ′), if 𝛾 ′ = 𝛾.

(14)

For any function f , let (Plitf )(𝛾) =
∑
𝛾 ′ f (𝛾 ′)Plit(𝛾, 𝛾 ′). If for some set A ⊂(s0), function V ∶

(s0)→ [1,∞) and constant 𝜆 ∈ (0, 1),

(PlitV)(𝛾) ≤ 𝜆V(𝛾), ∀ 𝛾 ∈ A, (15)

we say the LIT-MH chain satisfies a drift condition on A, which implies that the entry time of the
LIT-MH chain into Ac has a ‘thin-tailed’ distribution (see Lemma S1 in Appendix A).

To analyse the convergence rate of the LIT-MH algorithm, we will establish two drift condi-
tions, one for underfitted models and the other for overfitted models. The two conditions jointly
imply that, if initialized at an underfitted model, the LIT-MH chain tends to first move to some
overfitted model and then move to 𝛾∗. Then, general results for the two-stage drift condition to be
proved in Section 4 (see Theorem 2 and Corollary 2) can be used to derive a bound on the mixing
time of LIT-MH. Define

 = (𝛾∗, s0) = {𝛾 ∈(s0) ∶ 𝛾∗ ⊆ 𝛾},

which denotes the set of all overfitted models in (s0). The two drift functions we choose are
given by

V1(𝛾) =

(

1 +
y⊤P⊥𝛾 y
g−1y⊤y

)1∕ log(1+g)

, V2(𝛾) = e|𝛾⧵𝛾∗|∕s0 , (16)

where we recall 1 + g = p2𝜅1 defined in (3). If the current model 𝛾 ∉ , we expect that V1(𝛾) tends
to decrease in the next iteration since some covariates can be added to explain the variation of
the signal. If 𝛾 ∈  ⧵ {𝛾∗}, V2(𝛾) tends to decrease since non-influential covariates in 𝛾 can be
removed. For convenience, we introduce the notation

Ri(𝛾, 𝛾 ′) =
Vi(𝛾 ′)
Vi(𝛾)

− 1, i = 1, 2.

We summarize the properties of functions V1,V2,R1,R2 in the following lemma.

Lemma 1. Assume s0 ≥ 1. For any 𝛾, 𝛾 ′ ∈(s0), the following statements hold.

(i) 1 ≤ V1(𝛾) ≤ e and 1 ≤ V2(𝛾) ≤ e.
(ii) For any j ∉ 𝛾 , R1(𝛾, 𝛾 ∪ {j}) ≤ 0; for any k ∈ 𝛾 , R1(𝛾, 𝛾 ⧵ {k}) ≥ 0.

(iii) For any j ∈ (𝛾 ∪ 𝛾∗)c and k ∈ 𝛾 ⧵ 𝛾∗,

R2(𝛾, 𝛾 ∪ {j}) ≤ 2
s0
, R2(𝛾, 𝛾 ⧵ {k}) ≤ − 1

2s0
.

Proof. See Section S5.2 in Appendix A.

Since Plit(𝛾, 𝛾) = 1 −
∑
𝛾 ′≠𝛾 Plit(𝛾, 𝛾 ′), some algebra yields that, for i = 1, 2,
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(PlitVi)(𝛾)
Vi(𝛾)

= 1 +
∑

𝛾 ′≠𝛾

Ri(𝛾, 𝛾 ′)Plit(𝛾, 𝛾 ′),

= 1 +
∑

⋆=‘a’, ‘d’, ‘s’

∑

𝛾 ′∈
⋆
(𝛾)

Ri(𝛾, 𝛾 ′)Plit(𝛾, 𝛾 ′).
(17)

Therefore, we only need to bound the sum of Ri(𝛾, 𝛾 ′)Plit(𝛾, 𝛾 ′) for three types of proposals sep-
arately. Since by (12), the proposal probability of any move is bounded by 1∕2, we have, for any
𝛾
′ ≠ 𝛾 ,

Plit(𝛾, 𝛾 ′) = min
{

Klit(𝛾, 𝛾 ′), B(𝛾, 𝛾 ′)Klit(𝛾 ′, 𝛾)
}
≤ B(𝛾, 𝛾 ′)∕2. (18)

Consider the case of overfitted models first. Let 𝛾 ∈(s0) be overfitted. By Condition (1a), if
we remove any non-influential covariate from 𝛾 , we will get a model with a much larger poste-
rior probability; by Condition (1b), if we remove any influential covariate from 𝛾 , we will get an
underfitted model with a much smaller posterior probability. As a result, when a deletion move is
proposed, the covariate to be removed will be non-influential with high probability. The resulting
change in V2 can be bounded using Lemma 1(iii). Note that we also need to bound the probability
of adding this covariate back so that we can show the acceptance probability of the desired dele-
tion move is large. The case of adding a non-influential covariate is easier to handle; one just needs
to use Lemma 1(iii) and the inequality in (18). The argument for swap moves is essentially a com-
bination of those for addition and deletion moves. The bounds we find for the summation term
in (17) are given in Lemma S3, from which we obtain the drift condition for overfitted models.

Proposition 1. Suppose Condition 1 holds for some c0 ≥ 2 and c1 ≥ 1. For any overfitted model 𝛾
such that 𝛾 ≠ 𝛾∗ and |𝛾| ≤ s0,

(PlitV2)(𝛾)
V2(𝛾)

= 1 − 1
4s0

+ O
(

1
ps0

)

.

Proof. It follows from (17) and the bounds provided in Lemma S3.

Remark 1. By Proposition 1 and Lemma 1(i), if we consider the LIT-MH chain restricted to the
set , the mixing time has order at most s0. The order of this bound is sharp. Consider the
worst case where 𝛾∗ = ∅ and |𝛾| = s0. Then we need approximately 2s0 steps to remove all
the covariates in 𝛾 .

Next, consider the set of all underfitted models. Comparing the expression of V1 in (16) with
that of 𝜋n in (4), we see that a lower bound on B(𝛾, 𝛾 ′) can yield an upper bound on R1(𝛾, 𝛾 ′).
This is proven in Lemma S5 in Section S5 in Appendix A. Just like in the analysis of overfitted
models, we will bound R1(𝛾, 𝛾 ′)Plit(𝛾, 𝛾 ′) for three types of proposals separately. In particular, by
Lemma 1(ii), we need to bound the increase in V1 when we remove any covariate and show that
the expected decrease in V1 is sufficiently large when we use the addition move (or swap move).
However, the calculation is much more complicated than in the overfitted case. By Condition (1b),
we know that there exists at least one model in a(𝛾) which has a much smaller value of V1;
denote this model by 𝛾 ∪ {j∗}. But in an extreme case, we may have B(𝛾, 𝛾 ∪ {j}) ≥ pc1 for every
j ∉ 𝛾 . This happens when, for some j∗ ∈ [p], |𝛽∗j∗ | is extremely large and every non-influential
covariate is slightly correlated with Xj∗ . Hence, the proposal probability, Klit(𝛾, 𝛾 ∪ {j∗}), may be
as small as O(p−1), and if we only consider the best addition move, the bound on the mixing time
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will have a factor of p. This is the main reason why the path method used by Yang et al. (2016)
is unable to yield a dimension-free mixing time bound for LIT-MH. To overcome this problem,
we will directly bound the sum of R1(𝛾, 𝛾 ′)Plit(𝛾, 𝛾 ′) over all possible addition moves and take into
account ‘good’ moves other than 𝛾 ∪ {j∗}. The same technique is also needed for the analysis of
swap moves. The following proposition gives the drift condition for underfitted models, where
we recall 𝜅 = 𝜅0 + 𝜅1.

Proposition 2. Suppose that n = O(p), s0 log p = O(n), 𝜅 = O(s0), and Condition 1 holds for some
c1 such that

(c0 + 1) ∨ 4 ≤ c1 ≤ n𝜅1 − 𝜅.

For any underfitted model 𝛾 ∈(s0),

(PlitV1)(𝛾)
V1(𝛾)

≤ 1 − c1

8n𝜅1
+ o

(
1

n𝜅1

)

.

Proof. It follows from (17) and Lemma S6.

3.2 Mixing time of the LIT-MH algorithm

The remaining challenge is to find a mixing time bound for the LIT-MH chain by combining
the two drift conditions derived in Propositions 1 and 2. This is a very interesting problem in
its own right and will be investigated in full generality in the next section. Applying Corollary 2
(which will be presented in Section 4.2), we find the following mixing time bound for the LIT-MH
algorithm.

Theorem 1. Consider the Markov chain LIT-MH defined by (12), (13) and (14) with stationary
distribution 𝜋n given in (4). Define the mixing time of LIT-MH by

Tmix = sup
𝛾∈(s0)

min{t ≥ 0 ∶ ||Pt
lit(𝛾, ⋅) − 𝜋n(⋅)||TV ≤ 1∕4},

where ||⋅||TV denotes the total variation distance. Suppose that n = O(p), s0 log p = O(n) and
𝜅 = O(s0). If Condition 1 holds for c0 = 2 and 4 ≤ c1 ≤ n𝜅1 − 𝜅, then, for sufficiently large n,
we have

Tmix ≤ 800 max
{

n𝜅1

c1
, 3s0

}

.

Proof. See Section S5.5 in Appendix A.

Remark 2. The assumptions we have made in Theorem 1 are mild and are essentially the same
as those of Yang et al. (2016). First, it is known that s0 log p = O(n) is a necessary condition
for estimation consistency in high-dimensional sparse regression models; Yang et al. (2016)
assumed that s0 log p ≤ n∕32. Second, the prior parameter choice 𝜅 = O(s0) is very reason-
able. Indeed, if 𝜅 grows faster than n∕ log p, for the data-generating model considered in
Section 2.2, the threshold 𝛽min in (8) needs to go to infinity for consistent model selection,
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which would be of little interest in most applications. Note that we can always let 𝜅1 be
a fixed positive constant, and then the mixing time bound in Theorem 1 is at most O(n).
One can even prove Condition 1 for some c1 growing with n (e.g. by letting 𝛽min in (8) be
sufficiently large), in which case it is possible for our bound to only grow at rate s0. For com-
parison, the upper bound on the mixing time of the symmetric RW-MH algorithm given
in Yang et al. (2016, theorem 2) is O(ps2

0(n𝜅1 + s0𝜅1 + s0𝜅0) log p).

4 GENERAL RESULTS FOR THE TWO-STAGE DRIFT
CONDITION

For the LIT-MH algorithm, we have established two drift conditions, one for underfitted models
and the other for overfitted models. In this section, we derive some general results for using such a
two-stage drift condition to bound the mixing time of a Markov chain (not necessarily the LIT-MH
chain), which we denote by (Xt)t∈N where N = {0, 1, 2, … }. We only need to require the following
assumption on (Xt)t∈N, and note that the underlying state space may not be discrete.

Assumption A. (Xt)t∈N is a Markov chain defined on a state space ( , ) where the 𝜎-algebra
 is countably generated. The transition kernel P is reversible with respect to a stationary
distribution 𝜋, and P has non-negative spectrum.

Remark 3. There is little loss of generality by assuming reversibility and non-negative spectrum
for MCMC algorithms. First, both Metropolis–Hastings and random-scan Gibbs algo-
rithms (in the classical sense) are always reversible, though some non-reversible versions
have been proposed in recent years (Bierkens, 2016; Bierkens et al., 2019; Bouchard-Côté
et al., 2018; Fearnhead et al., 2018; Gagnon & Doucet, 2020). Second, for any transition
kernel P, its lazy version Plazy = (P + I)∕2 always has non-negative spectrum. As noted
in Baxendale (2005), these two assumptions can yield better bounds on the convergence
rates.

For any non-negative measurable function f , let (Ptf )(x) = Ex[f (Xt)], where Ex denotes the
expectation with respect to the probability measure for (Xt)t∈N with X0 = x. For a non-empty
measurable set C ⊂  , we say (Xt) satisfies a drift condition on  ⧵ C if

(PV)(x) ≤ 𝜆V(x), ∀ x ∉ C, (19)

for some function V ∶  → [1,∞) and constant 𝜆 ∈ (0, 1). If C = {x∗} is a singleton set, (19) will
be referred to as a ‘single element’ drift condition. This happens when the state x∗ has a large
stationary probability mass and the chain has a tendency to move towards x∗.

4.1 Convergence rates with the two-stage drift condition

Motivated by the variable selection problem, we consider a setting where (Xt)t∈N satisfies two
‘nested’ drift conditions. Let A be a measurable subset of  and x∗ be a point in A. First, we use
a drift condition on Ac to describe the tendency of the chain to move towards A, if it is currently
outside A. Second, we assume once the chain enters A, it drifts towards x∗, which can be described
by a single element drift condition on A ⧵ {x∗}. We refer to such a construction as a two-stage drift
condition, for which the main result is provided in the following theorem.
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Theorem 2. Let (Xt)t∈N, ,P, 𝜋 be as given in Assumption A. Suppose that there exist two drift
functions V1,V2 ∶  → [1,∞), constants 𝜆1, 𝜆2 ∈ (0, 1), a set A ∈  and a point x∗ ∈ A such
that

(i) PV1 ≤ 𝜆1V1 on Ac, and
(ii) PV2 ≤ 𝜆2V2 on A ⧵ {x∗}.

Further, suppose that A satisfies the following conditions for some finite constants
M ≥ 2 and K ≥ 1.

(iii) For any x ∈ A, V1(x) = 1, and if P(x,Ac) > 0, Ex[V1(X1)|X1 ∈ Ac] ≤ M∕2.
(iv) For any x ∈ A, V2(x) ≤ K, and if P(x,Ac) > 0, Ex[V2(X1)|X1 ∈ Ac] ≥ V2(x).
(v) For any x ∈ A, P(x,Ac) ≤ q for some constant q < min{1 − 𝜆1, (1 − 𝜆2)∕K}.

Then, for every x ∈  and t ∈ N, we have

||Pt(x, ⋅) − 𝜋||TV ≤ 4𝛼t+1
(

1 + V1(x)
M

)

,

where 𝛼 is a constant in (1 − q∕4, 1) and can be computed by

𝛼 = 1 + 𝜌r

2
=

1 +Mr∕u
2

, 𝜌 =
qK

1 − 𝜆2
, u = 1

1 − q∕2
, r =

log u
log(M∕𝜌)

.

Proof. See Section S2 in Appendix A.

Remark 4. To interpret the two drift conditions, (i) and (ii), it may help to think of log V1 as
the ‘distance’ to the set A, and log V2 as the ‘distance’ to the point x∗. Both conditions
(iii) and (iv) then become natural. Indeed, there is no loss of generality by assuming that
V1 = 1 on A. Given any other drift function V ′

1 which satisfies (i) on Ac, we can always
define V1 by letting V1 = 1 on A and V1 = V ′

1 on Ac, which still satisfies all the assumptions
made in the theorem. The constant M can be simply chosen to be 2 supx∈ V1(x), if it is
finite.

Remark 5. Consider the distribution of the hitting time 𝜏∗ = min{t ≥ 0 ∶ Xt = x∗}, which, by
Theorem S1 in Appendix A, can be used to bound the mixing time of the chain. The sam-
ple path from an arbitrary point x ∈ Ac to x∗ can be broken into disjoint segments in Ac

and A. Though the length of each segment has a finite expectation due to the two drift
conditions, the number of these segments largely depends on the parameter q, and E[𝜏∗]
may be infinite if the chain can easily escape from the set A. This is why we need con-
dition (v). Consider some x ∈ A and y ∈ Ac such that P(x, y) > 0. For Markov chains that
move locally, P(x, y) > 0 implies that x and y are very ‘close’. By the reversibility of the
chain, we have P(x, y) ≤ 𝜋(y)∕𝜋(x). Hence, to check condition (v), it suffices to bound the
ratio 𝜋(y)∕𝜋(x), which is often straightforward for neighbouring states x, y. When apply-
ing Theorem 2, we should be careful with the choice of q. Even if P(x,Ac) = 0 for all
x ∈ A, we should try other positive values of q so that 1 − 𝛼 can be maximised. As a rule
of thumb, we can choose some q that has the same order as min{1 − 𝜆1, (1 − 𝜆2)∕K}; see
Corollary 1.
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4.2 Convergence rates in the high-dimensional setting

For MCMC algorithms,  is the parameter space and its dimension is conventionally denoted
by p. For high-dimensional problems, p = p(n) grows to infinity and typically, we have the
drifting parameters 𝜆1, 𝜆2 ↑ 1 and the convergence rate (1 − 𝛼) ↓ 0, where 𝜆1, 𝜆2, 𝛼 are as given
in Theorem 2. To show the chain is rapidly mixing, we need to find a finite constant c > 0
such that p−c = O(1 − 𝛼). The following result extends Theorem 2 to the high-dimensional
setting.

Corollary 1. Consider a sequence of Markov chains where each (Xt)t∈N (implicitly indexed
by n) satisfies the assumptions in Theorem 2. Assume that 𝜆1, 𝜆2 → 1 and q ≤ min{1 − 𝜆1,

(1 − 𝜆2)∕CK} for some universal constant C > 1. Then, we have

||Pt(x, ⋅) − 𝜋||TV ≤ 4𝛼t+1
(

1 + V1(x)
M

)

,

for some 𝛼 such that (∼ denotes asymptotic equivalence)

1 − 𝛼 ∼
(1 − 𝜆∗) log C

4 log(MC)
, where 1 − 𝜆∗ = min

{

1 − 𝜆1,
1 − 𝜆2

CK

}

.

Proof. Observe that without loss of generality we can assume 1 − 𝜆1 = (1 − 𝜆2)∕CK = 1 − 𝜆∗
and q = 1 − 𝜆∗ = o(1). Then, the constants defined in Theorem 2 satisfy 𝜌 = C−1 and
r ∼ q∕(2 log(MC)), from which the result follows.

Corollary 2. For 𝜖 ∈ (0, 1∕2), define the 𝜖-mixing time of the chain (Xt)t∈N by

Tmix(𝜖) = sup
x∈

min{t ≥ 0 ∶ ||Pt(x, ⋅) − 𝜋(⋅)||TV ≤ 𝜖}.

In the setting of Corollary 1 with M = 2 supx∈ V1(x), for sufficiently large n, we
have

Tmix(𝜖) ≲
4 log(6∕𝜖)

log C
log(CM)max

{
1

1 − 𝜆1
,

CK
1 − 𝜆2

}

.

Proof. This follows from a straightforward calculation using − log(𝛼) ∼ 1 − 𝛼.

Remark 6. In Corollaries 1 and 2, we do not make assumptions on the growth rates of M and K.
In particular, if M = pc for some constant c ≥ 0, it will only introduce an additional log p
factor to the the mixing time.

4.3 Comparison with drift-and-minorization methods

The two-stage drift condition can be seen as a generalisation of the single element drift condi-
tion since eventually the chain will arrive at the central state x∗. But, from a different angle,
it also resembles the classical drift-and-minorization methods, which assume that there exist a
drift function V ∶  → [1,∞), a ‘small’ set S ∈  , a probability measure 𝜓 on ( , ), constants
𝜆 ∈ (0, 1), 𝜉 > 0 and b < ∞ such that
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(drift condition) PV ≤ 𝜆V1Sc + b1S,

(minorization condition) P(x, ⋅) ≥ 𝜉𝜓(⋅) for x ∈ S.

Both coupling arguments and regeneration theory can be used to compute a bound on ||Pt(x, ⋅)
− 𝜋||TV; see, for example, Rosenthal (1995); Roberts and Tweedie (1999). By the minorization
condition, each time the chain is in S, we can let the whole process regenerate according to𝜓 with
probability 𝜉. By the drift condition, the return times into S have geometrically decreasing tails.
Jointly, the two conditions imply that the first time that the chain regenerates has a ‘thin-tailed’
distribution. The proof for our result with the two-stage drift condition uses a similar idea. The
set A in Theorem 2 can be seen as the small set, and each time the chain enters A, there is some
positive probability that the chain will hit x∗ and thus regenerates before leaving A. Essentially,
we have replaced the minorization condition on the small set with another drift condition, which
is still used to bound the regeneration probability when the chain visits the small set.

The above comparison between the two-stage drift condition and drift-and-minorization
method suggests that one may want to consider the following more general setting. Suppose there
exist a sequence of sets  = A0 ⊇ A1 ⊇ · · · ⊇ Ak such that for each i = 0, 1, … , k − 1, a drift con-
dition holds on Ai ⧵ Ai+1 showing that the chain tends to drift from Ai ⧵ Ai+1 into Ai+1. When Ak is a
singleton set, one can mimic the proof of Theorem 2 to combine the k drift conditions and derive
a quantitative bound on the mixing time. When Ak is a set on which we can establish a minoriza-
tion condition or we have a mixing time bound for the Markov chain restricted to Ak, the main
idea of our proof still applies, though some details may need nontrivial modification. For a con-
crete example, consider the posterior distribution of 𝛽 in our variable selection problem described
in Section 2.1. To sample from 𝜋n(𝛽), we just need to modify any MH algorithm targeting 𝜋n(𝛾) by
sampling from the conditional posterior distribution 𝜋n(𝛽|𝛾) at the end of each iteration. Let ||𝛽||0
denote the number of non-zero entries of 𝛽. Then, assuming Condition 1 holds, we can define
0 = {𝛽 ∈ Rp ∶ ||𝛽||0 ≤ s0}, 1 = {𝛽 ∈ 0 ∶ ∀j ∈ 𝛾∗, 𝛽j ≠ 0} (the set of all possible values of 𝛽
for an overfitted model), and 2 = {𝛽 ∈ 1 ∶ ∀j ∉ 𝛾∗, 𝛽j = 0} (the set of all possible values of 𝛽
for the model 𝛾∗). The two drift conditions proved in Section 3.1 show that the MH algorithm
tends to drift from0 ⧵1 into1 and from1 ⧵2 into2. By combining them with standard
results in the literature for the mixing time of an MH algorithm targeting 𝜋n(𝛽|𝛾 = 𝛾∗) (which is
just a multivariate normal distribution), one can derive the mixing time bound for the MH chain.

4.4 Applications of the two-stage drift condition

Our use of the two-stage drift condition in Section 3 is largely motivated by Condition 1, which
characterises the different behaviours of underfitted and overfitted models. Though this makes
the two-stage drift condition look very specific to the variable selection problem, there are actually
many discrete-state-space problems other than variable selection where the mixing time of MH
algorithms can be conveniently analysed by using multiple drift conditions.

First, many model selection problems can be written as a set of sparse linear regression mod-
els. For example, in structure learning problems, the goal is to infer the underlying Bayesian
network (i.e. directed acyclic graph) of a p-variate distribution. These problems are often formu-
lated as structural equation models where the causal relationships among p coordinate variables
are described by p sparse linear regression models. When the ordering is known, structure learn-
ing of Bayesian networks becomes very similar to variable selection, and one can extend and
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prove Condition 1 in a way completely analogous to that in Yang et al. (2016). The application
of the two-stage drift condition and the construction of LIT-MH are also straightforward. When
the ordering is unknown, the problem becomes much more complicated due to the existence of
Markov equivalent Bayesian networks, but it is still possible to generalise Condition 1 (Zhou &
Chang, 2021), and the two-stage drift condition can be constructed accordingly.

Moreover, in recent years, general high-dimensional consistency results have been obtained
for a large variety of Bayesian model selection problems. Gao et al. (2020) proved optimal pos-
terior contraction rates for a general class of structured linear models, including as special cases
stochastic block model, multi-task learning, dictionary learning and wavelet estimation. All these
examples share common features with the variable selection problem; for example, one can nat-
urally define a model to be underfitted or overfitted according as it has the best model nested
within it. It seems very promising that the methodology developed in Gao et al. (2020) can be used
to prove results similar to Condition 1 in general settings, from which we may further establish a
two-stage drift condition, one for underfitted models and the other for overfitted ones.

In addition to ‘underfitted/overfitted’ schemes, for some problems, we may partition the state
space using a different strategy. For example, consider a change-point detection problem where
we need to infer both the number and locations of change points. Suppose that we use an infor-
mative prior which favours models with equal-sized segments. Then, if we incorrectly infer the
number of change points, the locations of change points cannot be accurately estimated either
due to the prior. In such cases, a possible approach to mixing time analysis is to construct one drift
condition showing that the chain first drifts towards models with true number of change points
and another drift condition showing that once the number of change points is correctly inferred,
the chain is able to tune the locations of change points towards their true values. We note that sim-
ilar ideas may also be applied to more complicated spatial clustering models, such as those based
on spanning trees (Lee et al., 2021; Luo et al., 2021). Compared with using a single drift condition
on the whole space, the two-stage approach often leads to an easier and more constructive proof.

5 SIMULATION STUDIES

For our simulation studies, we implement the RW-MH and LIT-MH algorithms as follows.
Assume the proposal scheme has the form given in (9). In each iteration we propose an addi-
tion, deletion or swap move with fixed probabilities 0.4, 0.4 and 0.2, respectively; that is, we set
ha(𝛾) = hd(𝛾) = 0.4, hs(𝛾) = 0.2 in (9). This is slightly different from the setting in Section 3, but
our mixing time bound still applies up to some constant factor. We consider four choices of the
weighting functions wa and wd.

RW-MH: wa(𝛾 ′|𝛾) = 1, wd(𝛾 ′|𝛾) = 1.
LIT-MH-1: wa(𝛾 ′|𝛾) = p−1 ∨ B(𝛾, 𝛾 ′) ∧ p, wd(𝛾 ′|𝛾) = p−1 ∨ B(𝛾, 𝛾 ′) ∧ 1,
LIT-MH-2: wa(𝛾 ′|𝛾) = p−2 ∨ B(𝛾, 𝛾 ′) ∧ p2

, wd(𝛾 ′|𝛾) = p−2 ∨ B(𝛾, 𝛾 ′) ∧ p,
LB-MH-1: wa(𝛾 ′|𝛾) =

√
B(𝛾, 𝛾 ′), wd(𝛾 ′|𝛾) =

√
B(𝛾, 𝛾 ′).

LIT-MH-2 is more aggressive than LIT-MH-1 in the sense that the proposal distribution is more
concentrated on the neighboring states with very large posterior probabilities. The last one is
inspired by the locally balanced proposals of Zanella (2020). Since the proposal weights are
unbounded in LB-MH-1, we expect its acceptance probability to be smaller than that of LIT-MH
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algorithms. For comparison, we also consider the original locally balanced MH algorithm
of Zanella (2020) with proposal

Klb(𝛾, 𝛾 ′) =
√

B(𝛾, 𝛾 ′)
Z(𝛾)

1a(𝛾)∪d(𝛾)(𝛾
′), where Z(𝛾) =

∑

𝛾̃∈a(𝛾)∪d(𝛾)

√
B(𝛾, 𝛾̃).

Denote this algorithm by LB-MH-2. It differs from LB-MH-1 in that we do not distinguish types
of proposal moves when calculating proposal weights. We will discuss LB-MH-1 and LB-MH-2 in
Sections 7.2 and 7.3.

The use of the parameter s0 is unnecessary in our simulation studies since all sampled models
have size much smaller than n. For computational convenience, we do not consider swap moves
for LB-MH-2 and, for the other algorithms, we implement swap moves by compounding one addi-
tion and one deletion move, which makes the swap proposal only ‘partially informed’; details are
given in Section 7.1. When we describe the modality of 𝜋n in simulation results, we are always
referring to the ‘single-flip’ neighbourhood relationa(⋅) ∪d(⋅). The code is written in C++ in
order to maximise the computational efficiency; see Section S6 in Appendix A.

5.1 Finding models with high posterior probabilities

For the first simulation study, we consider the settings used in Yang et al. (2016) with random
design matrices. Let all rows of X be i.i.d., and the ith row vector, x(i), be generated in the following
two ways.

Independent design: x(i)
i.i.d.∼ MN(0, Ip),

Correlated design: x(i)
i.i.d.∼ MN(0,Σ), Σjk = e−|j−k|

.

The response vector y is simulated by y = X𝛽∗ + z with z ∼ MN(0, In). The first 10 entries of
𝛽
∗ are given by

𝛽
∗
[10] = SNR

√
log p

n
(2,−3, 2, 2,−3, 3,−2, 3,−2, 3),

where SNR > 0 denotes the signal-to-noise ratio. All the other entries of 𝛽∗ are set to zero. The
un-normalized posterior probability of a model 𝛾 is calculated using (4) with 𝜅0 = 2 and 𝜅1 = 3∕2.
Simulation experiments are conducted for SNR = 1, 2, 3 and (n, p) = (500, 1000) or (1000, 5000).
For each setting, we simulate 100 datasets, and for each dataset, we run RW-MH for 105 iterations
and each informed algorithm for 2000 iterations. All algorithms are initialized with a randomly
generated model 𝛾 (0) with |𝛾 (0)| = 10. Let 𝛾true = {1, 2, … , 10} denote the true set of covariates
with non-zero regression coefficients, and let 𝛾̂max be the model with the largest posterior prob-
ability that has been sampled by any of the five algorithms. If an algorithm has never sampled
𝛾̂max, the run is counted as a failure.

Results are summarized in Table 1. We first note that when SNR = 3, LB-MH-2 performs much
worse than RW-MH and almost always gets stuck at some sub-optimal local mode. This is consis-
tent with the observation made in Example 1, which will be further discussed in Section 7.2. Due
to its poor performance, we exclude LB-MH-2 from all the remaining numerical experiments.
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For SNR = 2 and 3, informed algorithms always find the model 𝛾̂max much faster than RW-MH.
Remarkably, the median wall time needed for LIT-MH-1 to sample 𝛾̂max (denoted by tmax in the
table) is less than 0.2 second in all scenarios. When SNR = 1, the best model is often the null
model, in which case RW-MH can also find 𝛾̂max easily (since we fix hd(𝛾) = 0.4, it only takes
RW-MH about 25 iterations to propose removing the 10 covariates in 𝛾 (0)). When the SNR is either
very strong (SNR = 3) or very weak (SNR = 1), all algorithms except LB-MH-2 can identify 𝛾̂max
in most runs. Similar findings were made in Yang et al. (2016), and this is because when SNR
is very large, Condition 1 is likely to be satisfied with 𝛾

∗ = 𝛾true, and when SNR is very small,
Condition 1 is likely to be satisfied with 𝛾∗ = ∅. For correlated designs with SNR = 2, the poste-
rior landscape tends to be multi-modal, and all algorithms may get stuck at local modes. But the
informed algorithms still have much better performance than RW-MH: each informed algorithm,
except LB-MH-2, is able to sample 𝛾̂max in ≥ 80% of the runs, while RW-MH has a much larger
failure rate and finds 𝛾̂max much more slowly. We also observe that in most settings, LIT-MH-1
is (significantly) more efficient than LIT-MH-2 and LB-MH-1. This suggests that it is helpful to
truncate the weighting function wa and wd to a relatively small range, which is consistent with our
theory. Since |𝛾 (0)| = |𝛾true| = 10 (and the two sets are disjoint in most cases), it takes at least 20
addition and deletion proposals to move from 𝛾

(0) to 𝛾true. According to Table 1, in high SNR set-
tings, 𝛾̂max usually coincides with 𝛾true, and the median number of iterations needed by LIT-MH-1
to reach 𝛾̂max is about 20 (except in the correlated design case with n = 500, p = 1000), suggesting
that the performance of LIT-MH-1 is close to being ‘optimal’ in the sense that any other local MH
sampler cannot find 𝛾̂max in a smaller number of iterations.

Since to implement informed MCMC algorithms, we need to evaluate 𝜋n for every possible
addition or deletion move in each iteration, we can use the MCMC sample paths to empiri-
cally study to what extent Condition 1 is satisfied. As predicted by the theory developed in Yang
et al. (2016), we find that Condition 1 is more likely to be violated when SNR is small or the design
matrix contains highly correlated covariates. See Sections S4.1 and S4.2 in Appendix A for details.

5.2 Rao-Blackwellization for LIT-MH

During MCMC, given the current model 𝛾 , we can estimate 𝛽 using the conditional posterior mean
𝛽(𝛾) = E[𝛽|𝛾, y]. For LIT-MH algorithms, we can obtain a Rao-Blackwellized estimator, 𝛽RB(𝛾),
as follows. For each j ∈ [p], let 𝛾j = 1𝛾 (j) indicate whether covariate j is selected in 𝛾 , and let
𝛾−j = (𝛾1, … , 𝛾j−1, 𝛾j+1, … , 𝛾p) denote the status of all the other p − 1 covariates. By the law
of total expectation, E[𝛽j|y] = E[ E[𝛽j|𝛾−j, y] ]. For informed proposal schemes, we can get
E[𝛽j|𝛾−j, y] for every j ∈ [p] with little additional computational cost, since

E[𝛽j|𝛾−j, y] =
𝜋n(𝛾 ∪ {j}) E[𝛽j|𝛾−j, y, 𝛾j = 1]
𝜋n(𝛾 ∪ {j}) + 𝜋n(𝛾 ⧵ {j})

,

and all the three terms on the right-hand side (one of them is just 𝜋n(𝛾)) have already been
obtained when we calculate the normalizing constants, Za(𝛾) and Zd(𝛾). The estimator 𝛽RB(𝛾) is
then obtained by estimating each entry using E[𝛽j|𝛾−j, y].

Let MSE(𝛽) = p−1||𝛽 − 𝛽∗||22 denote the error of an estimator 𝛽. For the simulation study
described in Section 5.1, we observe that MSE(𝛽RB(𝛾)) always decreases to a nearly optimum
level within a few iterations. See Figure 1 for the trajectories of MSE(𝛽RB(𝛾)) of LIT-MH-1 and
MSE(𝛽(𝛾)) of RW-MH, averaged over 100 datasets. (Trajectories of LIT-MH-2 and LB-MH-1 are
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F I G U R E 1 Trajectories of MSE(𝛽). Solid lines represent the LIT-MH-1 algorithm, which uses 𝛽 = 𝛽RB(𝛾);
dotted lines represent the RW-MH algorithm, which uses 𝛽 = 𝛽(𝛾). The y-axis is {MSE(𝛽)}1∕2∕SNR averaged over
100 datasets.

omitted since they are very similar to that of LIT-MH-1.) The advantage of LIT-MH over RW-MH
becomes even more substantial. More investigation is needed to justify the use of 𝛽RB(𝛾), but
our analysis at least shows that the computation of the proposal weights can be made use of in
multiple ways.

5.3 Exploring multi-modal posterior distributions

Condition 1 represents the ideal case where the posterior distribution is unimodal, but in real-
ity multi-modality is the norm. In our second simulation study, we consider a more realistic
simulation scheme which gives rise to multi-modal posterior distributions. The design matrix
X is still assumed to have i.i.d. rows, but each row is sampled from MN(0,Σd,p) where Σd,p =
diag(Σd, … ,Σd) is block-diagonal. Each block Σd has dimension d × d, and (Σd)jk = e−|j−k|∕3.
We fix n = 1000, p = 5000 and d = 20. The response y is still simulated by y = X𝛽∗ + z with
z ∼ MN(0, In). But we generate 𝛽∗ by first sampling 𝛾∗ from the uniform distribution on the set
{𝛾 ⊂ [p] ∶ |𝛾| = 100} and then sampling 𝛽∗

𝛾∗ ∼ MN(0, 𝜎2
𝛽
I100). We use 𝜎𝛽 = 0.1, 0.2, 0.3, 0.4, 0.5 to

simulate posterior distributions with varying degrees of multi-modality. For the hyperparameters,
we choose 𝜅0 = 1 and 𝜅1 = 1∕2. We observe that the posterior multi-modality is most severe for
𝜎𝛽 = 0.2.

For each setting, we simulate 20 datasets, and for each dataset, we run RW-MH for 2 × 105 iter-
ations and each informed algorithm for 2000 iterations. All four algorithms are initialized with
the model obtained by forward-backward stepwise selection. We use effective sample size (ESS)
to measure the sampling efficiency. To calculate ESS, we consider two one-dimensional ‘sum-
mary statistics’. Let (𝛾 (k), 𝛽(k)) denote the sample collected in the k-th MCMC iteration, where
𝛽
(k) is drawn from the conditional posterior distribution of 𝛽 given 𝛾 (k). Let T(k)1 = ||𝛽(𝛾 (k)) − 𝛽∗||22

where 𝛽(𝛾) = E[𝛽|𝛾, y], and let T(k)2 = ||X𝛽(k)||22. Note that T(k)1 only depends on 𝛾 (k), and thus the
ESS of T1 roughly reflects the efficiency of sampling 𝛾 , while the ESS of T2 reflects the efficiency
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of sampling 𝛽. The ESS estimates presented in Table 2 are calculated by using the R package
coda (Plummer et al., 2006), and we provide nonparametric ESS estimates in Section S4.4 in
the supplement. Given that the interest is in estimating the posterior means of 𝛽 and 𝛾 , follow-
ing Vats et al. (2019), we may calculate a multivariate ESS by appealing to a multivariate central
limit theorem using {𝛾 (k)} or {𝛽(k)}. However, the resulting Monte Carlo covariance matrix is quite
large, and the estimation of such high-dimensional matrices is an ongoing problem in the litera-
ture; see Jin and Tan (2021). In Section S4.4 in Appendix A, we propose a method for construct-
ing a low-dimensional summary of 𝛾 , and present corresponding multivariate ESS estimation
results.

From Table 2, we see that given a fixed total number of iterations, the acceptance rate of
RW-MH decreases quickly for larger 𝜎𝛽 , while it remains roughly unchanged around 0.5 for
LIT-MH algorithms. In all scenarios, LIT-MH-1 and LIT-MH-2 have much larger effective sample
sizes (per second) of both statistics T1 and T2 than RW-MH, indicating that LIT-MH algorithms
can explore multi-modal distributions and collect posterior samples much more efficiently than
RW-MH. Comparing ESS(T1) of LIT-MH and that of RW-MH, we see that the advantage of using
LIT-MH for sampling 𝛾 is huge for small values of 𝜎𝛽 . For LB-MH-1, we note that it always has
smaller acceptance rate and effective sample sizes than the two LIT-MH algorithms. This is prob-
ably due to the use of an unbounded weighting function, which will be further discussed in
Section 7.3.

6 ANALYSIS OF REAL GWAS DATA

We have obtained access to two GWAS (genome-wide association study) data sets on glaucoma
from dbGaP (the database of Genotypes and Phenotypes) with accession no. phs000308.v1.p1
and phs000238.v1.p1. Both datasets only contain individuals of Caucasian descent, and they were
generated using the same genotyping array. We remove individuals whose self-reported race is
Hispanic Caucasian and those with abnormal intraocular pressure or CDR measurements. We
choose the response variable y to be the standardised CDR measurement averaged over two eyes.
After merging the two datasets, we discard variants with minor allele frequency less than 0.05 or
missing rate greater than 0.01 and variants that fail the Hardy–Weinberg equilibrium test (p-value
less than 10−6 in control samples). Finally, we use PLINK to prune variants with pairwise corre-
lation > 0.75 and end up with n = 5,418 and p = 328,129. Each entry of the matrix X takes value
in {0, 1, 2}, representing the number of copies of the minor allele. For the hyperparameters, we
choose 𝜅0 and 𝜅1 such that g = 100 and 𝜋0(𝛾) ∝ (20∕p)|𝛾|. These choices are motivated by practi-
cal considerations. First, the prior on 𝛾 reflects that a priori we believe there are about 20 variants
associated with y. For a complex trait such as CDR, this is a very conservative estimate. Second,
assuming a causal variant Xj has minor allele frequency 0.5, g = 100 implies that the prior effect
size (g∕X⊤

j Xj)1∕2 ≈ 0.2, which is recommended for Bayesian analysis of GWAS data (Stephens &
Balding, 2009).

We first conduct five parallel runs (with different random seeds) of the RW-MH algorithm,
each consisting of 1 million iterations. Then we build a set, denoted by S𝛿 ⊆ [p], which includes
all variants with posterior probabilities (estimated using the RW-MH output) greater than 𝛿.
When implementing the addition proposals for LIT-MH, we use (11) with S = S𝛿 . One can
also use marginal regression to build the set S𝛿 (Fan & Lv, 2008), which would yield very
similar results. We consider 𝛿 = 10−4

, 5 × 10−4 and 10−3. For each choice, we conduct five par-
allel runs of the LIT-MH-1 algorithm. Some summary statistics of the output are provided in
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T A B L E 2 Simulation study II
Number of
iterations

RW-MH
200,000

LIT-MH-1
2,000

LIT-MH-2
2,000

LB-MH-1
2,000

𝜎𝛽 = 0.1 Mean model
size = 6.1

Time 78.1 9.95 10.0 9.30

Local modes 1.85 2.30 2.15 2.00

Acc. Rate 0.012 0.495 0.566 0.228

ESS(T1)/Time 0.706 16.8 15.1 6.46

ESS(T2)/Time 4.83 34.5 29.3 11.6

𝜎𝛽 = 0.2 Mean model
size = 26.4

Time 79.1 16.0 15.9 14.6

Local modes 2.60 6.20 6.25 3.90

Acc. Rate 0.0060 0.602 0.580 0.320

ESS(T1)/Time 0.414 4.72 3.76 2.40

ESS(T2)/Time 4.67 19.9 18.5 12.7

𝜎𝛽 = 0.3 Mean model
size = 50.2

Time 80.4 27.9 27.6 24.7

Local modes 2.40 5.05 4.45 3.65

Acc. Rate 0.0037 0.578 0.571 0.296

ESS(T1)/Time 0.360 2.49 2.82 1.48

ESS(T2)/Time 3.57 19.8 18.1 9.79

𝜎𝛽 = 0.4 Mean model
size = 63.9

Time 81.2 37.0 36.8 32.6

Local modes 2.00 3.85 5.20 3.65

Acc. Rate 0.0027 0.541 0.546 0.261

ESS(T1)/Time 0.333 2.57 1.85 1.02

ESS(T2)/Time 3.02 17.5 14.3 7.92

𝜎𝛽 = 0.5 Mean model
size = 71.6

Time 81.8 42.5 42.7 36.8

Local modes 1.80 2.75 2.60 2.65

Acc. Rate 0.0021 0.485 0.536 0.217

ESS(T1)/Time 0.526 3.62 3.28 1.36

ESS(T2)/Time 2.45 15.0 15.1 5.78

Notes: ‘Mean model size’ is the mean size of 𝛾 sampled by LIT-MH-1 (which is almost the same as that for the other three
samplers). ‘Time’ is the wall time usage measured in seconds. ‘Local modes’ is the number of unique local modes sampled in
the MCMC; we say 𝛾 is a local mode if 𝜋n(𝛾) > 𝜋n(𝛾 ′) for any 𝛾 ′ ∈a(𝛾) ∪d(𝛾). ‘Acc. rate’ is the acceptance rate. ESS(T1) and
ESS(T2) are the estimated effective sample sizes of T1 and T2 (see the main text for details). All statistics are averaged over 20
datasets.

Table 3. For all four algorithms, the mean size of sampled models is 13. According to ESS(T2)
per minute, LIT-MH-1 algorithms are much more efficient than RW-MH in terms of sampling
𝛽, which may be surprising since RW-MH also has acceptance rate 0.27 and thence a much
larger total number of accepted moves than LIT-MH algorithms. This indicates that LIT-MH
can achieve greater sampling efficiency by significantly reducing the autocorrelation in MCMC
samples.
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T A B L E 3 Cup-to-disc ratio analysis using GWAS data

Algorithm |S𝜹| Iterations Time Acc. rate ESS(T2)/Time

RW-MH NA 1,000,000 428 0.273 1.95

LIT-MH-1 (𝛿 = 0.0001) 7255 8,000 48.7 0.714 8.52

LIT-MH-1 (𝛿 = 0.0005) 1410 40,000 56.3 0.635 26.8

LIT-MH-1 (𝛿 = 0.001) 715 80,000 82.6 0.603 33.5

Notes: |S𝛿| is the number of variants for which we need to evaluate the posterior probabilities when proposing addition
moves (see the main text for details). ‘Iterations’ is the number of MCMC iterations for each run; for each algorithm, we
conduct five independent runs. ‘Time’ is the average wall time usage measured in minutes. ‘Acc. rate’ is the average
acceptance rate. ESS(T2) is the effective sample size calculated using the statistic T2 as in Table 2.

T A B L E 4 Top 10 signals in the cup-to-disc ratio analysis

Variant name Location PIP Known hit References

rs1063192 9p23.1 0.989 Yes Osman et al. (2012)

rs653178 12q24.12 0.972 No

rs10483727 14q23.1 0.888 Yes Bailey et al. (2016)

rs319773 17q11.2 0.532 No

rs2275241 9q33.3 0.531 Yes Craig et al. (2020)

rs4557053 20p12.3 0.222 No

rs10491971 12p13.32 0.144 No

rs4901977 14q23.1 0.112 Yes Springelkamp et al. (2014)

rs587409 13q34 0.111 Yes Khawaja et al. (2018)

rs314300 7q22.1 0.107 No

Notes: ‘Location’ is the cytogenetic location of the variant in human genome. ‘PIP’ is the posterior inclusion
probability estimate averaged over all LIT-MH-1 runs. ‘Known hit’ indicates whether the variant is known to be
associated with ocular traits; if yes, a reference is provided in the last column.

Next, we examine the estimate of the posterior inclusion probability (PIP), E[1𝛾 (j)|y], for
each j ∈ [p]. In Table 4, we list the 10 variants with the largest PIPs averaged over all runs of
LIT-MH-1. Among them five are known GWAS hits for ocular traits (or ocular disorders) located
in four different regions. For these five hits (which we may assume to be true signals), the
PIP estimate in each individual run of RW-MH exhibits a very high variability. For example, in
Table 5, we see that only the fourth run of RW-MH yields a PIP estimate greater than 0.1 for
rs587409. Further, if one uses 0.1 as the threshold, each RW-MH run can miss at least two of
the five hits. This observation suggests that, for large datasets, we often need to run RW-MH for
an extremely large number of iterations so that the results can be ‘replicable’. In contrast, the
individual PIP estimates from 15 LIT-MH-1 runs are much more stable. The only exception is
the variant rs4901977. This is because rs4901977 is located closely to rs10483727, and thus the
two variants are correlated, which makes it challenging to identify both variants at the same
time.
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T A B L E 5 Posterior inclusion probabilities of the five hits in Table 4

PIPs of RW-MH runs

Variant name Run 1 Run 2 Run 3 Run 4 Run 5 PIP range in 15 LIT-MH-1 runs

rs1063192 0 0.729 0.309 0.753 0.330 [0.839, 1 ]

rs10483727 0.483 0.147 0 0.852 0 [0.308, 1]

rs2275241 0.383 0 0 0 0.426 [0.491, 0.569]

rs4901977 0.486 0.239 0.678 0 0.214 [0, 0.695]

rs587409 0 0.003 0.065 0.117 0.032 [0.083, 0.132]

Notes: ‘PIP’ is posterior inclusion probability estimate. The last column gives the minimum and maximum PIP estimates
obtained from 15 LIT-MH-1 runs.

7 DISCUSSION

7.1 On the swap moves of LIT-MH

Both the parameter s0 and swap moves are used in our mixing time analysis of LIT-MH for
merely technical reasons. As shown in Yang et al. (2016), rapid mixing on the space (p) is
usually impossible since sharp local modes can easily occur among very large models, suggest-
ing that the use of s0 is necessary for theoretical analysis. Then, swap moves are introduced to
ensure that the chain cannot get trapped at an underfitted model with size s0. However, in prac-
tice, even if we let s0 = p and run the chain on (p), the chain is very unlikely to visit those
models with size much larger than s∗ since they have negligible posterior probabilities (Narisetty
& He, 2014). In other words, assuming that both s∗ and |𝛾 (0)| are small, Condition 1 actually
implies that we will ‘observe’ the chain is ‘rapidly mixing’ by using only addition and deletion
moves.

The above reasoning suggests that an approximate implementation of informed swap moves
will not significantly affect the overall performance of LIT-MH. One way to realize a ‘par-
tially informed’ swap move is to treat it as a composition of one addition and one deletion.
Given current state 𝛾 , we first use an informed addition move to propose some 𝛾̃ ∈a(𝛾), and
then use an informed deletion move to propose 𝛾 ′ ∈d(𝛾̃). The acceptance probability of 𝛾 ′ is
calculated by

1 ∧ 𝜋n(𝛾 ′)Klit(𝛾 ′, 𝛾̃)Klit(𝛾̃ , 𝛾)
𝜋n(𝛾)Klit(𝛾, 𝛾̃)Klit(𝛾̃ , 𝛾 ′)

.

One can check that the resulting transition matrix is reversible with respect to 𝜋n. In our imple-
mentation of LIT-MH, we further impose the constraint that 𝛾 ′ ≠ 𝛾 when sampling 𝛾 ′ fromd(𝛾̃)
and adjust the Hastings ratio accordingly. Note that to implement an addition proposal, we need to
calculate both Klit(𝛾, 𝛾̃) and Klit(𝛾̃ , 𝛾), which requires evaluating 𝜋n for p models. Similarly, for the
deletion proposal, we also need to evaluate 𝜋n for p models. Hence, in our implementation, each
swap proposal involves 2p evaluations of 𝜋n. This is much more efficient than implementing an
informed swap proposal exactly as described in (12), which requires evaluating 𝜋n for 2(p − |𝛾|)|𝛾|
models.
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7.2 LIT-MH on general discrete state spaces

Zanella (2020) considered ‘locally balanced proposals’ for general discrete-state-space problems.
Let 𝜋 be a distribution defined on a general discrete state space . For each x, let (x) ⊂  denote
its neighborhood. A locally balanced proposal scheme can be written as

Klb(x, x′) =
f
(
𝜋(x′)
𝜋(x)

)

Zf (x)
1 (x)(x′), Zf (x) =

∑

y∈ (x)

f
(
𝜋(y)
𝜋(x)

)

, (20)

where the ‘balancing function’ f ∶ (0,∞)→ (0,∞) must satisfy f (b) = bf (b−1) for any b > 0.
Examples of balancing functions include f (b) =

√
b and f (b) = 1 ∨ b. Consider an MH algorithm

with proposal Klb. A seemingly desirable property of balancing functions is that the acceptance
probability of a proposal move from x to x′ is given by

acc(x, x′) = min
{

1,
Zf (x)
Zf (x′)

}

, (21)

for any x′ ∈ (x). If Zf (x) ≈ Zf (x′), this method should work well. Indeed, Zanella (2020) argued
that if supx,x′∶x′∈ (x) Zf (x)∕Zf (x′) → 1, such a locally balanced proposal is asymptotically opti-
mal. But, for problems like variable selection (which was not considered in Zanella, 2020), the
behaviour of the function x → Zf (x) is very difficult to predict, and Table 1 confirms that for
f (b) =

√
b, the informed MH algorithm with proposal (20) completely fails when the SNR is

sufficiently large.
Motivated by Condition 1, consider some 𝜋 that satisfies the following condition: there exist

x∗ ∈  ,  ∶  →  , and b0 > 1 such that for any x ≠ x∗,  (x) ∈ (x) and 𝜋( (x))∕𝜋(x) ≥ b0.
Define 𝜔(x) = 𝜋( (x))∕𝜋(x) for each x ≠ x∗. Note that by (20), Klb(x,  (x)) = f (𝜔(x))∕Zf (x). It
follows from (21) that for any x such that  (x) ≠ x∗,

Klb(x,  (x))acc(x,  (x)) ≤
f (𝜔(x))

Zf ( (x))
≤

f (𝜔(x))
f (𝜔( (x)))

, (22)

since Zf ( (x)) ≥ f (𝜔( (x))). The ratio f (𝜔(x))∕f (𝜔( (x))) can be exceedingly small since it is pos-
sible that 𝜔( (x)) is much larger than 𝜔(x). As we have seen in Example 1, for variable selection,
𝜔( (x))≫ 𝜔(x) can easily happen if there are correlated covariates and the sample size is large.
Since collinearity is common for high-dimensional data, this analysis suggests that for general
model selection problems, locally balanced MH schemes with proposal given by (20) may not
have good performance when both n and p are large.

The main idea behind our LIT-MH algorithm can still be applied in this general setting. Pick
constants f > f > 0 and modify (20) by

K̃lb(x, x′) =
f ∨ f ( 𝜋(x

′)
𝜋(x)

) ∧ f

Z̃f (x)
1 (x)(x′), Z̃f (x) =

∑

y∈ (x)

f ∨ f
(
𝜋(y)
𝜋(x)

)

∧ f .

This modification guarantees that a proposal move from x to x′ has acceptance probability 1 as
long as 𝜋(x′)∕𝜋(x) is sufficiently large, as shown in the following lemma.
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Lemma 2. Let 𝜋 be an arbitrary probability distribution on  . Consider the MH algorithm with
proposal K̃lb given in (22) where f ∶ (0,∞)→ (0,∞) is an arbitrary non-decreasing function.
Suppose there exists b < ∞ such that

f
(

b−1)
≤ f , and b ≥

f
f

max
x∈

| (x)|.

Then, for any x, x′ ∈ (x) such that 𝜋(x′)∕𝜋(x) ≥ b, the proposal move from x to x′ has
acceptance probability 1.

Proof. See Section S5.6 in Appendix A.

In Zanella (2020), one motivation for the locally balanced proposal was to mimic the behaviour
of Metropolis-adjusted Langevin algorithms defined on continuous state spaces (Roberts &
Rosenthal, 1998). However, for model selection problems with large sample sizes, the local poste-
rior landscape can change drastically when we move from x to some x′ ∈ (x), which may result
in strange behaviour of the MH chain (i.e. keep proposing some state x′ with 𝜋(x′)≫ 𝜋(x) and get-
ting rejected). One key observation of this work is that once we truncate the function f in (20), the
mapping x → Z̃f (x) becomes much ‘smoother’ than x → Zf (x). Since there is almost no difference
in computational cost between the two proposals Klb and K̃lb, it is apparently always desirable to
use the ‘stabilized version’ K̃lb in practice.

7.3 On the LB-MH-1 algorithm for variable selection

The discussion in Section 7.2 explains why LB-MH-2 fails to perform well in our simulation
study. Next, consider the LB-MH-1 algorithm, which also uses the balancing function f (b) =

√
b

to weight neighboring states. The only difference is that in LB-MH-1, we perform the proposal
weighting for addition and deletion moves separately. It may be surprising that this simple
modification improves the sampling performance substantially in our simulation studies.

To explain this, assume Condition 1 holds. By Condition (1b), as long as 𝛾 is underfitted, there
exists some 𝛾 ′ ∈a(𝛾) such that 𝜋n(𝛾 ′)∕𝜋n(𝛾) ≥ pc1 , and thus the proposal probability Klb(𝛾, 𝛾 ′)
is large. Further, we have

B(𝛾, 𝛾 ′)Klb(𝛾 ′, 𝛾)
Klb(𝛾, 𝛾 ′)

=
∑
𝛾̃∈a(𝛾)

√
B(𝛾, 𝛾̃)

∑
𝛾̃∈d(𝛾 ′)

√
B(𝛾 ′, 𝛾̃)

≥
p(c1−𝜅)∕2

s0
,

where the inequality follows from B(𝛾 ′, 𝛾̃) ≤ p𝜅 for any 𝛾̃ ∈d(𝛾 ′) and |d(𝛾 ′)| ≤ s0. So if the
SNR is sufficiently large so that c1 > 𝜅 + 2, the proposal will always be accepted. A similar argu-
ment shows that for an overfitted model 𝛾 , a proposal to remove a non-influential covariate will
be always accepted if the constant c0 in Condition (1a) is greater than 1. This heuristic argument
explains why, unlike LB-MH-2, LB-MH-1 does not get trapped at a model because of extremely
small acceptance probabilities of informed proposal moves. However, it is not clear whether
LB-MH-1 can attain a dimension-free mixing time for high-dimensional variable selection, and
even if it is possible, it would require stronger assumptions on the true model so that c1 > 𝜅.
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The simulation study in Section 5 also shows that LB-MH-1 under-performs the two LIT-MH
algorithms.

7.4 Closing remarks

Theorem 1 provides the theoretical guarantee for the use of informed MCMC meth-
ods for high-dimensional problems, the proof of which relies on a novel ‘two-stage
drift condition’ argument. Simulation studies show that LIT-MH is indeed much more
efficient than the uninformed version, no matter whether the posterior distribution is
multi-modal. As noted in Zanella (2020), one can further boost LIT-MH using parallel com-
puting (Lee et al., 2010): the calculation of 𝜋n(𝛾 ′)∕𝜋n(𝛾) for each 𝛾

′ ∈ (𝛾) can be easily
parallelized.

One major advantage of LIT-MH is its simplicity, which makes it both theoretically and prac-
tically appealing. The adaptive MCMC methods proposed by Griffin et al. (2021) have the usual
sensitivities of possibly adapting to wrong information and require running multiple chains in the
adaptation phase. The tempered Gibbs sampler of Zanella and Roberts (2019), which is one of the
most efficient existing MCMC methods (see Supplement B.6 therein), is conceptually very simi-
lar to our method in that it selects the coordinate to update using local information of 𝜋n. But, as a
consequence of this informed updating scheme, the tempered Gibbs sampler requires the calcu-
lation of an importance weight in each iteration, which may reduce the efficiency of the sampler
when the weight is unbounded. LIT-MH has a provable mixing time bound and, due to its simple
design, can be combined with other MCMC techniques such as tempering, blocking and adap-
tive proposals. But whether further sophistication enhances the sampler’s efficiency needs more
investigation, which we leave for future work.
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