
Sampling via Rejection-Free Partial Neighbor

Search

Sigeng Chen1, Jeffrey S. Rosenthal1, Aki Dote2, Hirotaka
Tamura3 and Ali Sheikholeslami4

1Department of Statistical Sciences, University of Toronto, 700
University Avenue, Toronto, M5G 1Z5, Ontario, Canada.

2Fujitsu Ltd., 4-1-1 Kamikodanaka Nakahara-ku, Kawasaki,
211-8588, Kanagawa, Japan.

3DXR Laboratory Inc., 4-38-10 Takata-Nishi, Kohoku-ku,
Yokohama, 223-0066, Kanagawa, Japan.

4Department of Electrical and Computer Engineering, University
of Toronto, 10 King’s College Road, Toronto, M5S 3G4, Ontario,

Canada.

Contributing authors: sigeng.chen@mail.utoronto.ca;
jeff@math.toronto.edu; dote.aki@fujitsu.com;

tamura.hirotaka@dxrlab.com; ali@ece.utoronto.ca;

Abstract

The Metropolis algorithm (Metropolis et al, 1953; Hastings, 1970)
involves producing a Markov chain to converge to a specified target den-
sity π. In order to improve its efficiency, we can use the Rejection-Free
(Rosenthal et al, 2021) version of the Metropolis algorithm, which avoids
the inefficiency of rejections by evaluating all neighbors. Rejection-Free
can be made more efficient through the use of parallelism hardware.
However, for some specialized hardware, such as Digital Annealing Unit
(Matsubara et al, 2020), the number of units will limit the number of
neighbors being considered at each step. Hence, we propose an enhanced
version of Rejection-Free known as Partial Neighbor Search, which only
considers a portion of the neighbors while using the Rejection-Free
technique. This method will be tested on several examples to demon-
strate its effectiveness and advantages under different circumstances.

Keywords: Metropolis Algorithm, Rejection-Free, Partial Neighbor Search,
Unbiased PNS, QUBO

1

2 Sampling via Rejection-Free Partial Neighbor Search

1 Introduction

The Monte Carlo method involves the deliberate use of random numbers in
a calculation with the structure of a stochastic process (Kalos and Whitlock,
2009). Monte Carlo techniques are based on repeating experiments sufficiently
many times to obtain many quantities of interest using the Law of Large
Numbers and other statistical inference methods (Kroese et al, 2014). The
three main applications of Monte Carlo methods are optimization, numerical
integration, and sampling (Kroese et al, 2014). This paper focuses on the
Markov chain Monte Carlo method for sampling.

The Markov chain Monte Carlo method (MCMC) simulates observations
from a target distribution to obtain a chain of states that eventually converges
to the target distribution itself. The Metropolis algorithm (Metropolis et al,
1953; Hastings, 1970), an MCMC method, is one of the most popular tech-
niques among its kind (Hitchcock, 2003). The Metropolis algorithm produces
a Markov chain {X0, X1, X2, . . . } on the state space S and target density func-
tion π, as follows: given the current state xk, the Metropolis algorithm first
proposes a new state y from a symmetric proposal distribution Q(xk, ·); it
then accepts the new state (i.e., sets xk = y) with probability min(1, π(y)

π(xk)
);

otherwise, it rejects the proposal (i.e., sets xx+1 = xk). This simple algorithm
ensures that the Markov chain has π as a stationary distribution.

However, the Metropolis algorithm may suffer from the inefficiency of rejec-

tions. We have a probability of
[
1 − min(1, π(y)

π(xk)
)
]
to remain at the current

state, even though we have spent time proposing a state, computing a ratio
of target probabilities, generating a random variable, and deciding not to
accept the proposal. Therefore, we proposed the Rejection-Free algorithm in
Rosenthal et al (2021) to improve the Metropolis algorithm’s performance.
Furthermore, the parallelism of computer hardware can significantly increase
the efficiency of Rejection-Free. The use of parallelism in Rejection-Free com-
bined with simple techniques such as parallel tempering can yield 100x to
10,000x speedups (Sheikholeslami, 2021). However, there is a limit to the num-
ber of parallel tasks that can be executed simultaneously on most specialized
parallelism hardware. Accordingly, Rejection-Free has a ceiling on the num-
ber of neighbors that can be evaluated at each step. Consequently, we present
an enhanced version of Rejection-Free called Partial Neighbor Search (PNS),
which only considers part of the neighbors when applying the Rejection-
Free technique, whereas the Rejection-Free technique means considering all
selected neighbors and calculating the next state when ignoring any imme-
diately repeated states. PNS has also been developed to solve optimization
problems, and it outperforms the Simulated Annealing and Rejection-Free
algorithms in many optimization problems, including the QUBO, Knapsack,
and 3R3XOR problems; see Chen et al (2022) for further information.

We next review the Metropolis-Hastings algorithm and Rejection-Free algo-
rithm in more detail. Then, in Section 2, we introduce our Basic Partial
Neighbor Search (Basic PNS) sampling algorithm, which considers subsets of

Sampling via Rejection-Free Partial Neighbor Search 3

neighbor states for possible moves and calculates the multiplicity list directly
from the subsets. Unfortunately, this version of the Markov chain does not con-
verge to the target density. In Section 3, we introduce our unbiased version of
Partial Neighbor Search (Unbiased PNS), where the sampling distribution will
converge to the target density correctly; see Appendix A for the proof. Unlike
Rejection-Free, Unbiased PNS can always use the advantage of the parallelism
hardware to improve the sampling efficiency, no matter the dimension of the
problem. We apply the Unbiased PNS to the QUBO question to illustrate its
performance in Section 4. In addition, we discuss the choice of subsets of the
Unbiased PNS for the QUBO question in Section 5. We further illustrate that
we can apply the Unbiased PNS to continuous models in Section 6. We com-
pare the Metropolis algorithm and Unbiased PNS in a continuous example
called the Donuts example to demonstrate the performance of Unbiased PNS
in Section 7. Furthermore, in our optimization paper (Chen et al, 2022), the
performance of PNS in optimization questions is much better than Rejection-
Free and Simulated Annealing. Thus we adapt the Optimization PNS and use
it as the burn-in part for sampling in Section 8. Geyer (2011) stated that
burn-in until converging to stationarity is not necessary for MCMC. If we take
Geyer’s (2011) argument, then we can use Optimization PNS to replace the
burn-in. On the other hand, we can combine the Optimization PNS and the
regular burn-in to get a better algorithm that will converge to stationarity
faster. In Appendix A, we prove the convergence theorem of our Unbiased PNS
algorithm. In addition, in Appendix B, we show how to sample proportionally
and efficiently on parallelism hardware. Even when we apply the algorithm to
a single core implementation, the technique also reduces the time of selecting
the next state to some extent.

1.1 Background on the Metropolis-Hastings algorithm

Discrete sampling questions usually contain the following essential elements
(adapted from the essential elements of Simulated Annealing in Bertsimas and
Tsitsiklis (1993)):

1. a state space S;
2. a real-valued target distribution π : S → [0, 1] where

∑
x∈S π(x) = 1;

3. ∀x ∈ S, ∃ a proposal distribution Q(x, ·) where
∑

y∈S\{x}Q(x, y) = 1, and

Q(x, y) > 0 ⇐⇒ Q(y, x) > 0, ∀x, y ∈ S;
4. ∀x ∈ S, ∃ a neighbor set N (x) = {y ∈ S | Q(x, y) > 0} ⊂ S\{x}.

For simplicity, we focus on the discrete cases here. We will talk more about
the general state space in Appendix A.

The Metropolis algorithm has been the most successful and influential of
all the members of the Monte Carlo method (Beichl and Sullivan, 2000). It
is designed to generate a Markov chain that converges to a given target dis-
tribution π on a state space S. The Metropolis-Hastings(M-H) algorithm is a
generalized version of the Metropolis algorithm, including the possibility of a

4 Sampling via Rejection-Free Partial Neighbor Search

non-symmetric proposal distribution Q (Hitchcock, 2003). The M-H algorithm
is stated in Algorithm 1.

Algorithm 1 the Metropolis-Hastings algorithm

initialize X0

for k in 1 to K do
random Y ∈ N (Xk−1) based on Q(Xk−1, ·)
random Uk ∼ Uniform(0, 1)

if Uk < π(Y)Q(Y,Xk−1)
π(Xk−1)Q(Xk−1,Y) then

▷ accept with probability min
{
1, π(Y)Q(Y,Xk−1)

π(Xk−1)Q(Xk−1,Y)

}
Xk ← Y ▷ accept and move to state Y

else
Xk ← Xk−1 ▷ reject and stay at Xk−1

end if
end for

Algorithm 1 ensures the Markov chain {X0, X1, X2, . . . , XK} has π as sta-
tionary distribution. It follows (assuming irreducibility) that the expected
value Eπ(h) of a functional h : S → R with respect to π can be estimated by
1
K

∑K
i=1 h(Xi) for sufficiently large run length K.

In Algorithm 1, if Uk ≥ π(Y)Q(Y,Xk−1)
π(Xk−1)Q(Xk−1,Y) , then we will remain at the

current state, even though we have spent time in proposing a state, computing
a ratio of target probabilities, generating a random variable Uk, and deciding
not to accept the proposal. Such inefficiencies could happen frequently and
are considered a necessary evil of the M-H algorithm. Thus, we proposed the
Rejection-Free algorithm (Rosenthal et al, 2021) to improve the inefficiency
caused by these rejections.

1.2 Background on Rejection-Free algorithm for sampling

Before introducing the Rejection-Free algorithm, we must first introduce the
jump chain. Given a run {Xk} of a Markov chain, we define the jump chain to
be {Jk,Mk}, where {Jk} represents the same chain as {Xk} except omitting
any immediately repeated states, and we use the multiplicity list {Mk} to
count the number of times the original chain remains at the same state.

For example, if the original chain is

{Xk} = {a, b, b, b, a, a, c, c, c, c, d, d, a, . . . },

then the jump chain and the corresponding multiplicity list would be

{Jk} = {a, b, a, c, d, a, . . . }, {Mk} = {1, 3, 2, 4, 2, 1, . . . }.

Sampling via Rejection-Free Partial Neighbor Search 5

The jump chain itself is also a Markov chain. If we assume the transition
probability of the original Markov chain {Xk} generated by Algorithm 1 is

P [Xk = y | Xk−1 = x] = Q(x, y)min

{
1,

π(y)Q(y, x)
π(x)Q(x, y)

}
, (1)

Then the transition probabilities P̂ (y | x) for the jump chain {Jk,Mk} is
specified by

P̂ (Jk = x | Jk−1 = x) = 0, ∀x ∈ S;

P̂ (Jk = y | Jk−1 = x) = P (Xk = y | Xk−1 = x,Xk−1 ̸= x)

=
P (Xk = y | Xk−1 = x)∑
z ̸=x P (Xk = z | Xk−1 = x)

, ∀y ̸= x.

(2)

Moreover, the conditional distribution of {Mk} given {Jk} is equal to the
distribution of 1 + G where G is a geometric random variable with success
probability 1− P (x | x) =

∑
z ̸=x P (z | x); see Rosenthal et al (2021) for more

details.
In addition, for the jump chain {Jk,Mk}Kk=1, we call the total number of

different states K to be the jump sample size, and we call
∑K

k=1 Mk to be the
original sample size, which is the corresponding length of the original Markov
chain.

Given the above properties of the jump chain, the Rejection-Free algorithm
is a sampling method that produces the jump chain as described by Algorithm
2. Note that the Rejection-Free algorithm described here can only deal with
the discrete cases with at most a finite number of neighbors for all states. We’ll
review the Rejection-Free for general state space in Section 6.

Note that, in Algorithm 2, when we need to pick our next state according
to the given probabilities, we can use the technique shown in Appendix B,
which is specially designed for parallelism hardware. In addition, even when
the Rejection-Free is applied to a single core implementation, such a technique
is still faster than other methods to sample proportionally.

Algorithm 2 ensures (assuming irreducibility) that the expected value
Eπ(h) of a functional h : S → R with respect to π can be estimated by∑K

k=1 Mk h(Jk)∑K
k=1 Mk

for sufficiently large run length K, while avoiding any rejec-

tions. Rejection-Free can lead to great speedup in examples where rejections
frequently happen for the M-H algorithm (Rosenthal et al, 2021).

2 Basic Partial Neighbor Search algorithm

In Algorithm 2, we can do this algorithm with parallelism in computer hard-
ware to produce more efficient samples. However, the number of tasks that

6 Sampling via Rejection-Free Partial Neighbor Search

Algorithm 2 Rejection-Free algorithm for discrete case

initialize J0
for k in 1 to K do

choose the next jump chain State Jk ∈ N (Jk−1) such that

P̂ (Jk = y | Jk−1) ∝ Q(Jk−1, y)min

{
1,

π(y)Q(y, Jk−1)

π(Jk−1)Q(Jk−1, y)

}

calculate multiplicity list Mk−1 ← 1 +G where G ∼ Geometric(p) with

p =
∑

z∈N (Jk−1)

Q(Jk−1, z)min

{
1,

π(z)Q(z, Jk−1)

π(Jk−1)Q(Jk−1, z)

}

end for

can be computed simultaneously by the parallelism hardware is not unlimited,
while the number of neighbors |N (x)| can be super large. How can we take
full advantage of the Rejection-Free with limited parallel hardware?

Assume the number of neighbors in Rejection-Free is at most N. That is,
for ∀x ∈ S, |N (x)| ≤ N . In addition, assume the number of tasks that can be
computed simultaneously by the parallelism hardware is M. If M > N , then
we can compute the transition probability of the original chain simultaneously
by the parallelism hardware, where the transition probability is

P (Jk = y | Jk−1) ∝ Q(Jk−1, y)min
{
1,

π(y)Q(y, Jk−1)

π(Jk−1)Q(Jk−1, y)

}
. (3)

Then the transition probability P̂ (defined at Equation 2) for the Rejection-
Free algorithm as stated in Algorithm 2 is propositional to P , ∀y ̸= Jk−1. On
the other hand, if M ≤ N , the simplest way to take advantage of parallelism
hardware is to evenly distribute the calculation tasks of the transition proba-
bilities to each unit. In this case, each unit of parallelism hardware needs to
calculate the probabilities for either ⌊NM ⌋ (the floor function) or ⌈

N
M ⌉ (the ceil-

ing function) times, and then we can put the information from all these parts
together for the next step of the algorithm. This method works for processors
designed for general purposes, such as Intel and AMD cores. However, these
chips are not specially designed for parallel computing, and off-chip commu-
nication significantly slows down the transfer rate of data to and from the
cores (Sodan et al, 2010). Therefore, using Intel and AMD cores as parallelism
hardware is applicable but not ideal.

Moreover, several parallelization hardware specialized for parallel MCMC
trials has been proposed. For example, the second generation of Fujitsu Digital
Annealer uses a dedicated processor called a Digital Annealing Unit (DAU)
(Matsubara et al, 2020) to achieve high speed. This dedicated processor is

Sampling via Rejection-Free Partial Neighbor Search 7

designed to minimize communication overhead in arithmetic circuitry and with
memory. In addition, the dedicated processor provides a virtually Rejection-
Free process, resulting in a throughput that is orders of magnitude faster than
that of a general-purpose processor. The problem with this Fujitsu chip is that
it is rigidly constrained by on-chip memory capacity relative to the problem
size M that can be processed in parallel. For problem sizes N > M , it is
impossible to compute transition probabilities for all neighborhoods to achieve
Rejection-Free or similar parallel trials. The number of neighbors considered
in each step must be limited to be within the on-chip memory capacity.

Initially, we want to adapt our Optimization Partial Neighbor Search (Opti-
mization PNS) algorithm from Chen et al (2022) to the sampling question
here. Intuitively, we can use the Optimization PNS and add a step for calculat-
ing the multiplicity list. The Basic Partial Neighbor Search algorithm (Basic
PNS) is shown in Algorithm 3. Again, we focus on discrete cases with at most
a finite number of neighbors here. We will talk about PNS for general state
space in Section 6 and Appendix A.

Algorithm 3 Basic Partial Neighbor Search algorithm

initialize J0
for k in 1 to K do

pick the Partial Neighbor Set Nk(Jk−1) ⊂ N (Jk−1)
choose the next jump chain State Jk ∈ Nk(Jk−1) such that

P̂ (Jk = y | Jk−1) ∝ Q(Jk−1, y)min

{
1,

π(y)Q(y, Jk−1)

π(Jk−1)Q(Jk−1, y)

}

calculate multiplicity list Mk−1 ← 1 +G where G ∼ Geometric(p) with

p =
∑

z∈Nk(Jk−1)

Q(Jk−1, z)min

{
1,

π(z)Q(z, Jk−1)

π(Jk−1)Q(Jk−1, z)

}

end for

The only difference between the Basic PNS (Algorithm 3) and Rejection-
Free (Algorithm 2) is that we only calculate the transition probability and all
the corresponding values for a subset Nk of all the neighbors for each step
within the loop. Here, Nk(Jk−1) is a subset of N (Jk−1) at our choice, and the
subscript k in Nk represents the subset of neighbors for step k. For example,
we can simply say that Nk(Jk−1) is a random subset of N (Jk−1) with half of
the elements. In addition, Qk(X,Y) is the corresponding proposal distribution
satisfying Qk(x, y) ∝ Q(x, y) for Y ∈ Nk(x) and Qk(x, y) = 0 otherwise.
However, the Markov chain produced by Algorithm 3 is different from the true
MCMC, and it might not converge to the true density π, as we now show.

8 Sampling via Rejection-Free Partial Neighbor Search

Fig. 1 Diagram of Example 1 showing non-convergence property of the Basic PNS.

2.1 Example 1 of the Nonconvergence problem by Basic
PNS

The first example is shown in Figure 1, from which we have π(A) ∝ 1, π(B) ∝
2, and π(C) ∝ 3. We consider the Basic PNS algorithm with a uniform proposal
distribution Q. In addition, only half of the neighbors are chosen for Nk at
each step. That is, we only need to consider one neighbor each time.

Then, if the MCMC is located at state A, then N (A) = {B,C}. Nk(A) =
{B} or {C} each with 50% probability, and thus, the algorithm will force
the chain to move to either B or C with 50% probability. Similarly, when the
Markov chain is located at state B, the next state will be A or C with 50%
probability, and when the Markov chain is located at state C, the next state
will be A or B with 50% probability.

On the other hand, we can calculate the corresponding multiplicity lists
MA, MB , and MB at state A as follows:

1. P̂ [B | A] ∝ P [B | A] = Q(A,B)min{1, π(B)Q(B,A)
π(A)Q(A,B)} = 0.5;

2. P̂ [C | A] ∝ P [C | A] = Q(A,C)min{1, π(C)Q(C,A)
π(A)Q(A,C)} = 0.5;

3. the transition probabilities P̂ from A to either B or C in Rejection-Free are
both 50%;

4. MA = 1 +G where G ∼ Geom(P [B | A] + P [C | A]) = Geom(1)
5. E(MA) = 1
6. Similarly, we have E(MB) =

5
4 , E(MA) =

9
4

Thus, for the Basic PNS Chain {Jk,Mk}Kk=1 with large K, the proportions
P of state A, B, and C in the Markov chain are

PBasic PNS(A) =

∑
Jk=A Mk∑K
k=1 Mk

=
1

1 + 5
4 + 9

4

=
2

9
̸= π(A) =

1

6
;

PBasic PNS(B) =
5

18
̸= π(B) =

1

3
;

PBasic PNS(C) =
1

2
= π(C). For state C, it is just a coincidence

(4)

Sampling via Rejection-Free Partial Neighbor Search 9

Fig. 2 Diagram of Example 2 showing non-convergence property of the Basic PNS.

This example shows that the samples from Basic PNS are not converging to
the target density π.

2.2 Example 2 of the Nonconvergence problem by Basic
PNS

The second example is shown in Figure 2, which is a much larger problem
compared to the first example. We have 16 states in example 2. All States are
connected to exactly four states. The target density is described as π(A) ∝ 1,
π(B1) = π(B2) = π(B3) = π(B4) ∝ e, π(C1) = π(C2) = · · · = π(C6) ∝ e2,
π(D1) = π(D2) = π(D3) = π(D4) ∝ e3, and π(E) ∝ e4. This example is too
large to be calculated by hand, so we use simulations to calculate the limiting
distribution of the samples. The convergence of the sampling distribution is
measured by the Total Variation Distance (TVD).

Given the Markov chain {Xk}Kk=1 generated by Metropolis algorithm, the

sampling distribution is defined as PSampled(x) =
∑K

k=1 1(Xk=x)

K , ∀x ∈ S,
where 1 represents the indicator function. In addition, for the jump chain
{Jk,Mk}Kk=1 generated by either Rejection-Free or PNS, the sampling distribu-

tion is defined as PSampled(x) =
∑K

k=1 Mk×1(Jk=x)∑K
k=1 Mk

, ∀x ∈ S. The corresponding

TVD values in both cases are defined as

TVD(PSampled, π) =
1

2

∑
x∈S

∣∣∣PSampled(x)− π(x)
∣∣∣. (5)

According to the definition, TVD is strictly between [0, 1]. When the sampling
distribution PSampled gets closer to the target distribution π, TVD will decrease
to 0. In other words, convergence to stationarity is described by how quickly
TVD decreases to 0.

The simulation results are shown in Figure 3. For a given amount of sam-
ples (K = 50, 100, 150, 200, . . . , 500, 1000, 1500, 2000, . . . , 7500), we did
1000 simulations for each of them. The TVD values and the times here are
the average values from these 1000 simulations. We compared four methods:

10 Sampling via Rejection-Free Partial Neighbor Search

Fig. 3 Average values of TVD between samples and the target density π for Exam-
ple 2 as a function of average CPU time in seconds for four scenarios: Rejection-Free
and Basic PNS with three different Partial Neighbor Set sizes. Each dot within the
plot represents the result of the average TVD value and average CPU time in sec-
onds from 1000 simulation runs given a certain original sample size, where the sizes are
{50, 100, 150, 200, . . . , 500, 1000, 1500, 2000, . . . , 7500}.

Rejection Free and Basic PNS with three different subset sizes. The Markov
chains, produced by Rejection-Free, will converge to the target density, so the
TVD value gets close to 0 at last. For PNS with |N0| = 1, we select one ran-
dom neighbor among all four neighbors at a time, forcing the chain to move
to that state. This method is the worst, and it converges at around 0.3. PNS
with |N0| = 2 means that we randomly select two neighbors at every step and
apply the Rejection-Free technique (select from these two states by probabil-
ity proportional to the transition probability, and calculate the multiplicity
list by the average of the transition probabilities). All three PNS algorithms
are not converging to the target density π.

Both Examples show that the samples from Basic PNS will not converge
to the target distribution π. Thus, we turn attention to a more promising
avenue, the unbiased version of the Partial Neighbor Search algorithm, where
convergence to stationarity is guaranteed.

3 Unbiased Partial Neighbor Search algorithm

We first need to review the alternating chains technique for the Rejection-Free
algorithm (Rosenthal et al, 2021) to introduce our upgraded algorithm version.

3.1 Alternating Chains for Rejection-Free

We may wish to switch between two or more different proposal distributions
for the M-H algorithm. An example of the M-H algorithm with alternating

Sampling via Rejection-Free Partial Neighbor Search 11

chains for every L0 steps among I proposal distributions Q0,Q1, . . . ,QI−1 is
shown as Algorithm 4.

Algorithm 4 Metropolis-Hasting algorithm with Alternating Chains

initialize i← 0 ▷ start with proposal distribution Q0

initialize L← L0 ▷ start with L0 remaining samples
initialize X0

for k in 1 to K do
random Y based on Qi(Xk−1, ·)
random Uk ∼ Uniform(0, 1)

if Uk < π(Y)Qi(Y,Xk−1)
π(Xk−1)Qi(Xk−1,Y) then

▷ accept with probability min
{
1, π(Y)Qi(Y,Xk−1)

π(Xk−1)Qi(Xk−1,Y)

}
Xk ← Yk ▷ accept and move to state Y

else
Xk ← Xk−1 ▷ reject and stay at Xk−1

end if
L← L− 1 ▷ one less remaining sample from the proposal distribution
if L = 0 then ▷ if we don’t have enough remaining samples

i← i+ 1 mod I ▷ switch to the next proposal distribution
L← L0 ▷ L0 remaining states for the next proposal distribution

end if
end for

However, if we proceed with alternating chains naively for Rejection-Free,
it can lead to bias. For each proposal distribution Qi, we need to get the
same amount of samples by the original sample size (

∑K
k=1 Mk) instead of

the jump sample size (K) to fix the bias problem. For I proposal distribu-
tionsQ0,Q1, . . . ,QI−1, the corresponding neighbor sets areN 0,N 1, . . . ,N I−1

where N i(x) = {y : y ∈ S,Qi(x, y) > 0} for i = 0, 1, . . . , I − 1. Then, if we
choose to switch between proposal distributions for L0 original samples, we
can do alternating chains in a Rejection-Free manner as Algorithm 5.

Algorithm 5 is equivalent to Algorithm 4 except that algorithm 5 computes
immediate repeated state for each proposal distribution all at once. As such, it
has no bias, is consistent, and will converge to the target distribution correctly.

3.2 Alternating Chains for Partial Neighbor Search

Alternating Chains can also be applied to PNS. We first define the meaning of
Partial Neighbor Sets here. For simplicity, we focus on discrete cases here and
will define the Partial Neighbor Sets for general state space in Appendix A.

Before we start our Markov chain, we have a proposal distribution Q with
a corresponding neighbor set N where N (x) := {y ∈ S | Q(x, y) > 0}. A
Partial Neighbor Set means any function Ni satisfies the following conditions:

12 Sampling via Rejection-Free Partial Neighbor Search

Algorithm 5 Rejection Free algorithm with Alternating Chains

initialize i← 0 ▷ start with proposal distribution Q0

initialize L← L0 ▷ start with L0 remaining original samples
initialize J0
for k in 1 to K do

calculate multiplicity list m← 1 +G where G ∼ Geometric(p) with

p =
∑

z∈N i(Jk−1)

Qi(Jk−1, z)min

{
1,

π(z)Qi(z, Jk−1)

π(Jk−1)Qi(Jk−1, z)

}

if m ≤ L then ▷ if we have enough remaining original samples
Mk−1 ← m, L← L−m
choose the next jump chain State Jk ∈ N i(Jk−1) such that

P̂ (Jk = y | Jk−1) ∝ Qi(Jk−1, y)min

{
1,

π(y)Qi(y, Jk−1)

π(Jk−1)Qi(Jk−1, y)

}

else ▷ if we don’t have enough remaining original samples
Mk−1 ← L, L← L0, Jk ← Jk−1, i← (i+ 1 mod I)

▷ stay at Jk−1 for L times and switch to the next N i

end if
end for

1. Ni : S → P(S), where S is the state space, and P(S) is the power set of S;
2. Ni(x) ⊂ N (x), ∀x ∈ S;
3. y ∈ Ni(x) ⇐⇒ x ∈ Ni(y), ∀x, y ∈ S;

Usually, we want to pick Ni such that |Ni(x)| < |N (x)| to perform proper
PNS. In addition, to insure irreducibility, we need to make sure ∪I−1

i=0 Ni(x) =
N (x) for all x ∈ S. The corresponding proposal distribution is defined to be
Qi(x, y) : S ×S → R, where Qi(x, y) ∝ Q(x, y) for y ∈ Ni(x) and Qi(x, y) = 0
otherwise;

Therefore, we propose the Unbiased Partial Neighbor Search (Unbiased
PNS) with Alternating Chains for every L0 original samples as shown in Algo-
rithm 6. The proof that the Markov chain produced by Unbiased PNS will
converge to the target distribution π is shown in Appendix A.

Again, in Algorithm 6, when we need to pick our next state according to
the given probabilities, we can use the technique shown in Appendix B, which
is faster than other methods to sample proportionally.

The Markov chains produced by Algorithm 6 will converge to the target
distribution, but how is its efficiency compared to the Metropolis-Hasting algo-
rithm and Rejection-Free? We will compare these three algorithms with some
simulations in Section 4.

Sampling via Rejection-Free Partial Neighbor Search 13

Algorithm 6 Unbiased Partial Neighbor Search

select Ni for i = 0, 1, . . . , I − 1 where ∪I−1
i=0 Ni(X) = N (X)

initialize i← 0 ▷ start with proposal distribution Q0

initialize L← L0 ▷ start with L0 remaining original samples
initialize J0
for k in 1 to K do

calculate multiplicity list m← 1 +G where G ∼ Geometric(p) with

p =
∑

z∈Ni(Jk−1)

Qi(Jk−1, z)min

{
1,

π(z)Qi(z, Jk−1)

π(Jk−1)Qi(Jk−1, z)

}

if m ≤ L then ▷ if we have enough remaining original samples
Mk−1 ← m, L← L−m
choose the next jump chain State Jk ∈ Ni(Jk−1) such that

P̂ (Jk = y | Jk−1) ∝ Qi(Jk−1, y)min

{
1,

π(y)Qi(y, Jk−1)

π(Jk−1)Qi(y, Jk−1)

}

else ▷ if we don’t have enough remaining original samples
Mk−1 ← L, L← L0, Jk ← Jk−1, i← (i+ 1 mod I)

▷ stay at Jk−1 for L times and switch to the next Ni

end if
end for

4 Application to QUBO model

Quadratic unconstrained binary optimization (QUBO) has been rising in
importance in combinatorial optimization because of its wide range of applica-
tions in finance and economics to machine learning (Kochenberger et al, 2014).
It can also be used as a sampling question, which aims to sample from the
distribution

π(x) = exp{xTQx}, where x ∈ {0, 1}N (6)

for a given N by N matrix Q (usually symmetric or upper triangular).
To run our algorithm, we used uniform proposal distributions among all

neighbors where the neighbors are defined as binary vectors with Hamming
distance 1. That is, Q(x, y) = 1

N for ∀y such that |x− y| =
∑N

i=1|xi − yi| = 1,
∀x, y ∈ {0, 1}N . Thus, the neighbors are all binary vectors different by one
flip. For the first simulation here, the PNS neighbor sets N0, N1 are chosen
systematically, where N0 represents flip entries from 1 to ⌊N2 ⌋, and N1 repre-

sents flip entries from ⌊N2 ⌋ + 1 to N . We will discuss many other choices for
the PNS neighbor sets in Section 5

Figure 4 shows the results for comparing the Metropolis algorithm,
Rejection-Free, and Unbiased PNS by sampling from a 16×16 QUBO question

14 Sampling via Rejection-Free Partial Neighbor Search

Fig. 4 Average values of TVD between sampling and target density π as a function of the
number of iterations (left) and average time in seconds (right) for three methods: Metropo-
lis algorithm, Rejection-Free, and Unbiased PNS. We used upper triangular 16× 16 QUBO
matrix, generated randomly by Qi,j ∼ N(0, 102) for upper triangular elements. Each dot
within the plot represents the result of the average TVD value and time used for 1000 sim-
ulation runs given certain original sample sizes. The original sample sizes for the Metropolis
algorithm are {300, 600, 1200, 2400, . . . , 3072000}. The original samples from Rejection-Free
are 40x more than those from Metropolis, and the original samples from Unbiased PNS are
30x more than those from Metropolis. We choose these sizes to get a close average CPU
time for all three methods. For Unbiased PNS, we used |Nk| = 8 and L0 = 100.

to a single-core implementation. The QUBO matrix Q is an upper triangu-
lar matrix, where the non-zero elements were generated randomly by Qi,j ∼
Normal(0, 102), ∀i ≤ j. We compare the TVD values from the Metropolis
Algorithm, Rejection-Free, and Unbiased PNS with different original sam-
ple sizes. For the Metropolis algorithm, the numbers of original samples are
{100, 200, 400, 800, . . . , 102400}. The number of original samples for Rejection-
Free is 40 times more than the number for the Metropolis algorithm, and the
number for Unbiased PNS is 30 times more. We used these many numbers of
original samples to make the run-time for all three algorithms to be about the
same. For each given number of original sample sizes, we simulated 1000 runs,
recorded the corresponding TVD values and times used for the sampling part,
and calculated the average values given the number of original samples. Note
that the average time represents the CPU time for where the algorithm is cal-
culated by running the algorithm on a single-core implementation. In addition,
before we generate the samples, we apply the algorithm for the same number
of steps for burn-in.

From Figure 4, we can see that the quality of the samples by the Metropolis
algorithm and Rejection-Free are the same given the original sample sizes. This
result is consistent with our conclusion that Rejection-Free is identical to the
Metropolis algorithm, except Rejection-Free generates the same states simul-
taneously with all immediately repeated states. Thus, these two algorithms

Sampling via Rejection-Free Partial Neighbor Search 15

are different only by the CPU time. In addition, the quality of the samples
by Unbiased PNS is worse than both the Metropolis algorithm and Rejection-
Free given a certain number of original samples because each Partial Neighbor
Set is biased within its L0 original samples, while the combination of them is
unbiased. Thus, the average TVD value for Unbiased PNS is more significant
for the same amount of original samples. However, for a given amount of CPU
time, the performance of Unbiased PNS is much better than the Metropolis
algorithm and worse than Rejection-Free.

In this case, Unbiased PNS can provide significant speedups compared to
the Metropolis algorithm. On the other hand, we did not expect the Unbiased
PNS can beat Rejection-Free under this circumstance. Unbiased PNS is worse
than Rejection-Free in two aspects. First, the Unbiased PNS is biased within
each L0 original samples. In addition, at the end of each L0 original samples,
the algorithm is very likely to reject once and stay in the same state. Thus,
Unbiased PNS is not entirely rejection-free anymore and usually rejects once
for every L0 original samples.

However, we need the Unbiased PNS because we may not have as many
circuit blocks in the parallelism hardware as we want. Thus, we can, at most,
consider a limited number of neighbors for some specialized hardware, such as
DA. Thus, Rejection-Free is not applicable in this case, and we would need the
help of Unbiased PNS, which is better than applying the Metropolis algorithm.

Again, parallelism in computer hardware can increase the speed for both
Rejection-Free and Unbiased PNS by mapping the calculation of the transi-
tion probabilities for different neighbors onto different cores (Rosenthal et al,
2021). Besides that, we can also use multiple replicas at different temperatures,
such as in parallel tempering, or deploy a population of replicas at the same
temperature (Sheikholeslami, 2021). Combining these methods by parallelism
can yield 100x to 10,000x speedups for both Rejection-Free and Unbiased PNS
(Sheikholeslami, 2021).

5 Optimal Choice for the Partial Neighbors

In the section 4, we used two systematically pre-selected neighbor sets N0,
N1. However, for the optimization version of the QUBO question, we con-
cluded that random Partial Neighbor Sets are better than systematic Partial
Neighbor Sets; see Chen et al (2022). Thus, we compare two ways of choosing
partial neighbor sets here: systematic and random. For simplicity, assume that
we have N neighbors for all states, and we use Unbiased PNS neighbor sets of
size n. Therefore, we have

(
N
n

)
different partial neighbor sets. For systematic

method, we choose I PNS neighbor sets {Ni}Ii=1, where ∪Ii=1Ni(x) = N (x).
We proceed with each Partial Neighbor Sets within the loop for L0 origi-
nal samples. We use the notation Ni(x) for systematic Partial Neighbor Sets
because Ni(x) is pre-determined for i = 1, 2, . . . , I. On the other hand, for
random Partial Neighbor Sets, we choose a new set Nk from all

(
N
n

)
poten-

tial Partial Neighbor Sets after each L0 original samples. We use the notation

16 Sampling via Rejection-Free Partial Neighbor Search

Fig. 5 Average values of TVD between sampling and target density π as a function of
the number of iterations (left) and average time in seconds (right) for four scenarios: Sys-
tematic PNS and Random PNS, each with Partial Neighbor Set sizes of 4 and 8. Random
upper triangular 16 × 16 QUBO matrix is generated randomly by Qi,j ∼ N(0, 102) for
upper triangular elements. Each dot within the plot represents the average TVD value and
time used for 1000 simulation runs given a certain original sample size, where the sizes are
{3000, 6000, 12000, 24000, . . . , 3072000}. For all PNS, we used L0 = 100.

Nk(x) for random partial neighbor sets because Nk(x) can be different for
every PNS step, and the subscript k represents the special partial neighbor set
for step k. For both methods, Qi(x, y),Qk(x, y) ∝ Q(x, y) for y ∈ Ni(x), and
Qi(x, y) = Qk(x, y) = 0 otherwise.

To compare the above two methods of selecting Partial Neighbor Sets, we
apply them to the previous 16× 16 QUBO question, and we test the following
four scenarios:

• two systematic partial neighbor sets where the first set considers flipping the
first half of the bits, and the second set considers flipping the second half of
the bits;

• four systematic partial neighbor sets where each set considers flipping a
quarter of the bits;

• random partial neighbor sets with N
2 partial neighbors; that is, each set

considers flipping a random set of bits with size N
2 ;

• random partial neighbor sets with N
4 partial neighbors; that is, each set

considers flipping a random set of bits with size N
4 ;

The result is shown in Figure 5; for this case, systematic Partial Neighbor
Sets are better than random Partial Neighbor Sets. However, random Partial
Neighbor Sets can be better when we run the same code with a different
random seed. After running this simulation for 100 different random seeds,
the systematic neighbor sets are better 56 times. Thus, we conclude that the

Sampling via Rejection-Free Partial Neighbor Search 17

Fig. 6 Average values of TVD between sampling and target density π as a function
of the number of iterations (left) and average time in seconds (right) for four scenarios:
Unbiased PNS with different partial neighbor set sizes {2, 4, 6, . . . , 14}. Random upper
triangular 16 × 16 QUBO matrix is generated randomly by Qi,j ∼ N(0, 102) for upper
triangular elements. Each dot within the plot represents the average TVD value and time
used for 1000 simulation runs given a certain original sample size, where the sizes are
{3000, 6000, 12000, 24000, . . . , 3072000}. For all PNS, we used L0 = 100.

performance of these two Partial Neighbor Sets is close to each other. We will
continue using the systematic Partial Neighbor Sets in our later simulation.

In previous simulations, we naively use we used |Ni(x)| = 4 or 8 and
L0 = 100 in previous examples. What is the optimal choice for |Ni(x)|? We
want to compare |Ni(x)| = 2, 4, 6, 8, . . . , 14 by the QUBO question. In previous
cases, we only used the systematic Partial Neighbor Set size n that can be
divided evenly by N . For other n such as 14, we used the following Partial
Neighbor Sets: first we consider flipping bits 1 to 14, then we consider bits 15,
16, and 1 to 12, then 13, 14, 15, 16, and 1 to 10, etc. We used eight systematic
Partial Neighbor Sets of size 14.

Figure 6 shows the results for comparing the Unbiased PNS with |Ni| ≡ 2,
4, 6, 8, 10, 12, and 14 for ∀X ∈ {0, 1}16. Every other simulation setting is the
same as the previous simulations for the QUBO question. The choice of L0 is
still 100. According to the left plot, we can say that given the same amount of
original samples, the Markov chain from |Ni| = 14 is the least biased. On the
other hand, from the right plot, we can conclude that, given the same amount
of CPU time, the sample quality from |Ni| = 14 is the best. In addition, the
performances are close to each other for all cases where |Ni| ≥ 8. Note that a
single-core implementation makes all these comparisons by the CPU time, and
parallelism hardware can provide speedups. Intuitively, the more tasks that can
be calculated simultaneously, the greater the speedup. Thus, if we apply our
Unbiased PNS on parallelism hardware with a limited number of parallel tasks

18 Sampling via Rejection-Free Partial Neighbor Search

Fig. 7 Average values of TVD between sampling and target density π as a function of
the number of iterations (left) and average time in seconds (right) for Unbiased Partial
Neighbor Search with different sizes of L0. Random upper triangular 16× 16 QUBO matrix
is generated randomly by Qi,j ∼ N(0, 102) for upper triangular elements. Each dot within
the plot represents the average TVD value and time used for 1000 simulation runs given a
certain original sample size, where the sizes are {300, 600, 1200, 2400, . . . , 3072000}. For all
PNS, we used |Ni| = 8.

that can be computed simultaneously, we should choose the largest possible
partial neighbor set size |Ni|.

Furthermore, Figure 7 shows the results for comparing the Unbiased PNS
with L0 = 10, 50, 100, 500, and 1000. Again, every other settings of the
simulation is the same, and |Ni| is still 8, ∀x ∈ {0, 1}16. The left plot shows
that given the same samples, the Markov chain from L0 = 10 is the least
biased. However, the right plot shows that, given the same amount of CPU
time, the TVD values are about the same except L0 = 10. The case with
L0 = 100 is slightly better than the other cases, but the difference is not too
large. L0 = 10 becomes the worst since such L0 has too many rejections (about
one rejection for every ten samples). Thus, in practice, the choice of L0 is not
that important as long as it is not extreme.

6 Continuous Models

We talked about the application of Unbiased PNS to discrete cases in the
previous sections. Can we apply Unbiased PNS on continuous models? We first
review how to apply Rejection-Free on general (continuous) state space as in
Theorem 13 from Rosenthal et al (2021).

Let S be a general state case, and µ a σ-finite reference measure on S. Sup-
pose a Markov chain on S has transition probabilities P (x, dy) ∝ q(x, y)µ(dy)
for q : S × S → [0, 1]. Again let P̂ be the transitions for the corresponding
jump chain Jk with multiplicities Mk. Then:

Sampling via Rejection-Free Partial Neighbor Search 19

1. P̂ (x, {x}) = 0, and for x ̸= y, P̂ (x, dy) = q(x,y)∫
q(x,z)µ(dz)

µ(dy)

2. The conditional distribution of Mk given Jk is equal to the distribution
of 1 + G where G is a geometric random variable with success probability
p = α(Jk) where α(x) = P [Xk+1 ̸= x | Xk = x] =

∫
q(x, z)µ(dz) =

1− r(x) = 1− P (x | x)
3. If the original chain is ϕ-irreducible (see, e.g., Meyn and Tweedie (2012))

for some positive σ-finite measure ϕ on X , then the jump chain is also
ϕ-irreducible for the same ϕ.

4. If the original chain has stationary distribution π(x)µ(dx), then the jump
chain has stationary distribution given by π̂(x) = cα(x)π(x)µ(dx) where
c−1 =

∫
α(y)π(y)µ(dy)

5. If h : S → R has finite expectation, then with probability 1,

lim
K→∞

∑K
k=1 Mkh(Jk)∑K

k=1 Mk

= lim
K→∞

∑K
k=1[

h(Jk)
α(Jk)

]∑K
k=1[

1
α(Jk)

]
= π(h) :=

∫
h(x)π(x)µ(dx)

Although we have a solid theory base for Rejection-Free on general state
space, applying Rejection-Free to the continuous sampling questions efficiently
on most computer hardware is pretty hard. The biggest challenge is the calcula-
tion of integration

∫
q(x, z)µ(dz). We need many calculations for the numerical

integration. In addition, such tasks can hardly be split efficiently into special-
ized hardware with a reasonable amount of parallel calculating units. At the
same time, Unbiased PNS can be surprisingly helpful in this case. As long as
the Metropolis algorithm can be applied, PNS can be applied straightforwardly
without any calculation of integration. We need to choose the Partial Neigh-
bors Sets Ni(x) to be a finite subset of all the neighbors N (x) in Algorithm
6. We check the performance of our Unbiased PNS on a simple continuous
sampling question: the Donuts Example.

7 Application to the Donuts Example

Inspired by Feng (2021), we use a donuts example to show Unbiased PNS’s
performance on continuous state space. Suppose we have two independent
random variables µ and θ where

µ ∼ Normal+(µ0, σ
2), θ ∼ Uniform[0, π). (7)

Here, Normal+ means the Truncated Normal distribution without the negative
tail, and π in the Uniform distribution means the circular constant instead of
the target density. Then we define two random variables X1 and X2 to be

X1 =
√
µ sin θ, X2 =

√
µ cos θ. (8)

20 Sampling via Rejection-Free Partial Neighbor Search

Fig. 8 The scaled probability density plot for the Donuts Example with µ0 = 9 and σ = 10.
The density is scaled to [0, 1]. We used large σ to show the shape of our distribution. With
small σ, it is hard to see the shape of a sharply peaked distribution.

The determinant of the Jacobian matrix is 1
2 . Thus we have

fX1,X2
(x1, x2) ∝

1

σ
exp

[
− (x2

1 + x2
2 − µ0)

2

2σ2

]
, (9)

For example, a 3-D map for the density for X1 and X2 with µ0 = 9, and
σ = 10 is shown in Figure 8. The density is scaled to [0, 1]. In our later simula-
tion, we use µ0 = 9 and σ = 0.1 instead. We use large σ to show the shape of
our distribution because it is hard to see its shape when it sharply peaks with
a small σ. However, for the simulation, PNS can outperform the Metropolis
algorithm when there are many rejections, so we use a small σ to get a sharply
peaked distribution to increase the rejection rate in the Metropolis algorithm.
Note that Unbiased PNS and Rejection-Free are not always better than the
Metropolis algorithm. For an extreme example, when we have a distribution
where all the states have the same target density values, there will be no rejec-
tion for the Metropolis algorithm. At each step, the Metropolis algorithm will
uniformly pick a random neighbor from the current state and move to that
neighbor, while (Rejection-Free / PNS) will calculate the transition probabil-
ities for (all / part) of the neighbors and uniformly pick a random one. The
Metropolis algorithm will be far better than Rejection-Free and PNS in this
case. In practice, the higher the dimension of the problem and the more sharply
peaked the distribution is, the better the Rejection-Free and Unbiased PNS
will be. Thus, we use σ = 0.1 for the simulation to create a sharply peaked
distribution for later simulation.

In addition, the proposal distribution is defined to be the standard normal
distribution for both dimensions. That is, for x = (x1, x2), y = (y1, y2) ∈ R2,
Q(x, y) = ϕ(y1−x1)ϕ(y2−x2) where ϕ is the density function of the standard
normal distribution. Then for any x ∈ R2, we have N (x) = R2.

Since the Partial Neighbor Sets are always the whole space of R2, it is
tough for us to apply Rejection-Free here since the integration of the whole
space needs too many computational resources. Even if we limit the neighbors

Sampling via Rejection-Free Partial Neighbor Search 21

to a small area around the current state, integration is needed as long as the
problem is continuous, and the Rejection-Free will be consequentially slow.
At the same time, Unbiased PNS can be applied to continuous cases without
calculating integration by making minor changes to Algorithm 6. The Unbiased
PNS algorithm for continuous is stated as Algorithm 7. In Algorithm 7, we
did not define the systematic Partial Neighbor Sets as we had for the discrete
cases. We want to use Unbiased PNS with finite many partial neighbors being
considered at each step, but we have uncountable neighbors. It is impossible
to divide these uncountable neighbors into finite partial neighbor sets with
finite sizes. Thus, we can only use the random Partial Neighbor Set, which
randomizes a new finite partial neighbor set for every L0 original samples.
In later simulation, we use partial neighbor sets with |Nk| = 50. That is, we
consider 50 partial neighbors at each step. Note that, in Section 3.2, we defined
the Partial Neighbor Sets, and according to the third condition, we must have
reversibility for all Ni(x), which means y ∈ Ni(x) ⇐⇒ x ∈ Ni(y), ∀x, y ∈ S.
Therefore, we choose the Partial neighbor Set Ni(x) as follows:

1. generate δ1, δ2 ∼ Normal(0, 1);
2. for state x = (x1, x2), put y = (x1 + δ1, x2 + δ2) into the Partial Neighbor

Set Ni(x);
3. to ensure the reversibility, also put y′ = (x1 − δ1, x2 − δ2) into the Partial

Neighbor Set Ni(x);
4. repeats the above steps 25 times to generate a total of 50 neighbors for the

Partial Neighbor Set Ni(x).

In addition, L0 is selected to be 1000. Using L0 = 100 to 1000 will not affect
the sampling speed too much, similar to the conclusion in Section 5.

Moreover, we measure the sampling results by bias instead of the TVD. The
calculation of TVD in the continuous case also needs much integration, which
is hard to calculate. On the other hand, given samples {X1, X2. . . . , XK}, we
usually use the MCMC to approximate the expected value Eπ(h) of a function

h : S → R by the usual estimator, êK(h) = 1
K

∑K
k=1 h(X1,k, X2,k). The Strong

Law of Large Numbers for Markov chains says that assuming that Eπ(h) is
finite and that the Markov chain is irreducible with stationary distribution π,
we must have limK→∞ êK = Eπ(h). Therefore, Bias(h) = |êK(h) − Eπ(h)|=
| 1K

∑K
k=1 h(Xk) − Eπ(h)| can also be a good measurement for the quality of

the samples. According to the definition, bias is greater or equal to 0. When
the samples {X1, X2. . . . , XK} gets closer to the target distribution π, the
bias will decrease to 0. Thus, convergence to stationarity is described by how
quickly the bias decreases to 0 for all function h. This property is similar
to TVD from Section 4. In fact, for any probability distribution P1 and P2,
TVD(P1,P2) = supS

(
P1(S),P2(S)

)
(Chen et al, 2016).

For example, we check the sum of the bias from the first-degree terms X1

andX2. Since the Donuts example is centered at 0, thus Eπ(X1) = Eπ(X2) = 0.

22 Sampling via Rejection-Free Partial Neighbor Search

Algorithm 7 Unbiased PNS for Continuous Case

select one Partial Neighbor Set N0

initialize L← L0 ▷ start with L0 remaining original samples
initialize J0
for k in 1 to K do

calculate multiplicity list m← 1 +G where G ∼ Geometric(p) with

p =
∑

z∈N0(Jk−1)

Q0(Jk−1, z)min

{
1,

π(z)Q0(z, Jk−1)

π(Jk−1)Q0(Jk−1, z)

}

if m ≤ L then ▷ if we have enough remaining original samples
Mk−1 ← m, L← L−m
choose the next jump chain State Jk ∈ N0(Jk−1) such that

P̂ (Jk = y | Jk−1) ∝ Q0(Jk−1, y)min

{
1,

π(y)Q0(y, Jk−1)

π(Jk−1)Q0(y, Jk−1)

}

else ▷ if we don’t have enough remaining original samples
Mk−1 ← L, L← L0, Jk ← Jk−1,

▷ stay at Jk−1 for the remaining L times
select a new Partial Neighbor Set N0

end if
end for

Thus, we have

Bias(X1) + Bias(X2) = êK(X1)− Eπ(X1) + êK(X2)− Eπ(X2)

=

∣∣∣∣ 1K
K∑

k=1

X1,k

∣∣∣∣+ ∣∣∣∣ 1K
K∑

k=1

X2,k

∣∣∣∣, (10)

Note that both biases will decrease to 0 if our Markov chain converges to the
target density π. In addition, for the Rejection-Free Chain {J1,k, J2,k,Mk}Kk=1

generated by the Unbiased PNS algorithm, the bias is defined to be

Bias(J1) + Bias(J2) =

∣∣∑K
k=1 Mk × J1,k

∣∣∑K
k=1 Mk

+
|
∑K

k=1 Mk × J2,k
∣∣∑K

k=1 Mk

(11)

The result for comparing the Metropolis algorithm and Unbiased PNS by the
bias of first-degree term is shown in Figure 9. Each dot within the plot rep-
resents the average value of 100 simulation runs. For each run, we generate a
Markov chain for a given number of samples for both algorithms. The average

Sampling via Rejection-Free Partial Neighbor Search 23

Fig. 9 Sum of the Average Bias of X1 and X2 between sampling and target density π
as a function of the number of iterations (left) and average time in seconds (right) for two
methods: Metropolis algorithm and Unbiased PNS. We used Donuts example with r0 = 10
and σ = 0.1. Each dot within the plot represents the result of the average bias value and
time used for 1000 simulation runs given certain original sample sizes. The original sample
sizes for the Metropolis algorithm are {50000, 100000, 150000, 300000, 450000, . . . , 1500000}.
The sizes for Unbiased PNS are 20x more than the sizes for the Metropolis. We choose
these sizes to get a close average CPU time for both methods. For Unbiased PNS, we used
|Nk| = 50 and L0 = 1000.

time represents the CPU time we apply the algorithm by a single-core imple-
mentation. Again, parallelism hardware such as DA can yield 100x to 10,000x
speedups for Unbiased PNS (Sheikholeslami, 2021).

From Figure 9, we can see that the quality of the samples by Unbiased
PNS is again worse than the Metropolis algorithm because each Partial Neigh-
bors Set is biased within L0 original samples, while the combination of them is
unbiased. Thus, the average bias values for Unbiased PNS are more significant
for the same amount of samples. However, for a given amount of CPU time,
the performance of Unbiased PNS is much better than the Metropolis algo-
rithm. For this example, the Unbiased PNS can get 30x more samples than
the Metropolis algorithm within the same time by a single-core implementa-
tion. Rejections slow down the Metropolis algorithm while Unbiased PNS is
not influenced, and thus, Unbiased PNS works much better in this simulation.

In addition, we can also check the sum of the bias from the second degree
terms Bias(X2

1) + Bias(X2
2), the sum of the bias from the fourth degree

terms Bias(X4
1) + Bias(X4

2), and the sum of the bias from the positive rate
Bias(1(X1 > 0)) + Bias(I(X1 > 0)), where 1 means the indicator function.
To calculate the bias of the second degree terms , we have X2

1 + X2
2 = µ ∼

Normal+(µ0, σ
2). Note that, for the Truncated normal distribution with mean

9 and standard deviation 0.1, the probability for a negative tail is too small,

24 Sampling via Rejection-Free Partial Neighbor Search

so we can treat it as a normal distribution. Thus,

Eπ(X
2
1) =

1

2
Eπ(X

2
1 +X2

2) =
1

2
Eπ(µ

2) ≈ 1

2
µ2
0. (12)

Bias(X2
1) + Bias(X2

2) = êK(X2
1)− Eπ(X

2
1) + êK(X2

2)− Eπ(X
2
2)

≈ | 1
K

K∑
k=1

X2
1,k −

1

2
µ2
0|+ |

1

K

K∑
k=1

X2
2,k −

1

2
µ2
0|.

(13)

Similarly,

Bias(X4
1) + Bias(X4

2) =êK(X4
1)− Eπ(X

4
1) + êK(X4

2)− Eπ(X
4
2)

≈| 1
K

K∑
k=1

X4
1,k −

3

8
(µ4

0 + σ2)|+

| 1
K

K∑
k=1

X4
2,k −

3

8
(µ4

0 + σ2)|;

(14)

Bias(1(X1 > 0)) + Bias(1(X2 > 0)) =êK(1(X1 > 0))− Eπ(1(X1 > 0))+

êK(1(X2 > 0))− Eπ(1(X2 > 0))

=| 1
K

K∑
k=1

1(X1,k > 0)− 1

2
|+

| 1
K

K∑
k=1

1(X2,k > 0)− 1

2
|.

(15)

The results for the comparison of the Metropolis algorithm and Unbiased
PNS by the sum of the average bias from the second degree terms Bias(X2

1)+
Bias(X2

2), the fourth degree terms Bias(X4
1)+Bias(X4

2), and the positive rate
Bias(I(X1 > 0))+Bias(I(X1 > 0)) are shown in Figure 10. From the result for
different choices of the terms, we can conclude that Unbiased PNS performs
better than the Metropolis algorithm in this continuous Donuts example.

8 Burn In by Partial Neighbor Search

8.1 Optimization instead of Burn-In

In previous sections, when we need K original samples, we have to generate
2K original samples. We use the first K original samples as the burn-in part.
This way, we started our sampling process from stationarity. However, Geyer
(2011) argued that burn-in is not necessary for MCMC. As an alternative to
burn-in, any point the researcher does not mind having in a sample is a good
starting point. His argument indicates that we can usually start at a point

Sampling via Rejection-Free Partial Neighbor Search 25

Fig. 10 Sum of the average bias from the second degree terms Bias(X2
1)+Bias(X2

2) (left),
the fourth degree terms Bias(X4

1) + Bias(X4
2) (middle), and the positive rate Bias(1(X1 >

0))+Bias(1(X1 > 0)) (right) between sampling and target density π as a function of average
time in seconds for two methods: Metropolis algorithm and Unbiased PNS. I means the
indicator function. We used Donuts example with r0 = 10 and σ = 0.1. Each dot within the
plot represents the result of the average bias value and time used for 1000 simulation runs
given certain original sample sizes. The original sample sizes for the Metropolis algorithm
are {50000, 100000, 150000, 300000, 450000, . . . , 1500000}. The sizes for Unbiased PNS are
20x more than the sizes for the Metropolis. We choose these sizes to get a close average CPU
time for both methods. For Unbiased PNS, we used |Nk| = 50 and L0 = 1000.

whose target density value is large. Geyer (2011) claimed that this alternative
method is usually better than regular burn-in.

We can apply optimization algorithms in Chen et al (2022) before sampling
if we accept the above statement. For example, we can cancel the burn-in part
of the QUBO question in Section 4. Instead, before we start sampling from the
target density, we consider optimization algorithms which tries to maximize
π(x) = exp{xTQx} for x ∈ {0, 1}N . Then we can start sampling from a state
with a large π(x) value, although it may not be optimal. Simulated Annealing
is one such algorithm. In addition, we can also use Optimization Rejection-Free
and Optimization PNS from Chen et al (2022).

To find x from the state space S which maximizes π(x), given the pro-
posal distribution Q, and the corresponding neighbors N , and a non-increasing
cooling schedule T : N → (0,∞), the corresponding algorithms for Simulated
Annealing, Optimization Rejection-Free, and Optimization PNS are described
in Algorithm 8, 9, and 10.

In Chen et al (2022), we illustrated the superior performance of Optimiza-
tion PNS with many examples, such as the QUBO question, the Knapsack
problem, and the 3R3XOR problem. In all these problems, Optimization PNS
is the best algorithm compared to the Simulated Annealing algorithm and
Optimization Rejection-Free. See Chen et al (2022) for more details. There-
fore, we can use Optimization PNS as in Algorithm 10 to replace the burn-in
part before sampling.

However, the starting states obtained by the proposed three optimization
algorithms will not converge to the target density. Therefore, people can use
these optimization methods to replace the burn-in part only if they believe
that the sampling can start without stationarity, just like Geyer (2011).

26 Sampling via Rejection-Free Partial Neighbor Search

Algorithm 8 Simulated Annealing

initialize X0, and Xmax = X0

for k in 1 to K do
random Y ∈ N (Xk−1) based on Q(Xk−1, ·)
random Uk ∼ Uniform(0, 1)

if Uk < [π(Y)
π(Xk−1)

]1/T (k) then

▷ accept with probability min
{
1,
[π(Yk)
π(Xk−1)

]1/T (k)
}

Xk = Y ▷ accept and move to state Y
if π(Y) > π(Xmax) then

Xmax = Y
end if

else
Xk = Xk−1 ▷ reject and stay at Xk−1

end if
end for

Algorithm 9 Optimization Rejection-Free

initialize J0, and set Xmax = J0
for k in 1 to K do

choose the next jump chain State Jk ∈ N (Jk−1) such that

P̂ (Jk = y | Jk−1) ∝ Q(Jk−1, y)min

{
1,

π(y)Q(y, Jk−1)

π(Jk−1)Q(Jk−1, y)

}

if π(Jk) > π(Xmax) then
Xmax = Jk

end if
end for

Algorithm 10 Optimization Partial Neighbor Search

initialize J0, and set Xmax = J0
for k in 1 to K do

pick the Partial Neighbor Set Nk(Jk−1) ⊂ N (Jk−1)
choose the next jump chain State Jk ∈ Nk(Jk−1) such that

P̂ (Jk = y | Jk−1) ∝ Q(Jk−1, y)min

{
1,

π(y)Q(y, Jk−1)

π(Jk−1)Q(y, Jk−1)

}

if π(Jk) > π(Xmax) then
Xmax = Jk

end if
end for

Sampling via Rejection-Free Partial Neighbor Search 27

8.2 Burn-In until Convergence

Section 8.1, we mentioned that some people believe that MCMC does not
necessarily need to start from stationarity. However, some people may insist on
starting from stationarity. Then we can combine the algorithm for optimization
and sampling and try to take advantage of both versions to get a burn-in
algorithm. We can apply the optimization algorithm for a certain number of
steps K0, and then we apply the sampling algorithms such as Rejection-Free
(Algorithm 2) or Unbiased PNS (Algorithm 6) for K1 samples.

To check the distribution of the states after a certain number of steps
of the hybrid algorithm, We generate a certain number of Markov chains by
the algorithms and record each chain’s last state. As a result, we can get the
distribution after burn-in, and we call this distribution the starting distribution
for sampling. For example, just like the previous example in Section 4, we
still consider a 16 × 16 QUBO question. Every setting is exactly the same as
what we have in Section 4 except we used Qi,j ∼ Normal(0, 12), ∀i ≤ j. We
didn’t use the standard deviation of 10 like Section 4, since we only use the
last states from one Markov chain, we generate one such starting distribution
with 100, 000 Markov chains and check the TVD value between the starting
distribution and the target density. Thus, if we use a standard deviation of
10, we need much a much longer time to get a small TVD value. The number
of steps for Optimization PNS K0 is chosen to be ⌊ 1

20K1⌋ (⌊ ⌋ represents the
floor function). The number of samples K1 = 20, 40, 60, . . . , 200. In addition,
we also compare Unbiased PNS with Optimization PNS plus Unbiased PNS.
Since we believe Unbiased PNS will converge slower than Rejection-Free, so
we choose K1 = 40, 80, . . . , 600, and K0 = ⌊ 1

40K1⌋. The temperature function
T (k) in the optimization algorithms is set to be constantly 1. The result is
shown in Figure 11.

From Figure 11, algorithms with the help of Optimization PNS converge
faster with respect to the CPU time. We used a 16×16 QUBO question here. In
addition, we concluded that the higher the dimension is and the more sharply
peaked the distribution is, the better the optimization PNS will be (Chen
et al, 2022). Optimization PNS performs extremely well in the optimization
version of 200×200 QUBO question (Chen et al, 2022). Thus, we can also use
the Optimization PNS to help burn-in in high dimension or sharply peaked
distributions. Since the calculation of TVD for high dimension problems is
infeasible, so we just did a simulation of 16 × 16 QUBO question here. See
Chen et al (2022) for more simulation results from optimization problems with
higher dimensions.

9 Conclusion

We introduced three versions of the Partial Neighbor Search algorithms of
sampling. Basic PNS is straightforward but does not converge to the target
density. The Unbiased PNS will converge to the target density, but it performs
worse than Rejection-Free compared to a single-core implementation in the

28 Sampling via Rejection-Free Partial Neighbor Search

Fig. 11 Average values of TVD between the starting distribution from 100, 000 chains and
target density π as a function of the average time for the chains in seconds for four methods:
Rejection-Free, Optimization PNS plus Rejection-Free, Unbiased PNS, and Optimization
PNS plus Unbiased PNS. Random upper triangular 16 × 16 QUBO matrix is generated
randomly by Qi,j ∼ N(0, 12) for upper triangular elements. The original sample sizes for
Rejection Free are K1 = {20, 30, 40, 50, . . . , 1000}, and the number of steps for the corre-

sponding Optimization PNS is K0 = ⌊K1
20

⌋. The original sample sizes for Unbiased PNS are
K1 = {40, 50, 60, . . . , 1500}, and the number of steps the corresponding Optimization PNS

is K0 = ⌊K1
40

⌋. Each dot within the plot represents the TVD value between the target dis-
tribution π and the distribution of the last state of 100, 000 Markov chains.

QUBO question. However, the Unbiased PNS can use specialized parallelism
hardware such as DA to improve the sampling efficiency significantly, while
Rejection-Free cannot. In addition, Rejection-Free is infeasible in many con-
tinuous cases, but the Unbiased PNS can be applied to all continuous cases
and works much better than the Metropolis algorithm. Finally, we illustrated
that Optimization PNS from Chen et al (2022) can be used to improve the
burn-in part before sampling.

Acknowledgments

The authors thank Fujitsu Ltd. and Fujitsu Consulting (Canada) Inc. for
providing financial support.

References

Beichl I, Sullivan F (2000) The Metropolis algorithm. Computing in Science
& Engineering 2(1):65–69

Bertsimas D, Tsitsiklis J (1993) Simulated annealing. Statistical science
8(1):10–15

Sampling via Rejection-Free Partial Neighbor Search 29

Bortz AB, Kalos MH, Lebowitz JL (1975) A new algorithm for monte carlo
simulation of ising spin systems. Journal of Computational Physics 17(1):10–
18

Chen M, Gao C, Ren Z (2016) A general decision theory for huber’s
ϵ-contamination model. Electronic Journal of Statistics 10(2):3752–3774

Chen S, Rosenthal JS, Dote A, et al (2022) Optimization via rejection-free
partial neighbor search. arXiv preprint arXiv:220502083

Efraimidis PS, Spirakis PG (2006) Weighted random sampling with a reservoir.
Information processing letters 97(5):181–185

Feng C (2021) MCMC interactive gallery. https://chi-feng.github.io/
mcmc-demo/app.html?algorithm=RandomWalkMH&target=donut, Last
accessed on 2022-07-05

Geyer CJ (2011) Introduction to Markov chain Monte Carlo. Handbook of
Markov chain Monte Carlo 20116022:45

Hastings WK (1970) Monte Carlo sampling methods using Markov chains and
their applications. Biometrika 57:97–109

Hitchcock DB (2003) A history of the Metropolis-Hastings algorithm. The
American Statistician 57(4):254–257

Kalos MH, Whitlock PA (2009) Monte Carlo methods. John Wiley & Sons

Kochenberger G, Hao JK, Glover F, et al (2014) The unconstrained binary
quadratic programming problem: a survey. Journal of combinatorial opti-
mization 28(1):58–81

Kroese DP, Brereton T, Taimre T, et al (2014) Why the Monte Carlo method
is so important today. Wiley Interdisciplinary Reviews: Computational
Statistics 6(6):386–392

Matsubara S, Takatsu M, Miyazawa T, et al (2020) Digital annealer for high-
speed solving of combinatorial optimization problems and its applications.
2020 25th Asia and South Pacific Design Automation Conference (ASP-
DAC) pp 667–672. https://doi.org/10.1109/ASP-DAC47756.2020.9045100

Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953) Equation of state
calculations by fast computing machines. The journal of chemical physics
21(6):1087–1092

Meyn SP, Tweedie RL (2012) Markov chains and stochastic stability. Springer
Science & Business Media

https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=donut
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=donut
https://doi.org/10.1109/ASP-DAC47756.2020.9045100

30 Sampling via Rejection-Free Partial Neighbor Search

Rosenthal JS, Dote A, Dabiri K, et al (2021) Jump Markov chains and
rejection-free Metropolis algorithms. Computational Statistics pp 1–23

Sheikholeslami A (2021) The power of parallelism in stochastic search for
global optimum: Keynote paper. In: ESSCIRC 2021 - IEEE 47th European
Solid State Circuits Conference (ESSCIRC), pp 36–42.

Sodan AC, Machina J, Deshmeh A, et al (2010) Parallelism via multithreaded
and multicore CPUs. Computer 43(3):24–32

A Unbiased PNS Convergence Theorem

Definition 1 For sampling questions in general state space, we usually have the
following elements:

1. a state space S;
2. a σ-finite reference measure µ on S, where µ could be a counting measure

for discrete cases, and µ could be a Lebesgue measure for continuous cases;
3. a target density π : S → [0, 1], where

∫
x∈S π(x)µ(dx) = 1;

4. a target distribution Π : P(S)→ [0, 1], where Π(A) :=
∫
A π(x)µ(dx), ∀A ⊂

S, and P means the power set;
5. a proposal density q(x, y) : S × S → [0, 1], where

∫
S q(x, y)µ(dy) = 1,

∀x, y ∈ S;
6. a proposal distribution Q(x, dy) ∝ q(x, y)µ(dy);
7. a corresponding neighbor set N (x) := {y ∈ S | q(x, y) > 0} ⊂ S\{x};
8. the transition probabilities P (x, dy) = q(x, y)min

(
1, π(y)q(y,x)

π(x)q(x,y)

)
µ(dy),

where P (x, dy) = q(x, y)µ(dy) if the denominator π(x)q(x, y) = 0.

Given the above elements, assume irreducibility and aperiodicity, we can generate a
Markov chain {X0, X1, . . . , XK} such that the limiting distribution of limn→∞ Xn

converges to the stationarity distribution π(x)µ(dx) by Algorithm 1.

Definition 2 Suppose we have a state space S, a reference measure µ, and a target
density π, the proposal distribution Q and the corresponding neighbor set N . Then,
a Partial Neighbor Set Ni means a function Ni satisfying the following conditions:

1. Ni : S → P(S), where S is the state space, and P(S) is the power set of S;
2. Ni(x) ⊂ N (x), ∀x ∈ S, and we must pick a finite subset Ni(x) to ensure a

finite for loop in Algorithm 6;
3. y ∈ Ni(x) ⇐⇒ x ∈ Ni(y), ∀x, y ∈ S;

Given a Partial Neighbor Set Ni, the proposal distribution for Ni is defined

to be Qi : S×P(S)→ R, where Qi(x, dy) =
∑

r∈Ni
q(x,r)δr(dy)∑

z∈Ni
q(x,z) , where δr means

the point mass at r.
Here, before we prove the convergence theorem of the Unbiased PNS as

stated in Algorithm 6, we first prove it for another version of the Unbiased PNS

Sampling via Rejection-Free Partial Neighbor Search 31

as stated in Algorithm 11. It is easy to see that the only difference between
Algorithm 11 and Algorithm 6 is that we are not using the Rejection-Free
technique here, where we calculate all the transition probabilities at once, pick
the next jump chain state, and calculate the multiplicity list according to the
transition probabilities.

Algorithm 11 Unbiased Partial Neighbor Search without Rejection-Free
technique

select Ni for i = 0, 1, . . . , I − 1 where ∪I−1
i=0 Ni(X) = N (X)

initialize i = 0 ▷ start with neighbor set N0

initialize L = L0 ▷ start with L0 remaining samples
initialize X0 ▷ initial the starting state
for k in 1 to K do

random Y ∈ Ni(Jk−1) based on Qi(Xk−1, ·)
random Uk ∼ Uniform(0, 1)

if Uk < π(Y)Qi(Y,Xk−1)
π(Xk−1)Qi(Xk−1,Y) then

▷ accept with probability min
{
1, π(Y)Qi(Y,Xk−1)

π(Xk−1)Qi(Xk−1,Y)

}
Xk = Y ▷ accept and move to state Y

else
Xk = Xk−1 ▷ reject and stay at Xk−1

end if
L = L - 1 ▷ a new sample from Ni

if L = 0 then ▷ if we don’t have enough remaining samples
L = L0, and i = i+ 1 mod I ▷ switch to the next Ni

end if
end for

Proposition 1 Suppose we have a state space S, a reference measure µ, and a
target density π, the proposal distribution Q and the corresponding neighbor set N .
In addition, suppose the Partial Neighbor Set {Ni}I−1

i=0 satisfies all the conditions in
Definition 1. Then π(x)µ(dx) is the stationary distribution for Algorithm 11 with the
partial neighbor set Ni.

Proof Let Pi(x, dy) be the transition probability for Partial Neighbor Set Ni. Then
∀y ∈ Ni(x) where q(x, y) > 0, we have

π(x)µ(dx)Pi(x, dy) = π(x)µ(dx)q(x, dy)min

(
1,

π(y)q(y, x)µ(dx)

π(x)q(x, dy)µ(dy)

)
= min

(
π(x)µ(dx)q(x, dy), π(y)q(y, x)µ(dx)

)
= π(y)µ(dy)Pi(y, dx)

(16)

Thus, by reversibility, Ni is stationary with π(x)µ(dx). □

32 Sampling via Rejection-Free Partial Neighbor Search

Proposition 2 Suppose we have a state space S, a reference measure µ, a target
density π, and a Markov chain {X0, X1, X2, . . . } produced by algorithm 11. In addi-
tion, suppose π(x)µ(dx) is the stationary distribution is the stationary distribution
for Algorithm 11 with all {Ni}I−1

i=0 , and ∪I−1
i=0 Ni makes the Markov chain irreducible.

Moreover, suppose there are rejections for the Markov chain, and thus the Markov
chain is aperiodic. Then the Markov chain converges in total variation distance; i.e.:

lim
k→∞

sup
A⊂S

∣∣∣P (Xk ∈ A)−
∫
A
π(y)µ(dy)

∣∣∣ = 0 (17)

Proof This follows immediately from Theorem 13.0.1 in Meyn and Tweedie (2012).
□

Theorem 3 Suppose we have a state space S, a reference measure µ, a target den-
sity π, a Markov chain {X0, X1, X2, . . . } produced by algorithm 11, and a jump
chain {(J0,M0), (J1,M1), (J2,M2), . . . } produced by algorithm 6. Meanwhile, sup-
pose the proposal distribution Q and the corresponding neighbor set N ensure the
Markov chain produced by the Metropolis-Hastings algorithm converges to the sta-
tionarity π(x)µ(dx). In addition, suppose π(x)µ(dx) is the stationary distribution
for all {Ni}I−1

i=0 , and ∪I−1
i=0 Ni makes both chains irreducible. Moreover, suppose both

chains are aperiodic. Then the jump chain has the following properties:

1. the transition probability Pi from the Markov chain and the transition prob-
ability P̂i from the jump chain satisfy P̂i(x, dy) = 1

α(x)P (x, dy)1(x ̸= y),

and P̂i(x, {x}) = 0;
2. The conditional distribution of Mk given Jk is equal to the distribution of

1+G where G is a geometric random variable with success probability α(Jk)
where α(x) := 1− Pi(x, {x});

3. If the original chain is ϕ-irreducible (see, e.g., Meyn and Tweedie (2012))
for some positive σ-finite measure ϕ on S, then the jump chain is also
ϕ-irreducible for the same ϕ.

4. If the Markov chain has stationary distribution π(x)µ(dx), then the jump
chain has stationary distribution given by π̂(x) = cα(x)π(x)µ(dx) where
c−1 =

∫
α(y)π(y)µ(dy)

5. If h : S → R has finite expectation, then with probability 1,

lim
K→∞

∑K
k=1 Mkh(Jk)∑K

k=1 Mk

= lim
K→∞

∑K
k=1[

h(Jk)
α(Jk)

]∑K
k=1[

1
α(Jk)

]
= π(h) :=

∫
h(x)π(x)µ(dx)

Proof The proof is trivial given the Proposition 2 and Theorem 13 from the
Rejection-Free paper (Rosenthal et al, 2021). We reviewed Theorem 13 from the
Rejection-Free paper in Section 6. □

Sampling via Rejection-Free Partial Neighbor Search 33

B How to Sample Proportionally

Given Ai > 0, for i = 1, 2, . . . , N , how can we sample Z so that P (Z =
i) = Ai∑

j Aj
? We could choose U ∼ Uniform[0, 1], and then set Z =

min{i,
∑i

j=1 Aj > U×
∑N

j=1 Aj}. However, this involves summing all of the Aj

, which is inefficient. If
∑N

j=1 Aj = 1, then we could choose U ∼ Uniform[0, 1]

and just set Z = min{i,
∑i

j=1 Aj > U}, which is slightly easier, and can
be done by binary searching. However, it still requires summing lots of the
Aj , which could still be inefficient. If

∑N
j=1 Aj < 1, then we could choose

U ∼ Uniform[0, 1], and then still setZ = max{i,
∑i

j=1 Aj > U}, except if
no such i exists then we reject that choice of U and start again. In addition
to the previous problems, this could involve lots of rejection if

∑N
j=1 Aj is

much smaller than 1, which is again inefficient. Another option is the follow-
ing method, based on Efraimidis and Spirakis (2006); see also the n-fold way
approach to kinetic Monte Carlo in Bortz et al (1975).

Proposition 4 Let A1, A2, . . . , AN be positive numbers, Let {Rj}Nj=1 be i.i.d. ∼
Uniform[0, 1], and let dj = − log(Rj)

Aj
for j = 1, 2, . . . , N . Finally, set Z = argminj dj .

Then P [Z = i] = Ai∑
j Aj

, i.e. Z selects i from {1, 2, . . . , N} with probability

proportional to Ai.

Proof
P [Z = i] = P [dj > di, ∀j ̸= i]

= P [−
log(Rj)

Aj
> − log(Ri)

Ai
, ∀j ̸= i]

= P [Rj < R
Aj/Ai

i , ∀j ̸= i]

=

∫ 1

0
P [Rj < R

Aj/Ai

i ,∀j ̸= i | Ri = x]dx

=

∫ 1

0
P [Rj < xAj/Ai , ∀j ̸= i]dx

=

∫ 1

0

∏
j ̸=i

xAj/Aidx

=

∫ 1

0
x
∑

j ̸=i Aj/Aidx

=
x[

∑
j ̸=i Aj/Ai+1]∑

j ̸=i Aj/Ai + 1

∣∣∣∣∣
1

x=0

=
Ai∑
j Aj

(18)

□

34 Sampling via Rejection-Free Partial Neighbor Search

Proposition 4 is useful, especially when we apply Rejection-Free and PNS
to parallelism hardware. In addition, even when we apply it to a single core
implementation, computing argmin is faster than dividing by the sums.

	Introduction
	Background on the Metropolis-Hastings algorithm
	Background on Rejection-Free algorithm for sampling

	Basic Partial Neighbor Search algorithm
	Example 1 of the Nonconvergence problem by Basic PNS
	Example 2 of the Nonconvergence problem by Basic PNS

	Unbiased Partial Neighbor Search algorithm
	Alternating Chains for Rejection-Free
	Alternating Chains for Partial Neighbor Search

	Application to QUBO model
	Optimal Choice for the Partial Neighbors
	Continuous Models
	Application to the Donuts Example
	Burn In by Partial Neighbor Search
	Optimization instead of Burn-In
	Burn-In until Convergence

	Conclusion
	Unbiased PNS Convergence Theorem
	How to Sample Proportionally

