
Statistics and Computing (2023) 33:131
https://doi.org/10.1007/s11222-023-10300-9

ORIG INAL PAPER

Optimization via Rejection-Free Partial Neighbor Search

Sigeng Chen1 · Jeffrey S. Rosenthal1 · Aki Dote2 · Hirotaka Tamura3 · Ali Sheikholeslami4

Received: 30 September 2022 / Accepted: 19 September 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Simulated Annealing using Metropolis steps at decreasing temperatures is widely used to solve complex combinatorial
optimization problems (Kirkpatrick et al. in Science 220(4598):671–680, 1983). To improve its efficiency, we can use the
Rejection-Free version of theMetropolis algorithm,which avoids the inefficiency of rejections by considering all the neighbors
at every step (Rosenthal et al. in Comput Stat 36(4):2789–2811, 2021). To prevent the algorithm from becoming stuck in
local extreme areas, we propose an enhanced version of Rejection-Free called Partial Neighbor Search, which only considers
random parts of the neighbors while applying Rejection-Free.We demonstrate the superior performance of the Rejection-Free
Partial Neighbor Search algorithm compared to the Simulation Annealing and Rejection-Free with several examples, such as
the QUBO question, the Knapsack problem, the 3R3XOR problem, and the quadratic programming.

Keywords Simulated Annealing · Rejection-Free · Partial Neighbor Search · QUBO

1 Introduction

Optimization is the cornerstone of many areas. It plays a cru-
cial role in finding feasible solutions to real-life problems,
from mathematical programming to operations research,
economics, management science, business, medicine, life
science, and artificial intelligence (Floudas and Pardalos
2008). Before the invention of linear and integer program-

B Sigeng Chen
sigeng.chen@mail.utoronto.ca

Jeffrey S. Rosenthal
jeff@math.toronto.edu

Aki Dote
dote.aki@fujitsu.com

Hirotaka Tamura
tamura.hirotaka@dxrlab.com

Ali Sheikholeslami
ali@ece.utoronto.ca

1 Department of Statistical Sciences, University of Toronto,
700 University Avenue, Toronto, ON M5G 1Z5, Canada

2 Fujitsu Ltd., 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki,
Kanagawa 211-8588, Japan

3 DXR Laboratory Inc., 4-38-10 Takata-Nishi, Kohoku-ku,
Yokohama, Kanagawa 223-0066, Japan

4 Department of Electrical and Computer Engineering,
University of Toronto, 10 King’s College Road, Toronto, ON
M5S 3G4, Canada

ming in the 1950s, optimization was characterized by several
independent topics, such as optimum assignment, the short-
est spanning tree, transportation, and the traveling salesman
problem, which were then united into one framework (Schri-
jver 2005). Today, combinatorial optimization is essential in
research because most problems originate from practice and
are dealt with daily (Schrijver 2005). Optimization questions
aim to find an optimal solution to maximize or minimize a
real function within a given state space. Sometimes, a feasi-
ble solution with the corresponding function value near the
optimal solution is also acceptable. The process of finding an
optimal or feasible solution to some complex combinatorial
optimization problems may take a considerable amount of
time. In particular, no algorithm for NP-hard problems can
guarantee that the optimal state of the problem will be found
within a limitation governed by a polynomial based on the
input length (Garey et al. 1974).

Among all complex optimization problem solvers, meta-
heuristics are usually nature-inspired (Bianchi et al. 2009).
They are designed to select a heuristic that often arrives at
a feasible solution instead of an optimal one. The Simulated
Annealing algorithm (Kirkpatrick et al. 1983), based on the
Metropolis steps (Metropolis et al. 1953) at decreasing tem-
peratures, is a typical method of this kind. The Simulated
Annealing algorithm, however, may be inefficient because
of frequent rejections. To improve the performance of Simu-
lated Annealing, we adopt the Rejection-Free algorithm for

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-023-10300-9&domain=pdf

 131 Page 2 of 17 Statistics and Computing (2023) 33:131

sampling (Rosenthal et al. 2021; Douc and Robert 2011)
into an optimization version. Additionally, Rejection-Free
may experience inefficiency when it enters local extreme
areas. Therefore, we propose another algorithm based on
the Rejection-Free algorithm called Partial Neighbor Search
(PNS) to enhance its efficiency further.

Rejection-Free and PNS are more efficient in many opti-
mization problems than Simulated Annealing, even when
applied to a single-core implementation. The implementa-
tion of these algorithms can also be carried out through
parallelism to increase efficiency even further. It is possi-
ble to use processors designed for general purposes, such
as Intel and AMD cores, for parallel computing to acceler-
ate the algorithm to some extent. However, these chips were
not built for parallel computing, and off-chip communica-
tion significantly slows the data transfer rate to and from
the cores (Sodan et al. 2010). On the other hand, paral-
lelism hardware explicitly designed for MCMC trials has
been created. For example, the second generation of Fujitsu
Digital Annealer uses a dedicated processor called Digital
Annealing Unit (DAU) (Matsubara et al. 2020) to achieve
high speed. This dedicated processor is designed to min-
imize communication overhead in arithmetic circuitry and
with memory. It can achieve 100x to 10,000x speedups by
combining Rejection-Free and PNS with such parallelism
hardware (Sheikholeslami 2021).

This paper aims to propose a newmetaheuristic algorithm
called Partial Neighbor Search to find a feasible solution in
optimization questions efficiently. We next review the Sim-
ulated Annealing algorithm, the Metropolis algorithm, and
the Rejection-Free algorithm for sampling. Following that,
Sect. 2 describes how to use the Rejection-Free algorithm
to solve optimization problems. Our next point is that the
local maximum may lead to another kind of inefficiency for
Rejection-Free, and Sect. 3 introduces our Partial Neighbor
Search (PNS) algorithm for optimization, which consid-
ers just subsets of neighbor states for possible moves. In
Sect. 4, we demonstrate how PNS can be applied to quadratic
unconstrained binary optimization (QUBO) questions and
its effectiveness in solving them. We then discuss why this
improvement occurs (Sect. 5), and how its subsets of par-
tial neighbors should be chosen (Sect. 6), as well as its
relation to the Tabu Search algorithm (Sect. 7). Moreover,
we present several other examples, such as the Knapsack
problem (Sect. 8) and the 3R3XOR problem (Sect. 9), to
illustrate the advantages of the PNS algorithm in discrete
optimization problems. Furthermore, Sect. 10 demonstrates
another advantage of PNS over Rejection-Free by providing
a continuous optimization example known as quadratic pro-
gramming. PNS can easily be adapted to the general state
space by selecting only a finite subset, and it outperforms
Simulated Annealing. In contrast, Rejection-Free cannot be

applied in this case due to the need to consider all neighbors
at each step.

1.1 Background on Simulated Annealing for
optimization

Simulated Annealing, as introduced by Kirkpatrick et al.
(1983), is widely used to solve combinatorial optimization
problems, such as approximating the optimal values of func-
tionswithmany variables (Rutenbar 1989). Although there is
some theory to prove that SimulatedAnnealingwill converge
to the optimal solution almost surely with sufficiently slow
cooling schedules (Nikolaev and Jacobson 2010), for many
complex optimization problems, such as NP-hard problems,
there is no guarantee that this algorithm will provide an opti-
mal solution within a reasonable amount of time. On the
other hand, Simulated Annealing can give reasonable, fea-
sible solutions quickly (Albright 2007). Discrete Simulated
Annealing contains the following essential elements (Bertsi-
mas and Tsitsiklis 1993):

1. A state space S.
2. A real-valued target density π on S. The ultimate goal

for the Simulated Annealing is to find y ∈ S such that
π(y) > π(x),∀x ∈ S. However, formany circumstances,
a good feasible solution is acceptable.

3. ∀x ∈ S, ∃ a proposal distribution Q(x, ·) where∑
y∈S\{X} Q(x, y) = 1.

4. ∀X ∈ S, ∃ N (x) = {y ∈ S | Q(x, y) > 0} ⊂ S\{x},
called the neighbors of x .

5. A non-increasing function T : N → (0,∞), called the
Cooling Schedule. T (k) is called the temperature at step
k ∈ N.

6. An initial State X0 ∈ S.

We discuss the discrete cases here first, and then in
Sect. 10,wewill talkmore about optimization in general state
space. With the above elements, the Simulated Annealing
algorithm, which consists of a discrete time-inhomogeneous
Markov Chain {Xk}Kk=0 can be generated by Algorithm 1.
Algorithm 1 is designed to find Xk such that π(Xk) ≈
supx∈S π(x) with high probability, though that is not guar-
anteed. Note that the algorithm can also be formulated using
log values for better numerical stability.

1.2 Background onMetropolis-Hastings algorithm

The above Simulated Annealing algorithm is designed based
on theMetropolis algorithm (Metropolis et al. 1953). Among
all the Monte Carlo algorithms, the Metropolis algorithm
has been the most successful and influential (Beichl and
Sullivan 2000). It is designed to generate a Markov chain
that converges to a given target density π on a state space

123

Statistics and Computing (2023) 33:131 Page 3 of 17 131

Algorithm 1 Simulated Annealing
initialize X0
for k in 1 to K do

random Y ∈ N (Xk−1) based on Q(Xk−1, ·)
random Uk ∼ Uniform(0, 1)
if Uk < [π(Y)

π(Xk−1)
]1/T (k) then

 accept with probability min
{
1,

[
π(Yk)

π(Xk−1)

]1/T (k)
}

Xk = Y
 accept and move to state Y
else

Xk = Xk−1
 reject and stay at Xk−1
end if

end for

S. As a generalization of the Metropolis algorithm, the
Metropolis-Hastings algorithm includes the possibility of a
non-symmetric proposal distribution Q (Hitchcock 2003).
The Metropolis-Hastings algorithm is described in Algo-
rithm 2.

Algorithm 2 the Metropolis-Hastings algorithm
initialize X0
for k in 1 to K do

random Y ∈ N (Xk−1) based on Q(Xk−1, ·)
random Uk ∼ Uniform(0, 1)
if Uk <

π(Y)Q(Y ,Xk−1)
π(Xk−1)Q(Xk−1,Y)

then

 accept with probability min
{
1, π(Y)Q(Y ,Xk−1)

π(Xk−1)Q(Xk−1,Y)

}

Xk ← Y
 accept and move to state Y
else

Xk ← Xk−1
 reject and stay at Xk−1
end if

end for

Algorithm 2 ensures the Markov chain {X0, X1, X2, . . . ,

XK } has π as stationary distribution. It follows (assuming
irreducibility) that the expected value Eπ (h) of a func-
tional h : S → R with respect to π can be estimated by
1
M

∑M
i=1 h(Xi) for sufficiently large run length M . Although

theMetropolis-Hastings algorithm and Simulated Annealing
are designed for different purposes, regarding the imple-
mentation, the Cooling Schedule is the only difference
between them. Thus, both Simulated Annealing and the
Metropolis-Hastings algorithm may face inefficiencies from
the rejections (Rosenthal et al. 2021).

1.3 Background on Rejection-Free algorithm for
sampling

Rejections in both Simulated Annealing and the Metropolis-
Hastings algorithm may slow down the efficiency of the
algorithm. In Algorithm 1, if Uk ≥ [π(Y)

π(Xk)
]1/T (k), then we

will remain at the current state, even though we have spent
time in proposing a state, computing a ratio of target densities,
generating a random variable Uk , and deciding not to accept
the proposal. Such inefficiencies could happen frequently and

are considered a necessary evil of Simulated Annealing and
the Metropolis-Hastings algorithm. However, we can com-
pute all potential acceptance probabilities simultaneously to
allow for the possibility of skipping these rejection steps. By
removing the inefficiencies of rejections in both algorithms,
the Rejection-Free algorithm can lead to significant speedup
(Rosenthal et al. 2021; Douc and Robert 2011).

Before introducing Rejection-Free, we need to introduce
the jump chain first. Given a run {Xk} of a Markov chain, we
define the jump chain to be {Jk, Mk}, where {Jk} represents
the same chain as {Xk} except omitting any immediately
repeated states, and the Multiplicity List {Mk} is used to
count the number of times the original chain remains at the
same state.

For example, if the original chain is

{Xk} = {a, b, b, b, a, a, c, c, c, c, d, d, a, . . . }, (1)

then the jump chain would be

{Jk} = {a, b, a, c, d, a, . . . }, (2)

with the corresponding multiplicity list being

{Mk} = {1, 3, 2, 4, 2, 1, . . . }. (3)

the jump chain {Jk, Mk} itself is a Markov chain. If we use
notation P(y | x) to represent the transition probability from
x to y by Metropolis-Hastings, the transition probabilities
P̂(y | x) for the jump chain is specified by

P̂(x | x) := 0

∀y
= x , P̂(y | x):= P[Jk+1 = y | Jk = x]
= P(y | x)

∑
z
=x P(z | x) (4)

Moreover, the conditional distribution of {Mk} given {Jk} is
equal to the distribution of 1 + G where G is a geometric
random variable with success probability p = 1 − P(x |
x) = ∑

z
=x P(z | x); see Rosenthal et al. (2021), Douc and
Robert (2011).

Given the above properties for the Jump chain, the
Rejection-Free algorithm can be used for sampling as
described by Algorithm 3. Algorithm 3 only works for the
discrete cases where all states have at most finite neigh-
bors. Theorem 13 in Rosenthal et al. (2021) extended the
Rejection-Free to general state space, and we will discuss
more by a continuous optimization question in Sect. 10.

Algorithm 3 ensures (assuming irreducibility) that the
expected value Eπ (h) of a functional h : S → Rwith respect

to π can be estimated by
∑K

k=1 Mk h(Jk)
∑K

k=1 Mk
for sufficiently large

run length K , while avoiding any rejections. Rejection-Free

123

 131 Page 4 of 17 Statistics and Computing (2023) 33:131

Algorithm 3 Rejection-Free for Sampling (Discrete Cases)
initialize J0
for k in 1 to K do

p ← 0
 p is used to record the success probability for Mk−1
for Y in N (Jk−1) do
 only works for finite neighbors

calculate q(Y) = Q(Y , Jk−1)min{1, π(y)
π(Jk−1)

}

 the transition prob. from Jk−1 to Y

p ← p + q(Y)
 p = ∑
z
=x P(z | x)

end for
choose Jk ∈ N (Jk−1) such that P̂(Jk = Y | Jk−1) ∝ q(Y)

 choose the next jump chain state
calculate Mk−1 = 1 + G where G ∼ Geom(p)

 multiplicity list for current state
end for

can lead to great speedup in examples where the Metropolis
algorithm frequently rejects (Rosenthal et al. 2021).

2 Rejection-Free algorithm for optimization

In addition to sampling, the above Rejection-Free algorithm
can also be applied to optimization problems. Given a set S
and a real-valued target density π on the set S, we can use
the Rejection-Free algorithm to find x ∈ S that maximizes
π(x) by Algorithm 4. Algorithm 4 is also designed to find
Xk such that π(Xk) ≈ supx∈S π(x) with high probability,
and the efficiency is greatly improved by avoiding rejec-
tions. Although the purpose of sampling and optimization
are different, regarding the implementation, Rejection-Free
optimization is only different from Rejection-Free sampling
by getting rid of the multiplicity list {Mk}.

Algorithm 4 Rejection-Free for Optimization (Discrete
Cases)
initialize J0
for k in 1 to K do

for Y ∈ N (Jk−1) do

 only works for finite neighbors

calculate q(Y) = Q(Y , Jk−1)min{1, [π(Y)
π(Jk)

] 1
T (k) }

 the transition prob. from Jk−1 to Y
end for
choose Jk ∈ N (Jk−1) such that P̂(Jk = Y | Jk−1) ∝ q(Y)

 choose the next jump chain State
end for

Although the Rejection-Free algorithm for optimization
can help reduce the inefficiency of rejections, localmaximum
areas ofπ can still be a problem. For example,wewant to find
x ∈ S, which maximizes π(x) from a state space starting at
state A in Fig. 1. Here, we use a uniform proposal distribution
Q on the neighbor sets N as shown in Fig. 1.

Note that, π(A1) = π(A2) = · · · = π(An) = 0.01 while
π(A) = π(B) = 100. Then the probability of escaping from
state A by one Metropolis step is 1

n+1 + n
n+1 × 1

10000 , where

1
n+1 represents the probability of moving from state A to

state B, and n
n+1 × 1

10000 is the probability of moving from
state A to A1, A2, . . . , An . Thus, we will have many rejec-
tions using Simulated Annealing with constant temperature
T ≡ 1. Cooling Schedules can help reduce the probability
of rejection at the beginning of Simulated Annealing since
T should be large during that time. However, as we move on
in Simulated Annealing, we will be more and more likely to
be trapped by local maximum areas like this.

The Rejection-Free algorithm for optimization can pro-
duce some speedup in this case, but the Rejection-Free chain
will still be stuck by the local maximum area {π(A), π(B)}.
If n, the number of other neighbors for A and B, is small,
this chain will be switching between A and B for a long time,
since

P̂(J1 = B | J0 = A) = min{1, π(B)
π(A)

}
∑

z
=A min{1, π(z)
π(A)

}
= 1

1 + 0.0001 × n
≈ 1

P̂(J1 = A | J0 = B) ≈ 1. (5)

To help our Markov chain escape from those local max-
imums in optimization, we propose another method called
Partial Neighbor Search based on the Rejection-Free algo-
rithm.

3 Proposed Search Algorithm: Partial
Neighbor Search

Partial Neighbor Search (PNS) is an algorithm based on the
Rejection-Free, also designed as a Markov chain used for
optimization as described inAlgorithm 5. Algorithm 5 is also
intended to find Xk such that π(Xk) ≈ supx∈S π(x) with
high probability, and the efficiency is improved even further
by avoidingboth rejections and traps in localmaximumareas.

Algorithm 5 Partial Neighbor Search
initialize J0
for k in 1 to K do

pick Nk(Jk−1) ⊂ N (Jk−1) (�)

for Y ∈ Nk(Jk−1) do
 Only neighbors in Nk will be considered

calculate q(Y) = Q(Y , Jk−1)min{1, [π(Y)
π(Jk)

] 1
T (k) }

 the transition prob. from Jk−1 to Y
end for
choose Jk ∈ Nk(Jk−1) such that P̂(Jk = Y | Jk−1) ∝ q(Y)

 choose the next Jump Chain State
end for

The (�) step in Algorithm 5 is the key of PNS. At this
step, Nk(Jk−1) could be random 50% of the elements from

123

Statistics and Computing (2023) 33:131 Page 5 of 17 131

Fig. 1 Illustration of the local
maximum area in an
optimization problem where
both Simulated Annealing and
Rejection-Free may get stuck.
The target density π has the
following function values:
π(A) = π(B) = 100,
π(A1) = π(A2) = · · · =
π(An) = π(B1) = π(B2) =
· · · = π(Bn) = 0.01

N (Jk−1). In Sect. 6, we will explore many other choices for
the (�) step to figure out the best strategy. Moreover, for con-
tinuous cases, PNScanbe applied, andweonly need to ensure
the Partial Neighbor Sets Nk are always finite, ∀k. On the
other hand, Algorithms 3 andAlgorithm 4 for Rejection-Free
only work for discrete cases where the number of neighbors
for all states must be finite, and we will illustrate these by an
optimization example in continuous cases in Sect. 10.

Themotivation for PNS is simple: we have a better chance
of escaping from the local maximum area if we force the
algorithm to avoid some neighbors randomly. For example,
in Fig. 1, if we only consider half of the neighbors at state A,
we may disregard state B with probability 50%. That is, we
have a probability of at least 50% of selecting a state from
{A1, A2, . . . , An} as our next state in the PNS chain. If this
occurs, we aremore likely to escape from the local maximum
area {π(A), π(B)}.

4 Application to the QUBO question

The quadratic unconstrained binary optimization (QUBO)
has gained increasing attention in combinatorial optimization
due to itswide range of applications in finance and economics
to machine learning (Kochenberger et al. 2014). The QUBO
problem is known to be NP-hard (Glover et al. 2018), so it is
common to use Simulated Annealing to find the optimal or
workable solution. This problem can now be addressed using
our PNS algorithm. (Additional applications are in Sects. 8,
Sect. 9, and Sect. 10 below.)

For a given N by N matrix Q (usually upper triangular),
the QUBO question aims to find

argmax xT Qx , where x ∈ {0, 1}N (6)

Sometimes argmin is used instead of argmax, which is
equivalent to taking the negative of Q, so for simplicity, we
focus on the argmax version here. In the simulation here, we
use N = 200.

As part of our algorithm, we use a uniform proposal
distribution among all neighbors where the neighbors are
defined as binary vectors with Hamming distance 1. That
is, Q(x, y) = 1

N for ∀y ∈ N (x), where y ∈ N (x) ⇐⇒
|x− y| = ∑N

i=1|xi − yi | = 1, ∀x, y ∈ {0, 1}N . We randomly
choose half of the neighbors at each step of PNS, which
means we only consider a random subset NK (x) ⊂ N (x)
whose cardinality is |Nk(x)| = 1

2 |N (x)| = 1
2N for ∀x ∈

{0, 1}N . In addition, the target density π(x) = exp{xT Qx},
since we need the target density to be positive all time to use
the Cooling Schedule, and maximizing xT Qx is the same as
maximizing exp{xT Qx}. Furthermore, T (k) represents the
temperature at step k for the cooling schedule.

We compare Simulated Annealing, Rejection-Free for
Optimization, and PNS in 1000 simulation runs. We ran-
domly generate a 200 by 200 upper triangular as the QUBO
matrix Q. The non-zero elements from Q were generated
randomly by Qi, j ∼ Normal(0, 1002), ∀i ≤ j .

The result for the simulation is shown in Fig. 2. Here, we
used a violin plot to summarize the results. The violin plot
uses the information available from local density estimates
and the basic summary statistics to provide a valuable tool
for data analysis and exploration (Hintze and Nelson 1998).

123

 131 Page 6 of 17 Statistics and Computing (2023) 33:131

80000

81000

82000

83000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 0.1

80000

81000

82000

83000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 1

80000

81000

82000

83000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 10

80000

81000

82000

83000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

10 > T > 0.1

Fig. 2 Comparison of Simulated Annealing, Rejection-Free, and PNS
in terms of the highest (log) target density value logπ(x) = xT Qx
being found, for a random upper triangular QUBO matrix Q where the
non-zero elements are generated by Qi, j ∼ N (0, 1002). Four different
cooling schedules where T (k) = 0.1, 1, and 10 constantly, and T (k)

being geometric from 10 to 0.1 are used here. The number of iterations
for Simulated Annealing is 200,000, and the numbers of iterations for
Rejection-Free and PNS are 1000. The three black lines inside the vio-
lin plots are 25%, 50%, and 75% quantile lines. The colored segments
represent the mean values

To reveal the data structure, the violin plot combines two
density traces on both sides and three quantile lines (25%,
50%, and 75%). In addition, we added a long segment of
the bottom layer as the mean for the values. We also added a
short segment on the y-axis to help compare themean values.

Figure 2 shows that the PNS is always the best in all
four different cooling schedules. Note that the number of
iterations used for Simulated Annealing is 200, 000 for Sim-
ulatedAnnealingwhile they are 1000 for bothRejection-Free
and PNS. We used these many iterations because we need to
consider 200 neighbors at each iteration in Rejection-Free.
In contrast, we only need to consider one neighbor for each
iteration in SimulatedAnnealing. If we proceedwith all three
algorithms on a single-core machine, the run time of a sin-
gle simulation run for simulated Annealing is about 20 s; the
run time for Rejection-Free is about 10 s; the run time for
PNS is only 5 s. In addition, parallelism in computer hard-
ware can increase the speed of both Rejection-Free and PNS
by distributing the calculation of the transition probabili-
ties for different neighbors onto different cores (Rosenthal
et al. 2021). Besides that, we can also use multiple repli-

cas at different temperatures, such as in parallel tempering,
or deploy a population of replicas at the same temperature
(Sheikholeslami 2021). Combining these methods with par-
allelism hardware can yield 100x to 10,000x speedups for
Rejection-Free and PNS (Sheikholeslami 2021).

In the above example, the improvement in the efficiency of
Rejection-Free is easy to understand, while the performance
of PNS is counter-intuitive. Compared to Rejection-Free,
why would we get a better result by considering fewer neigh-
bors at each step? To illustrate how PNS works, we can look
closely at theMarkov chains generated in the above example.

5 Understanding the improvement of Partial
Neighbor Search

In this section, we found a local maximum area for the target
density π purposefully in the previous QUBO example in
Sect. 4 by looking at the final results from the simulation
runs from the previous section. Many Rejection-Free chains
stopped at this local maximum area after 1000 iterations. For

123

Statistics and Computing (2023) 33:131 Page 7 of 17 131

0 5 10 15 20 25 30

79
00

0
81

00
0

83
00

0

Detailed Partial Neighbor Search Chain

Number of Iteration

C
os

t F
un

ct
io

n
Va

lu
e

all neighbors (red boxplots) and partial neighbors (blue boxplots)

0 5 10 15 20 25 30

82
40

0
82

60
0

82
80

0
83

00
0

Detailed Rejection Free Chain

Number of Iteration

C
os

t F
un

ct
io

n
Va

lu
e

all important neighbors (red points) and partial important neighbors (blue points)

0 5 10 15 20 25 30

82
40

0
82

60
0

82
80

0
83

00
0

Detailed Partial Neighbor Search Chain

Number of Iteration

C
os

t F
un

ct
io

n
Va

lu
e

all important neighbors (red points) and partial important neighbors (blue points)

Fig. 3 The detailedMarkovChains fromRejection-Free (the pink chain
in the second plot) and PNS (the light blue chain in the first and the third
plot). The red box plots in the first plot represent the target density values
for all neighbors, and the blue box plots represent the partial neighbors.
Most of these values are useless because they are too small to be picked
by the Markov chain. The second and the third plots only show the
important neighbors, defined as those whose transition probability is

larger than exp{−10} times the highest transition probability among all
neighbors. Here, red points represent all important neighbors, and blue
points mean important neighbors of a random subset of all neighbors
used for PNS. The Rejection-Free Chain switches between three local
maximum states all the time while the PNS chain escapes from the local
maximum area after five iterations. (Color figure online)

this local maximum area, the target density value is around
82600. This area contains three states whose target density
values are much larger than all their other neighbors. Thus,
this local maximum can trap the regular Rejection-Free chain
for a long time, just like the cases wementioned in Fig. 1.We
can plot the Markov chains by PNS with the target density

values for all the neighbors byRejection-Free and the random
subset of neighbors by PNS in the form of boxplots. The
boxplot of the first 30 steps from the first simulation in PNS
is shown in the first plot in Fig. 3

From the first plot in Fig. 3, most of the target density val-
ues within the boxplot are not useful since they are too small

123

 131 Page 8 of 17 Statistics and Computing (2023) 33:131

to be picked by the algorithm. Therefore, we only need to
consider the important neighbors likely to be chosen. Firstly,
for each state Jk in the Markov Chain, we find the max
value among all the transition probabilities, and we define
the important neighbors to be those neighbors whose tran-
sition probability is larger than exp{−10} times the highest
transition probability among all neighbors. That is, for each
Jk from the chain,wefindq(Y0) = max{q(Y) | Y ∈ N (Jk)},
and then we define {Y | Y ∈ N (Jk), q(Y) > exp{−10} ×
q(Y0)} to be important neighbors for Jk . This time, we only
have several important neighbors at each step. Thus, we used
points instead of boxplots to show the important neighbors.
The result from Rejection-Free and PNS is also shown in
Fig. 3.

From the second plot in Fig. 3, the red dots represent the
important neighbors, and the pink line means the Rejection-
Free chain. We can see that this local maximum area of three
states can easily trap the Rejection-Free chains because their
target density values are much higher than all other neigh-
bors. Thus, the important neighbors for any of these three
states are only the remaining two, and the Rejection-Free
chain will be switching between these three for a long time.
At the same time, the blue dots in the second plot represent
the important neighbors if we start to do PNS from that state.
Although we did not apply PNS in the second plot, we still
put the random subset for PNS there as a comparison. From
the blue dots in the second plot, we can say that if we per-
form PNS, then the Markov chain can escape from this local
maximum area faster since some groups of the blue dots do
not contain any of these three states with high target density
values.

On the other hand, the third plot in Fig. 3 shows that the
PNS chain (blue line) escapes from this local maximum area
within five steps. Again, the blue dots represent the important
neighbor from PNS, and the red dots represent the impor-
tant neighbor if we start to perform Rejection-Free from that
step. For each step of PNS within the local maximum area
of three states, the Markov Chain has the probability of 25%
to include neither of the remaining neighbors from the three
states. Thus, PNS helped the Markov chain to escape from
this localmaximumarea. In addition, in themiddle part of the
PNS chain, when the target density value of the PNS chain is
increasing, we usually have more than one important neigh-
bor. For example, if we have three important neighbors, we
only have 12.5% for considering none by PNS.

Thus, the PNS is better than Rejection-Free because the
PNS performsmuch better than the Rejection-Free algorithm
when the localmaximum areas trap theMarkov chain. On the
other hand, PNS performs similar to Rejection-Freewhen the
Markov chain is increasing with respect to the target density
value.

This section uses 50% random partial neighbors for each
step. We have many other choices, and we will consider and
compare these choices in the next section.

6 Optimal subset choice for Partial Neighbor
Search

Before we start our Markov chain, we have a proposal dis-
tribution Q with a corresponding neighbor set N where
N (x):={y ∈ S | Q(x, y) > 0}. A Partial Neighbor Set
means any function Ni satisfies the following conditions:

1. Ni : S → P(S), where S is the state space, and P(S) is
the power set of S;

2. Ni (x) ⊂ N (x), ∀x ∈ S;
3. y ∈ Ni (x) ⇐⇒ x ∈ Ni (y), ∀x, y ∈ S;

Usually, we want to pick Ni such that |Ni (x)| < |N (x)|
to perform proper PNS. In addition, to ensure irreducibility,
we need to make sure ∪K

k=1Nk(x) = N (x) for all x ∈ S.
The corresponding proposal distribution is defined to be
Qi (x, y) : S × S → R, where Qi (x, y) ∝ Q(x, y) for
y ∈ Ni (x) and Qi (x, y) = 0 otherwise.

Here, we compare the four different ways to choose the
proposal distribution {Qk,Nk} for PNS in the (�) step in
Algorithm 5 by the 200×200 QUBO question we discussed
in Sect. 4:

• MethodA (random subset every step): The Partial Neigh-
bor Sets Nk are randomized for every step, where
|Nk(x)| = 1

2 × |N (x)| = 100. Qk’s are defined accord-
ingly.

• Method B (random subset every ten steps): The Partial
Neighbor Sets Nk are randomized for once ten steps,
where |Nk(x)| = 1

2×|N (x)| = 100. That is,N10×k+1 =
N10×k+2 = · · · = N10×k+10 for ∀k ∈ N. Qk’s are
defined accordingly.

• Method C (systematic subset every step): Before we start
our Markov Chain, we define two Partial Neighbor Sets
N1 and N2, where |N1(x)| = |N2(x)| = 1

2 × |N (x)| =
100,N1(x)∩N2(x) = ∅. For step k of theMarkov chain,
we only randomly generate rk ∈ {1, 2}, and apply Nrk
for step k. Q1 and Q2 are defined accordingly.

• Method D (systematic subset every ten steps): Before we
start our Markov Chain, we define two Partial Neigh-
bor Sets N1 and N2, where |N1(x)| = |N2(X)| =
1
2 × |N (x)| = 100, N1(x) ∩ N2(x) = ∅. For every ten
steps of the Markov chain, we only randomly generate
rk ∈ {1, 2} and apply Nrk . That is r10×k+1 = r10×k+2 =
. . . = r10×k+10 for ∀k ∈ N. Q1 and Q2 are defined
accordingly.

123

Statistics and Computing (2023) 33:131 Page 9 of 17 131

81500

82000

82500

83000

83500

Method A Method B Method C Method D
Method for the star step

M
ax

 V
al

ue
 F

ou
nd

T = 0.1

79000

80000

81000

82000

83000

Method A Method B Method C Method D
Method for the star step

M
ax

 V
al

ue
 F

ou
nd

T = 1

82000

82500

83000

Method A Method B Method C Method D
Method for the star step

M
ax

 V
al

ue
 F

ou
nd

T = 10

80000

81000

82000

83000

Method A Method B Method C Method D
Method for the star step

M
ax

 V
al

ue
 F

ou
nd

10 > T > 0.1

Fig. 4 Comparison of different methods to choose the subsets for PNS,
in terms of the highest (log) target density value logπ(x) = xT Qx
found. Method A: random subset every step; method B: random subset
every ten steps; method C: systematic subset every step; method D: sys-
tematic subset every ten steps. Random upper triangular QUBO matrix
where the non-zero elements are generated by Qi, j ∼ N (0, 1002). Four

different cooling schedules where T = 0.1, 1, and 10 for all n, and T
being geometric from 10 to 0.1, are used here. The number of iterations
for all methods is 1000. The three black lines inside the violin plots are
25%, 50%, and 75% quantile lines. The colored segments represent the
mean values. (Color figure online)

For this 200 × 200 QUBO example, the settings for the
simulation are the same as in Sect. 4. ForMethodC andD, the
two Partial Neighbor SetsN1 andN2 are defined as flipping
the first 100 entries in x and flipping the last 100 entries
in x . The result for the simulation is shown in Fig. 4. This
figure shows that the random subset at every step (MethodA)
performs the best in all four Cooling Schedules. Therefore,
we will keep using Method A in all later parts.

In addition, we used Partial Neighbor Sets with half
elements from all neighbors in previous simulations. Now
we compare the Partial Neighbor Sets with cardinality of
|N (x)| × {1, 3

4 ,
2
3 ,

1
2 ,

1
3 ,

1
4 ,

1
5 ,

1
6 ,

1
7 ,

1
8 } by the same simula-

tion settings as before. FromFig. 5,we can see that 13 ,
1
4 ,

1
5 are

overall the best among all the choices. Thus, we can conclude
that Partial Neighbor Sets with around 25% of the neighbors
being considered at each step are the best for the aboveQUBO
question.

Therefore, we conclude that our best method to do opti-
mization for the 200 × 200 QUBO question is Algorithm 6.

Algorithm 6 Partial Neighbor Search for the 200 by 200
QUBO question
initialize J0
for k in 1 to K do

randomly pick Nk(Jk−1) ⊂ N (Jk−1) where |Nk(Jk−1)| = 50

 Only 50 out of the 200 neighbors will be considered

for Y ∈ Nk(Jk−1) do

calculate q(Y) = min{1, [exp(Y T QY)

exp(J Tk−1QJk−1)
] 1
T (k) }

 the transition prob. from Jk−1 to Y
end for
choose Jk ∈ Nk(Jk−1) such that P̂(Jk = Y | Jk−1) ∝ q(Y)

 choose the next Jump Chain State
end for

7 Comparison with Tabu Rejection-Free
algorithm

Tabu search (Glover 1989, 1990) is also a methodology in
optimization that guides a local heuristic search procedure to

123

 131 Page 10 of 17 Statistics and Computing (2023) 33:131

82000

82500

83000

83500

1 3/4 2/3 1/2 1/3 1/4 1/5 1/6 1/7 1/8
Fraction of Neighbors being Used

M
ax

 V
al

ue
 F

ou
nd

T = 0.1

82000

82500

83000

83500

1 3/4 2/3 1/2 1/3 1/4 1/5 1/6 1/7 1/8
Fraction of Neighbors being Used

M
ax

 V
al

ue
 F

ou
nd

T = 1

82000

82500

83000

83500

1 3/4 2/3 1/2 1/3 1/4 1/5 1/6 1/7 1/8
Fraction of Neighbors being Used

M
ax

 V
al

ue
 F

ou
nd

T = 10

82000

82500

83000

83500

1 3/4 2/3 1/2 1/3 1/4 1/5 1/6 1/7 1/8
Fraction of Neighbors being Used

M
ax

 V
al

ue
 F

ou
nd

10 > T > 0.1

Fig. 5 Comparison of different sizes of the random subsets for PNS,
in terms of the highest (log) target density value logπ(x) = xT Qx
being found. Subset sizes are N × {1, 3

4 , 2
3 , 1

2 , 1
3 , 1

4 , 1
5 , 1

6 , 1
7 , 1

8 }. Ran-
dom upper triangular QUBO matrix where the non-zero elements are
generated by Qi, j ∼ N (0, 1002). Four different cooling schedules

where T = 0.1, 1, and 10 for all n, and T being geometric from 10
to 0.1, are used here. The number of iterations for all methods is 1000.
The three black lines inside the violin plots are 25%, 50%, and 75%
quantile lines. The colored segments represent the mean values. (Color
figure online)

explore the solution space beyond local optimality. The idea
of Tabu search is to prohibit access to specific previously-
visited solutions. Tabu search is the most intuitive method to
help the Markov Chain escape from local maximum areas,
as in Fig. 1. After moving from state A to state B, we must
choose our next state among {B1, B2, . . . , BN }.We can com-
bine ourRejection-Free algorithm for optimizationwithTabu
search and then compare this new method to the PNS by the
QUBOquestion.Note thatwe do not need to record all visited
states since we are almost impossible to revisit a state after a
certain number of steps. Thus, we only need to record the last
several steps and prohibit our Markov chain from revisiting
them. The new algorithm is formulated as Algorithm 7.

We compare PNS with L-step Simplified Tabu Rejection-
Free for L = 1, 2, 3, . . . , 9. Again, we randomly generate
a 200 by 200 upper triangular QUBO matrix. The non-
zero elements from the 200 by 200 upper triangular matrix
Q were generated randomly with Qi, j ∼ N (0, 1002) for
i < j . Note that we need to consider about 200 neigh-
bors at each step for Rejection-Free and Simplified Tabu
Rejection-Free, while we only need to consider 50 neighbors
at each iteration for PNS. If we proceed with the algorithms

Algorithm7L steps SimplifiedTabuRejection-Free for opti-
mization
initialize J0
for k in 1 to K do

for Y ∈ N (Jk−1)\{Jk−2, . . . , Jk−L−1} do

 Remove states from the last L steps

q(Y) = min{1, [exp(Y T QY)

exp(J Tk QJk)
] 1
T (k) }

 the transition prob. from Jk−1 to Y
end for
choose Jk ∈ Nk(Jk−1) such that P̂(Jk = Y | Jk−1) ∝ q(Y)

 choose the next Jump Chain State
end for

with a single-core implementation, Rejection-Free and Tabu
Rejection-Free need about four times longer than PNS with
the same number of steps. Therefore, we can compare the
PNS with 4 × 100 = 400 iterations with the other methods
to get a fair comparison for the programon a single core.Note
that we are using this many steps here because 400 steps are
enough for PNS to find a good enough answer. The result
for the simulation is shown in Fig. 6. From this plot, we can
see that PNS performs much better than Rejection-Free and
Simplified Tabu Rejection-Free.

123

Statistics and Computing (2023) 33:131 Page 11 of 17 131

30000

40000

50000

60000

70000

80000

PNS RF Tabu1 Tabu2 Tabu3 Tabu4 Tabu5 Tabu6 Tabu7 Tabu8 Tabu9
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 0.1

30000

40000

50000

60000

70000

80000

PNS RF Tabu1 Tabu2 Tabu3 Tabu4 Tabu5 Tabu6 Tabu7 Tabu8 Tabu9
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 1

30000

40000

50000

60000

70000

80000

PNS RF Tabu1 Tabu2 Tabu3 Tabu4 Tabu5 Tabu6 Tabu7 Tabu8 Tabu9
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 10

30000

40000

50000

60000

70000

80000

PNS RF Tabu1 Tabu2 Tabu3 Tabu4 Tabu5 Tabu6 Tabu7 Tabu8 Tabu9
Algorithm

M
ax

 V
al

ue
 F

ou
nd

10 > T > 0.1

Fig. 6 Comparison of PNS, Rejection-Free, and 1-Step to 9-steps Sim-
plified Tabu Rejection-Free, in terms of the highest (log) target density
value logπ(x) = xT Qx found.Randomupper triangularQUBOmatrix
where the non-zero elements are generated by Qi, j ∼ N (0, 1002). Four
different cooling schedules where T = 0.1, 1, and 10 constantly, and T

being geometric from 10 to 0.1, are used here. The run time for all algo-
rithms on a single-core implementation is about the same. The number
of iterations for PNS is 400, and the number of iterations for all other
methods is 100. The colored segments represent themean values. (Color
figure online)

8 Application to Knapsack problem

TheKnapsack problem is anotherwell-knownNP-hard prob-
lem in optimization (Salkin and De Kluyver 1975). We
consider the simplest 0-1 Knapsack problem here. Given a
knapsack ofmax capacityW and N itemswith corresponding
values {vi }Ni=1 and weights {wi }Ni=1, we want to find a finite
number of items among all N items which can maximize the
total value while not exceeding the max capacity of the knap-
sack. That is, for givenW > 0, {vi }Ni=1 > 0 and {wi }Ni=1 > 0,
find a sequence of N binary variable {xi }Ni=1 ∈ {0, 1} to max-
imize

N∑

i=1

vi xi

subject to
N∑

i=1

wi xi ≤ W (7)

Since the Knapsack problem is NP-hard, we can use the
Simulated Annealing algorithm to find a feasible solution.
For this simulation, we set W = 100,000. We randomly

generate N = 1000 items where the values and weights
are random by wi , vi ∼ Poisson(1000). The mean and the
variance for Poisson(1000) are both 1000. Suppose we want
to find a binary vector x = (x1, x2, . . . , xN)T of dimension
N to maximize vT x subject to wT x ≤ W .

Again, we used a uniform proposal distribution among all
neighbors where the neighbors are defined as binary vectors
with Hamming distance 1. That is, Q(x, y) = 1

N for ∀y ∈
N (x), where y ∈ N (x) ⇐⇒ |x− y| = ∑N

i=1|xi −xi | = 1,
∀x, y ∈ {0, 1}N . We randomly choose half of the neighbors
at each step for PNS. That is, |Nk(x)| = 1

2 |N (x)| = 500
for ∀x ∈ {0, 1}N . Moreover, the target density π(x) =
1(wT x ≤ W)× vT x , where 1 represents the indicator func-
tion. In addition, T (k) represents the temperature at step k
for the Cooling Schedule here.

Again, we compare SimulatedAnnealing, Rejection-Free,
and PNS here. The result is shown in Fig. 7. The plot shows
that Rejection-Free for optimization and PNS algorithm are
better than the regular Simulated Annealing algorithm in all
four Cooling Schedules. Again, for the simulation shown in
Fig. 7, the numbers of iterations used for the three methods
are set to be different to have a fair comparison between the

123

 131 Page 12 of 17 Statistics and Computing (2023) 33:131

98000

100000

102000

104000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 0.1

98000

100000

102000

104000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 1

98000

100000

102000

104000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 10

98000

100000

102000

104000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

10 > T > 0.1

Fig. 7 Comparison of Simulated Annealing, Rejection-Free, and PNS
in terms of the highest target density values found in Knapsack Problem
withW = 100,000, N = 1000,wi , vi ∼ Poisson(1000). Four different
cooling schedules where T = 0.1, 1, and 10 constantly, and T being
geometric from 10 to 0.1, are used there. The number of iterations for

SimulatedAnnealing is 1,000,000, while the number for Rejection-Free
and PNS is 1000. The three black lines inside the violin plots are 25%,
50%, and 75% quantile lines. The colored segments represent the mean
values. (Color figure online)

three methods. We set the number of iterations for Simulated
Annealing to be 1000, 000. The numbers of iterations for
Rejection-Free and PNS are 1000 since we need to consider
1000 neighbors at each iteration for Rejection-Free for opti-
mization. In contrast, we only need to consider one neighbor
for each iteration in Simulated Annealing.

This result shows that PNS is not always that much bet-
ter than Rejection-Free when the number of iterations is the
same. In some cases, where the target density is not sharply
peaked, and there are few local extreme areas, Rejection-Free
can also perform excellently. Note that if we run the above
simulation on a single core, PNS will only take about half
of the time used by Rejection-Free, and if we use parallel
hardware to apply the above algorithm, Rejection-Free, and
PNS will take about the same time.

In addition, Rejection-Free is not always better than sim-
ple Simulated Annealing. For example, there will be no
rejections if π(x) ≡ 1 for all x ∈ S. The Simulated
Annealing will move to a new state by computing a single
probability, while the Rejection-Free will do the same but

compute the probabilities for all neighbors. However, when
the dimension of the problem is large, or the target density
is sharply peaked, the PNS will perform much better than
Rejection-Free, and Rejection-Free will perform much bet-
ter than Simulated Annealing.

9 Application to 3R3XOR problem

The 3R3XOR problem is a methodology for generating
benchmark problem sets for Isingmachines devices designed
to solve discrete optimization problems cast as Ising mod-
els introduced by Hen (2019). The Ising model, named after
Ernst Ising, is concerned with the physics of magnetic-driven
phase transitions (Cipra 1987). The Isingmodel is defined on
a lattice, where a spin si ∈ {−1, 1} is located on each lattice
site (Block and Preis 2012). The optimization question for
the Ising model has been widely applied to many scientific
problems such as neuroscience (Hopfield 1982) and envi-
ronmental science (Ma et al. 2014). Thus, algorithms, even

123

Statistics and Computing (2023) 33:131 Page 13 of 17 131

special-purpose programmable devices, designed to solve
discrete optimization problems cast as Ising models are pop-
ular (Hen 2019), and our PNS algorithm is one of them.

However, the non-planar Ising model is NP-complete
(Cipra 2000). We cannot find an optimal state from an Ising
model in polynomial time. Then, it is hard for us to compare
the performance of the heuristic solvers, such as Rejection
and PNS, by the time used to find the optimal state from a
random Ising model. On the other hand, Hen (2019) intro-
duced a tool for benchmarking Ising machines in 2019. In
his approach, linear systems of equations are cast as Ising
cost functions. The linear systems can be solved quickly,
while the corresponding Ising model exhibits the features of
NP-hardness (Hen 2019). This way, we can construct special
Ising models with a unique known optimal state. Then we
can use these special Ising models to compare the heuristic
solvers’ runtimes to find the optimal state.

This section focuses on constructing a simplified version
of 3-body Ising with N spins from a binary linear system of
N equations. The simplified version is defined as follows:

H({s j }) =
∑

a<b<c

Ma,b,csasbsc, (8)

where si ∈ {−1, 1} for ∀i = 1, 2, . . . , N . Ma,b,c is a N ×
N × N matrix where Ma,b,c = 0 ∀a ≥ b, b ≥ c, or a ≥ c.

In Hen’s (2019) approach, we start by choosing a binary
matrix {Ai, j } and a binary vector {b j } to form a modulo two
linear system of N equations in N variables.

N∑

j=1

Ai, j x j ≡ bi mod 2, for i = 1, 2, . . . , N . (9)

This module two linear system of equations can always be
solved in polynomial time using Gaussian elimination. In
addition, as long as the binary matrix {Ai, j } is invertible,
the solution, if it exists, is unique. Suppose {x1, ..., xn} are n
binary variables. Then for given {Ai, j } and {b j }, we define

F({x j }) =
N∑

i=1

1
(N∑

j=1

Ai, j x j
≡ bi mod 2
)
, (10)

where 1 means indicator function here. Since F is a sum of
N indicator functions, then 0 ≤ F ≤ N and the minimum
bound is reached when {x j } is the solution to the modulo two
linear system.

Let s j = 1 − 2x j ∈ {−1, 1} for j = 1, 2, . . . , N be N
Ising spins. Then we must have

∏

j :Ai, j=1

s j = (−1)bi if and only if
N∑

j=1

Ai, j x j ≡ bi mod 2,

(11)

∀i = 1, 2, . . . ,m. Then

F =
N∑

i=1

1

⎛

⎝
N∑

j=1

Ai, j x j
≡ bi mod 2

⎞

⎠

=
N∑

i=1

1

⎛

⎝
∏

j :Ai, j=1

s j
= (−1)bi

⎞

⎠ ,

since
∏

j :Ai, j=1

s j and (−1)bi ∈ {−1, 1}

= 1

2

⎡

⎣
N∑

i=1

⎛

⎝1 − (−1)bi
∏

j :Ai, j=1

s j

⎞

⎠

⎤

⎦ .

(12)

After dropping immaterial constants, we define

F0({s j }) =
N∑

i=1

[

(−1)bi
∏

j :Ai, j=1

s j

]

. (13)

Note that F ≥ 0 and the minimum bound is reached when
{x j } is the solution to the modulo two linear system. Thus,
F0 ≤ N , and the maximum bound will be reached when
{x j | x j = 1

2 (1 − s j)} is the solution to the modulo 2 linear
system. In addition, as long as the matrix {Ai, j } is invertible,
the solution to the equation system must uniquely exist, and
then there must exist a single configuration maximizes F0
whose maximum value is exactly N .

Again, the Hamiltonian for simplified 3-body Ising model
including only the cubic term to be H({s j }) = ∑

a<b<c
Ma,b,csasbsc. Here, we assume, on each row of the binary
matrix {Ai, j }, ∑N

j=1Ai, j = 3. Then, let Ma,b,c = (−1)bi

if ∃i, a < b < c such that Ai,a = Ai,b = Ai,c = 1, and
Ma,b,c = 0 otherwise. Then, we have H({s j }) = F0({s j }).

Thus, we can construct an Ising model with a unique opti-
mal bound with a known optimal value N as follows:

1. find an invertible binary matrix {Ai, j } and a binary vector
{bi }, where ∑N

j=1Ai, j = 3, ∀i
2. solve themodulo2 linear equation system

∑N
j=1Ai, j x j ≡

bi mod 2, for i = 1, 2, . . . , N to make sure the unique
solution exists

3. define Ma,b,c be a N × N × N matrix where Ma,b,c =
(−1)bi if ∃i, a < b < c such that Ai,a = Ai,b = Ai,c =
1, and Ma,b,c = 0 otherwise

4. then we must have a unique optimal solution smax for
H(smax) = max(H(s)) = N

By constructing the special 3-body N × N × N Ising
model with a unique optimal solution of maximum bound
N , we can examine the performance of the Rejection-Free
and PNS algorithms on these special Ising models. Again,

123

 131 Page 14 of 17 Statistics and Computing (2023) 33:131

Fig. 8 Comparison of the
minimum value for the time
used to find the optimal state by
Rejection-Free and PNS with
25%, 50%, and 75% of the
neighbors being considered at
each step for a random Ising
model generated by 3R3XOR.
Each dot represents the median
of 50 repeated simulations for a
given problem size N = 12, 24,
48, and 96

1e−02

1e+00

1e+02

0 25 50 75 100

Dimension of the Problem

Ti
m

e
to

 S
ol

ut
io

n
(s

ec
)

Method 25% PNS 50% PNS 75% PNS Rejection−Free

Time to Solution versus Dimension

uniform proposal distributions are used here, and the neigh-
bors are defined as binary vectors with Hamming distance
1. We randomly generate the special Ising models with four
different sizes N = 12, 24, 48, and 96. For each of these
four different sizes, we generate 50 different Ising models
and record the time used by the algorithms to reach their
individual optimal states. The median of these 50 results for
both Rejection-Free and PNS algorithms are shown in Fig. 8.
From this figure, Rejection-Free is the worst. 25% PNS per-
forms comparably to 75%, and the 50% PNS performs the
best.

10 Application to Continuous State Space

In previous sections, we focused on optimization questions
with the discrete state spaceS where all states have, atmost, a
finite number of neighbors. Meanwhile, Simulated Anneal-
ing also works for general state space, where the number
of neighbors can be uncountable. In addition, Theorem 13
in Rosenthal et al. (2021) extended the Rejection-Free sam-
pling to general state space. Similarly, we can extend the
Rejection-Free optimization to general state space.

Although we have a solid theory base for Rejection-Free
sampling in general state space (Rosenthal et al. 2021), apply-
ing Rejection-Free sampling to those cases is challenging. A
significant difficulty is involved in the for loop that calculates
the transition probability of all neighbors in Algorithm 4. In
continuous cases, although numerical integration of all tran-
sition probability can be performed, such tasks are unlikely
to be efficiently divided among specialized hardware with a
certain number of parallel processing units. A similar chal-
lenge holds for Rejection-Free optimization as well. On the

other hand, PNS, as described in Algorithm 5, can be applied
straightforwardly to continuous cases by choosing the Partial
Neighbors SetsNk(x) to be finite subsets of all the neighbors
N (x) in Algorithm 5.

We compare the performance of Simulated Annealing
with our PNS on a simple example of quadratic pro-
gramming, which belongs to the category of continuous
optimization, as stated below:

argmax xT Qx

subject to xi ≥ 0, ∀i = 1, 2, . . . , N

N∑

i=1

xi = 1,

(14)

where Q is a given an upper triangular N by N matrix and
x ∈ R

N . For most cases, the quadratic programming is stated
by argmin instead of argmax. We use the argmax version
here to be consistent with the QUBO question in Sect. 4,
and argmax is equivalent to argmin when replacing Q by
−Q. This quadratic programmingquestion is alsoNP-hard as
long as Q is indefinite (Sahni 1974), where indefinite means
matrices that are neither positive semi-definite nor negative
semi-definite.

We randomly generate a 200 by 200 upper triangular to be
the matrix Q, where the non-zero elements from the 200 by
200 upper triangular matrix Q were generated randomly by
Qi, j ∼ Normal(0, 1002), ∀i ≤ j . We compare Simulated
Annealing and PNS in 100 simulation runs here. We omit
Rejection-Free since applying Rejection-Free to continuous
cases is quite challenging.

The target density value is set to be π(x) = exp{xT Qx},
∀x such that xi ∈ (0, 1), ∀i = 1, 2, . . . , N , and π(x) = −∞

123

Statistics and Computing (2023) 33:131 Page 15 of 17 131

otherwise. In addition, the proposal distribution Q and the
corresponding neighbor set N are defined as follows:

1. for state x = (x1, x2, . . . , xN)T ∈ S, choose a random
entry xr for r ∈ {1, 2, . . . , N };

2. generate a random value s ∼ Normal(0, 0.12);
3. let yr = xr + s and yn = xn × 1−xr

1−yr
, ∀n
= r ;

4. if yr /∈ (0, 1), then the corresponding π(y) is defined to
be −∞; in practice, we just need to generate a new y;
also note that, as long as yr , x ∈ (0, 1), we must have
y ∈ (0, 1)N ;

5. to ensure the reversibility within each Partial Neighbor
Set, we also consider y′

r = xr − s and y′
n = xn × 1−xr

1−y′
r
,

∀n
= r ; if y′
r /∈ (0, 1), then we can ignore y′.

With the given steps, we have
∑N

n=1 yn = 1 as long as
∑N

n=1 xn = 1. This method is similar to component-wise
Simulated Annealing. We find a random component, mag-
nify or minify it, and then modify the rest of the entries
to keep the summation unchanged. This proposal distri-
bution Q is therefore systematic. By the above ways to
generate neighbors, we can eliminate the constraints that
xi ≥ 0, ∀i = 1, 2, . . . , N , and

∑N
i=1 xi = 1, and we only

need to focus on argmax xT Qx .
In addition, some papers such as Bierkens (2016), Neal

(2004) claim that the non-reversibleMCMC ismore efficient
than the reversible MCMC. For the previous discrete exam-
ples, their proposal distributions are intuitively reversible
since we always consider states with flipped bits as neigh-
bors. Thus, we test the efficiency of non-reversible MCMC
here with our continuous example. To get a non-reversible
PNS, Step 5 from the method to choose the reversible partial
neighbor set there shall be ignored to get the non-reversible
PNS, and we just need to do Steps 1 to 4.

For Simulated Annealing, we randomly generate one
neighbor by the above-given steps and calculate the transi-
tion probability. For both reversible and non-reversible PNS,
we can generate, for example, 20 random neighbors in total
at each step. In this case, the reversible Partial Neighbor Set
Ni is only a random subset withN with 20 elements, which
are 10 pairs of states created by reversibility, and the non-
reversible Partial Neighbor Set is simply 20 random states
from the proposal distribution. The implementation of both
versions of PNS is simple compared to the Rejection-Free
since Rejection-Free needs to consider uncountable many
neighbors.

The result for the simulation is shown in Fig. 9.We can see
that both reversible and non-reversible PNS performs better
than Simulated Annealing in all four different cooling sched-
ules. However, the difference between PNS and Simulated
Annealing in this continuous example is not as much as the
difference between the algorithms from the discrete QUBO

questions. Note that the continuous example is not as sharply
peaked as the discrete example from Sect. 6. Thus, after we
choose a random entry r , we only need to move a small step
around the original value of xr . On the other hand, we have
to flip between 0 and 1 in the discrete example. Thus, the
rejection rate for the Simulated Annealing is lower than the
rate from the discrete example, so the performance of these
algorithms gets closer than the discrete cases. In addition,
the non-reversible PNS does not outperform the reversible
PNS, which means the non-reversible PNS does not always
solve the optimization questions more efficiently. However,
the results may differ for other examples, which can be one
of our future research directions.

In addition, PNS is specially designed for parallelism
hardware.Again,with a specialized dedicated processor such
as DAU, PNS can yield 100x to 10,000x speedups (Sheik-
holeslami 2021). In addition, this example also shows that
PNS has more flexibility compared to the Rejection-Free
algorithm. Again, Rejection-Free can hardly work for cases
with infinite neighbors, while PNS can be easily applied by
choosing finite Nk .

Moreover, the number of elements inNk needs to be rea-
sonable for PNS to keep its performance. For example, if we
used |Nk | = 500, we would calculate too many transition
probabilities at each step, making the algorithm inefficient.
Meanwhile, if we used |Nk | = 2, the number of Partial
Neighbor Sets being considered at each step would be too
few. As PNS will force the Markov chain to move to one ele-
ment from the Partial Neighbor SetNk , it will move to some
terrible choices of states when all states in the Partial Neigh-
bor Set Nk have small target density values. In the above
simulation, choosing |Nk | from 10 to 30 is the best strategy,
and the numbers between 10 and 30 perform similarly.

Furthermore, especially for the continuous cases, using a
new partial neighbor set at each step is the key for PNS to get
good performance. If we keep using the same partial neigh-
bors for too many steps, the Markov chain may be forced to
go somewhere wired, and thus, the efficiency of such PNS
won’t be that good.

11 Summary

In this paper, we have demonstrated new methods for opti-
mization questions based on the Markov chain Monte Carlo.
Rejection-Free can improve the optimization efficiency over
Simulation Annealing by considering all the neighbors
simultaneously. Also, PNS optimization was introduced to
address the problem that local maximum areas may trap the
Markov chains. PNS works better than Rejection-Free and
SimulatedAnnealing in the four optimization examples illus-
trated in this paper. Three sets of discrete examples have
been simulated to demonstrate that PNS can produce signif-

123

 131 Page 16 of 17 Statistics and Computing (2023) 33:131

150

200

250

Simualted Annealing Reversible PNS Nonreversible PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 0.1

150

200

250

Simualted Annealing Reversible PNS Nonreversible PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 1

150

200

250

Simualted Annealing Reversible PNS Nonreversible PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 10

150

200

250

Simualted Annealing Reversible PNS Nonreversible PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

10 > T > 0.1

Fig. 9 Comparison of Simulated Annealing and PNS in terms of the
highest (log) target density value logπ(x) = xT Qx being found, for
a random upper triangular matrix Q and x ∈ R

N subject to xi ≥ 0,
∀i = 1, 2, . . . , N , and

∑N
i=1 xi = 1. The non-zero elements are gen-

erated by Qi, j ∼ N (0, 1002). Four different cooling schedules where
T (k) = 0.1, 1, and 10 constantly, and T (k) being geometric from 10

to 0.1 are used here. The number of iterations for Simulated Anneal-
ing is 200, 000, and the number of iterations for both reversible and
non-reversible PNS is 24, 000. The run times for these three algorithms
on a single-core implementation are around 30s. The three black lines
inside the violin plots are 25%, 50%, and 75% quantile lines. The col-
ored segments represent the mean values. (Color figure online)

icant speedups in optimization problems. PNS has also been
applied to one continuous example to demonstrate its greater
flexibility than Rejection-Free.

Besides the Rejection-Free sampling paper (Rosenthal
et al. 2021), we have also applied PNS to the sampling cases
(Chen et al. 2022). We have proven the convergence theo-
rem for the PNS sampling algorithm. Under some specific
conditions, the Markov chain produced by PNS sampling
will converge to the target density almost surely. On the
other hand, PNS optimization illustrated by this paper does
not need such strict conditions for convergence. For the
three conditions described in Sect. 6, the third condition
y ∈ Ni (x) ⇐⇒ x ∈ Ni (y) related to the reversibility
of the Markov chain can be somehow loosened. A fascinat-
ing question is how much we can loosen the conditions. For
example, non-reversible PNS can be useful in optimization
questions. We tried one non-reversible PNS in Sect. 10, and
the result shows that the non-reversible PNS is just as good
as the reversible PNS. We believe that non-reversible PNS

can be helpful under other circumstances, and it can be one
of our future research directions.

The limitation of PNS is that if we apply it on parallelism
hardware, especially for chips not specially designed for
parallel computing, the speed will be slower than desired.
This algorithm needs different processors to communicate
frequently. For example, on my personal computer, using
sixteen processors to do PNS can only reduce 50% of the
time required by the program compared to one processor. On
the other hand, if we use specialized hardware such as DAU
(Matsubara et al. 2020), the time used for communication
between processors will be much shorter.

Acknowledgements The authors thank Fujitsu Ltd. and Fujitsu Con-
sulting (Canada) Inc. for providing financial support. The authors thank
the reviewers and editors for very careful readings andhelpful comments
which have greatly improved the manuscript.

Author Contributions SC and JSR designed the algorithm, did most of
the simulation, and wrote the main manuscript text. Aki Dote proposed
the idea of Partial Neighbor Search at the very beginning and provided
advice during the process.HirotakaTamura did the simulation in section

123

Statistics and Computing (2023) 33:131 Page 17 of 17 131

9 and provided advice during the process.AS coordinated everything for
the team and provided advice during the process. All authors reviewed
the manuscript.

Declarations

Conflict of interest The authors declare no competing interests.

References

Albright, B.: An introduction to simulated annealing. Coll. Math. J.
38(1), 37–42 (2007)

Beichl, I., Sullivan, F.: The Metropolis algorithm. Comput. Sci. Eng.
2(1), 65–69 (2000)

Bertsimas, D., Tsitsiklis, J.: Simulated annealing. Stat. Sci. 8(1), 10–15
(1993)

Bianchi, L., Dorigo, M., Gambardella, L.M., et al.: A survey on meta-
heuristics for stochastic combinatorial optimization. Nat. Comput.
8(2), 239–287 (2009)

Bierkens, J.: Non-reversible metropolis-hastings. Stat. Comput. 26(6),
1213–1228 (2016)

Block, B., Preis, T.: Computer simulations of the Ising model on graph-
ics processing units. Eur. Phys. J. Spec. Top. 210(1), 133–145
(2012)

Chen, S., Rosenthal, JS., Dote, A., et al.: Sampling via rejection-free
partial neighbor search (2022). arXiv preprint arXiv:2210.10513

Cipra, B.A.: An introduction to the Ising model. Am. Math. Mon.
94(10), 937–959 (1987)

Cipra, B.A.: The Ising model is NP-complete. SIAM News 33(6), 1–3
(2000)

Douc, R., Robert, C.P.: A vanilla Rao-Blackwellization of Metropolis-
Hastings algorithms. Ann. Stat. 39(1), 261–277 (2011)

Floudas, C.A., Pardalos, P.M.: Encyclopedia ofOptimization, pp. 1538–
1542. Springer, Berlin (2008)

Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-
complete problems. In: Proceedings of the Sixth Annual ACM
Symposium on Theory of Computing, pp. 47–63 (1974)

Glover, F.: Tabu search-part I. ORSA J. Comput. 1(3), 190–206 (1989)
Glover, F.: Tabu search-part II. ORSA J. Comput. 2(1), 4–32 (1990)
Glover, F., Kochenberger, G., Du, Y.: A tutorial on formulating and

using QUBO models (2018). arXiv:1811.11538
Hen, I.: Equation planting: a tool for benchmarking Ising machines.

Phys. Rev. Appl. 12(011), 003 (2019)
Hintze, J.L., Nelson, R.D.: Violin plots: a box plot-density trace syner-

gism. Am. Stat. 52(2), 181–184 (1998)
Hitchcock, D.B.: A history of the Metropolis-Hastings algorithm. Am.

Stat. 57(4), 254–257 (2003)

Hopfield, J.J.: Neural networks and physical systems with emergent
collective computational abilities. Proc. Natl. Acad. Sci. 79(8),
2554–2558 (1982)

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated
annealing. Science 220(4598), 671–680 (1983)

Kochenberger, G., Hao, J.K., Glover, F., et al.: The unconstrained binary
quadratic programming problem: a survey. J. Comb. Optim. 28(1),
58–81 (2014)

Ma, Y.P., Sudakov, I., Strong, C., et al.: Ising model for melt ponds on
Arctic sea ice. (2014). arXiv:1408.2487

Matsubara, S., Takatsu, M., Miyazawa, T., et al.: Digital annealer for
high-speed solving of combinatorial optimization problems and its
applications. In: 2020 25thAsia and South PacificDesignAutoma-
tion Conference (ASP-DAC), pp. 667–672 (2020)

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., et al.: Equation
of state calculations by fast computing machines. J. Chem. Phys.
21(6), 1087–1092 (1953)

Neal, R.M.: Improving asymptotic variance ofMCMC estimators: non-
reversible chains are better. arXiv preprint arXiv:math/0407281
(2004)

Nikolaev, A.G., Jacobson, S.H.: Simulated annealing. Handbook of
metaheuristics, pp. 1–39 (2010)

Rosenthal, J.S., Dote, A., Dabiri, K., et al.: Jump Markov chains and
rejection-free Metropolis algorithms. Comput. Stat. 36(4), 2789–
2811 (2021)

Rutenbar, R.A.: Simulated annealing algorithms: an overview. IEEE
Circuits Devices Mag. 5(1), 19–26 (1989)

Sahni, S.: Computationally related problems. SIAM J. Comput. 3(4),
262–279 (1974)

Salkin, H.M., DeKluyver, C.A.: The knapsack problem: a survey. Naval
Res. Logist. Q. 22(1), 127–144 (1975)

Schrijver, A.: On the history of combinatorial optimization (till 1960).
Handb. Oper. Res. Manag. Sci. 12, 1–68 (2005)

Sheikholeslami, A.: The power of parallelism in stochastic search for
global optimum: Keynote paper. In: ESSCIRC 2021—IEEE 47th
European Solid State Circuits Conference (ESSCIRC), pp. 36–42
(2021)

Sodan, A.C., Machina, J., Deshmeh, A., et al.: Parallelism via multi-
threaded and multicore CPUs. Computer 43(3), 24–32 (2010)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

http://arxiv.org/abs/2210.10513
http://arxiv.org/abs/1811.11538
http://arxiv.org/abs/1408.2487
http://arxiv.org/abs/math/0407281

	Optimization via Rejection-Free Partial Neighbor Search
	Abstract
	1 Introduction
	1.1 Background on Simulated Annealing for optimization
	1.2 Background on Metropolis-Hastings algorithm
	1.3 Background on Rejection-Free algorithm for sampling

	2 Rejection-Free algorithm for optimization
	3 Proposed Search Algorithm: Partial Neighbor Search
	4 Application to the QUBO question
	5 Understanding the improvement of Partial Neighbor Search
	6 Optimal subset choice for Partial Neighbor Search
	7 Comparison with Tabu Rejection-Free algorithm
	8 Application to Knapsack problem
	9 Application to 3R3XOR problem
	10 Application to Continuous State Space
	11 Summary
	Acknowledgements
	References

