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Summary

This paper considers the task of building efficient regression models for sparse
multivariate analysis of high dimensional data sets, in particular it focuses
on cases where the numbers q of responses Y = (y

k
, 1 ≤ k ≤ q) and p of

predictors X = (xj , 1 ≤ j ≤ p) to analyse jointly are both large with re-

spect to the sample size n, a challenging bi-directional task. The analysis of
such data sets arise commonly in genetical genomics, with X linked to the
DNA characteristics and Y corresponding to measurements of fundamental
biological processes such as transcription, protein or metabolite production.
Building on the Bayesian variable selection set-up for the linear model and
associated efficient MCMC algorithms developed for single responses, we dis-
cuss the generic framework of hierarchical related sparse regressions, where
parallel regressions of y

k
on the set of covariates X are linked in a hierarchical

fashion, in particular through the prior model of the variable selection indica-
tors γkj , which indicate among the covariates xj those which are associated to

the response y
k

in each multivariate regression. Structures for the joint model

of the γkj , which correspond to different compromises between the aims of
controlling sparsity and that of enhancing the detection of predictors that are
associated with many responses (‘hot spots’), will be discussed and a new mul-
tiplicative model for the probability structure of the γkj will be presented. To
perform inference for these models in high dimensional set-ups, novel adap-
tive MCMC algorithms are needed. As sparsity is paramount and most of the
associations expected to be zero, new algorithms that progressively focus on
part of the space where the most interesting associations occur are of great
interest. We shall discuss their formulation and theoretical properties, and
demonstrate their use on simulated and real data from genomics.
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1. INTRODUCTION

The size and diversity of newly available genetic, genomics and other ‘omics data
sets has meant that going beyond the finding of strong univariate (or low dimen-
sion) associations to reveal more complex patterns related to the underlying bio-
logical pathways and metabolism has proved difficult. The current focus of much
biological research has now moved to Integrative Genomics, which encompasses a
variety of biological questions involving the combined analysis of any two or more
types of genomics data sets. For example investigations into the genetic regulation
of transcription or metabolite synthesis, so called eQTL or mQTL studies, or into
the influence of copy number variations on expression are carried out to progress
understanding of the function of genes. Research on how to jointly model two or
more such highly dimensional data sets, with different intrinsic structures and scale
of measurements, is thus a key priority and a difficult challenge for statisticians. The
Bayesian modelling paradigm is particularly well suited to address complex questions
regarding structural links between different pieces of data, for building in hierarchi-
cal relationships based on substantive knowledge, for adopting prior specifications
that translate expected sparsity of the underlying biology and for uncovering a range
of alternative explanations. On the other hand, the computational challenges faced
by any joint analysis of high dimensional data are substantial, resulting in relatively
few fully Bayesian analyses being attempted.

In this paper, we propose to carry out sparse multivariate analysis of high dimen-
sional data sets by developing a framework of hierarchically related sparse regressions
to model the association between large numbers of responses (e.g. measurements

of gene expression), Y = (y
1
, . . . , y

k
, . . . , y

q
), y

k
= (y1k, . . . , yik, . . . , ynk)

T recorded

on n subjects, and a large number of predictors (e.g. a set of discrete genetic mark-
ers for each subject), recorded in the form of a matrix n × p (n ≪ p) of covariates
X = (x1, . . . , xj , . . . , xp), xj =

(
x1j , . . . , xij , . . . , xnj)

T
)
. A fully multivariate model

that would treat all the responses as a vector and link its distribution to all the
predictors is neither feasible when p and q are both in their thousands, nor appro-
priate as the biological context suggests that we should expect sparse associations
between each response and the predictors. Of major interest is the existence of so
called ‘hot spots’, i.e. finding genetic markers xj that show evidence of enhanced
linkage, i.e that are associated to many responses, as this indicates that this region
of the genome might play a key regulatory role. To tease out such structure, we
propose to model the relationship between Y and X in a hierarchical fashion, first
associating each response with a small subset of the predictors via a subset selection
formulation, and then linking the selection indicators in a hierarchical manner. We
show that by empowering MCMC algorithms with features such as parallel tem-
pering/evolutionary Monte Carlo and adaptive schemes, we can make such models
workable for realistic joint analyses in genomics. In particular, we propose a new
class of adaptive scanning schemes, give conditions that ensure their theoretical
properties and highlight their benefits on simulated data sets and an eQTL experi-
ment from a study of diabetes in mice.

2. BAYESIAN MODELS IN GENETICAL GENOMICS

Much of the recent work on joint analysis of high dimensional data has been moti-
vated by the framework of eQTL studies (expression Quantitative Trait Loci) where
the responses are quantitative measures of gene expression abundances for a thou-
sands of transcripts and the predictors encode DNA sequence variation at a large



Sparse regression of high dimensional data 3

number of loci. In turn, eQTL analyses have built upon models for multiple map-
ping of Quantitative Trait Loci (QTL), also referred to as polygenic models, i.e.
models where the aim is to quantify the association of a single continuous response,
referred to as a ‘trait’, with DNA pattern at multiple genetic loci by using a sparse
multivariate regression approach.

2.1. Bayesian multiple mapping for Quantitative Trait

It is not our purpose to discuss comprehensively the work on Bayesian multiple
mapping for quantitative trait, see Yi and Shriner (2008) for a recent review. As
expected, several styles of approaches to variable selection have been taken, differing
principally in the choice of priors for the regression coefficients linking the trait with
the genetic markers and in the adopted prior specification of the model space.

Most commonly, QTL studies have adopted a Bayesian variable selection formu-
lation which starts from the full linear model and considers independent priors for
the regression coefficients βj , introducing variable selection via auxiliary indicators
γj , 1 ≤ j ≤ p where γj = 1 encodes the presence of the jth covariate in the linear
model. As reviewed by O’Hara and Sillanpää (2009), such implementations differ
in the way the joint prior for (γj , βj) is defined. Independent priors for γj and
βj proposed by Kuo and Mallick (1998) have been used in Bayesian mapping but
sometimes lead to instability (O’Hara and Sillanpää, 2009). In most other works,
a decomposition p(βj , γj) = p(βj | γj)p(γj) is used, leading to independent mixture
priors for each βj in the form of a spike component at or around zero and a flat
slab elsewhere, inspired by the stochastic search variable selection (SSVS) approach
proposed by George and McCullogh (1993).

Note that specifying priors for the regression parameters of the full linear model
may be inappropriate when the regressors are not orthogonal as the coefficients
have a different interpretation under submodels corresponding to different γ vectors

(Ntzoufras, 1999). An alternative formulation that defines priors for regression co-
efficient conditional on the whole vector γ might be preferable. Moreover, such a
formulation allows the regression coefficients to be integrated out, facilitating the im-
plementation of algorithms that sample the model space of the selection indicators,
referred to as subset selection algorithms (Clyde and George, 2004). Such specifica-
tion naturally leads to the so-called g-prior formulation which encodes a correlation
structure between the regression coefficients that reproduces the covariance struc-
ture of the likelihood. In genetic applications, this would appear most appropriate
in view of the complex structure of the X induced by population structure.

2.2. Bayesian eQTL models

The framework of eQTL experiments is aimed at understanding the genetic basis
of regulation by (i) treating the high dimensional set of gene expression as multiple
responses and (ii) uncovering their association with the genetic markers. Markers
with evidence of enhanced linkage, ‘hot spots’ are of particular interest. The first
analyses were carried out by repeated application of simple univariate QTL analyses
for each transcript, without attempting to share any information across transcripts
or to account for multiple mapping.

The first joint approach which aimed at modelling all the transcripts via a
mixture formulation was proposed by Kendziorski et al. (2006). In the Mixture
Over Markers (MOM) approach, each response (expression value of a transcript)
y
k
, 1 ≤ k ≤ q, is linked to the marker j with probability pj and assumed to then fol-
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low a distribution fj(·) common for all the transcripts mapping to marker j. In com-
plement, with probability p0, a response is not linked to any marker, and those non-
mapping transcripts have distribution f0(·). The marginal distribution of the data
for each response y

k
is thus given by a mixture model: p0f0(y

k
) +

∑p
j=1

pjfj(y
k
).

A basic assumption of this model is that a response is associated with at most
one predictor (genetic marker). Information from all the responses associated to a
particular marker j is then used to estimate fj(·). For good identifiability of the
mixture, MOM requires a sufficient number of transcripts to be associated with the
markers. Using thresholds on the posterior probabilities pj based on preset false
discovery rate (FDR) control, each response can be associated with the most likely
location (or no location at all) and the fraction of responses associated with each
marker j can be used to detect hot spots. By combining information across the
responses, MOM has a better control of FDR than pure univariate methods.

Noting that the formulation of Kendziorski et al. (2006) is limited to monogenic
mapping, Jia and Xu (J & X) (2007) set up the search for eQTL associations into
a single model where each transcript y

k
, 1 ≤ k ≤ q is potentially linked to the

full set of p markers X through a full linear model with regression coefficients,
β
k
= (βk1, . . . , βkj , . . . , βkp)

T . Inspired by QTL models and SSVS variable selection,

they use a mixture prior on each of the βkj :

βkj ∼ (1− γkj)N(0, δ) + γkjN(0, τ2
k )

with a fixed very small δ for the spike and a hierarchical prior for the variances τ2
k

of the slabs. They then link the q responses through a model of the indicators γkj ,
γkj ∼ Bernoulli(ζj), establishing what we refer to as a hierarchical regression set-up.
J & X linked regression set-up shares common features with ours. We will discuss
this further in Section 3.2 and present a comparison of their algorithm BAYES with
ours on simulated data in Section 6.3.

A third class of models for joint analysis is that of stochastic partition models
for association. This approach, proposed by Monni and Tadesse (M & T) (2009),
partitions the responses into disjoint subsets or clusters that have a similar depen-
dence on a subset of covariates (or no dependence). M & T implement such a model
for analysing the association between genomic CGH data and gene expression. In
their set-up, each response cluster C is associated with a subset of response indices,
Q(C) and a subset of predictor indices P (C), in such a way that all the y

k
in cluster

C are linked to the same subset of predictors via the same regression coefficients:
βkj = βj , k ∈ Q(C), j ∈ P (C). This assumption on the βs may be appropriate in
some context, but is quite restrictive in general. M & T allow for response specific
intercept and cluster specific noise. Dimension reduction and borrowing of informa-
tion is obtained through the sharing of a common parameter in the cluster. Their
prior formulation for the regression coefficients is conditional on the cluster and they
exploit conjugacy to integrate these out in order to improve mixing. They assign
product priors to configurations that penalise large clusters through a tuning pa-
rameter ρ and use reversible jump moves and parallel tempering to search through
the high dimensional space of partitions, acknowledging that such a search is chal-
lenging. In their output, they mostly consider the MAP (maximum a posteriori)
configuration.
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3. MODELLING Y |X: HIERARCHICAL RELATED SPARSE REGRESSION

In order to discover the pattern of association between subgroups of Y s and the pre-
dictors, we model the relationship between Y and X through q regression equations
linked by a hierarchical model on the variable selection process.

3.1. Subset selection

We define the q regression equations as y
k
= αk1n +Xβ

k
+ ϵk, k = 1, . . . , q, where

ϵk ∼ Nn

(
0, σ2

kIn
)
. Note that every regression equation has its own intercept αk and

error variance σ2
k. In order to perform variable selection, i.e. to find a sparse subset

of predictors that explain the variability of Y but there is uncertainty about which
subset to use, we introduce a latent binary vector γ

k
= (γk1, . . . , γkj , . . . , γkp)

T

for each regression equation where γkj = 1 if βkj ̸= 0 and γkj = 0 if βkj = 0,
j = 1, . . . , p. Considering all the q regressions, we obtain the q × p latent binary

matrix Γ =
(
γ
1
, . . . , γ

k
, . . . , γ

q

)T

. Adopting the subset selection formulation and

assuming independence of the q regression, given Γ, the likelihood becomes

q∏
k=1

(
1

2πσ2
k

)1/2

exp

{
− 1

2σ2
k

(
y
k
− αk1n −Xγkβγk

)T (
y
k
− αk1n −Xγkβγk

)}
, (1)

where β
γk

is the non-zero vector of regression coefficients of the kth regression and

Xγk is the design matrix with columns corresponding to γkj = 1.

3.2. Priors

As discussed in Section 2.2 we follow a g-priors representation for the regression
coefficients. Conditionally on γ

k
, we assume:

β
γk

| γ
k
, g, σ2

k ∼ Npγk

(
0, g

(
XT

γk
Xγk

)−1

σ2
k

)
, (2)

where pγk ≡ γT

k
1p is the number of non-zero elements in γ

k
. To increase flexibility,

the level of shrinkage g is not fixed but given a hyperprior: g ∼ InvGam (ag, bg).
Note however that the level of shrinkage is common for all the q regression equations,
so g is one of the parameters that links the q regressions.

Prior specification is completed by assigning a Bernoulli prior on the latent
binary indicators:

p (γkj |ωkj ) = ω
γkj

kj (1− ωkj)
1−γkj , k = 1, . . . , q, j = 1, . . . , p.

Modelling the matrix of the prior probabilities for Γ

Ω =



ω11 · · · ω1j · · · ω1p

...
. . .

...
. . .

...
ωk1 · · · ωkj · · · ωkp

...
. . .

...
. . .

...
ωq1 · · · ωqj · · · ωqp
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is crucial as this is where considerations of sparsity and borrowing of strength be-
tween the responses can be included. Three strategies can be adopted:

(i) ωkj = ωk with ωk ∼ Beta (aωk , bωk );

(ii) ωkj = ωj with ωj ∼ Beta
(
cωj , dωj

)
;

(iii) ωkj = ωk × ρj with ωk ∼ Beta (aωk , bωk ), ρj ∼ Gam
(
cρj , dρj

)
, 0 ≤ ωkj ≤ 1;

We refer to model (i) as ‘the independent model’, to model (ii) as ‘the column effect
model’ and finally we name model (iii) ‘the multiplicative model’. The first model
assumes that the underlying selection probabilities for each response y

k
may be

different and arise from independent Beta distributions. It is a direct extension of the
variable selection model for single response in Bottolo and Richardson (2010). The
only shared parameter among the q responses is the shrinkage coefficient g. Linking
the k regressions through g is natural in view of the similarity of the responses
in our set-up and helps to stabilise the effect of g. The second model is inspired
by Jia and Xu (2007) and introduce a shared parameter ωj (which plays a similar
role to their parameter ζj) which quantifies the probability for each predictor to be
associated with any, possibly many, transcripts. In a simplistic manner, model (ii)
assumes that this probability is the same for all the responses. Finally the third
model is a new extension of the previous two. A shared column effect ρj is used to
moderate the underlying selection probability ωk specific to the kth regression in a
multiplicative fashion, which combines the good features of models (i) and (ii).

Models (i) and (iii) share an important feature: the hyper parameters aωk and
bωk can be easily related to an elicited prior mean and variance for pγk , the number
of predictors. Context specific knowledge on the expected sparsity of the regressions,
e.g. information on a typical range for the number of genetic associations, can thus
inform choices for aωk and bωk . Note also that in model (i), it is possible to integrate
out ωk, while in model (ii) and (iii) ωj and (ωk, ρj) will need to be sampled.

The most important difference between the models we are considering is the
way sparsity can – or cannot – be induced. In contrast to models (i) and (iii), in
model (ii) the simple column structure has destroyed any possible control on the
expected number of associations. The ωj in model (ii) are directly related to the
relative proportion of the q outcomes that are associated with the jth covariate, and
will be hardly influenced by choices of cωj and dωj values. It will be interesting to
see how this formulation of shared column effect within a subset selection approach
performs in comparison to the column model of J & X with SSVS variable selection,
and whether there are any problems of over-estimation of hot spots.

Model (iii) synthesizes the benefits of models (i) and (ii): for each response the
level of sparsity can be informed through the hyper parameters aωk and bωk while
ρj captures the ‘propensity’ for predictor j to influence several outcomes at the
same time. In this model, the role of ρj can be seen as a ‘predictor specific propen-
sity for being a hot spot’ that inflates/deflates the underlying selection level ωk.
The adopted multiplicative formulation has some similarity to the disease mapping
paradigm where relative risks act in a multiplicative fashion on expected number of
cases in a binomial or Poisson disease risk model. Accordingly, we decided to center
ρj on 1 and choose cρj = dρj = 1.2 so that the coefficient of variation is reasonably
large, but that there is not much probability mass on small values. The benefit of
having split ωkj into two components, which will be given independent priors, is that
we have allowed borrowing of information across the responses without destroying
the possibility of inducing sparsity. In the following, we will focus our investigations
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on models (ii) and (iii). As model (i) does not borrow any information across the
responses, it is less adapted to tease out ‘hot spot’ structure.

We end this section by discussing the hyper parameters for the priors of g and
σ2
k. In this paper we use the values proposed in Bottolo and Richardson (2010),

with ag = 1/2 and bg = n/2, so that (2) can be thought as a mixture of g-priors and
an inverse-gamma prior with non-existing moments. Finally we specify a relative
flat prior for the error variance selecting aσ = 10−3 and bσ = 10−6.

Given the likelihood, the prior structure, natural conditional independence as-
sumptions, and after integrating out the intercepts, the regression coefficients, and
the error variances, the joint density can be written as

p(g)

q∏
k=1

p
(
y
k
|X, γ

k
, g
)
p
(
γ
k
|ωk

)
p(ωk), (3)

where ωk = (ωk1, . . . , ωkj , . . . , ωkp)
T , with the likelihood for the kth regression given

by

p
(
y
k
|X, γ

k
, g
)
∝ (1 + g)−pγk/2

(
2bσ + S

(
γ
k

))−(2aσ+n−1)/2

(4)

with S
(
γ
k

)
=

(
y
k
− ȳ

k

)T (
y
k
− ȳ

k

)
− g

1+g

(
y
k
− ȳ

k

)T

Xγk

(
XT

γk
Xγk

)−1
XT

γk

(
y
k
− ȳ

k

)
and ȳ

k
= 1n

∑n
i=1 yik/n.

4. MCMC ALGORITHM

The task of updating all variables in this large p×large q set-up is very demanding
computationally. To do this, we have assembled key ingredients – parallel temper-
ing/evolutionary Monte Carlo and adaptive moves – in a new algorithm, Hierarchical
Evolutionary Stochastic Search, HESS hereafter.

For each of the q regressions, we consider L chains, with temperature tkl,
1 = tk1 < tk2 < · · · < tkL, where tkl is the temperature attached to the lth chain
in the kth regression. L = 1 corresponds to the non-heated chain, and only vari-
ables in the non-heated chain are retained in the final output of the algorithm. We
denote by γ

kl
= (γkjl, 1 ≤ j ≤ p) and ωkl = (ωkjl, 1 ≤ j ≤ p) the vectors of

selection indicators and probabilities respectively for the lth chain of the kth re-
gression. The variables that will be updated during a sweep of HESS are in turn(
{γ

kl
}, {ωkl} , 1 ≤ k ≤ q, 1 ≤ l ≤ L

)
and g. The following full conditionals will be

used throughout in the relevant acceptance ratios

p
(
γ
kl
| · · ·

) 1/tkl

∝ p
(
y
k
|X, γ

kl
, g
) 1/tkl

p
(
γ
kl
|ωkl

) 1/tkl

, (5)

p (ωkl | · · · )
1/tkl ∝ p

(
γ
kl
|ωkl

) 1/tkl

p (ωkl)
1/tkl , (6)

p (g | · · · ) ∝ p (g)
∏L

l=1

∏q

k=1
p
(
y
k
|X, γ

kl
, g
) 1/tkl

. (7)

The update of the packet
(
{γ

kl
}, 1 ≤ k ≤ q, 1 ≤ l ≤ L

)
builds on the Evolutionary

Stochastic Search (ESS) algorithm of Bottolo and Richardson (2010) and is briefly
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described in Section 4.1. For the update of the matrix Ω of joint selection proba-
bilities, we have used an adaptive sampler described in Section 4.2. The scanning
strategy which features a novel scheme of adaptive scanning over k is discussed in
Section 4.3.

4.1. Recall of main ESS scheme for the Γ updates

The key features of ESS that we exploit here is the use of evolutionary Monte
Carlo (EMC) to explore the huge model space as well as an automatic tuning of
the temperature placement during burn-in. Multiple chains are run in parallel at
different ‘temperatures’ with two distinct type of moves: (i) local moves aimed at
updating the indicators of every single chain and (ii) global moves (crossover and
exchange operators) that try to exchange part or the whole configuration of γ

kl
for

selected chains. Global moves are important because they allow the algorithm to
escape from local modes, while a detailed exploration is left to the local moves. While
global moves are computationally inexpensive, the local ones could be time costing
(e.g. full Gibbs sampling over j is prohibitive). In ESS, a fast-scan Metropolis-
within-Gibbs scheme for updating a set of γkjl was proposed, which includes an
additional probability step to choose the indices where to perform the Metropolis-
with-Gibbs update based on current model size and temperature. Here, we adopt a
similar idea, but modify this additional step to use the current values of ωkjl (which
are available in our HESS set-up but were integrated out in ESS).

In summary, we carry out the update of
(
{γ

kl
}, 1 ≤ k ≤ q, 1 ≤ l ≤ L

)
using the

portfolio of global and local moves described in Bottolo and Richardson (2010) with
obvious modifications to include the ωkl in the acceptance rates, following (5).

4.2. g and Ω updates in HESS

The variable selection coefficient g is common to all the q regression equations and
to all L chains, see (7). The MCMC update of g is not particularly difficult and we
implement a simple Metropolis-within-Gibbs with lognormal proposal density. For
improving the mixing, we update g frequently.

For simplicity of notation, for the rest of this section, we shall not index variables
by the chain index l, but stress that the description below applies to each chain.
The update of Ω depends on whether model (ii) or model (iii) are considered as
prior structure for Ω. Recall that in model (i), Ω is integrated out.

In model (iii), ωkj = ωk × ρj . In this case, we found useful to update the
scalars ωk and ρj using a Metropolis-within-Gibbs sampler, based on (6), with
random walk proposals and adaptive standard deviations, following Roberts and
Rosenthal (2009). We use fixed non-overlapping batch of say, 50 sweeps, indexed
by m. Denoting by sk (m) and sj (m) the proposal standard deviations at the mth

batch for updating ωk and ρj respectively, we use random walk Metropolis and
propose new values for ωk and ρj : logit(ω

′
k) ∼ N

(
logit (ωk) , s

2
k (m)

)
and log

(
ρ′j
)
∼

N
(
log (ρj) , s

2
j (m)

)
. During the batch we monitor the acceptance rate, and use

the adaptive update: sk (m+ 1) = sk (m) ± δk (m), to guide the acceptance rate
towards 0.44, and proceed similarly for the update of sj (m). We further impose the
following restrictions in order to satisfy the conditions in Section 5:

∀k, Mω1 < sk (m) < Mω2 (8)

∀k, δk (m) = min{δω,m−1/2} (9)
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for some finite Mω1 and Mω2, and some δω > 0, and impose similar restrictions for
sj(m).

In model (ii), ωkj = ωj . In this case for the non-heated chain, the full conditional
for ωj is available in closed form. For the heated chains, we use again an Metropolis-
within-Gibbs with adaptive proposals, similar to that for model (iii).

4.3. Scanning strategy for updating the responses

We now describe one of the distinguishing features of the HESS algorithm, the
strategy for selecting the indices of the responses k to be updated. As q is large, it
is important to investigate scanning strategies over k that can make use of potential
sparsity in the q direction. The simplest one is to choose to update only a fraction
ϕ, 0 < ϕ < 1 of the q responses at every sweep, i.e. to choose at random without
replacement a group of responses of size ϕ × q to update. We shall refer to this
strategy as ‘scanning with fixed fraction ϕ’. In the eQTL context, only a moderate
proportion of the gene expressions are expected to be under genetic control, and so
it seems reasonable to update a fraction of, say, ϕ = 0.25 of responses at every sweep
(different fractions can be used if so required, informed by the expected percentage
of responses a priori linked to any predictor).

An obvious limitation of the fixed ϕ scanning is that by choosing purely at
random the fraction of the responses to update, we will end up updating many
‘uninteresting’ responses, i.e responses which are not associated with any predictor.
It is thus of particular interest to investigate new adaptive scanning strategies which
can learn the ‘interesting’ responses as the algorithm proceeds and progressively
incorporate this knowledge into the scanning probabilities. In other words, we want
to increase the probability of updating the selection indicators γ

kl
for a response y

k
when this response is likely associated with several predictors. Indeed, we know that
variable selection is hard when p is large and therefore accomplishing more updates
for these ‘active’ responses should improve the performance of the algorithm. To
the best of our knowledge, such adaptive scanning strategies (which are different
from adaptive random scans) have not been studied before and we refer to Section 5
for their theoretical properties. Here, we give details of the strategies that we have
explored.

4.3.1. Adaptive scanning

We construct a vector wk = wk(b), of selection probabilities, k = 1, . . . , q that will
evolve as the algorithm progresses, where b increments a batch index, say, every
50 sweeps. We begin with a new definition of ‘batch’. Differently from the fixed
disjoint batches used in the Ω update, here the definition of batch must fulfill two
conditions (to satisfy (C7) in Section 5): (i) the size (number of sweeps) of the bth

batch must grow to infinity, and (ii) two consecutive batches must share part of the
chain history, such that the fraction of the two batches which overlaps converges
to 1 as the algorithm proceeds.

These two conditions can be guaranteed in several ways. The simplest is to
use a ‘full memory batch size growth’ at every S sweeps, say 50, the batch (b+ 1)
is defined as the complete chain history from the initial sweep. What we have
implemented is a different batch definition where the influence of the start of the

algorithm is progressively discarded: we use growing batches of size bS −
⌊√

bS
⌋

(⌊·⌋ integer part), so that the initial
⌊√

bS
⌋
sweeps are removed from the history.
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In each batch we monitor r̃k (b) =
∑S(b)

s=1 p
(s)
γk /S (b), where p

(s)
γk is be the number of

predictors included in the model for the kth regression at sweep s and S (b) is the
total number of sweeps in the bth batch (we omit the l index since the selection
probabilities are based on the non-heated chain, l = 1).

Next we introduce a function of the parameters that we will use to characterise
the ‘interesting’ responses. Whereas different parameters can be monitored, the idea

of tracking those responses with large r̃ (b) (and large p
(s)
γk on average) is appealing

as discussed previously.
Adaptive scanning scheme.

(i) At the end of each batch, we monitor r (b), the renormalised version of r̃k (b) across
the q responses;

(ii) To satisfy the theoretical conditions of Section 5, we set

w̃k (b) = (1 − ε (b)) rk (b) + ε (b) (10)

for some ε (b) > 0. At the beginning and for a fixed number b0S of sweeps, we let the
algorithm explore all the responses with equal probability (ε (b) = 1). There is no
adaptation of scanning probabilities during this period, and the algorithm uses the
fixed fraction ϕ version. During this burn-in period, the algorithm accumulates an
increasing quantity of ‘memory’ that will be used afterwards to derive good selection
probabilities. After the burn-in stage, ε (b) starts to decrease ∝ 1/b rate

ε (b) =

{
1 if b ≤ b0

1
c
b0
b

+ 10−3 if b > b0
(11)

where c > 1 is a constant that can be used to accelerate the decay of ε (b);

(iii) We obtain the selection probabilities wk (b) renormalising w̃k (b) across the q re-
sponses.

(iv) Finally the vector of selection probabilities wk (b) are used to select at random with-
out replacement a fraction ϕ of responses to be updated.

As will be explained in Section 5, if an adaptive scanning strategy is used,
additional conditions on all the variables updated and the kernels must be imposed.
To guarantee these conditions, we further impose (by rejecting any proposed move
which violates any of the following constraints) that, for some η > 0 (depending of
the model selected (ii) or (iii) for Ω):

η ≤ g ≤ 1010, η ≤ ωjl ≤ 1− η, η ≤ ωkl ≤ 1− η, and η ≤ ρjl ≤ 1010. (12)

5. THEORETICAL JUSTIFICATION

For ordinary MCMC algorithms, it is well known that basic properties such as ϕ-
irreducibility and aperiodicity suffice to guarantee ergodicity (i.e., asymptotic con-
vergence to the stationary distribution). However, some of the algorithms considered
in this paper are adaptive, i.e. the transition probabilities change over time and may
depend upon the chain’s previous history. Such adaptions can easily destroy ergod-
icity, and it is known (see e.g. Andrieu and Moulines, 2006; Roberts and Rosenthal,
2007, 2009; and references therein) that use of adaptive algorithms requires careful
theoretical justification.

For notation, let π(·) be the target density on the state space X , let Un ∈ X be a
vector representing the full state of the adaptive algorithm at time n (including the
γ
k
, g, ωk, ρj , etc.; thus, X is part discrete and part continuous), and let Vn ∈ Y be a
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vector representing all the associated adaptive parameters at time n (including the
sk(m), sj(m), r̃k(b), ε(b), etc.). For each fixed v ∈ Y, let Pv(u, ·) be the non-adaptive
Markov chain kernel corresponding to that fixed choice of adaptive parameters, so

P[Un+1 ∈ B |Un = u, Vn = v, Un−1, . . . , U0, Vn−1, . . . , V0] = Pv(u,B)

for all u ∈ X , v ∈ Y, B ⊆ X , while the conditional distribution of Vn+1 given the
past is specified by the adaptive algorithm. We require the following conditions.

(C0) For all u ∈ X and each fixed v ∈ Y, limn→∞ ∥Pn
v (u, ·)− π(·)∥ = 0, where

∥Pn
v (u, ·)− π(·)∥ = supB⊆X |Pn

γ (u,B)− π(B)| is total variation distance.

(C1) The subsets X and Y are both compact.
(C2) There is a finite collection S of sequences of coordinates, such that each

kernel Pv is defined by first selecting a sequence s ∈ S according to some selection
probabilities pv(s), and then applying successive Metropolis-Hastings-within-Gibbs
iterations (possibly adaptive or possibly pure Gibbs) to each variable in the sequence.

(C3) The selection probabilities pv(s) depend continuously on v ∈ Y.
(C4) The Metropolis-Hastings proposal distribution for each coordinate i for

each kernel Pv is selected from some parametric family whose density function de-
pends continuously on v ∈ Y.

(C5) The target distribution π(·) has continuous density on X .
(C6) The adaptive parameter vector Vn+1 depends continuously on (some or all

of) the chain history U0, . . . , Un, V0, . . . , Vn.
(C7) There is a deterministic sequence bn ↘ 0 such that the components Vn,i

of the adaptive parameter vectors Vn ∈ Y all satisfy the bound |Vn+1,i − Vn,i| ≤ bn.
These conditions all hold for all of the adaptive algorithms used in this paper.

Indeed, (C0) holds for all irreducible Metropolis-Hastings kernels (Tierney, 1994,
Corollary 2), which includes all the fixed-v kernels considered here since by (10)
and (11) each sweep always has a positive probability of including each variable;
(C1) holds since the Markov chain and adaption variables are all explicitly defined
(see (8) and (12) and (11)) to be uniformly bounded away from 0 and from infinity, so
they remain within fixed closed intervals on which condition (C0) continues to hold;
(C2) holds by explicit construction of the algorithms, with the selection probabilities
pv(s), indicated as wk(b) in our algorithm, defined by the adaptive scanning scheme
described in Section 4.3.1; (C3) holds since the selection probabilities wk(b) are
defined via (10) in terms of the γ

k
vectors, and furthermore any function on a discrete

set like {0, 1} is continuous by definition; (C4) holds since the proposal densities
used (lognormal, logit, etc.) are all continuous functions of their parameters; (C5)
holds since the joint density (3) and likelihood function (4) are continuous functions
of their arguments (and, again, any function on a discrete set is continuous by
definition); (C6) holds since the adaptive parameters like sk(m) are continuous
functions of the corresponding batch values; and (C7) holds for each coordinate,
either explicitly since the amount by which the adaptive parameter is changed goes
to 0 as in (9) for the fixed-size batches m, or else because it is defined in terms
of empirical means and variances of increasing overlapping batches as is ensured,
for example, by the

√
bS-discard defined at the beginning of Subsection 4.3.1 so

the differences of means etc. must therefore converge to zero, and furthermore by
compactness this convergence must be uniform over all adaptive parameters in Y,
as required.
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Theorem 1 Assuming (C0)–(C7), the adaptive algorithm is ergodic, i.e.

lim
n→∞

sup
B⊆X

∣∣∣P(Un ∈ B |U0 = u, V0 = v)− π(B)
∣∣∣ = 0 , u ∈ X , v ∈ Y ,

and also satisfies a weak law of large numbers (WLLN) for all bounded functionals:

lim
n→∞

1

n

n∑
i=1

h(Ui) = π(h) , h : X → [−M,M ], some M < ∞ .

Proof. According to Theorems 5 and 23 of Roberts and Rosenthal (2007), the theorem will
follow if we can establish (a) the Simultaneous Uniform Ergodicity property that for all ϵ >
0, there is N = N(ϵ) ∈ N such that ∥PN

v (u, ·)− π(·)∥ ≤ ϵ for all u ∈ X and v ∈ Y; and (b)
the Diminishing Adaptation property that limn→∞ supu∈X ∥PVn+1

(u, ·) − PVn (u, ·)∥ = 0

in probability. Furthermore, their Corollary 8 states that under (C0) and (C1), property (a)
follows if the mapping (u, v) 7→ T (u, v, n) is continuous for each fixed n ∈ N, where we let

A(n)((u, v), B) = P[Un ∈ B |U0 = u, V0 = v] , B ⊆ X

record the distribution of Un for the adaptive algorithm, and let

T (u, v, n) = ∥A(n)((u, v), ·) − π(·)∥ ≡ sup
B⊆X

|A(n)((u, v), B) − π(B)|

denote the total variation distance to the target distribution π(·).
We first establish property (b). In light of the algorithm’s structure (C2), the continuity

properties (C3)–(C6) imply continuity of the mappings v 7→ Pv(u, ·) for each fixed u ∈
X in the total variation topology (since total variation distance depends continuously on
densities). The compactness condition (C1) then implies that this continuity is uniform in u.
Hence, property (b) follows from the decreasing differences of the adaptive parameters as
in condition (C7).

Next, we decompose the distribution A(n)((u, v), ·) as

A(n)((u, v), ·) = r(u, v, n)A
(n)
s ((u, v), ·) + (1 − r(u, v, n))A

(n)
m ((u, v), ·) ,

where r(u, v, n) is the probability that at least one of the continuous components of the
chain has not yet moved by time n, with As the corresponding conditional distribution,
and Am is the conditional distribution of the complementary event. Now, if the chain does
not move in one of its continuous components, then it is singular with respect to π(·), so

T (u, v, n) = r(u, v, n) + (1 − r(u, v, n)) ∥A(n)
m ((u, v), ·) − π(·)∥ . (13)

To continue, consider two different copies of the adaptive chain, {Un, Vn} and {U ′
n, V

′
n}.

Suppose their initial values satisfy ∥U ′
0−U0∥+∥V ′

0−V0∥ < ϵ for some small ϵ > 0. We claim
that for each fixed n ∈ N, there is dn(ϵ) with limϵ↘0 dn(ϵ) = 0, such that the two copies
can be coupled in such a way that with probability ≥ 1−dn(ϵ), for each coordinate i, either
the two copies are identical (U ′

n,i = Un,i), or both copies are still equal to their respective

starting values (Un,i = U0,i and U ′
n,i = U ′

0,i). Indeed, the continuity conditions (C3)–(C6),

which each imply uniform continuity by (C1), together imply that the two chains can be
coupled so that at each iteration n, with probability which converges to 1 as ϵ ↘ 0, the two
chains will each select the same sequence s ∈ S, the same proposal states in X , the same
decisions to accept/reject the proposal states, and the same updated adaptive parameter
in Y. The claim follows.
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The coupling inequality then implies that |r(u′, v′, n) − r(u, v, n)| ≤ dn(ϵ), and also

∥A(n)
m ((u, v), ·) − A

(n)
m ((u′, v′), ·)∥ ≤ dn(ϵ) . Hence, by (13), |T (u′, v′, n) − T (u, v, n)| ≤

3 dn(ϵ). This proves the continuity of the mapping (u, v) 7→ T (u, v, n), and thus establishes
property (a), and thus completes the proof of the theorem. �

6. RESULTS

6.1. Simulation study

In this section we report the results of the simulation study we perform in order
to evaluate the performance of the HESS algorithm, imposing different structures
on Ω. We compare our method with three recently proposed algorithms, namely
MOM (Kendziorski et al. 2006), BAYES (J & X, 2007) and Stochastic Partitioning
Algorithm (SPA) (M & T, 2009), discussed in Section 2.2.

To build realistic examples, all six simulated data sets are based on a design
matrix X derived from phased genotype data spanning 500-kb, region ENm014,
Yoruba population (HapMap project): the data set originally contained 1,218 SNPs
(Single Nucleotide Polymorphism), but after eliminating redundant variables, the set
of SNPs is reduced to p = 498, with n = 120, giving a 120× 498 design matrix. The
benefit of using real data for the X matrix is that the pattern of pairwise correlation,
linkage disequilibrium (LD), is complex and hard to mimic and blocks of LD are
not artificial, but they derive naturally from genetic forces, with a slow decay of
the level of pairwise correlation between SNPs. In all examples, we placed up to
six ‘hot spots’ at SNPs 30, 161, 225, 239, 362 and 466 inside blocks of correlated
variables. The first four SNPs are weakly dependent (r2 < 0.1), while the remaining
two SNPs are correlated with each other and also linked to SNP 239 (r2 ≃ 0.5),
creating potentially a masking effect difficult to detect. The six simulated examples
can be summarised as follow:
Sim1: we simulated q = 100 responses (transcripts), with the eQTLs at SNP 30 and 239

influencing transcripts 1-20 and 71-80, SNP 161 influencing transcripts 17-20, SNP
225 influencing transcripts 91-100, and finally eQTLs 362 and 466 influencing tran-
scripts 81-90. The goal of this example is to let some transcripts be predicted by
multiple correlated markers: for instance transcripts 17-20 are regulated by SNPs
30, 161, 239 at the same time. Altogether 50 transcripts are under genetic control
and for these, the effects and the error term are simulated as in J & X (2007) with
βkj ∼ N

(
0, 0.32

)
and ϵk ∼ Nn

(
0, σ2

kIn
)

with σk = 0.1. All other responses are
simulated from the noise.

Sim2: As in the previous example, we simulated 100 responses, but there are only three hot
spots (30, 161, 239). Transcripts 81-90 and 91-100 are obtained by a linear trans-
formation of transcripts 20 and 80 using a mild negative correlation (in the interval
[-0.5,-0.4]) and a strong positive correlation (in the interval [0.8,0.9]) respectively.
The goal of this example is to simulate correlation among some transcripts that is
not due to SNPs, creating possible false positive associations.

Sim3: This simulation set-up is identical to the first example for the first 100 responses,
but we increase the number of simulated responses to q = 1, 000, with all additional
900 responses simulated from the noise.

Sim4: As in the second simulated data set for the first 100 responses, with additional 900
responses simulated from the noise, and altogether q = 1, 000.

Sim5: In this example we simulated q = 100 responses with the SNPs-transcripts asso-
ciation similar to the ones described in M & T (2009). We partitioned the 100
transcripts into 10 groups with four of them linked to some combinations of the six
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hot spots (30, 161, 225, 239, 362 and 466). Finally the same effect is simulated
for each of the four partitions from a uniform distribution in [−5,−2]

∪
[2, 5] with

ϵk ∼ Nn
(
0, σ2

kIn
)

with σk = 1.
Sim6: The same groups as in Sim5 are used in this example, but, irrespectively of the

SNPs-transcripts partition structure, the effects and the error terms are simulated
as in J & X (2007) with βkj ∼ N

(
0, 0.32

)
and ϵk ∼ Nn

(
0, σ2

kIn
)

with σk = 0.1. In
this final example, the unrealistic assumption of ‘blocks of similar effects’ is removed
and the signal to noise ratio is lower than the one implemented in M & T (2009).

Sim1 and Sim2 will be used to compare HESS and BAYES; Sim5 and Sim6 to
compare HESS to SPA. On Sim3 and Sim4, we will compare HESS to MOM and
explore adaptive scanning strategies.

6.2. Postprocessing

To illustrate the performance of HESS, we report results with a burn-in of 1,000
sweeps and a run length of 2,000 sweeps. m batches are of length 50 and we in-
crement the b batch index every 50 sweeps. Adaptation for the Ω updates starts
at the beginning, while if the adaptive scanning version is implemented, adaptation
of the wk(b) starts at the end of the burn-in. We run 3 chains (L = 3) and stop
temperature adaptation at the end of the burn-in. We set the hyper-parameters
aωkl and bωkl so that E(pγkl) = V (pγkl) = 2, ∀k, l if model (iii) for Ω is chosen
and cωjl = dωjl = 0.05 ∀j, l if model (ii) is preferred. All the results presented for
Sim1-Sim2 and Sim5-Sim6 were run with the fixed fraction ϕ scanning, ϕ = 0.25.

Amongst the rich posterior output produced by HESS, we will focus on ρj (model
(iii)) or ωj (model (ii)) in order to characterise hot spots. We will also present
summaries of γkj for MAP configurations. It is not our purpose here to discuss in
depth a variety of classification rules that can be built to ‘declare’ a predictor as
a hot spot, as this would require a separate study. For model (iii), in the spirit of
cluster detection rules in disease mapping (Richardson et al., 2004), we will use tail
posterior probabilities of the propensities ρj , i.e. declare the j

th predictor to be a hot
spot if Pr(ρj > 1 |Y ) > 0.8. We use a 2-components mixture of beta distributions to
analyse the posterior distribution of the column effects: ωj in model (ii) and ζj in J
& X. This mixture has typically a component with a high peak around small values
that can be interpreted as representing the background rates. We will declare the
jth predictor to be a hot spot if the associated weight of the background component
is small, say less than 0.2. Thresholds can be determined for specified FDR if so
required.

6.3. Comparison of HESS and BAYES (Jia and Xu) on Sim1 and Sim2

On Figure 1, we present a summary output of the run of BAYES E(ζj |Y ) (left),
model (ii) E(ωj |Y ) (middle), and model (iii) E(ρj |Y ) (right) on the on Sim1
and Sim2 set-ups. Results of 5 replications are represented. We first remark that
BAYES is not performing well on Sim1, in particular marker 225, and 362 and
466 (those with potential masking) are not detected as hot spots in 2, 3 and 2
(resp) of the 5 replicates. We also see that there is some difficulty in separating
the background rates of ζj from those of the true hot spots and that there are a
number of false positives hot spots being detected (crosses) particularly in Sim2
around marker 30 and 161. When investigating in more detail the runs of BAYES,
we found evidence that the BAYES algorithm does not always mix adequately and
that it can get stuck in local modes, creating false associations. For example, the



Sparse regression of high dimensional data 15

SNP-response associations responsible for the false positive hot spots near SNP 161
were incorporated by BAYES algorithm early on and remained throughout during
the MCMC run. This is not unexpected since BAYES uses only Gibbs sampling to
perform variable selection without integrating the regression coefficients and that
single variable updates can lead to poor mixing when the predictors are correlated.
In contrast, both HESS models (ii) and (iii) find all the hot spots in Sim1 and only
miss one in one replicate of Sim2. The benefits of the multiplicative model (iii) in
terms of clear separation of the hot spots from the background are clearly visible.
The additional sparsity of model (iii) has led to a useful shrinkage of the background
rate, and values of E(ρj |Y ) give a decisive indication of high propensity for the true
hot spots markers. On the other hand, for model (ii) we observe more variability
of the background rate leading to difficulties of classification and potentially more
false positives, in line with our intuition that model (ii) might over estimate hot
spot probabilities. In view of this and other experiments that we have carried out,
we will focus our reporting on model (iii).
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Figure 1: Detection of hot spots: comparison of the performance of BAYES
(left) and HESS: model (ii) (middle), model (iii) (right). + true positive, × false
positive, all other values are indicated with a black dot.
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6.4. Comparison of HESS and SPA (M & T) on Sim5 and Sim6

On Figure 2, we present an example from one of the replicates of Sim5 and Sim6
highlighting the general pattern of results. The blocks of simulated effects are rep-
resented on the left, the MAP output given by Stochastic Partitioning Algorithm
(SPA) in the middle and a summary of the posterior frequency: E(γkj |Y ) for the
MAP configuration produced by HESS on the right. Recall that Sim5 was simu-
lated with common effects within blocks, following the simulation set-up of M&T.
Nonetheless, some blocks of effects are not detected by SPA (e.g. at SNP 30, 239
and 466 in the upper part of the plot) and there is evidence also of a false positive
block at SNPs 75 and 159. The Sim6 setting with effects varying within blocks
and lower signal to noise ratio induces the SPA to split into many atomic subsets to
accommodate the variability of effects, no information can be borrowed and some
effects are not detected. When running SPA, we found the tuning of their partition
parameter ρ quite difficult, with results highly sensitive to changes in ρ. As recom-
mended by M & T, we attempted to balance the two types of reversible jump moves
by trying different values of ρ and the results reported achieved a balance of nearly
50% over 106 iterations.

The results of HESS are consistent with different signal to noise ratio between
Sim5 and Sim6. In Sim5 all blocks of effects are detected with high probability.
In Sim6, some weaker effects are missed, but altogether, the general pattern of the
blocks is clearly apparent, and there are few false positives. Hence, the multiplicative
model (iii) gives not only a good tool for detecting hot spots as shown in 6.3, but
also a rich output that can be used to finely discover pairwise associations between
responses and predictors, irrespective of an imposed block structure on the effects.

6.5. Comparison of HESS and MOM on Sim3 and Sim4

In these two set-ups, the number of responses is substantially increased to q =
1, 000, with only 50 responses truly associated to the markers. In Figure 3 first
column, we report the results of 5 replicates, focussing on the comparison of the
posterior probabilities of hot spots that can be obtained by running respectively
the MOM algorithm and HESS model (iii). We first point out that our simulation
set-up is quite different to that of Kendziorski et al. (2006) in that (i) we have a
smaller absolute number of transcripts associated with the markers (50 in our case
and between 500 and 1,500 in their case), even though the fraction of responses
associated are comparable (5% versus 3%), and (ii) we are considering about 500
predictors instead of 23. Hence the mixture identification underlying MOM has
less information, and could be expected to have more instability. We observe that
overall both methods find easily the great majority of the hot spots (indicated by
+) as the respective posterior probabilities are located in the top right corner. The
notable difference is the clear separation of Pr(ρj > 1 |Y ) between associated and
non-associated markers, with a clump of low values (below < 0.4) for most non-
associated markers, whereas the posterior probabilities for hot spot provided by
MOM are more spread out, with some values close to 1 for non-associated markers
in particular in Sim4.

6.6. Adaptive scanning

We also use the set-ups of Sim3 and Sim4 to investigate the performance of our
adaptive scanning algorithm. One important tuning parameter in our adaptation
scheme is the constant c in (11) that controls how fast the ε(b) will adapt. We
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Figure 2: Comparison of HESS model (iii) with SPA model. True simulated
effects(left), SPA MAP configuration (middle), Posterior frequencies corresponding
to the MAP configuration of HESS (right).

explored several choices: c = 10, 102, 103, and in our limited experiments, found
that c = 100 provided a good compromise. Figure 3 (middle column) displays
the selection probabilities, wk(b) for one adaptive run of Sim3 and Sim4, where
adaptation starts after 1,000 burn-in sweeps (i.e. at batch index b0 = 20), with
S = 50. It is clear that for the 50 associated responses (in black), wk(b) grows
nicely reaching a ratio of 3 to 1 after 60 batch updates (3,000 sweeps). On the
other hand, the majority of non-associated responses (light grey) have a decreasing
wk(b). It is further interesting to see that ‘recovery’ is happening. For example
in the bottom plot, one of the associated response started with decreasing wk(b),
but at batch 30, this trend was reversed. Similarly, some of the non-associated
responses that have increasing wk(b) at the start show turning points where this
trend is reversed, indicating that the chosen adaptive scheme has viable elasticity
in a short number of batch updates. The right column of Figure 3 compares tail
posterior probabilities of hot spots between adaptive and non-adaptive scanning
version and shows that there is excellent agreement for the hot spot probabilities
(shown with +); hence adaptive and non-adaptive scanning schemes converge to
similar posteriors as should be expected from the theory. A small improvement
regarding the dispersion of the tail probabilities of the adaptive scanning scheme for
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Figure 3: Left column: Comparison of HESS and MOM. Middle column:

Selection probabilities wk(b) for HESS with adaptive scanning (black: associated
responses, light grey: non-associated responses). Right column: Comparison of tail
posterior probabilities for adaptive and non-adaptive versions. Output from one
simulation of Sim3 (top) and Sim4 (bottom).

non-associated responses is also suggested. Note that starting the adaptive scheme
at the end of a burn-in of 1,000 sweeps is quite conservative as, by then, the two
algorithms have already homed in on the interesting parts of the model space.

To illustrate more clearly the benefits of adaptive scanning, we carried a further
experiment, starting the adaptive scanning after only 100 sweeps (i.e. b0 = 2) on
Sim3. To make comparison easier between adaptive and non-adaptive scanning,
we fix the value of g in both algorithms to the unit information prior, i.e. g = n.
Figure 4 (top left) shows again how the wk(b) start increasing, almost immediately
for most of the associated responses. This time, there is more difference in the tail
posterior probabilities, with higher values overall for the associated responses (+),
and less dispersion for the non-associated responses (Figure 4, top middle for the
adaptive scanning). In complement, we monitored the fraction of misclassified γkj
as the two algorithms progress (Figure 4, top right). We see that the adaptive scan-
ning has a steeper rate of misclassification decrease than the non-adaptive version,
indicating that it learns faster the correct associations.
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Figure 4: Top: Comparison of adaptive versus non-adaptive scanning HESS
algorithms on Sim3 when adaptive scanning starts after 100 sweeps. Left: Se-
lection probabilities wk(b) (black: associated responses, light grey: non-associated

responses). Middle: Tail posterior probabilities. Right: Misclassification error
(black: adaptive, light grey non-adaptive). Bottom: eQTL analysis of F2 mice.
Left: Selection probabilities, wk(b). Middle: Posterior frequencies of γkj . Right:
Posterior propensity of hot spot (SNPs with associated tail posterior probabilities

above 0.8 are indicated with triangles.)

eQTL analysis of data from a study of diabetes in F2 mice. Finally, we performed
an e-QTL analysis on publicly available data arising from an experiment investigat-
ing genetic causes of obesity and diabetes, data that were previously analysed by
Kendziorksi et al. (2006) and Jia and Xu (2007). The data set comprise 60 F2 ob/ob
mice segregating for phenotypes associated with diabetes and obesity, on which
p = 145 markers were recorded. Gene expression was measured by Affymetrix Gene
Chips (MOE43A,B), and for this illustrative example, we analyse the top q = 5, 000
most varying transcripts. The adaptive scanning HESS (with fixed g = 60) was
used to analyse this data and the Matlab code run on a 3GHz CPU with 4Gb RAM
desktop took 67 hours to complete. The bottom part of Figure 4 shows some of the
posterior output. On this challenging joint analysis, we see again that some of the
selection probabilities have a marked increase. The posterior expectation of ρj give
clear indication of several hot spots and the posterior frequencies of γkj characterise
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further the associated responses. Using the tail probability rule, we would declare
17 hot spots on this data set. In particular, there are three massive hot spots in
chromosome 4, SNP D4Mit186, chromosome 13, SNP D13Mit91, and chromosome
15, SNP D15Mit63.

7. DISCUSSION

We have presented new models and algorithms for regression analysis of a large
number of responses and a large number of predictors. We have shown that by com-
parison to currently proposed models and algorithms, our implementation performs
better in a variety of situations. We found that the new multiplicative model for the
joint probability allows an excellent separation between hot spot and background,
and we would recommend to use this formulation rather than the simple column ef-
fect model. Hierarchical extensions of the multiplicative model could be considered,
which would treat the ({ρjl}, 1 ≤ j ≤ p, 1 ≤ l ≤ L) as random effects, coming, say,
from an exchangeable or a mixture prior. These extensions are certainly worth con-
sidering, but as p is large, will require to develop new efficient updating strategies
for the set of ρj .

Stimulated by the goal to make fully Bayesian joint analysis more computation-
ally feasible, in this paper, we provide an important proof of concept for a class
of adaptive scanning strategies and discuss in details one implementation of such a
scheme. Theoretical conditions for ensuring convergence are derived that are rela-
tively easy to satisfy and leave many degrees of freedom to the MCMC designer. The
key ingredients are the definition of the batch with the need for increasing overlap
and the formulation of the quantities on which to base the adaptation. The amount
of information needed to be accumulated before the start of the adaptation is also
an important feature where gains of efficiency could be expected, in line with one of
our experiments. We stress that the results that we show only cover a small aspect
of the potential improvements that will be derived from such schemes and that ex-
tensive experimentation is now required in order to give guidelines on these choices.
In conclusion, we believe that adaptive strategies, in particular adaptive scanning,
will be very useful in bringing fully Bayesian analyses to integrative genomics in the
near future.
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