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Abstract: This review paper provides an introduction of Markov chains
and their convergence rates – an important and interesting mathematical
topic which also has important applications for very widely used Markov
chain Monte Carlo (MCMC) algorithm. We first discuss eigenvalue anal-
ysis for Markov chains on finite state spaces. Then, using the coupling
construction, we prove two quantitative bounds based on minorization
condition and drift conditions, and provide descriptive and intuitive ex-
amples to showcase how these theorems can be implemented in practice.
This paper is meant to provide a general overview of the subject and
spark interest in new Markov chain research areas.

1 Introduction

Figure 1: The bunny example

Imagine there is a 3 × 3 grid of bushes, labeled G1, G2, ..., G9, from top to bottom
and left to right (Figure 1). There is a fluffy little bunny hiding in the middle bush,
starving and ready to munch on some grass around it. Assume the bunny never
gets full and the grass is never depleted. Once each minute, the bunny jumps from
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its current bush to one of the nearest other bushes (up, down, left, or right, not
diagonal) or stays at its current location, each with equal probability. We can then
ask about longer-term probabilities. For example, if the bunny starts at G5, the
probability of jumping to G7 after two steps is:

ProbG5(at G7 after two steps) = Prob(G5 → G4 → G7) + Prob(G5 → G8 → G7)

=
1

5
× 1

4
+

1

5
× 1

4
=

1

10
.

But what happens to the probabilities after three steps? ten steps? more?
This paper investigates the convergence of such probabilities as the number of

steps gets larger. As we will discuss later, such bounds are not only an interesting
topic in their own right, they are also very important for reliably using Markov chain
Monte Carlo (MCMC) computer algorithms [3, 2, 1] which are very widely applied to
numerous problems in statistics, finance, computer science, physics, combinatorics,
and more. After reviewing the standard eigenvalue approach in Section 3, we will
concentrate on the use of “coupling”, and specifically on the use of “minorization”
(Section 4) and “drift” (Section 6) conditions. We note that coupling is a very broad
topic with many different variations and applications (see e.g. [9]), and has even
inspired its own algorithms (such as “coupling from the past”). And, there are many
other methods of bounding convergence of Markov chains, including continuous-time
limits, different metrics, path coupling, non-Markovian couplings, spectral analysis,
operator theory, and more, as well as numerous other related topics, which we are
not able to cover here.

2 Markov Chains

The above bunny model is an example of a Markov chain (in discrete time and
space). In general, a Markov chain is specified by three ingredients:

1. A state space X , which is a collection of all of the states the Markov chain
might be at. In the bunny example, X = {G1, G2, ..., G9}.

2. An initial distribution (probability measure) µ0(·), where µ0(A) is the prob-
ability of starting within A ⊂ X at time 0. In the bunny example, µ0(G5) = 1, and
µ0(Gi) = 0 ∀i 6= 5.

3. A collection of transition probability distributions P (x, ·) on X for each state
x ∈ X . The distribution P (x, ·) represents the probabilities of the Markov chain
going from x to the next state after one unit of time. In a discrete state space like the
bunny example, the transition probabilities can be simply written as P = {pij}i,j∈X ,
where pij is the probability of jumping to j from i. Indeed, in the bunny example:
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For example, in the second row, p21 = p22 = p23 = p25 = 1
4 because from G2, the

probabilities of jumping to each of G1, G2, G3, or G5 are each 1
4 .

We write µn(i) for the probability that the Markov chain is at state i after n
steps. Given the initial distribution µ0 and transition probabilities P (x, ·), we can
compute µn inductively by

µn(A) :=

∫
x∈X

P (x,A) µn−1(dx) , n ≥ 1 .

On a discrete space, this formula reduces to µn(j) =
∑

i∈X pij µn−1(i). In matrix
form, regarding the µn as row-vectors, this means µn = µn−1 P . It follows by
induction that µn = µ0 P

n, where Pn is the n’th matrix power of P , also called the
n-step transition matrix. Here (Pn)ij is the probability of jumping to j from i in n
steps. Indeed, if we take µ0 = (0, 0, . . . , 1, . . . , 0), so µ0(i) = 1 with µ0(j) = 0 for all
j 6= i, then µn(j) =

∑
r=0 µ0(r)(P

n)rj = (Pn)ij . This makes sense since if we start
at i, then µn(j) is the probability of moving from i to j in n steps.

One main question in Markov chain analysis is whether the probabilities µn will
converge to a certain distribution, i.e. whether π := limn→∞ µn exists. If it does,
then letting n→∞ in the relation µn+1 = µnP indicates that π must be stationary,
i.e. π = πP . On a finite state space, this means that π is a left eigenvector of the
matrix P with corresponding eigenvalue 1.

In the bunny example, by solving the system of linear equations given by πP = π,
the stationary probability distribution can be computed to be the following vector:

π =

(
1

11
,

4

33
,

1

11
,

4

33
,

5

33
,

4

33
,

1

11
,

4

33
,

1

11

)
.

In fact, the bunny example satisfies general theoretical properties called irreducibility
and aperiodicity, which guarantee that the stationary distribution π is unique, and
that µn converges to π as n→∞ (see e.g. [8]). However, in this paper we shall focus
on quantitative convergence rates, i.e. how large n has to be to make µn sufficiently
close to π.

3 Eigenvalue Analysis on Finite State Spaces

When the state space is finite and small, it is sometimes possible to obtain a quan-
titative bounds on the convergence rate through direct matrix analysis (e.g. [6]).
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We require eigenvalues λi and left-eigenvectors vi such that viP = λivi. For exam-
ple, for the above bunny process, we compute (numerically, for simplicity) that the
eigenvalues and left-eigenvectors are:

(λ0, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) = (1, 0.702, 0.702,−0.467, 0.333, 0.25, 0.25, 0.119, 0.119)

v0
v1
v2
v3
v4
v5
v6
v7
v8


=



0.091 0.121 0.091 0.121 0.152 0.121 0.091 0.121 0.091
0.489 0.361 0 0.361 0 −0.361 0 −0.361 −0.489
0.055 −0.318 −4.863 0.399 0 −0.399 4.863 0.318 −0.055
−0.224 0.358 −0.224 0.358 −0.537 0.358 −0.224 0.358 −0.224
0.500 0 −0.500 0 0 0 −0.500 0 0.500
0.002 −0.500 0.002 0.499 −0.007 0.499 0.002 −0.500 0.002
0.256 −0.043 0.256 −0.043 −0.854 −0.043 0.256 −0.043 0.256
−0.436 0.394 0 0.394 0 −0.394 0 −0.394 0.436
0.018 0.377 −0.425 −0.410 0 0.410 0.435 −0.377 −0.018



To be specific, assume that the bunny starts from the center bush G5, so µ0 =
(0, 0, 0, 0, 1, 0, 0, 0, 0). We can express this µ0 in terms of the above eigenvector basis
as the linear combination:

µ0 = v0 − 0.4255v3 − 0.7259v6 .

(Here v0 = π, corresponding to the eigenvalue λ0 = 1.) Recalling that µn = µ0P
n,

and that viP = λi vi by definition, we compute that e.g.

µn(G5) = (λ0)
nv0(G5)− 0.4255(λ3)

nv3(G5)− 0.7259(λ6)
nv6(G5)

= π(G5)− 0.4255(−0.4667)n(−0.537)− 0.7259(0.25)n(−0.854) .

Since |0.25| < |0.4667|, and |0.4255 · (−0.537)| + |0.7259 · (−0.854)| < 0.85, the
triangle inequality implies that

|µn(G5)− π(G5)| < 0.85 (0.4667)n , n ∈ N .

This shows that µn(G5) → π(G5), and gives a strong bound on the difference be-
tween them. For example, |µn(G5) − π(G5)| < 0.01 whenever n ≥ 6, i.e. only 6
steps are required to make the bunny’s probability of being at G5 within 0.01 of its
limiting (stationary) probability. Other states besides G5 can be handled similarly.

Unfortunately, such direct eigenvalue or spectral analysis becomes more and
more challenging on larger and more complicated examples, especially on non-finite
state spaces. So, we next introduce a different technique which, while less tight, is
more widely applicable.

4 Coupling and Minorization Conditions

The idea of coupling is to create two different copies of a random object, and com-
pare them. Coupling has a long history in probability theory, with many different
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applications and approaches (see e.g. [9]). A key idea is the coupling inequality.
Suppose we have two random variables X and Y , each with their own distribution.
Then for any subset A, we can write∣∣Prob(X ∈ A)− Prob(Y ∈ A)

∣∣
=
∣∣Prob(X ∈ A, X = Y ) + Prob(X ∈ A, X 6= Y )

− Prob(Y ∈ A, X = Y )− Prob(Y ∈ A, X 6= Y )
∣∣ .

But here Prob(X ∈ A, X = Y ) = Prob(Y ∈ A, X = Y ), since they both refer to
the same event, so those two terms cancel. Also, each of Prob(X ∈ A, X 6= Y ) and
Prob(Y ∈ A, X 6= Y ) are between 0 and Prob(X 6= Y ), so their difference must be
≤ Prob(X 6= Y ). Hence,∣∣Prob(X ∈ A)− Prob(Y ∈ A)

∣∣ ≤ Prob(X 6= Y ) .

Since this upper bound is uniform over subsets A, we can even take a supremum
over A, to also bound the total variation distance:

‖L(X)− L(Y )‖TV := sup
A⊆X

∣∣Prob(X ∈ A)− Prob(Y ∈ A)
∣∣ ≤ Prob(X 6= Y ) .

That is, the total variation distance between the probability laws L(X) and L(Y )
is bounded above by the probability that the random variables X and Y are not
equal. To apply this fact to Markov chains, the following condition is very helpful.

Definition. A Markov chain with state space X and transition probabilities P
satisfies a minorization condition if there exists a (measurable) subset C ⊆ X , a
probability measure ν on X , a constant ε > 0, and a positive integer n0, such that

Pn0(x, ·) ≥ εν(·), x ∈ C .

We call such C a small set. In particular, if C = X (the entire state space), then the
Markov chain satisfies a uniform minorization condition, also referred to as Doeblin’s
condition.

For a concrete example, suppose the state space is the half-line X = [0,∞), with
transition probabilities given by

P (x, dy) =
(
e−2y +

1√
2π(x+ 1)

e
− y2

2(x+1)2

)
dy . (1)

That is, from a state x, the chain moves to an equal mixture of an Exponential(2)
distribution and a half-normal distribution with mean 0 and standard deviation
x+ 1. In this case, P (x, dy) ≥ e−2y dy for all x (see Figure 2), so the chain satisfies
a uniform minorization condition with n0 = 1, ν(y) = 2e−2y, and ε = 1

2 .
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Figure 2: The example satisfying the minorization condition.

The uniform minorization condition implies that there exists a common overlap
of size ε between all of the transition probabilities. This allows us to formulate a
coupling construction of two different copies {Xn} and {X ′n} of a Markov chain,
as follows. Assume for now that n0 = 1. First, choose X0 ∼ µ0(·) and X ′0 ∼ π(·)
independently. Then, inductively for n = 0, 1, 2, . . .,

1. If Xn = X ′n, choose z ∼ P (Xn, ·) and let X ′n+1 = Xn+1 = z. The chains have
already coupled, and they will remain equal forever.

2. If Xn 6= X ′n, flip a coin whose probability of Heads is ε. If it shows Heads,
choose z ∼ ν(·) and let X ′n+1 = Xn+1 = z. Otherwise, update Xn+1 and X ′n+1

independently with probabilities given by

Prob(Xn+1 ∈ A) =
P (Xn, A)− εν(A)

1− ε
, Prob(X ′n+1 ∈ A) =

P (X ′n, A)− εν(A)

1− ε
.

(The minorization condition guarantees that these “residual” probabilities are non-

negative, and hence are probability measures since their total mass equals P (Xn,X )−εν(X )
1−ε =

1−ε
1−ε = 1.) This construction ensures that overall, Prob(Xn+1 ∈ A|Xn = x) =
P (x,A) and Prob(X ′n+1 ∈ A|X ′n = x) = P (x,A) for any x ∈ X : indeed, if the two
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chains are unequal at time n, then

Prob(Xn+1 ∈ A | Xn = x)

= Prob(Xn+1 ∈ A, Heads | Xn = x) + Prob(Xn+1 ∈ A, Tails | Xn = x)

= Prob(Heads) Prob(Xn+1 ∈ A | Xn = x, Heads)

+ Prob(Tails) Prob(Xn+1 ∈ A | Xn = x, Tails)

= ε ν(A) + (1− ε) P (x,A)− ε ν(A)

1− ε
= P (x,A) .

If n0 > 1, then we can use the above construction for the times n = 0, n0, 2n0, . . .,
with n+1 replaced by n+n0, and with P (·, ·) replaced by Pn0(·, ·). Then, if desired,
we can later “fill in” the intermediate states Xn for jn0 < n < (j + 1)n0, from their
appropriate conditional distributions given the already-constructed values of Xjn0

and X(j+1)n0
.

Now, since X ′0 ∼ π(·), and π is a stationary distribution, therefore X ′n ∼ π(·)
for all n. And, every n0 steps, the two chains probability at least ε of coupling (i.e.,
of the coin showing Heads). So, Prob(Xn 6= X ′n) ≤ (1 − ε)bn/n0c, where b·c means
floor. The coupling equality then implies:

Theorem 1. If {Xn} is a Markov chain on X , whose transition probabilities satisfy
a uniform minorization condition for some ε > 0, then for any positive integer n,
and any x ∈ X ,

‖L(Xn)− π(·)‖TV ≤ (1− ε)bn/n0c.

For the above Markov chain (1), we showed a uniform minorization condition
with n0 = 1 and ε = 1/2. So, Theorem 1 immediately implies that ‖L(Xn)− π(·)‖TV ≤
(1− ε)bn/n0c = (1− (1/2))n = 2−n, which is < 0.01 if n ≥ 6, i.e. this chain converges
within 6 steps.

If X is finite, and for some n0 ∈ N there is at least one state j ∈ X such
that the jth column of Pn0 is all positive, i.e. (Pn0)ij > 0 for all i ∈ X . Then
we can set ε =

∑
j∈X mini∈X (Pn0)ij > 0, and ν(j) = ε−1 mini∈X (Pn0)ij , so that

(Pn0)ij ≥ ε ν(j) for all i, j ∈ X , i.e. an n0-step uniform minorization condition is
satisfied with that value of ε.

4.1 Application to Bunny Example

The bunny example does not satisfy a one-step minorization condition, since ev-
ery column of P has some zeroes, so we instead consider its two-step transition
probabilities, P 2:
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In this two-step transition matrix, the fifth column only contains positive values,
since no matter where the bunny starts, there will always be at least a 9

80 chance
that it will jump to the center bush (G5) in two steps. Thus, we can satisfy a
two-step minorization condition by taking

ε =
∑
j∈X

min
i∈X

(P 2)ij = 0 + · · ·+ 0 +
9

80
+ 0 + · · ·+ 0 =

9

80

and ν(j) = ε−1 mini∈X (Pn0)ij as above. Then, we can apply Theorem 1, with
n0 = 2 and ε = 9/80, to conclude that

‖L(Xn)− π(·)‖TV ≤
(

1− 9

80

)bn/2c
=
(71

80

)bn/2c
For example, if we want the distribution of the bunny’s location to be within 0.01
of the stationary distribution π, this is achieved within n = 78 steps. This bound
is not nearly as tight as our previous result n = 6, but it is uniform over all states
(not just G5), plus it was derived using a much more general method (without the
need to compute eigenvalues and eigenvectors). Of course, such bounds might be
more difficult to obtain on larger, more complicated examples.

4.2 Pseudo-Minorization Conditions

The coupling construction used to prove Theorem 1 was a pairwise construction,
i.e. it only considered two chain locations x and y at a time. If we replace the
distribution ν(·) with νxy(·), allowing it to depend on x and y, then C is called a
pseudo-small set, and Theorem 1 continues to hold [4]. It then follows that on a
finite state space, if we instead choose

ε = min
i,j∈X

∑
z∈X

min{(Pn0)iz, (P
n0)jz} > 0; νij(z) =

min{(Pn0)iz, (P
n0)jz}∑

w∈X
min{(Pn0)iw, (Pn0)jw}

,

then the chain will satisfy an n0-step pseudo-minorization condition, i.e. for all
i, j, z ∈ X , (Pn0)iz ≥ ε νij(z) and (Pn0)jz ≥ ε νij(z). Hence, exactly as above, we
will again have ‖L(Xn)− π(·)‖TV ≤ (1− ε)bn/n0c.
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We now apply this pseudo-minorization idea to the bunny example, with n0 = 2.
Examining the matrix P 2 above, we see that the minimum values of

∑
z∈X min{(P 2)iz, (P

2)jz}
occur at (i, j) = (3, 7) or (1, 9), corresponding to opposite corners of the 3× 3 grid
(which makes sense since opposite corners will have the least amount of transitional
overlap). We then calculate the minorization constant

ε =
∑
z∈X

min{(P 2)3z, (P
2)7z} =

1

12
+ 0 + 0 + 0 +

1

6
+ 0 + 0 + 0 +

1

12
=

1

3
.

Therefore, ‖L(Xn)− π(·)‖TV ≤ (1− ε)bn/2c = (23)bn/2c. For instance, this bound is
< 0.01 if n = 24, i.e. if the bunny jumps 24 times. This is a significant improvement
over the previous minorization result of n = 78, though it is still not as tight as the
specific eigenvalue bound of n = 6.

5 Continuous State Space: Point Process MCMC

The above analysis was primarily focused on finite state spaces, such as the bunny
example. We now extend to continuous examples on subsets of Rd.

To be specific, consider a point process consisting of three particles each randomly
located within the closed rectangle [0, 1]2 ⊂ R2, with positions denoted by x =
(xi)i=1,2,3 = (xi1, xi2)i=1,2,3, so the state space X = [0, 1]6. Suppose these particles
are distributed according to a probability distribution with unnormalized density
(meaning that the actual density is a constant multiple of so it integrates to 1)
given by

π(x) := π(x1, x2, x3) = exp
[
− C

3∑
i=1

||xi|| −D
∑
i<j

||xi − xj ||−1
]
,

where C and D are fixed positive constants, and || · || is the usual Euclidean (L2)
norm on R2. In this density, the first sum pushes the particles towards the origin,
and the second sum pushes them away from each other.

We now create a Markov chain which has π as its stationary distribution. To do
this, we use a version of the Metropolis Algorithm [3]. Each step of the Markov chain
proceeds as follows. Given Xn = x, we first “propose” to move the particles from
their current configuration x to some other configuration y, chosen from the uniform
(i.e., Lebesgue) measure on X . Then, with probability min[1, π(y)π(x) ], we “accept” this
proposal and move to the new configuration by setting Xn+1 = y. Otherwise, we
“reject” this proposal and leave the configuration unchanged by setting Xn+1 = x.

This Metropolis Algorithm is a well-known procedure which can easily be shown [3,
1] to create a Markov chain which has π as its stationary distribution. It is the most
common type of Markov chain Monte Carlo (MCMC) algorithm. Such algorithms
are a very popular and general method of generating samples from complicated
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probability distributions, by running the corresponding Markov chain for many it-
erations. They are used very frequently in a wide variety of fields, ranging from
Bayesian statistics to financial modeling to medical research to machine learning
and more. For further background, see e.g. [1] and the many references therein.

However, to get reliable samples, it is important to know how many iterations are
required to approximately converge to π, i.e. to establish quantitative convergence
bounds. The above Markov chain has an uncountably infinite state space X , so
the eigenvalue analysis of Section 3 is not easily available (though there have been
some efforts to use spectral analysis on general state spaces, see e.g. [2] and other
papers). On the other hand, the uniform minorization condition of Section 4 can
still be applied. Indeed, in the web appendix [10], we prove:

Lemma 1. The Markov chain constructed above satisfies a uniform minorization
condition with n0 = 1 and ε = (0.48) e−C(4.25)−D(9.88).

For example, if C = D = 1/10, then we may take ε = 0.117. It then follows
from Theorem 1 that we have the convergence bound

‖L(Xn)− π(·)‖TV ≤ (1− ε)n = (1− 0.117)n = (0.883)n .

This shows that after n = 38 steps, the total variation distance between our Markov
chain and the stationary distribution will be less than 0.01.

6 Unbounded State Space: Drift Conditions

In the previous section, the uniform minorization condition give us a good quanti-
tative convergence bound. However, in many cases, especially on unbounded state
spaces, the minorization condition cannot be satisfied uniformly, only on some subset
C ⊆ X . In such cases, we have to adjust our previous n0 = 1 coupling construc-
tion, as follows. We first choose X0 ∼ µ(·) and X ′0 ∼ π(·) independently, and then
inductively for n = 0, 1, 2, . . .,

1. If Xn = X ′n, we choose Xn+1 = X ′n+1 ∼ P (Xn, ·).
2. Else, if (Xn, X

′
n) ∈ C ×C, we flip a coin whose probability of Heads is ε, and

then update Xn+1 and X ′n+1 in the same way as in step 2 of our previous (uniform
minorization) construction above.

3. Else, if (Xn, X
′
n) 6∈ C × C, then we just conditionally independently choose

Xn+1 ∼ P (Xn, ·) and X ′n+1 ∼ P (X ′n, ·), i.e. the two chains are simply updated
independently.

The above construction provides good coupling bounds provided that the two
chains return to C×C often enough, but this last property is difficult to guarantee.
Thus, to obtain convergence bounds, we also require a drift condition. Basically,
the drift condition guarantees that the chains will return to C × C quickly enough
that we can still achieve a coupling.
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Definition. A Markov chain with a small set C ⊆ X satisfies a bivariate drift
condition if there exists a function h : X × X → [1,∞) and some α > 1, such that

P̄ h(x, y) ≤ h(x, y)/α, (x, y) /∈ C × C ,

where
P̄ h(x, y) := E[h(Xn+1, Yn+1) | Xn = x, Yn = y]

is the expected (average) value of h(Xn+1, Yn+1) on the next iteration, when the
chains start from x and y respectively (and proceed independently).

Such bivariate drift conditions can be combined with non-uniform minorization
conditions to produce quantitative convergence bounds. To state them, we use the
quantity Bn0 = max{1, αn0(1− ε) supC×C R̄h}, where

R̄h(x, y) =

∫
X

∫
X

(1− ε)−2 h(z, w) [Pn0(x, dz)− εν(dz)] [Pn0(y, dw)− εν(dw)] .

This daunting expression represents the expected value of h(Xn+n0 , X
′
n+n0

) given
that Xn = x, that X ′n = y, and that the two chains fail to couple at time n (i.e.
the corresponding coin shows Tails). We can simplify R̄h in certain situations. For
example, if D is a set such that Pn0(x,D) = 1 for all x ∈ C, then since the expected
value of a random variable is always less than the maximal value it could take, we
have

sup
(x,y)∈C×C

R̄h ≤ sup
(x,y)∈D×D

h(x, y) .

With all that in mind, we have the following result:

Theorem 2. Consider a Markov Chain on X , with X0 = x, and transition prob-
abilities P . Suppose the above minorization and bivariate drift conditions hold, for
some C ⊆ X , h : X × X → [1,∞), probability distribution ν(·), α > 1, and ε > 0.
Then for any integers 1 ≤ j ≤ n, with Bn0 as above,

‖L(Xn)− π‖TV ≤ (1− ε)j + α−nBj−1
n0

EZ∼π[h(x, Z)] .

Here we give a basic idea of the proof; for more details, see [7, 5]. We create
a second copy of the Markov chain with X ′0 ∼ π, and use the above coupling con-
struction. Let Nn be the number of times the chain (Xn, X

′
n) is in C×C by the nth

step. Then by the coupling inequality,

‖L(Xn)− π‖TV ≤ P [Xn 6= X ′n] ≤ P [Xn 6= X ′n, Nn−1 ≥ j]+P [Xn 6= X ′n, Nn−1 < j] .

The first term suggests that the chains have not coupled by time n despite visiting
C × C at least j times. Since each such time gives them a chance of ε to couple,
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the first term is ≤ (1 − ε)j . The second term is more complicated, but from the
bivariate drift condition together with a martingale argument, it can be shown to
be no greater than α−nBj−1

n0 EZ∼π[h(x, Z)].
Sometimes it could be hard to directly check the bivariate drift condition. We

now introduce the more easily-verified univariate drift condition, and give a way to
derive the bivariate condition from the univariate one.

Definition. A Markov chain with a small set C satisfies a univariate drift condition
if there are constants 0 < λ < 1 and b < ∞, and a function V : X → [1,∞], such
that:

PV (x) ≤ λV (x) + b1C(x), x ∈ X ,
where PV (x) := E[V (Xn+1) | Xn = x].

This univariate drift condition can be used to bound Eπ(V ). Indeed, assuming
Eπ(V ) < ∞, stationarity then implies that Eπ(V ) ≤ Eπ(V ) + b, whence Eπ(V ) ≤
b/(1− λ). But also, univariate drift condition can imply bivariate drift conditions,
as follows.

Proposition. Suppose the univariate drift condition is satisfied for some V : X →
[1,∞], C ∈ X , 0 < λ < 1 and b <∞. Let d = infx∈Cc V (x). If d > [b/(1− λ)]− 1,
then the bivariate drift condition is satisfied for the same C, with h(x, y) = 1

2 [V (x)+
V (y)] and α−1 = λ+ b/(d+ 1) < 1.

Proof. Assume (x, y) /∈ C ×C. Then either x /∈ C or y /∈ C, so h(x, y) ≥ (1 + d)/2.
Then, our univariate drift condition applied separately to x and to y implies that
PV (x) + PV (y) ≤ λV (x) + λV (y) + b. Therefore

P̄ h(x, y) =
1

2
[PV (x) + PV (y)] ≤ 1

2
[λV (x) + λV (y) + b] = λh(x, y) + b/2

≤ λh(x, y) + (b/2)[h(x, y)/((1 + d)/2)] = [λ+ b/(1 + d)]h(x, y) ,

which gives the result.

We now apply these non-uniform quantitative convergence bounds to a Markov
chain on an unbounded state space. Let the state space be X = R, the entire real
line, with unnormalized target density π(x) = e−|x|.

To create a Markov chain which has π as its stationary distribution, we use
another version of the Metropolis Algorithm [3, 1]. Each step of the Markov chain
proceeds as follows. First, we propose to move from the state x to some other state
y, chosen from the uniform (i.e., Lebesgue) measure on the interval [x − 2, x + 2].

Then, with probability min[1, π(y)
π(x) ], we accept this proposal and move to the new

state y, otherwise we reject it and remain at x. Once again, this procedure creates
a Markov chain which has π as its stationary distribution.

To apply Theorem 2, we need to establish minorization and drift conditions. In
the web appendix [10], we prove:

12



Lemma 2. The above Markov chain satisfies a minorization condition with C =
[−2, 2], n0 = 2, ε = 1

8e2
, and ν(A) = 1

2 Leb(A ∩ [−1, 1]), where Leb is Lebesgue
measure on R.

Lemma 3. The above Markov chain satisfies a univariate drift condition with
V (x) = e−|x|/2, C = [−2, 2], λ = 0.916, and b = 0.285.

We can then apply the above Proposition to derive a bivariate drift condition.
Note that here d = infx∈Cc V (x) = e, and [b/(1− λ)]− 1 = 2.39 < e. So, h(x, y) :=
1
2(V (x) + V (y)) satisfies a bivariate drift condition with α−1 = λ + b/(d + 1) =
0.916 + 0.285/(e+ 1)

.
= 0.993.

We also need to bound the above quantity Bn0 = B2. Let D = [−6, 6]. Then
clearly P 2(x,D) = 1 for any x ∈ C. Thus

sup
(x,y)∈C×C

R̄h(x, y) ≤ sup
(x,y)∈D×D

h(x, y) = sup
x∈D

V (x) = e3 < 20.1 .

So B2 ≡ max[1, α2(1− ε) sup R̄h] < (0.993)−2(1− 1
8e2

)(20.1)
.
= 20.04.

Let X0 = 0. Then

EZ∼π[h(0, Z)] = EZ∼π[
1

2
(V (0) + V (Z))] =

1

2
+

1

2
Eπ(V )

=
1

2
+

1

2

∫
y∈X e

1
2
|y|e−|y|dy∫

y∈X e
−|y|dy

=
1

2
+

1

2
× 2

1
= 2 .

(If this specific calculation were not available, then we could instead use the bound
Eπ(V ) ≤ b/(1− λ) = 0.285/(1− 0.916) = 3.393 as discussed above.) Therefore, by
Theorem 2, with X0 = 0, we have

‖L(Xn)− π‖TV ≤ (1− ε)j + α−nBj−1
2 EZ∼π[h(0, Z)]

≤ (0.983)j + (0.993)n(20.04)j−1[2] .

For example, setting n = 120, 000 and j = 274 = 1 + n/439.56, this becomes
‖L(Xn)− π(·))‖TV ≤ (0.983)274 + [(0.993)(20.04)1/439.56]120000[2] < 0.01 , i.e. the
Markov chain is within 0.01 of stationarity after 120,000 iterations. This is quite a
conservative upper bound. Nevertheless, we have obtained a concrete quantitative
convergence bound, for an unbounded Markov chain.

7 Conclusion

This paper has discussed Markov chains and their convergence rates, and why they
are important for MCMC algorithms. We introduced the eigenvalue method, the

13



coupling method, and minorization and drift conditions, and applied them to exam-
ples on state spaces ranging from finite to compact to unbounded. For the bunny
example, we showed several possible methods of obtaining convergence bounds. In-
deed, bounding a Markov chain’s convergence rate is not an one-time, definitive
process; for various Markov chains, it is possible to strengthen the bound through
careful and creative new constructions. The bounds presented in this paper all have
their imperfections, and will certainly not give tight or realistic bounds for all exam-
ples. There is plenty of room for new and tighter and more flexible bounds, which
can help us to understand Markov chains better, and also run MCMC algorithms
more confidently and reliably.

Acknowledgements. We thank the editor and reviewers for very helpful comments
on the first version of this manuscript.
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This web appendix provides proofs of the computational lemmas in the main
article, which is available at: www.probability.ca/NoticesArt.pdf

Proof of Lemma 1:

To avoid problematic configurations where the particles are very close together,
we first set X ′ = {(x1, x2, x3) ∈ X : ∀1 ≤ i < j ≤ 3, |xi − xj | ≥ 1/4}. Since X ′ is a
compact set, and π is continuous and positive on X ′, it must achieve its minimum
m := minx,y∈X ′

π(y)
π(x) > 0 there. Let A ⊂ X . Then from any state x ∈ X , the chain

will move into A on the next step provided that the proposed new configuration y
is within the subset A, and that the proposal is accepted. Hence,

P (x,A) =

∫
A
P (x, dy) =

∫
A

min[1,
π(y)

π(x)
] dy ≥

∫
A∩X ′

mdy = m Leb(A ∩X ′) ,

where Leb is Lebesgue measure on R6. So, if we set ε = mLeb(X ′), and ν(A) =
Leb(A ∩ X ′)

/
Leb(X ′), then ε > 0, and ν is a probability measure, and P (x,A) ≥

ε ν(A), i.e. a uniform minorization condition is satisfied.
To obtain quantitative convergence bounds, we need to estimate Leb(X ′) and m.

In order for (x1, x2, x3) ∈ X ′, we can choose any x1 ∈ [0, 1]2 (with two-dimensional
area 1), then choose any x2 ∈ [0, 1]2 \B(x1, 1/4) (with area ≥ 1− 3.14(1/4)2), then
choose any x3 ∈ [0, 1]2 \ (B(x1, 1/4) ∪ B(x2, 1/4)) (with area ≥ 1 − 3.14(1/4)2 −
3.14(1/4)2). [Here B(x, r) is the two-dimensional disc centered at x of radius r,
with area 3.14 r2, where we write the constant as “3.14” to avoid confusion with the
stationary distribution π(·).] Hence, Leb(X ′) ≥ (1)(1− 3.14

16 )(1− 3.14
8 ) ≥ 0.48.

Also, for any x ∈ X ′, we must have 0 ≤ |xi| ≤
√

2 and 1/4 ≤ |xi − xj | ≤
√

2, so
therefore

0 ≤ |x1|+ |x2|+ |x3| ≤ 3
√

2 , and
3√
2
≤
∑
i<j

|xi − xj |−1 ≤ 12 .
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It follows that

m ≥ e−C(3
√
2)−D(12)

e−C(0)−D(3/
√
2)

= e−C(3
√
2)−D(12−(3/

√
2)) ≥ e−C(4.25)−D(9.88) .

Hence,
ε = m Leb(X ′) ≥ (0.48) e−C(4.25)−D(9.88) ,

as claimed.

Proof of Lemma 2:

Let x ∈ C. Without loss of generality, assume x ≥ 0. First consider B ⊂ [−1, 1],
and let z ∈ [0, 1] and y ∈ B. Then we must have [0, 1] ⊆ [x − 2, x + 2], and
B ⊆ [z − 2, z + 2]. Hence, the proposal density q satisfies that q(x, z) = q(z, y) = 1

4 .

Also, π(x) ≤ e0 = 1, and e−1 ≤ π(y) ≤ 1, and π(z) ≥ e−1, so if α(x, z) = min[1, π(z)π(x) ]

is the probability of accepting a proposed move from x to z, then α(x, z) ≥ e−1 and
α(z, y) ≥ e−1. Hence,

P 2(x,B) ≥
∫
B

∫ x+2

x−2
q(x, z)α(x, z) q(z, y)α(z, y) dz dy

≥
∫
B

∫ 1

0
(1/4)(e−1)(1/4)(e−1) dz dy =

1

16e2
Leb(B) .

Finally, for any A ⊆ R,

P 2(x,A) ≥ P 2(x, A ∩ [−1, 1]) ≥ 1

16e2
Leb(A ∩ [−1, 1]) =

1

8e2
ν(A) ,

which gives the result.

Proof of Lemma 3:

Without loss of generality, assume x ≥ 0. Note that

PV (x) =

∫ x+2

x−2
q(x, y) [V (y)α(x, y) + V (x)(1− α(x, y))] dy .

We first compute the “top half” of this integral, where x ≤ y ≤ x − 2. Here
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α(x, y) = π(y)
π(x) = e−y

e−x = ex−y, and q(x, y) = 1/4, so∫ x+2

x
q(x, y) [V (y)α(x, y) + V (x)(1− α(x, y))] dy

=

∫ x+2

x

1

4
e

y
2 ex−ydy +

∫ x+2

x

1

4
e

x
2 (1− ex−y)dy)

=
1

4
ex
∫ x+2

x
e−

y
2 dy +

1

4
e

x
2 (2)− 1

4
e

3x
2

∫ x+2

x
e−ydy

=
1

4
ex[−2e−

x+2
2 + 2e−

x
2 ] +

1

4
e

x
2 (2)− 1

4
e

3x
2 [−e−x−2 + e−x]

=
1

4
e

x
2 (−2e−1 + 2 + 2 + e−2 − 1)

=
1

4
(3 + e−2 − 2e−1)V (x) ≡ λ1 V (x) ,

where λ1 = 1
4(3 + e−2 − 2e−1)

.
= 0.6. Then we consider three different cases:

Case 1: x ∈ (2,∞) 6⊆ C = [−2, 2]. Then α(x, y) := min{1, e−|y|
e−|x|
} = 1 for all

y ∈ [x− 2, x), so

PV (x) =

∫ x

x−2
q(x, y)V (y)dy + λ1V (x) =

1

4

∫ x

x−2
e

y
2 dy + λ1V (x)

=
1

4
e

x
2 2(1− e−1) + λ1V (x) = (

1

2
(1− e−1) + λ1)V (x) ≤ 0.916V (x) .

Case 2: x ∈ [1, 2] ⊆ C. Again α(x, y) = 1 for all y ∈ [x− 2, x], so

PV (x) =

∫ x

x−2
V (y)q(x, y)dy + λ1V (x) =

1

4
(

∫ 0

x−2
e−

y
2 dy +

∫ x

0
e

y
2 dy) + λ1V (x)

=
1

4
(

∫ 2−x

0
e

y
2 dy +

∫ x

0
e

y
2 dy) + λ1V (x) =

1

2
(e

x
2 + e1−

x
2 )− 1 + λ1e

x
2

Let z = e
x
2 . Then, computing numerically,

max
x∈[1,2]

[PV (x)− 0.916V (x)] = max
z∈[
√
e,e]

[1

2
(z +

e

z
)− 1 + λ1z − 0.916 z

]
≤ 0.13 .

Case 3: x ∈ [0, 1] ⊆ C. Then α(x, y) = 1 for any y ∈ [−x, x].

PV (x) =

∫ −x
x−2

[
q(x, y)α(x, y)V (y) + q(x, y)(1− α(x, y))V (x)

]
dy

+

∫ x

−x
q(x, y)V (y) dy + λ1V (x)

=
1

4
e

x
2

∫ 2−x

x
(e

x−y
2 + 1− ex−y) dy +

1

2

∫ x

0
e

y
2 dy + λ1e

x
2

=
e

x
2

4

[
−2ex−1 + e2(x−1) − 2x+ 3

]
+ e

x
2 − 1 + λ1e

x
2 .
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Computing numerically, this implies that

max
x∈[0,1]

[PV (x)− 0.916V (x)] ≤ 0.285 .

Combining these three cases (and their symmetric versions for x < 0) shows that
the univariate drift condition

PV (x) ≤ 0.916V (x) + 0.285 1C(x)

holds for all x ∈ X , as claimed.
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