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Abstract

We use the recent advances in generative models to a construct controllable content
generator that extends the current procedural content generator abilities to democ-
ratize artistic content creation. Our goal is to give content creators the power to
decide the properties of the content they would like to control, to give them tangible
control over these properties and let generative models fill the gaps. Our main
contribution is to define what control is and how to measure it. We also propose
a model based on the Variation AutoEncoder architecture that is inspired from
semi-supervised learning to create a controllable content generator.

1 Introduction

Recently, there has been an increase in the number of distribution platforms for visual arts, short
movies, music and video games which gives content creators more tools to share and distribute their
content themselves. In order to further help content creators, our current research is an attempt to
give them more tools to enhance their content creation abilities.

The algorithmic creation of content allows us to generate an infinite amount of content quickly and
inexpensively. Procedural content generation (PCG) [26, 28] is a family of techniques that generate
content mostly in video games [1] and movies [14] such as art assets, story elements, dialogues and
more. Our goal is not to replace content creators with generative models but rather to use generative
models to democratize artistic creation. To achieve this goal, we focus our effort on giving the content
creators control over the content generators so that they can truly create what they envision.

2 Control

In order for generative models to be used as design tools, we need to be able to control the generative
process but the notion of control is absent in the generative models literature. The main contribution of
this article is our proposed definition of control. We define various independent aspects of control that
we deem useful for content creators. Given how hard it is to evaluate generative models [27, 13, 2],
we try to define control in ways that can be measured. Control variables are at the centre of our
proposed definition; these form a set of variables that allows the interaction between content creators
and the content created, in other words, these are variables we adjust before generating the content
that we use to design something specific. We fix the control size to a pre-specified number of control
variables. Our definition of control is based on three properties of the control variables.
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First, the control strength represents how strong is the effect of the control variables on the content
generated. A control variable with high strength has a big impact on the produced content. We
decided to use the mutual information [6] utilized to develop recent successful generative models
such as InfoGAN [5, 8] and ExprGAN [7] to measure control variables strength.

Next is the disentanglement of the control variables which measures how interpretable control
variables are and how disjoint are their effects. If we want to give artists true control, we have to make
sure that the control variable effects are disjoint and interpretable. Disentanglement has been studied
quite extensively recently [4, 21, 3] and researchers are attempting to produce a rigorous definition
for it [11]. This recent progress allows us to evaluate the disentanglement of our control variables.

Finally, we will be looking at the range of the control variables. Supposing the control variables are
disentangled and that they control individual properties of the content, we say that a variable has a
large range if we can interpolate between what has been observed and if we can extrapolate outside
of the spectre of observed instances. In recent work [23, 15] interpolation is evaluated informally by
simply eyeballing the results, but strict evaluation metrics are needed in order to make more precise
progress. We use the Inception Score [25] to automatically assess how far from the observed control
variable values the generator can extrapolate without losing too much quality.

3 Generative models

In recent years Generative Adversarial Networks (GAN) [9] and Variational AutoEncoders (VAE)
[17, 16] became the two state-of-the-art architectures for image generation or speech synthesis in
the machine learning community [22, 24, 7, 10, 12]. Both of these models share similarities; they
draw samples from a low-dimensional space and then process this low-dimensional sample through a
neural network to generate content. Two reasons motivate a low-dimensional latent space. First, the
generative process is much faster than directly generating from a high-dimensional correlated space.
Second, we assume that the variability in the content can be explained with a small set of generative
factors; everything else being random noise.

3.1 Variational AutoEncoders

Let us briefly introduce the architecture our proposed model is built on: VAE. Assuming we have
x, any type of content of size D, for instance an image and z the latent representation of the image
of size d << D. An autoencoder learns an encoding function q : X → Z and a decoding function
p : Z → X simultaneously. The VAE [17, 16] architecture assumes a prior distribution pθ(z), a
decoding distribution for pθ(x|z) and an encoding distribution qϕ(z|x) and optimizes the parameters
of these distributions using maximum likelihood. To generate an image, we sample from the prior
pθ(z) and then process this sample through the decoding distribution pθ(x|z).

3.2 Controllable Variational AutoEncoders

Finally, let us introduce the proposed approach we are currently implementing in Python: Controllable
Variational AutoEncoder (ConVAE). We propose a VAE built on two distinct sets of latent variables
z and c instead of one. When generating content, we can adjust the control variables c to explicitly
design something of our choice, sample from z to randomize details and finally generate the content
x using pθ(x|z, c).

To train the interpretable and desirable control variables c we will manually assign labels for a few
observations and using the recent advances in semi-supervised learning [18, 19, 16, 15] the model
will be able to learn from unlabelled data as well, thus using the large amount of data available for
any type of content.

4 Conclusion

In this preliminary work, we attempt to fill the gap in the literature regarding the notion of control in
generative models. We also propose a model that we believe offers great properties with respect to
our notion of control. This model is being implemented and we expect results to come in shortly.

2



Acknowledgments

We would like to acknowledge the financial support of the Natural Sciences and Engineering Research
Council of Canada and Ontario Graduate Scholarships.

Ethical implications

We are putting at the centre of our work the democratization of content creation. We understand
the benefits of art creation for the human brain, and for the development of societies and we aim at
creating tools so that everyone can express their creativity regardless of their technical skills. We also
believe this will help independent video game designers, cartoon producers and such produce the
content they envisioned thus improving the diversity of such content available.
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Appendices
Mutual information

In information theory, the mutual information (MI) of two variables is a measure of mutual correlation
between the variables. It quantifies the amount of information obtained about one variable when the
other is observed. For two discrete random variables X and Y , the MI is defined as :

MI(X,Y ) =
∑
y∈Y

∑
x∈X

p(X,Y )(x, y) log

(
p(X,Y )(x, y)

pX(x)pY (y)

)

The MI is often presented as a difference of two entropy terms :

MI(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

where H(X) is the entropy of X defined as the rate at which information on X is obtained in
information theory. For X a discrete random variable taking k different values the entropy is defined
as :

H(X) = −
k∑
i=1

p(xi) log(p(xi))

VAE model

z

x

Figure 1: A graphical representation of the VAE architecture where x is the content (image) of size
D and z its latent representation (code) of size d << D.

We assume the following model :

• A prior on pθ(z) (Usually isotropic Normal)

• A decoding distribution pθ(x|z) (θ = NN1(z))

• An encoding distribution qϕ(z|x) (ϕ = NN2(x)) that serves as an approximation of the
true but intractable posterior pθ(z|x)
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Evidence lower bound

To optimize the model parameters θ and ϕ, we use maximum likelihood. More precisely, we maximize
the Evidence Lower BOunds (ELBO) L(ϕ, θ) = Eqϕ(z|x)[ln pθ(x, z)− ln qϕ(z|x)], which is a lower
bound of the observed data log likelihood :

ln p(x) = Eq(z|x) [ln p(x)]

= Eq(z|x)

[
ln
p(x, z)

p(z|x)

]
= Eq(z|x)

[
ln
p(x, z)q(z|x)
q(z|x)p(z|x)

]
= Eq(z|x)

[
ln
p(x, z)

q(z|x)

]
+Eq(z|x)

[
ln
q(z|x)
p(z|x)

]
= L(ϕ, θ) +KL(q||p)
≥ L(ϕ, θ).

(1)

ConVAE model

z c

x

Figure 2: A graphical representation of the ConVAE architecture where x is the content (image) of
size D, c the set of control variables and z the latent space of size d << D.

Figure 2 illustrates our proposed architecture. It induces the following factorization :

pθ(x, z, c) = pθ(c)pθ(z|c)pθ(x|z, c). (2)

This graphical representation also induces the conditional independence of z and c given x which
allows us to factorize the encoding distribution as well :

qϕ(z, c|x) = qϕ(z|x)qϕ(c|x). (3)

Example 1: Generating hand-written digits

The MNIST [20] data set frequently used in recent years is our first example. As ConVAE user, we
could determine that we would like to control the digit c1 and the style (cursive or straight) c2. Those
two categorical variables form our set of control variables c. We have to manually assign the values
of c1 and c2 for a few images before training the model.

The latent space z will take care of other aspects of the image, for example the digit thickness, its
angle and its exact location. When we decide to generate an image of a digit, we pick the digit itself
and its style by fixing c1 and c2 then randomly generate other aspects of the images by sampling from
pθ(z|c) and finally generate the resulting image using pθ(x|z, c).
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Example 2: Generating an image of a sky

A more complex task would be to generate images of a sky. For example, we might want to control
c1 the types of clouds (cumulonimbus, altocumulus, etc) which is a categorical variable, the cloud
density c2 as a continuous variable where 0 represents a clear sky and 1 a cloudy sky and finally a
day/night binary variable c3 controlling the brightness of the sky. These three variables form the set
of control variables c. We have to manually assign the values of c1, c2 and c3 for a few images before
training the model.

The latent space z will take care of other aspects of the image, for example the actual location of the
clouds and the exact size and number of clouds. When we decide to generate an image of a sky, we
pick the cloud type, the cloud density and the time of the day by fixing c1, c2 and c3 then randomly
generates other aspects of the images by sampling from pθ(z|c) and finally generate the resulting
image using pθ(x|z, c).
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