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Abstract

This research report was written during the summer of 2006 under Professor
Jeffrey Rosenthal with the support of NSERC USRA. There are two major
purposes to this research report. The first is to summarize the theoretical
foundations of adaptive MCMC, including necessary backgrounds in measure
theory, general state-space Markov chains, and non-adaptive MCMC so that
a strong undergraduate math student with only undergraduate (non-measure
theoretic) probability can understand adaptive MCMC on continuous state-
spaces. The second is to report on the results of my simulation findings
during those four months, provide connections between the simulation and
theory, and raise further questions based on empirical trends.

The report begins by providing an overview of the essential background
for understanding general state-space Markov chains. Most of these are taken
from my reading notes while reading classic graduate probability texts [7], [6],
and [4]. The second part deals with the theory of ordinary MCMC and are
mainly based papers by [25], [29], [26], [23]. The final are recent theoretical
results from [24] and my simulation results and analysis.

I owe my deepest gratitude to Prof. Rosenthal who took time out of his
extremely busy schedule and provided careful guidance and insights which al-
lowed me to stay on track within the tight time schedule of summer projects.
My thanks also goes to the Department of Statistics at University of Toronto
who provided me with valuable office space and computing facilities.

Shuheng John Zheng
University of Toronto, 2006
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Chapter I

Measure Theory and Markov
Chains

I.1 Measure-Theoretic Probability

This section will reveal how concepts of measure theory is applied to proba-
bility and Markov chains.

I.1.1 Foundations

Probability Space Any standard construction of measure-theoretic prob-
ability will begin by defining the sample space, events, and probability mea-
sure. The sample space Ω is the set of all possible experimental outcomes.
For example, the n-repetition coin tossing sample space will be the set
{H,T}n. Events are a collection of possible measurable subsets on the
sample space denoted F . If we are to denote the event where the first
toss is a head in a 3-repetition coin toss sample space, the event will be
{HHH,HHT,HTH,HTT}. For technical reason, we would like this collec-
tion “events” to satisfy the σ-field property so that unions of events would
still be proper events.

Probabilities must be assigned to all these events in a way that is consis-
tent with natural intuition. That is, the probability of anything happening
is 1 and it is countably additive.

Definition I.1.1. A measure P is called a probability measure if P(Ω) = 1

1



CHAPTER I. MEASURE THEORY AND MARKOV CHAINS 2

Definition I.1.2. A sample space Ω, an σ-field F containing Ω, and a
probability measure P on F together forms the probability triplet: (Ω,F ,P).

Of course, the usual measure continuity properties are carried over.

Theorem I.1.3. If (measurable) sets An → A monotonically, then limn→∞ P(An) =
P(A).

Random Variables A random variable is not a variable but a function
defined from Ω to R. The function usually reports an aspect of the experi-
mental outcome thus causing its value to change each time.

Definition I.1.4. Random Variable
A measurable function X : Ω → R is called a random variable.

These random variables induce probability measures on R and these mea-
sures are called laws.

Definition I.1.5. Probability Laws
Given a random variable X on (Ω,F ,P, its law L (X) is defined by the
following Borel probability measure on (R,B):

L (X) = P ◦X

Laws are also called the distributions.

Independence Independence is a probability concept not present in mea-
sure theory. Intuitively, from the rules of combinatorics, two events are
independent if their probabilities “multiply out”.

Definition I.1.6. A collection {Aα}, α ∈ I is independent if for each se-
quence α1, α2, . . . , αn ∈ I, we have

P(Aα1 ∩ Aα2 ∩ . . . ∩ Aαn) = P(Aα1)P(Aα2) . . .P(Aαn)

Random variables are independent if the events that they generate through
the R Borel sets are all independent.
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I.1.2 Expectations and Conditional Expectations

Expectation Expectation should satisfy the natural notion of average. Or
a sum of all the real numbers weighted by the probability measure.

Definition I.1.7. Expectation
The expected value of X, E[X] is:

E[X] =

∫
ω∈Ω

X(ω)P(dω)

where the integral is the Lebesgue integral. E[X] is often symbolized by µ.

This definition of the expectation allows the carrying over of three stan-
dard integral convergence theorems.

Theorem I.1.8. Monotone Convergence Theorem
If a sequence {Xn} converges to X monotonically almost everywhere, then
limn→∞ E[Xn] = E[X]

Theorem I.1.9. Dominated Convergence Theorem
If Xn → X almost everywhere, and

• ∃Y s.t.|Xn| ≤ Y almost everywhere

• E[Y ] <∞

then limn→∞ E[Xn] = E[X]

Theorem I.1.10. Fatou’s Lemma
If Xn ≥ 0 almost everywhere, then E[lim infn→∞Xn] ≤ lim infn→∞ E[Xn]

Theorem I.1.8 requires that Xn → X with probability 1. This condition
can be weakened to convergence in probability.

Theorem I.1.11. Probabilist’s Dominated Convergence Theorem
The sufficient condition of dominated convergence theorem only requires Xn →
X in probability as opposed to with probability 1.

Proof. The key to the proof is to use the fact that if every subsequence of a
sequence has a further subsequence that converges to a constant c, then the
sequence itself must converge to c.
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Given any subsequence of {E[Xn]}, the associated {Xn(k)} still converges
to X in probability. From this subsequence, we can find a further sub-
sequence that converges to X with probability one. By assumption, this
sub-subsequence is bounded above by a random variable Y with finite expec-
tation. Applying theorem I.8, this sub-subsequence’s expectation converges
to E[X]. Hence every subsequence of {E[Xn]} has a further subsequence that
converges to E[X]; therefore, limn→∞E[Xn] = E[X]

Conditional Probability Conditioning is one of the most powerful tool
in probability theory. A solid understanding of it will be necessary to under-
stand stochastic processes such as random walk, Poisson process, martingales,
and of course, Markov chains

The elementary definition of conditional probability and conditional ex-
pectation is as follows

Definition I.1.12. Elementary Conditional Probability and Conditional Ex-
pectation

P(A|B) =
P(A ∩B)

P(B)
E[X|B] =

E[X ∗ IB]

P(B)

This definition requires that P(B) > 0; however, this is often too restric-
tive. One common problem is if B = {X = c} where X is a random variable
that is absolutely continuous with respect to the Lebesgue measure. In this
case, P(B) = 0.

Conditional Expectation To remedy the above difficulty, we define con-
ditional expectation using measure theory and Hilbert space theory.

Theorem I.1.13. L2 space
Let space L2(Ω,G ,P) be the space of G -measurable random variables defined
on Ω that have finite variances. This space with the inner-product < X, Y >=
E[XY ] is a Hilbert space.

Proof. It’s simple to verify that this satisfies the definition of an indder-
product. We then just show that this is a linear space. If X and Y are
G -measurable then aX + bY is obviously G -measurable. Furthermore, ex-
panding (aX + bY )2 and using the fact that E[abXY ] ≤ ab

√
V ar[X]V ar[Y ]

will show that aX + bY has finite variance.
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Completeness is obvious as this is just the standard L2 space because the
expectation is merely an integral.

The original concept of conditional expectation came out of the search
for the best predictor. “Best” is meant in the L2 sense.

Definition I.1.14. L2 Conditional Expectation
Assume X and Y are random variables with finite variances on the sample
space Ω. E[X|Y ] is a random variable in L2(Ω, σ(Y ),P) such that

‖X − E[X|Y ]‖L2 ≤ ‖X − Z‖L2 ∀Z ∈ L2(Ω, σ(Y ),P)

Theorem I.1.15.

• The above conditional expectation exists and is unique up to a set of
probability zero.

• The above condition is equivalent to requiring that X − E[X|Y ] is or-
thogonal to all random variables from L2(Ω, σ(Y ),P)

Proof. These are just results from the projection theorem from Hilbert space
theory and can be found in chapter 6 of [9].

Now it’s just a simple extension to define E[X|G ] where G is a sub σ-field
of F as the unique projection of X onto L2(Ω,G ,P).

The requirement for finite variance of X is often too strong because there
are large number of random variables (i.e. Cauchy) that do not have finite
variance (or in this case, no mean!). We thus resort to the analog of the
orthogonality condition as the definition.

Definition I.1.16. General Conditional Expectation
Given X defined on (Ω,F ,P) and a sub σ-field G , we define E[X|G ] to be
the G -measurable random variable such that

E[(X − E[X|G ]) ∗ IG] = 0 ∀G ∈ G

Theorem I.1.17. The conditional expectation defined as above always exist
and is unique a.e.
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Proof. This proof is a semi-constructive proof that builds upon the intuition
of non-measure-theoretic conditional expectation.

Recall that E[X|A] = E[X∗IA]
P(A)

. Now this division presents problems on
null measure sets. To alleviate the issue, the measure-theoretic “division”
must be used, namely the Radon-Nikodym derivative.

For every A ∈ G , denote MX(A) , E[IAX]. This is a signed (bounded)
measure which is absolutely continuous with respective to P|G (measure re-
stricted to G ). By the Radon-Nikodym theorem, there exists a G -measurable
random variable X̂ such that

E[IAX̂] =

∫
A

X̂dP = MX(A) = E[IAX] ∀A ∈ G

and this X̂ is unique almost everywhere. It satisfies the above definition of
conditional expectation.

Finally we can define conditional probability.

Definition I.1.18. General Conditional Probability

P(A|G ) = E[IA|G ]

Corollary I.1.19. The abstract definition of conditional probability is equiv-
alent to the elementary one (Definition I.1.12).

Proof. Given P(B) > 0, we will examine P(A|σ(B,Bc)). This is equal to,
by definition, E[IA|{∅, Bc, B,Ω}]. We hypothesize that this is equal to the
{∅, Bc, B,Ω}-measurable random variable

E[IA|{∅, Bc, B,Ω}](ω) =

{
P(A∩B)

P(B)
ω ∈ B

P(A∩Bc)
P(Bc)

ω ∈ Bc

This function is piecewise constant so it is definitely {∅, Bc, B,Ω}-measurable.
We also need to make sure that

E[E[IA|{∅, Bc, B,Ω}] ∗ IG] = E[IA ∗ IG] where G ∈ {∅, Bc, B,Ω}

The ∅,Ω cases are trivial. If G = Bc

E[E[IA|{∅, Bc, B,Ω}] ∗ IBc ] =

∫
ω∈Bc

P(A ∩Bc)

P(Bc)
dP = P(A ∩Bc) = E[IA ∗ IBc ]
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the other case is very similar.
So our conditional probability P(A|B) is merely the case where the B

event from the σ-field has “occurred”.

Lemma I.1.1. Conditional Density
Given two random variables X,Y defined on the same probability space with
Lebesgue R2 density f(x, y). Then if E[g(Y )] <∞

E[g(Y )|X] =

∫
y∈R

g(y)fY |X(y;X)λ(dy)

where fY |X is any function (with random parameter X) that satisfies

fY |X(y;X = x)

∫
t∈R

f(x, t)λ(dt) = f(x, y)

Proof. The process of verification is identical to the corollary above and is
left to the reader. The answer can also be found in [7].

I.1.3 Weak Convergence and Characteristic Functions

One important question that is often asked if whether a sequence of Borel
probability measures µ, µ1, µ2, . . . converges to a particular Borel measure.
One way to define is convergence that is of importance in applied probability
is weak convergence.

Definition I.1.20. Weak Convergence
A sequence of Borel probability measures {µn} converges to µ weakly if∫

R
fdµn →

∫
R
fdµ ∀f bounded & continuous

Now a sequence of random variables X1, X2, X3 . . . converges weakly to
X if their respective laws converge weakly.

One theorem that can be proven is the following equivalence between the
cumulative distribution function convergence and weak convergence. The
proof is quite complicated and is omitted. It can be found in Rosenthal.[27]

Theorem I.1.21. The following are equivalent
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1. {µn} converges to µ weakly

2. µn(A) → µ(A) for all measurable sets A with measure zero boundaries

3. µn((−∞, x]) → µ((−∞, x]) for all x ∈ R such that µ({x}) = 0

Tightness The notion of tightness of probability laws is important because
it has a sequential compactness consequence.

Definition I.1.22. A set P of probability laws is tight if for every ε > 0,
there exists a < b such that P([a, b]) > 1− ε for all P ∈ P.

Intuitively, a collection of tight laws place almost all of their probabil-
ity mass on some compact interval in R. One powerful consequence is the
following.

Theorem I.1.23. Let {µn} be a sequence of tight probability laws. Then
there is a subsequence such that µn(k) → µ for some µ.

In another words, tight sequence of probability laws will imply that they
are sequentially compact in the weak convergence sense. There are several
different approaches to the proof of this theorem. One of the easier ones [27]
involves looking at the sequence Fn(x) = µn((−∞, x]) of cumulative distri-
bution functions (cdfs). The Helly selection principle can show that for any
sequence of cdfs, there exists a convergent subsequence. After that, tight-
ness of the probability laws can generalize the convergence of subsequence
of cdfs to convergence of their respective probability laws. Other approaches
uses abstract tools such as Stone-Weierstrass, metrization, and Tychnoff’s
theorem. [6].

The following theorem allows for empirical verification of weak conver-
gence.

Theorem I.1.24. Glivenko-Cantelli
Let Fn(x) = 1

n

∑n
i=1 I(Xi ≤ x) be the empirical distribution function when

X1, X2, . . . , Xn are coming from cdf F. Then Fn → F uniformly almost ev-
erywhere.

Proof. Proof is given in [6].
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Metrization Weak convergence can be stated in terms of convergence in
a certain metric space.

Definition I.1.25. Lévy-Prohorov Metric
For any subset A of R and an ε > 0, let Aε be the ε-neighborhood of A.

Aε = {y ∈ R : |x− y| < ε for some x ∈ A}

Then for any two probability laws µ and ν, the Prohorov metric is

ρ(µ, ν) = inf{ε > 0 : µ(A) ≤ ν(Aε) + ε ∀A ∈ B}

Theorem I.1.26. ρ is a metric on the set of all probability laws, and for
probability laws {µn} and µ, the following are equivalent:

(1)
∫
fdµn →

∫
fdµ ∀f bounded & continuous

(2) ρ(µn, µ) → 0

The proof [6] is quite technical and will be omitted here.

Characteristic Functions Weak convergence is closely related to the con-
vergence of the respective characteristic functions.

Definition I.1.27. Characteristic function
A characteristic function φ of a random variable X with law µ is just its
Fourier transform

φX(s) =

∫
R
eisxdµ(x)

The nice thing about the characteristic function is that it exists as long as
the Fourier transform exists. In fact, the following properties can be shown
just from standard properties of the Fourier transform and can be found in
[11]

Theorem I.1.28. The characteristic function φX has the following proper-
ties

1. φX(0) = 1, |φX(s)| ≤ 1 for all s ∈ R

2. φX is uniformly continuous and semi-positive definite.
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There is a more important correlation between the characteristic func-
tion’s existence and the moments E(|Xk|)s’ existence.

Theorem I.1.29. Let X be a random variable with char. function φ(t).

(1) If E(|X|n) < ∞ for some positive integer n, then φ is Cn and
φ(k)(t) = ikE(XkeitX) for all k = 1, . . . , n.

(2) If n is an positive even integer and φ(n)(0) < ∞, then E(|X|k) < ∞
for k = 1, . . . , n.

Proof. (1) We know that all moments from 1 to n are finite by Hölder’s
inequality and we prove this theorem by iterating on k. First for the case
that k = 1 i.e. we want to show that φ′(t) = iE(XeitX) and it is continuous.

Note∣∣∣∣ei(t+h)X − eitX

h

∣∣∣∣ =

∣∣∣∣eihX − 1

h

∣∣∣∣ ≤ |hX|
|h|

= |X| by the convexity of ex

φ′(t) = lim
h→0

(
E(ei(t+h)X)− E(eitX)

h

)
= lim

h→0

(
E
[
ei(t+h)X − eitX

h

])
The finiteness of the first moment allows us to use the DCT and arrive at
φ′(t) = iE(XeitX) and this is continuous also by the DCT. If we generalize
the above DCT inequality into∣∣∣∣Xkei(t+h)X −XkeitX

h

∣∣∣∣ = |Xk|
∣∣∣∣eihX − 1

h

∣∣∣∣ ≤ |Xk| |hX|
|h|

= |X|(k+1)

then iteration allows us to say φ(t) is continuously differentiable n times and
φ(k)(t) = ikE(XkeitX).

(2) We prove this by induction on n. First consider the case that n = 2.
That means φ has a second derivative at zero, thus the first derivative exists
around zero which further implies that φ is differentiable in an open interval
around 0. For some small h > 0, denote

∆2φ(h) =
φ(h)− 2φ(0) + φ(−h)

h2
=

E(eihX − 2 + e−ihX)

h2

The above function ∆2φ(h) is defined for a open interval about zero. Take
the limit as h→ 0 and use l’Hopital’s rule twice and the uniform continuity
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of φ and φ′ to obtain

lim
h→0

∆2φ(h) = lim
h→0

φ′(h)− φ′(−h)
2h

= φ′′(0)

Notice that X2 = limh→0(
2(1−cos(hX))

h2 ) and eihX +e−ihX = 2 cos(hX). Putting
these pieces together and using Fatou’s lemma gives us a upper bound on
E(X2) in terms of φ′′(0).

E(X2) =E
[
lim inf

h→0

(
2(1− cos(hX))

h2

)]
≤ lim inf

h→0
E
(

2(1− cos(hX))

h2

)
=− lim inf

h→0
∆2φ(h) = −φ′′(0) <∞

Now for the induction step, we assume that the theorem is true for all
n ≤ k for k even and try to prove that the theorem still holds for n = k + 2.

If φ(k+2)(0) <∞, then φ(k)(0) is finite as well. So E(Xk) <∞ by induc-

tion hypothesis. By result (1), we have E(XkeitX) = φ(k)(t)
ik

Let this function

be called ψ(t) so ψ′′(t) = φ(k+2)(t)
ik

and therefore exists at zero by assumption.
We can repeat the above style argument with ψ(t) to arrive at the conclusion
that E(X(k+2)) ≤ −ψ′′(0) <∞

Uniqueness and Continuity One important feature of characteristic func-
tions is that they are in one-to-one correspondence with probability laws.

Theorem I.1.30. Uniqueness of Characteristic Functions
Characteristic functions are in 1-to-1 correspondence with probability laws.

Proof. It is trivial to show that for every law there is a characteristic function
as this is just the integrability of eitX with respect to a Borel probability
measure. The converse direction requires the Fourier uniqueness theorem
from Fourier analysis, which states

1

2π

∫ ∞

−∞

e−ita − e−itb

it
φ(t)dt =

1

2
µ({a}) + µ((a, b)) + µ({b})

where the improper integral is either construed as the Lebesgue integral
or the Cauchy principal value. This theorem allows us to conclude that
two random variables with same characteristic function will have the same
probability mass on all intervals. The Carathéodory extension theorem leads
to the conclusion that their probability measures are identical.
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The second important feature is that probability measures converge weakly
iff their corresponding characteristic functions converge pointwise.

Theorem I.1.31. Lévy continuity theorem
Probability laws {µn} converge weakly to µ iff their characteristic functions
{φn} converge pointwise to the characteristic function φ of µ.

Proof. It is straightforward to show that weak convergence implies conver-
gence of characterstic functions because cos(tX) and sin(tX) are a bounded
continuous functions. The converse direction is the difficult part. We will
give a sketch of the proof of the converse and the full detail can be found in
[27].

A series of lemma is needed the first of which states that a sequence of
probability measures is tight if their characteristic functions converge to a
function that is continuous at zero. In our case, φ, being a characteristic
function, is uniformly continuous everywhere, so {µn} is tight.

Suppose that a subsequence of {µn} converges to ν. By the forward result
of this theorem, we know that it implies φn(k) → φν . But φν must be the
same as φ by the uniqueness of limit. Which implies that ν = µ by Fourier
uniqueness.

The final lemma we need to complete the proof states that if a tight
sequence of probability measures has only one possible weak limit, then that
sequence actually does converge to the weak limit

I.1.4 Existence of Stochastic Processes

A stochastic process is a collection {Xt : t ∈ T} that is defined on the same
probability space. Usually they are dependant in some way and the set T
is just the natural numbers. It is difficult to explicitly define the probabil-
ity measure P on Ω and Xt’s as explicit functions; rather it’s more com-
mon to specify a stochastic process via its finite-dimensional distributions
(fdds). Namely a collection {µt1,t2,...,tk : k ∈ N, ti ∈} such that µt1,t2,...,tk(A) =
P((Xt1 , Xt2 , . . . , Xtk) ∈ A). Under quite general conditions, the correspond-
ing probability space with the stochastic process can be shown to exist if its
fdds are specified.

Theorem I.1.32. Kolmogorov’s Existence Theorem
If the fdds for a stochastic process satisfies the following consistency condi-
tions:
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(1) (Permutation invariant) Given any permuation π of (1, 2, . . . , k), then
for any set t1, t2, . . . , tk ∈ T and Borel sets A1, A2, . . . , Ak ∈ R, we have

µt1,t2,...,tk(A1 × A2 × . . .× Ak) = µtπ(1),tπ(2),...,tπ(k)
(Aπ(1) × Aπ(2) × . . .× Aπ(k))

(2) (Marginal distributions) Under the same setup

µt1,t2,...,tk(A1 ×A2 × . . .×A(k−1) ×R) = µt1,t2,...,t(k−1)
(A1 ×A2 × . . .×A(k−1))

Then there exists a probability space (RT ,F T ,P) and random variables {Xt :
t ∈ T} such that the random variables have the given finite-dimensional
distributions.

The proof of this theorem is extremely complicated and is presented in
[4].

I.2 General State-Space Markov Chains

I.2.1 Fundamentals

Many processes in nature exhibit a type of memoryless property, meaning the
development of future events depends on the state of nature of the present
(and possible a finite past) but not on the entire history of nature. Mathe-
matically, we can translate this into the Markov property

Definition I.2.1. Markov Property
A stochastic process {Xn} exhibits the Markov property if Gh = σ(X0, X1, . . . , Xh−1)
and

E[f(Xh)|Gh] = E[f(Xh)|Xh−1] ∀h ∈ N and f bounded-continuous

In order to make the analysis of these chains more manageable, we typi-
cally require that the Markov chain by time-homogenous.

Definition I.2.2. Time-Homogeneity
A stochastic process {Xn} is called time-homogenous if

P(Xk ∈ B|Xk−1 = x) = P(X1 ∈ B|X0 = x) ∀x ∈ χ and B ∈ F
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The random variables in Markov chains can be extended from a R range
to a range on a topological space χ with a σ-field H . Although in practice,
χ is usually some m-dimensional Euclidean space.

Obviously the behavioral-defining key of these Markov chains is how it
moves from Xn to Xn+1. These are called transition kernels which give the
probability of moving from one point to a measurable subset of χ in one
transition. They are essentially generalized probability laws.

Definition I.2.3. A function P : χ×H → [0, 1] such that
1) P (x, ·) : H → [0, 1] is a probability measure for all x ∈ χ
2) P (·, A) : χ→ [0, 1] is a measurable function for all A ∈ H
is called a transition kernel.

Now we can show that every transition kernel corresponds to one Markov
chain just like the relation between transition matrices and discrete state-
space Markov chains. [11]

Theorem I.2.4. Existence of Markov Chains
Given a measurable state-space (χ,H ), a probability measure µ, and a tran-
sition kernel P, there exists a probability space (Ω,F ,Pµ) and an associated
stochastic process {Xn} such that

Pµ(X0 ∈ A0, X1 ∈ A1, . . . , Xn ∈ An) =∫
x0∈A0

∫
x1∈A1

. . .

∫
xn−1∈An−1

µ(dx0)P (x0, dx1) . . . P (xn−1, An) ∀n ∈ N

where µ is known as an initial distribution and the stochastic process is known
as a Markov chain.

Proof. We can let

νt0,t1,t2,...,tk(H) = Pµ((Xt0 , Xt1 , . . . , Xtk) ∈ H)

This probability measure satisfies the consistency condition listed in I.4. Us-
ing a more general version of Kolmogorov’s existence theorem for topological
spaces [6] and with some technical restrictions on the topology of χ (count-
able), we can show that the stochastic process exists.

The above stochastic process satisfies the Markov property and time-
homogeneity. The general-case proof of Markov property when P (x, ·) does
not have a density is quite complicated and omitted here ([7], chapter 6).
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n-Step Transition Kernel To make matters more convenient, let’s denote
a n-step transition kernel P n:

P n(x, ·) = Pδ(x)(Xn ∈ ·) =

∫
y0∈χ

δx(dy0)

∫
y1∈χ

P (y0, dy1) . . .

∫
yn−1∈χ

P (yn−1, ·)

where δx is the Dirac delta measure at x and P 0(x, ·) = δx(·)
One immediate consequence of this definition is the Chapman-Kolmogorov

equation.

Theorem I.2.5. Chapman-Kolomogorv
For any m such that 0 ≤ m ≤ N

PN(x, ·) =

∫
y∈χ

Pm(x, dy)PN−m(y, A) ∀x ∈ χ

I.2.2 φ-Irreducibility

A “irreducible” Markov chain is a Markov chain that cannot be reduced to
two separate Markov chains, meaning that all states should eventually be
able to reach other states. The probability of reaching a specific state if χ is
uncountable is almost always zero; therefore, we define irreducibility as the
property where all “interesting” sets can be reached in finite time starting
anywhere.

Definition I.2.6. Time to first arrival
The time to first arrival of a set A τA is defined as inf{n ∈ N : Xn ∈ A}

Definition I.2.7. φ-irreducibility
A Markov chain {Xn} is φ-irreducible for a σ-finite measure φ on χ if for all
measurable sets A ⊂ χ of positive measure, we have

P(τA <∞|X0 = x) > 0 ∀x ∈ χ

Note that φ-irreducibility does not necessarily imply ordinary irreducibil-
ity from discrete Markov chains theory, only indecomposibility.

I.2.3 Recurrence and Periodicity

Recurrence
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Definition I.2.8. Harris recurrent
A set A ∈ H is called Harris recurrent if

P(Xn visits A infinitely often |X0 = x) = 1 ∀x ∈ χ

A Markov chain is called a Harris recurrent chain it is φ-irreducible and every
set with positive φ measure is Harris recurrent

Periodicity In discrete state-space Markov chains, periods are assigned to
each individual state and the chain is aperiodic if all states have period 1.
The period of individual states is the greatest common divisor of all times
N1, N2, N3 . . . such that there is a positive probability of coming back to i.

General state-space chains have a more complicated construction because
the states are usually uncountable. So we must look at periodicity of the
whole chain and not just individual states.

Definition I.2.9. Periodicity
A Markov chain with stationary measure π is periodic if there exists disjoint
subsets A1, A2, . . . , Ad ⊂ χ (known as a periodic decomposition) such that
P (x,Xi+1) = 1 ∀x ∈ Ai(1 ≤ i ≤ d − 1, P (x,A1) = 1 ∀x ∈ Ad, and
π(A1) > 0. If there does not exist such d ≥ 2 , then the chain is aperiodic.

I.2.4 Stationary measures

We want to know whether there is an equilibrium distribution in the Markov
chain because that is the most plausible limiting distribution. An equilibrium
distribution, called a stationary measure, is essentially a distribution that
does not change after a one-step transition of the Markov chain.

Definition I.2.10. Stationary Measure
A probability measure π(·) on (χ,H ) is a stationary measure for the Markov
chain with transition kernel P if

π(A) =

∫
x∈χ

P (x,A)π(dx) ∀A ∈ H

Analogous to discrete-time Markov chains, there is an intricate connec-
tion between recurrence, transience, and existence of stationary measure. In
general, a recurrent φ-irreducible chain has an stationary measure and the
stationary measure of atomic sets (see I.2.6) is the reciprocal of the expected
mean return time E(τA) to that atom. More detail can be found in [19].
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Reversibility If stationarity means a forward-moving equilibrium, there
can also be a bidirectional equilibrium. That is the probability of going
forward or backward in time to a set A is equal once the chain reaches the
stationary measure. Markov chains possessing this property is known as
reversible Markov chain.

Definition I.2.11. Reversible Markov chain
Given Markov chain is reversible with transition kernel P, suppose it is under
the stationary distribution so Xn ∼ π ∀n ∈ (−∞,∞), then if

P(Xn+1 ∈ B|Xn ∈ A) = P(Xn ∈ B|Xn+1 ∈ A) ∀A,B ∈ H

the chain is called reversible

A useful way to check this is the following

Theorem I.2.12. Reversibility
A Markov chain {Xn} is reversible iff the following relation is satisfied

π(dx)P (x, dy) = π(dy)P (y, dx) ∀x, y ∈ χ (I.1)

Proof. Suppose that a Markov chain is reversible, using the Bayes rule for
conditional probability [11]:

P(Xn ∈ B|Xn+1 ∈ A) =
P(Xn+1 ∈ A|Xn ∈ B)P(Xn ∈ B)

P(Xn+1 ∈ A)

since the Markov chain is reversible P(Xn ∈ B|Xn+1 ∈ A) = P(Xn+1 ∈
B|Xn ∈ A), so

P(Xn+1 ∈ B|Xn ∈ A) =
P(Xn+1 ∈ A|Xn ∈ B)P(Xn ∈ B)

P(Xn+1 ∈ A)

⇒ P(Xn ∈ A,Xn+1 ∈ B) = P(Xn ∈ B,Xn+1 ∈ A)

⇒
∫

x∈A

∫
y∈B

π(dx)P (x, dy) =

∫
x∈A

∫
y∈B

π(dy)P (y, dx) ∀A,B ∈ H

⇒ π(dx)P (x, dy) = π(dy)P (y, dx) ∀x, y ∈ χ

The converse verification is very direct and is left to the reader.

Remark. It is straightforward to check that every π that satisfies the above
condition is also a stationary measure.
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I.2.5 Ergodicity

To properly characterize the limiting behaviour of Markov Chains, we must
define the criteria for convergence. Although weak convergence is one criteria,
there is a stronger notion that can be used here: convergence in total variation
distance.

Definition I.2.13. Total Variation Distance
Given two probability measures µ and ν defined on the same probability
space (Ω,F ), the total variation distance is

‖µ(·)− ν(·)‖ = sup
A∈F

|µ(A)− ν(A)|

Lemma I.2.1. Convergence in total variation distance implies weak conver-
gence.

Proof. Given a sequence of probability measures {µn} such that ‖µn(·) −
µ(·)‖ → 0 and a continuous function f bounded by M, we have:∣∣∣∣∫ fdµn −

∫
fdµ

∣∣∣∣ ≤ sup
|g|≤M

∣∣∣∣∫ gdµn −
∫
gdµ

∣∣∣∣ = 2M‖µn − µ‖ → 0

by proposition 3.1 from [25]

With this definition, we can state the main convergence theorem of Markov
chains.

Theorem I.2.14. Markov Chain Convergence Theorem
Given an φ-irreducible, aperiodic Markov chain on (χ,H ) with a stationary
distribution π, we have

‖P(Xn ∈ ·|X0 = x)− π(·)‖ → 0

for 1) π a.e. x ∈ χ or 2) ∀x ∈ χ if the chain is Harris recurrent

Proof. The proof of this theorem is based on a coupling argument and can
be found in [19]



CHAPTER I. MEASURE THEORY AND MARKOV CHAINS 19

I.2.6 Qualitative Convergece

Atomic Sets The idea of the atomic sets is fairly important. They are
essentially a subset of χ that can be treated as one unit probability-wise.

Definition I.2.15. Atom
A set C ∈ H is called an atom if there exists a probability measure ν such
that P(x, ·) = ν(·) ∀x ∈ C. If this atom has positive irreducible measure
then it’s called an accessible atom.

Minorization and Uniform Ergodicity There are two important con-
ditions in determining uniform and geometric ergodicity.

Definition I.2.16. Small sets
A set C ∈ H is small if there exists a positive integer N , an ε > 0, and a
probability measure ν such that

PN(x, ·) ≥ εν(·) ∀x ∈ C

called the minorization condition

Remark. Actually if the chain is φ-irreducible, then any set with positive φ
measure contains a small set.

So if a Markov chain reaches any element of a small set, the small set can
almost be treated as one unit whose eventual probability measure is bounded
below by ε. All atoms are automatically small with N = 1, and ε = 1.

The importance of small sets lies in its usefulness in a coupling construc-
tion. In the discrete case, coupling two chains can be quite straightforward
and done with probability one ([11], 6.4). In the general state-space case,
the construction runs two initially independent chains with initial measure
δx0(·) and π(·). These two chains are independent until they both reach the
small set C where they are coupled after N transitions with probability ε.
After the coupling, the two chains running independently will have identical
distributions (but not necessarily always the identical sample path on every
realization). The nice property of the coupling construction with small sets
is that the two chains still follow the identical transition probabilities as if
they were independent. More detail is found in [17] and [25].
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Theorem I.2.17. Uniform Ergodicity
If the whole state-space χ is a small set, then the Markov chain is uniformly
ergodic meaning there exists M <∞, ρ < 1 such that

‖P(Xn ∈ ·|X0 = x)− π(·)‖ ≤Mρn ∀x ∈ χ

Proof. The proof follows from the above heuristical coupling construction
and a coupling inequality. Refer to [25]

Remark. The converse direction is actually also true. That is, if a Markov
chain is uniformly ergodic, then the whole state space is small. More details
can be found in [19].

Drift and Geometric Ergodicity The uniform ergodicity conditions are
not satisfied very often so we require a slightly weaker notion of qualitative
convergence. This is known as geometric ergodicity (More technically V-
uniform geometric ergodicity). The requirement calls for the drift condition

Definition I.2.18. Drift Condition
A Markov chain satisfies the drift condition if there exists constants 0 < λ <
1, b < ∞ and a function V : χ → [1,∞] (notice that ∞ is included), such
that

E[V (Xn+1)|Xn = x] ≤ λV (x) + bIC(x) ∀x ∈ χ

The probabilist’s interpretation for this is that the average one-step pre-
dictor of V where the function’s input is the next Markov chain state can
never exceed a linear scaling of V with the exception of a small set C where
translation is required to establish an upper bound.

Theorem I.2.19. V-Uniform Geometric Ergodicity
If a φ-irreducible, aperiodic Markov chain, with stationary measure π, pos-
sesses a small set C with associated ε and ν, and satisfies the drift condition
for some λ, ν, V , and the same C where V is finite for at least one x, then
there exists R <∞ and r < 1 such that

sup
|f |≤V

|E[f(Xn)|X0 = x]− Eπ[f ]| ≤ RV (x)rn ∀x ∈ χ

Proof. The proof follows either an analytical approach [19] or the more mod-
ern coupling approach which involves the use of bivariate drift condition and
a quantitative bound on the probability laws of coupled chains ([25], Sec.
4).
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Remark. The converse direction is also true. More details can be found in
[19].

Corollary I.2.20. Ordinary Geometric Ergodicity
A Markov chain satisfying the same assumptions as theorem I.2.16 converges
in a geometric rate, namely

‖P n(x, ·)− π(·)‖ ≤ RV (x)rn ∀x ∈ χ

Proof. By Proposition 3 from [25], we have, for all x ∈ χ

‖P n(x, ·)− π(·)‖ = sup
f :χ→[0,1]

∣∣∣∣∫
y∈χ

f(y)dP n(x, dy)−
∫

y∈χ

f(y)dπ(y)

∣∣∣∣
= sup

f :χ→[0,1]

|E[f(Xn)|X0 = x]− Eπ[f ]|

≤ sup
|f |≤V

|E[f(Xn)|X0 = x]− Eπ[f ]|

≤ RV (x)rn

because V ≥ 1

Sub-Geometricity There is a negative condition that guarantees failure
of geometric ergodicity (subgeometric ergodicity). The proof is in [26].

Theorem I.2.21. Given a φ-irreducible Markov chain with stationary mea-
sure π that is not equivalent to the Dirac delta measure at some point and
such that P (x, {x}) is a measurable function. Then

sup
x∈χ

P (x, {x}) = 1 π-a.e.

implies that the Markov chain is not geometrically ergodic.

I.2.7 Central Limit Theorems

The most basic central limit theorem is given by the following

Theorem I.2.22. Uniformly Ergodic CLT
If a φ-irreducible, aperiodic Markov chain {Xn} with stationary measure π
is uniformly ergodic and Eπ(f 2) <∞,

√
n(f(Xn)− Eπ(f)) → N(0, σ2)
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where

σ2 = lim
n→∞

1

n
E

( n∑
i=1

(f(Xi)− Eπ(f))

)2


for every initial measure µ

Note: The σ2 above is the same as τVARπ(f) where τ is the integrated
autocorrelation time. Thus a “well-mixing” - low autocorrelation - chain has
a lower asymptotic variance. This variance is also true for other forms of the
Central Limit Theorem as demonstrated below.

Proof. The original proof, omitted here, is due to Cogburn [5] and is done
through the use of mixing processes.

The immediate implication of this is that all finite state-space Markov
chains display the uniformly ergodic CLT.

Geometrically Ergodic CLT

Theorem I.2.23. Geometrically Ergodic CLT
If a φ-irreducible, aperiodic Markov chain {Xn} with stationary measure π
is geometrically ergodic, and f : χ → R is a Borel-measurable function that
satisfies one of the following conditions:
1) Eπ|f(·)2+δ| <∞ for some δ > 0
2) Eπ[f 2(·) max(0, log |f(·)|)] <∞
3) {Xn} is reversible and Eπ[f 2(·)] <∞
Then the central limit theorem as stated above is satisfied

Proof. The original proof of this central limit theorem is attributed to Ibrag-
imov and Linnik [15] and proceeds first by proving the stationary martingale
central limit theorem, which roughly says that if a sequence’s conditional av-
erage does not change (martingale) and the unconditional mean and covari-
ance functions do not vary with time (stationary), then the process exhibits
a CLT. The second proof is by Hobert [13] a construction similar to coupling
called regeneration. The most recent proof is due to Roberts & Rosenthal
[25] that also uses the martingale CLT but followed up with properties of the
Poisson PDE.

Remark. Note that these conditions (uniform or geometric ergodicity plus
functional finite moment) guarantees that the integrated autocorrelation time
is finite therefore the variance is finite.



CHAPTER I. MEASURE THEORY AND MARKOV CHAINS 23

Negative Condition There is one important negative condition that guar-
antees the nonexistence of CLT even when the variance of the functional
under the limiting distribution is finite. This would be the case if the con-
vergence rate is too slow.

Theorem I.2.24. Nonexistence of CLT
Given a reversible Markov chain that starts in its stationary distribution π,
if

lim
n→∞

n

∫
x∈χ

[h(x)− π(h)]2 ∗ P n(x, {x})π(dx) = ∞

then the CLT does not hold for the functional h.

Proof. The idea of the proof is to show that the limiting variance diverges if
the above condition is satisfied.

σ2 = lim
n→∞

1

n
E

( n∑
i=1

[h(Xi)− π(h(·))]

)2


≥ lim
n→∞

1

n
E

( n∑
i=1

[h(Xi)− π(h(·))]

)2

I(X0 = X1 = . . . = Xn)


= lim

n→∞

1

n

∫
x∈χ

E

( n∑
i=1

[h(Xi)− π(h(·))]

)2

I(X0 = X1 = . . . = Xn)|X0 = x

π(dx)

= lim
n→∞

1

n

∫
x∈χ

(n[h(x)− π(h(·))])2 P n(x, {x})π(dx)

= ∞

The third line is by the property of conditional expectation. Thus if the
variance diverges, the CLT cannot possibly exist.



Chapter II

Markov Chain Monte Carlo

II.1 The Goal and Traditional Approaches

Goal In applied statistics, many expectations and probabilities cannot be
calculated analytically. This is true especially in Bayesian statistics [29] and
statistical physics [20]. Most of these problems comes down to simulating a
desired distribution and evaluating an expectation, so this will be the focus
of this report.

The Monte Carlo technique is one that takes advantage of the law of large
numbers, which says

Theorem II.1.1. Weak law of large numbers
Suppose {Xn} is an independent and identically distributed (i.i.d.) sequence
of random variables with E(Xi) = µ <∞. Then

lim
n→∞

P(|Xn − µ| > ε) = 0 ∀ε > 0

Proof. The proof typically proceeds by making a stronger assumption of finite
variance and proving the weak law with Chebyshev’s inequality. Then, the
a set of truncated random variables are used

Uni =

{
Xi |Xi| ≤ δn
0 |Xi| > δn

Where (0 < δ < 1). These random variables have finite variances, and by
proving the weak law for these truncated variables and taking δ to be smaller
and smaller, the weak law can be proved for {Xn}

24
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Remark. The weak law and it’s converse holds if one of two weaker conditions
are satisfied:
1) nP(|X1| > n) → 0 and E[X1I(−n ≤ X1 ≤ n)] → µ
2) The characteristic function of Xn, φ(t), is differentiable at t = 0 and
φ
′
(0) = iµ

Given a desired expectation Eπ[f(X)], we can estimate this expectation
if π can be simulated and the expectation exists, in which case

1

n

N∑
i=1

f(Xi) → Eπ[f(X)]

Of course any (m-dimensional) integral can be interpreted as an expectation
by the following transformation∫

~x∈A

f(~x)g(~x)d~x = Eπ[f( ~X)] where π(A) =

∫
~y∈A

g(~y)d~y

Note that the Glivenko-Cantelli theorem (Thm I.1.24) can give a theoretical
justification for the approximation of theoretical distribution functions by
empirical simulations.

II.2 Metropolis-Hastings Algorithm

Monte Carlo estimation is useful only if the desired density can be simulated;
however, in practice, this is almost never the case. In fact, the distribution is
usually a multi-dimensional density on some restricted set and the normal-
izing constant is not even known very often.

Monte Carlo Markov Chain attempts to provide a solution by using a
Markov chain with the same state-space as the support of the target density
πd such that the limiting distribution is the target distribution. The nature of
these problems will almost always mean that the target distribution possesses
a density. The two main algorithms that generates this Markov chain are
the Metropolis-Hastings algorithm and the Gibbs sampler. Other hybrid
algorithms also exists [20]. The algorithm explored in this section is the
Metropolis-Hastings algorithm.
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II.2.1 Description

Definition II.2.1. Metropolis-Hastings Algorithm
Given a target density πd with respect to any measure (except where spec-
ified) defined on a set S, we provide a proposal transition kernel Q with
density q that is also defined on this set S, and finally choose an initial value
X0 ∈ S.
1. Generate a proposal Yn+1 ∼ Q(Xn, ·)
2. Accept the this proposal by settingXn+1 = Yn+1 with probability α(Xn, Yn+1)
where

α(x, y) = min

(
1,
π(y)q(y, x)

π(x)q(x, y)

)
3. Otherwise reject the proposal by setting Xn+1 = Xn

4. Repeat
The {Xn} chain is called the simulation chain and the {Yn} chain is called
the proposal chain.

Remark. We do not have to worry about the denominator of α(x, y) being
zero. πd(x) will not be zero because the chain would never arrive at a place
with zero π-probability. Also, q(x, y) would never be zero because the pro-
posal chain would never propose a target with zero probability.

Claim II.2.1. The Metropolis-Hastings algorithm generates a reversible Markov
chain with stationary distribution π that has density πd

Proof. We will check if condition (I.1) is satisfied.
Assume x 6= y, otherwise it’s trivial.

π(dx)P (x, dy) = [πd(x)dx][q(x, y)dyα(x, y)]

= πd(x)q(x, y) min

(
1,
π(y)q(y, x)

π(x)q(x, y)

)
dxdy

= min(πd(x)q(x, y), πd(y)q(y, x)dxdy

= π(dy)P (y, dx)

Common Proposals The common classes of proposal densities are the
following:
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• Independent Sampler If q(x, y) = g(y) ∀x ∈ χ.

• Symmetric If q(x, y) = q(y, x)

• Random Walk If q(x, y) = g(|y − x|) i.e. N(x, σ2)

II.2.2 Ergodic Properties of Algorithm

In order for the Markov Chain Convergence Theorem to be satisfied, we must
verify that the Markov chain is φ-irreducible and aperiodic. This depends
on the correct pairing of proposal density with target density. Usually if
the proposal chain is “nice” and is φ-irreducible on S, the simulation chain
will be as well. The following claim is a straightforward consequence of the
definition of phi-irreducibility.

Claim II.2.2. π-irreducibility of MH Algorithm
The MH simulation chain is π-irreducible, where π is the target measure, if

πd(y) > 0 implies q(x, y) > 0 ∀x ∈ χ

where πd and q are the densities.

Claim II.2.3. Aperiodicity of MH Algorithm
The MH simulation chain is aperiodic if πd and q are continuous and positive
for all x, y ∈ χ

Proof. Here P is the transition kernel of the simulation chain. Our goal is
to prove that P (x,A) ≥ ε

d
π(A) for all x in a non-empty compact set C. The

implication is that the chain is aperiodic by a simple contradiction that’s left
to the reader.
We know that χ includes compact subsets because χ is just Euclidean space
in the MH algorithm. The positivity of πd implies π(C) > 0.
The key to the rest of the proof is to choose B ⊂ C and a set Rx(B) for a
fixed x where

Rx(B) =

{
y ∈ B :

πd(y)q(y, x)

πd(x)q(x, y)
< 1

}
Set ε = infx,y∈C q(x, y) and d = supx∈C πd(x), then calculate P (x,A) for any
A ⊂ H by splitting the integral into Rx(B) and A Rx(B). The full proof
can be found in [18].

Remark. These conditions can be weakened is presented in [26].
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Markov Chain Weak Law The Markov chain weak law gives an analo-
gous version of the weak law of large numbers for Markov chains. This will
allow us to use Monte Carlo estimates with Markov chains.

Theorem II.2.2. Markov Chain Weak Law
Given a φ-irreducible and aperiodic Markov chain with stationary distribution
π and a functional f such that π|f | <∞

lim
n→∞

P(| 1
n

n∑
i=1

f(Xi)− π(f)| > ε) = 0

Proof. The proof is a consequence of the ergodic theorem from measure the-
ory which gives limiting properties of a general class of measure-preserving
transformations. The full proof is in Chapter 4 of [22].

II.2.3 Example

Example II.2.1. Here we demonstrate the simulation of N(0, 1) random
variable using proposal density N(x, 5). This falls under the category of
Random Walk algorithms. The two above claims are both satisfied thus the
Markov chain should converge to stationarity. The code used for this example
can be found in the Appendix. Note the well mixing of the simulation chain
and slight deviation of the tails of simulation chain when plotted against the
theoretical normal distribution. The functional evaluated in the expectation
is log(1 + |X|).
Refer to figures II.2.1 and II.2.2

II.3 Qualitative Convergence

This section will analyze the qualitative convergence property (and subse-
quently the CLT property) in the general case and of different major classes
of algorithms.

II.3.1 General Case

Corollary II.3.1. If support of the target density πd is compact, simulation
chain is uniformly ergodic.
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Figure II.2.1: Plot of empirical expectation - Proposal N(x,5), Target N(0,1)

Figure II.2.2: Plots of simulation chain - Proposal N(x,5), Target N(0,1)
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Proof. The state-space of the simulation chain, χ, is now compact. Follow-
ing the proof of Claim II.2.3, we can take the compact set C to be χ and
prove that χ is small. Therefore, by theorem I.2.17, the simulation chain is
uniformly ergodic.

Reminder that Theorem I.2.21 can be used to establish the sub-geometricity
of the MH algorithm.

II.3.2 Independent Sampler

Recall that a MH algorithm is called an independent sampler if the proposal
density is of the form q(x, y) = g(y).

Theorem II.3.2. Uniform Ergodicity of MH Independent Sampler
The independent sampler is uniformly ergodic if there exists α > 0 such that

q(x, y)

πd(y)
≥ α ∀x, y ∈ χ

Proof. It is straightforward to check that the whole state-space is small. In
fact, P (x,A) ≥ απ(A) A ∈ H x ∈ χ.

Corollary II.3.3. If infx∈χ
q(x)
πd(x)

= 0 π-a.e., then the independence sampler
is not geometrically ergodic

Proof. We can invoke theorem I.2.21. This is equivalent to proving that
infx∈χ(1− P (x, {x}) = 0.

Denote Ax = {y : q(x)
πd(x)

πd(y) ≤ q(y)}

1− P (x, {x}) =

∫
y∈χ\{x}

q(x, y)α(x, y)dy

≤
∫

y∈χ

q(x, y)α(x, y)dy

=

∫
y∈χ

min

(
q(x)

πd(x)
πd(y), q(y)

)
dy

=

∫
y∈Ax

q(x)

πd(x)
πd(y)dy +

∫
y∈χ\Ax

q(y)dy

=
q(x)

πd(x)

∫
y∈Ax

πd(y)dy +

∫
y∈χ\Ax

q(y)dy
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Figure II.3.3: Trace Plots - Proposal N(0,1) Target Laplace(1)

If infx∈χ
q(x)
πd(x)

= 0 π-a.e., then we can make the set Ax as close to χ as possible

since q(y) > 0 in χ. Now,
∫
πd(y)dy ≤ 1 so the infimum of the first integral

is zero. The infimum of the second integral is also zero because
∫
q(y)dy ≤ 1

and the domain of integration can be made arbitrarily close to ∅.

Example II.3.1. Proposal: N(0, 1). Target: Laplace(1). The target density

is πd(x) = 1
2
e−|x|. Therefore, inf q(x)

p(x)
= 0. Here are the trace graphs of a 10000

simulation iterations (figure III.3.3) There doesn’t seem to be much anomaly
with the x trace, but the pi trace makes a few digressions away from 0 that
was not present in the previous example. Although subgeometricity doesn’t
always mean the nonexistence of the CLT, in this case (and many others), it
does (figure III.3.4).

Remark. There is a convergence quality that is “weaker” than geometric
- polynomial. The CLT can still exist under polynomial ergodicty albeit
stronger requirements on the functional. See [16].

Open Problem II.1. What is an example of a subgeometric Markov chain
that satisfies the CLT?

II.3.3 Random Walk MH

Recall that the random walk MH algorithm is when the proposal density is
of the form q(x, y) = q(|x − y|). This is also a symmetric MH algorithm so
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Figure II.3.4: Histogram of 10000 runs - Proposal N(0,1) Target Laplace(1)

all the theorems in the previous section applies here.
Unfortunately, most random walk MH algorithms are not uniformly ergodic.

Theorem II.3.4. If the state-space of the random walk MH algorithm is Rk,
then it is not uniformly ergodic for any target distribution.

Proof. Proof is found in theorem 3.1 of [18].

However, the following is a theorem that guarantees geometric ergodicity
in one dimensional cases if the tails of the target density decreases exponen-
tially.

Theorem II.3.5. Geometric Ergodicity of Symmetric MH on R
Given a target πd(x) on R that satisfies the following

1. Positive for all x

2. Continuous for all x

3. Symmetric



CHAPTER II. MARKOV CHAIN MONTE CARLO 33

4. Log-concave in the tails: ∃α > 0&x0 > 0 s.t. ∀y ≥ x ≥ x0, log πd(x)−
log πd(y) ≥ α × (y − x) and ∀y ≤ x ≤ −x0, log πd(x) − log πd(y) ≥
α× (x− y)

Then for any proposal distribution Q that is a random walk proposal with
continuous density q(x) > 0, the algorithm is geometrically ergodic.
Furthermore, if πd is not symmetric, the same conclusion holds if there exists
a finite constant b such that q(x) ≤ be−α|x|.

Proof. The proof is a direct one that shows the function V (x) = es|x| can
satisfy the drift condition [18].

Remark. Analogous conditions with stronger curvature requirements exist in
higher dimensional Euclidean spaces. These results can be found in [26].

The converse direction is almost true [18].

Theorem II.3.6. Suppose that πd is symmetric, θ(x) , (d/dx) log(πd(x)) is
defined for large x, and the its limit at infinity exists (possibly infinite). Sup-
pose that the proposal density is a continuous random-walk density which is
continuous and

∫
z∈R |z|q(z)dz <∞. Then the MH algorithm is geometrically

ergodic iff limx→∞ θ(x) < 0.

Example II.3.2. In this example, we use proposal densities N(x, 1) with
target distribution Student-t(4).

θ(x) =
d

dx
K − (5/2) log(1 + x2/4) = −5/2 · x/2

1 + x2/4

So limx→∞ θ(x) = 0 and since the Normal distribution has finite first moment
so the simulation chain is not geometrically ergodic. The trace plots are given
in figure II.3.5 and central limit theorem histogram in figure II.3.6.

II.4 Central Limit Theorems

The obvious way to verify the existence of CLTs is to use the theorems from
II.2 to verify that a Metropolis-Hastings simulation chain is uniformly or
geometrically ergodic and invoke the Markov chain CLT. However, It is not
necessarily true that subgeometric Markov chains fail to satisfy the CLT.
However, theorem I.2.24 can be adapted to MH algorithms.
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Figure II.3.5: Trace Plots - Proposal N(x,1) Target Student-t(4)
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Theorem II.4.1. Nonexistence of CLT for MH algorithms
Given a MH algorithm on R such that the target has density πd with respect to
the Lebesgue measure and suppose that A(x) = 1−P (x, {x}) is differentiable
and for large x

1. A(x) converges monotonically to 0

2. lim infx→∞

∣∣∣πd(x)
A′(x)

∣∣∣ = ∞

Then the CLT does not hold for functions bounded away from zero at ∞.

Proof. The proof proceeds via a clever usage of the Markov’s inequality and
theorem I.2.24. Refer to [23].

Example II.4.1. This example is based on example 1 from [23]. The target
distribution is exponential(1) and the proposal distribution is exponential(θ).
Direct calculation shows

A(x) = θ exp((1− θ)x)− (θ − 1) exp(−θx)

A(x) certainly converges monotonically to zero. Further calculation reveals∣∣∣∣πd(x)

A′(x)

∣∣∣∣ = (θ(θ − 1)(exp((2− θ)x)− exp((1− θ)x)))−1

which diverges for θ > 2. Simulation was run for θ = 0.5, 3, 5. Refer to figure
(II.4.7).
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Chapter III

Adaptive MCMC

III.1 Theory

III.1.1 Description and Example

The difficulty in applying the above MH algorithms is that it is tedious to
find an optimal proposal density such that the simulation chain converges
the quickest. Take the following example

Example III.1.1. Let χ = {1, 2, 3, 4, 5} and π({2}) = ε, π({i}) = 1−ε
4

fori =
1, 3, 4, 5 for some small ε > 0. This target distribution has a density with
respect to the counting measure. If we choose the proposal distribution to
be

Q(x, {y}) =

{
1/3 y ∈ {x− 1, x, x+ 1}
0 o.w.

The MH chain is π-irreducible and aperiodic so it’s ergodic. In fact, it is
uniformly ergodic. However, simulation results show that the simulation
chain tends to get stuck on either side of {2}.

The solution to the above example’s problem can be as simple as en-
larging the support of the proposal distribution. However, what if the target
distribution is not so visualizable, as it is often the case in higher dimensions.

The ultimate goal is to have a MCMC algorithm that can adapt to the
target distribution and requires minimal human intervention. To put it for-
mally

37
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Definition III.1.1. Adaptive MCMC
Given a state space χ and a target distribution π. Let Y be some kind of
an index set (adaptation index ) for a collection {Pγ}γ∈Y of Markov chain
kernels that are all φ-irreducible, aperiodic, and stationary for π. So in
another words, each Pγ0 is a ergodic MCMC algorithm. Let random variable
Γn represents a kernel used when moving from Xn to Xn+1, set

Gn = σ(X0, . . . , Xn,Γ0, . . . ,Γn)

The Markov chain {Xn} behaves according to

P[Xn+1 ∈ B|Xn = x,Γn = γ0,Gn−1] = Pγ0(x,B), ∀x ∈ χ, γ0 ∈ Y , B ∈ H

Let’s denote the overall simulation chain by P[Xn ∈ B|X0 = x,Γ0 = γ] =
A(n)((x, γ), B). This stochastic process is no longer necessarily a Markov
chain as Γn can depend on the entire history of {Xn}.

There are several special cases of adaptive MCMC.

• Independent Adaptations: If for all n, Γn is independent of Xn

• Finite Adaptations: If there exists a stopping time τ that is finite
with probability 1 such that Tn = Tτ ∀n ≥ τ

• Markovian Adaptations: Define a stochastic process from Ω to χ×
Y by the pair (Xn,Γn). If this stochastic process is Markovian, then
the simulation chain {Xn} is called Markovian adaptations.

III.1.2 Ergodic Properties

The central ergodic theorem for adaptive MCMC is from [24].

Theorem III.1.2. Adaptive MCMC Ergodic Theorem
Given an adaptive MCMC algorithm on χ with adaptation index Y such that
π is stationary for each transition kernel and:

• ∀ε > 0,∃Nε ∈ N s.t.‖PN
γ (x, ·)− π(·)‖ ≤ ε ∀x ∈ χ& γ ∈ Y

• P(| limn→∞ supx∈χ ‖PΓn+1(x, ·)− PΓn(x, ·)‖ | > ε) → 0 ∀ε > 0

Then the simulation chain is ergodic.
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The proof, which uses a version of the coupling construction, can be found
in [24]. There similar (usually older) versions of this ergodic theorems but
they usually require that Γn converges to a constant with probability 1. You
will see in an example below that Γn often oscillates ad infinitum [12].

There are two immediate cases where the above conditions are satisfied.
If χ and Y are both finite, then the first condition is satisfied, and if the
probability of adaptation diminishes to zero, the second condition is satisfied.
A third corollary exists and deserves its own space.

Corollary III.1.3. Ergodicity of adaptive Metropolis-Hastings algorithms
Suppose an adaptive MH algorithm satisfies condition two of the above the-
orem with each transition kernel being ergodic for π. That is, Pγ is a MH
transition kernel for each fixed γ. Also, suppose that each proposal kernel
have density fγ(x, y) with respect to a finite reference measure λ and dπ

dλ
= g

exists. Finally, assume that {fγ(x, y)}γ∈Y are uniformly bounded and the
mapping (x, γ) → fλ(x, z) is continuous for each fixed y on a produce metric
space topology where χ×Y is compact. Then the MCMC algorithm is ergodic

Relaxing Condition One The first condition of theorem III.1.2, which
requires that the convergence rate of all transition kernels to be strictly
bounded, can be relaxed such that the convergence rate to be only bounded
in probability.

Theorem III.1.4. Define the “ε convergence time function”.

Mε(x, γ) = inf
n∈N

{n : ‖P n
γ (x, ·)− π(·)‖ ≤ ε}

Instead of requiring Mε(x, γ) ≤ Nε ∀x ∈ χ & y ∈ Y for each ε > 0, we
require that ∀δ > 0,∃N ∈ N such that P[Mε(Xn,Γn) ≤ N |X0 = x∗,Γ0 =
γ∗] ≥ 1 − δ ∀n ∈ N, then the algorithm is ergodic when started at (X0 =
x∗,Γ0 = γ∗).

III.1.3 Limiting Theorems

A nice weak law of large numbers for adaptive MCMC is of great practical
applicability.

Theorem III.1.5. Adaptive MCMC Weak Law
Suppose that the conditions of theorem III.1.2 holds. Let g: χ → R be a
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bounded measurable function. Then the following holds for any starting value
of x and γ ∑n

i=1 g(Xi)

n
→ π(g)

in probability.

The proof builds upon the regular Markov chain weak law and uses a
coupling construction. See section 9 of [24].

Remark. The strong law does not hold for Adaptive MCMC. The counterex-
ample can be found in [24].

III.1.4 Qualitative Convergence

Theorem III.1.6. Finite Space Uniform Ergodicity
For any adaptive algorithm, if it is ergodic for all starting values and χ & Y
ae finite, then the algorithm is uniformly ergodic or namely set An((x, γ), B) =
P[Xn ∈ B|X0 = x,Γ0, γ], we have

sup
x∈χ,γ∈Y

‖An((x, γ), ·)− π(·)‖ ≤Mρn

for some 0 < ρ < 1.

Proof. The proof is obvious because the sup becomes merely a max in finite
space, and if the algorithm is ergodic that means the chain will eventually
be less than 1/2 away from π in the above norm for each starting value. By
Proposition 3e of [25] the chain will be geometrically ergodic for each starting
value. Taking the max will give the appropriate M.

III.1.5 Central Limit Theorem

In this section we focus on the Markovian adaptation algorithms where
Markov chain theory can be applied to (Xn,Γn).

Theorem III.1.7. Given an Markovian adaptation algorithm (XnΓn). If
this Markov chain is φ-irreducible and aperiodic on χ × Y with some sta-
tionary distribution λ where λ(·,Y ) = π(·), and if the adaptive algorithm is
uniformly ergodic and Eπ[f 2] <∞, then the CLT is satisfied

√
n(f(Xn)− Eπ(f)) → N(0, σ2)
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where

σ2 = lim
n→∞

1

n
E

( n∑
i=1

(f(Xi)− Eπ(f))

)2


for every initial starting point (x, γ).

Proof. This is just an application of the standard Markov Chain CLT to the
process (XnΓn) with the functional g(x, γ) = f(x).

Example III.1.2. In this example, the target is exponential(1) and the pro-
posal chain is an independent sampler with proposal density exponential(θ).
Example II.4.1 showed how the CLT would fail in the non-adaptive case if
θ > 2. On the other hand, theorem II.3.2 tells us that the non-adaptive
sampler would be uniformly ergodic (thus satisfying CLT) if

q(x, y)

πd(y)
= θ exp((1− θ)y) ≥ α

which would be the case if 0 < θ < 1.
Four sets of adaptive simulations were run 10000 times to check for po-

tential normal distribution. Each simulation had 10000 iterations. Of those
10000 iterations, the θ parameter is either increased if acceptance rate is too
high and decreased if acceptance rate is too low. This way the algorithm
tunes itself for the optimal acceptance rate (in this case set to be 0.45). This
adaptation takes place every 100 iterations and the acceptance rate counter
is also reset at that time. The table in figure III.1.1 presents the histograms
resulting from each simulation.

Analysis It seems that as long as θ remains in a range where the CLT for
the non-adaptive chain is satisfied, the overall adaptive chain will also exhibit
a CLT-like empirical behaviour. This raises an interesting open problem, and
this example seems to support an affirmative answer.

Open Problem III.1. Given an adaptive MCMC algorithm with transition
kernel set {Pγ}γ∈Y , if all the transition kernels are ergodic for π and satisfy
the

√
n-CLT, then does the adaptive MCMC algorithm satisfy the

√
n-CLT?
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Figure III.1.1: Four Standardized pi Histograms - Adaptive Proposal Exp(θ)
Target Exp(1).
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III.1.6 Discussion

The conditions of the last theorem is rather hard to verify. There needs to
be simpler conditions to verify the stationary of (Xn,Γn).

Open Problem III.2. Does there exist a function V such that the Marko-
vian adaptations chain (Xn,Γn) satisfies the drift condition?

The issue of whether an algorithm satisfies the CLT must be addressed
with greater attention. In previous simulation examples where CLT isn’t
satisfied, one would often find that the empirical expectation estimates from
individual simulations are far off target. This defeats the practical purposes
of such MCMC algorithms even if the Markov chain is ergodic in theory.

III.2 Simulation Findings

This section is a record of different computer simulations ran.

III.2.1 Simulation Setup

The simulation was programmed in C and built using the GNU C Compiler
(gcc) with the math library. The computer specification of the simulators
were as follows:

1. SunBlade 1000 with two 900 MHz UltraSPARC III (Cu) processors and
4 GB of memory running Solaris.

2. A RedHat Linux system with four dual core AMD Opteron processors.

3. Windows 2000 Compaq Presario laptop with P3 700 MHz processor
and 384 MB of memory.

The output of the program was piped into files which were analyzed subse-
quently in R.

III.2.2 Location-based Exponentially Adapting Ran-
dom Walk MH Algorithm

Setup

In this subsection, the adaptive MCMC algorithm operates uner the following
framework, referred to as original adaptation scheme. Variations would be
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made to this framework in each of the following sections.

• Proposal density is N(x, σx)

• Target distribution is N(0, 1) and target expectation is log(1 + |X|)

• σ2
x = ea(1 + |x|)b

• a increases/decreases by 1/{1 . . . 100} if the acceptance rate is too
high/low (respectively, compared to the target acceptance rate)

• b increases/decreases by 1/{1 . . . 100} if the acceptance rate when the
empirical expectation estimate is increased is bigger/smaller than the
acceptance rate when the empirical expectation estimate is decreased

• b is bounded by 10000 (This hardly matters because b never goes off
to infinity)

• Everyone 100 iterations adaptation takes place and the acceptance rate
estimator is cleared (these are called adaptation cycles or batch sizes)

Basic Result

The result of the simulation can be summarized by these statistics and num-
bers. Batch sizes are 100. Total number of iterations was 1 million. Note
that the parameters change during each adaptation by 0.01 (not a decreasing
sequence). Refer to figure III.2.2.

Relation between target acceptance rate, a, and b

Under the same simulation setup as described above in ”Setup”, the target
acceptance rate is varied and the stable average of a & b are calculated. Refer
to figure III.2.3. It’s not clear why the relation between target acceptance
rate and b parameter is second order; perhaps it is due to the fact b is a
“location-sensitive” parameter while a is not.
Target Acceptance Rate Stable Average of a Stable Average of b

0.1 3.44 2.1
0.2 2.13 2.01
0.3 1.4 1.86

0.455 0.699 1.513
0.6 0.4 0.6



CHAPTER III. ADAPTIVE MCMC 45

0 2000 4000 6000 8000 10000

0.
54

0.
56

0.
58

0.
60

0.
62

0.
64

pi convergence

Index

pi
ve

ct
or

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

a convergence

Index

av
ec

to
r

0 2000 4000 6000 8000 10000

0.
0

0.
5

1.
0

1.
5

b convergence

Index

bv
ec

to
r

Figure III.2.2: Basic Simulation Result
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Figure III.2.3: Relation between a, b and target acceptance rate
The lines are linear regression lines under the 1st and 2nd order models
respectively

Constant factors in the variance function

We now investigates whether including a constant factor in the variance
function affects the stable average of a and b in a predictable way.

Let the new variance function be

σ′x = ea

(
1 + |x|
C

)b

In this simulation we chose C to be the (approximately) true value of E(log(1+
|X|)) X ∼ N(0, 1).

Compare the result with the original simulation.
Scheme Int. ACT Avg. Sq. Distance Stable Average of a Stable Average of b

ORIGINAL ˜2.35 0.775 0.699 1.513
NEW 2.35 0.781 -0.27 1.49

Analysis, let the a and b parameter under the new variance function be
denoted α, β. We can transform the new variance function into the original
form by the following

eα

(
1 + |x|
C

)β

= eα−β log(C)(1 + |x|)β

So heuristically the original a should be equal to α−β log(C), and the original
b and β should be the same. This checks out with the empirical observations.
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Effects of batch size

Holding total iterations constant Recall that in the original setup,
batch size was 100. Note that the total number of iterations is kept con-
stant at 1 million. The obvious result is that a batch size too small can
create unstable acceptance rate and large fluctuates in a and b. On the
other hand, a large batch size, under the same number of total iterations,
would make it very tenuous for a and b to “converges” to the stable values.
Refer to figure III.2.4.

Scaling total iterations By varying the total number of iterations with
the batch size, we can allow the adaptations to stablize.
Batch
Size

Total It-
erations

a behaviour b behaviour acc. rate avg. sq. dist.

5000 20000 rises to 1.2
and falls to
0.8 slowly

slowly rises to
1.5 and stays

mean
drops from
0.7 to 0.45.
fluctuation
magnitude
is around
0.02

inaccessible due
to large size

1000 5000 similar to
above

similar to
above

similar to
above

starts at 10 and
stabilizes around
35

500 10000 rises to
1.2 and falls
rather quickly
to 0.8

rises quickly
to 1.5

falls
quickly
to 0.45

rises quickly to
35

100 20000 rises to 1.2,
falls even
more quickly
to 0.8. Larger
fluctuation
around 0.8

rises even
more quickly
to 1.5 and
fluctuates

falls ex-
tremely
quickly to
0.45 large
fluctua-
tions

rises extremely
quickly to 35
large fluctua-
tions
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Figure III.2.4: Effects of batch size
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Diminishing Adaptations

In this section, the original adaptation scheme is made to satisfy the Dimin-
ishing Adaptations property (2nd condition in theorem III.1.2. Specifically,
a and/or b changes by a diminishing sequence {1/1, 1/2, . . . , 1/10000}. The
results are nearly identical to the original adaptation scheme. Here “fluctu-
ates” denotes a parameter to oscillates around a central value that’s listed
and “converges” means it tends to the listed value.

Scheme Avg.Acc.Rate Int.ACT Avg.Sq.Dist. Stable avg. of a Stable avg. of b
Original 0.455 ˜2.35 0.775 (fluctuates) 0.699 (fluctuates) 1.513

a & b dim. 0.454 2.53 0.775 (converges) ˜0.68 (converges) ˜1.51

III.2.3 Non-location based exponentially adapting MH
algorithm

In this section, we simplify the previous location based adaptive algorithm
into a simpler one. σ2

x is now just ea where a adapts. This way, we can study
the necessity of diminishing adaptation and maximum bounds. The result
from the simulation is as follows.
a changes by upper bound of a result
+/- 0.01 10 a fluctuates around 1.6
+/- 0.01 10000 a fluctuates around 1.6
+/- {1/1, 1/2, . . . , 1/10000} 10 a converges to 1.68
+/- {1/1, 1/2, . . . , 1/10000} 10000 a converges to 1.68

Analysis In all cases, the empirical expectation converges to the correct
value at approximately the same speed. So it seems like the only affect dimin-
ishing adaptation has is on the asymptotic behaviour of the hyperparameter
a. The upper bound on a has no affect if a does not achieve the upper bound
during simulation. If a does achieve the upper bound, it may fail to converge
to its optimal value as witnessed in other cases. Therefore, the upper-
bound on parameters is really a theoretical necessity and should
not be imposed in programming unless if one parameter goes off
to infinity.
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III.2.4 Relation between MCMC behaviour and ex-
pectation functional

The setup in this section is the same as the original adaptation scheme ex-
cept for the target expectation and σ2

x. The expectations are picked because
E[X2] = E[Y ] where X is standard normal and Y is χ2(1).

Target Adaptation a behaviour b behaviour
X2, X ∼ N(0, 1) Original Scheme fluctuates around 0.64 fluctuates around 1.62
X,X ∼ χ2(1) Original Scheme fluctuates around -2.7 fluctuates around 3.6

X2, X ∼ N(0, 1) non-location based adaptation fluctuates around -2.7 NA
X ∼ χ2(1) non-location based adaptation fluctuates around 1.6 NA

As you can see, the parameters behave differently for each target expecta-
tion/adaptation combination even though the expectations are really the
same. This is because that the underlying target densities are different, thus
the acceptance rates under the same proposal distribution are different.

III.2.5 Region-based Adaptation

A general rule regarding the efficiency of MCMC is that convergence is
quicker if the proposal density closely resembles the target density. This
is highly unlikely in the cases of complex target density but one way to reach
this goal is to use region-based proposal densities.

Example III.2.1. Under the same setup as the Original Adaptation Scheme,
we define a new variance function for the proposal density N(x, σ2

x)

σ2
x =

{
ea |x| ≤ K
eb |x| > K

a would be adapted according to the usual rules if the simulation chain
remained mostly in the |x| ≤ K region during the batch and b would be
adapted according to the usual rules if the simulation chain traversed mostly
the complementary region. The total iterations is 5 million and batch size is
100.

There’s no major effect on convergence rate by changing the boundary
(K). The only thing that seems to be affected is the rate at which a & b
reach stability. Refer to figure
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Figure III.2.5: Region-based adaptation
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III.2.6 Densities with singularities

In this section, we investigate densities which have an area of low density or
zero density (i.e. the support of πd is disconnected).

Example III.1.1. is one such density which is not ergodic for the adaptive
random-walk MCMC algorithm. In this section, we provide a density that
has a Lebesgue density.

Example III.2.2. Define density πd

πd(x) =

{
exp(− 1

x2 ) x ∈ [−1.76, 0) ∪ (0, 1.76]
0 o.w.

The function has a low density region around 0. Let this be the target of
our MCMC algorithm. Three non-adaptive simulation were completed with
N(x,σ2) proposals and one adaptive simulations were done. In addition, the
starting point for each simulation was customized. The resulting Markov
chain sample paths ({Xn}) are plotted. Refer to figure III.2.5. It is evident
that a proposal with too narrow a spread would be stuck on only one side
of the density even though that it is ergodic in the mathematical sense. The
adaptive MCMC algorithm efficiently solved the problem.

III.2.7 Central Limit Theorem

Examples II.4.1 and III.1.2 seems to support that some form of CLT exists for
adaptive MCMC. Below are the list of other related schemes that have shown
a CLT like behaviour empirically. This table below states the alterations
done to the original location-based exponentially adapting random-walk MH
algorithm.
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Scheme Graph

σ2 = 0.1, x0 = 1

σ2 = 0.5, x0 = 1

σ2 = 1, x0 = 1

Original Adaptation Scheme

Figure III.2.6: Density with singularity
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Target Adaptation Method Running Time
E(X) where X is
N(0, 1)

σ2
x = ea where a

changes by 1/100
batch size is 100, total
iterations is 10000,
10000 simulations
were repeated

E(X) where X is
N(0, 1)

σ2
x = e1.7 where 1.7

is the stable average
from the adaptive case

50000 iterations per
chain 5000 chains sim-
ulated

E(X) where X is
N(0, 1)

σ2
x = ea where a

changes by 1/100
batch size is 100, to-
tal iterations is 50000,
5000 chains simulated

E(X) where X is
N(0, 1)

Original Scheme batch size 100, to-
tal iterations 10000,
10000 chains simu-
lated

E(X) where X is
N(0, 1)

a and b adapts by
{1/1, 1/2, . . . , 1/100}

batch size is 100,
total iterations is
10000, 10000 chains
simulated

E(X) where X is
Exp(1)

a and b adapts by
1/100

batch size is 100,
total iterations is
10000, 10000 chains
simulated

E(X) where X is
Exp(3)

a and b adapts by
1/100

batch size is 100, to-
tal iterations is 10000,
1000 chains simulated



Appendix A

Notes on Simulation Codes

The simulation directory structure rooted at ....adaptlog/ has subdirectories
organized in such a way that each subdirectory corresponds to one scheme
and each sub-subdirectory will be some minor variation on one scheme. The
scheme list is stored in the Finding Summary.doc file.

Below is the verbatim code from the original adaptation scheme:

/* Original Adaptation Scheme

==========================================================================

ADAPTLOG.C -- a program for doing one-dim "log(1+|x|)" adaptive MCMC

Copyright (c) 2004 by Jeffrey S. Rosenthal (jeff@math.toronto.edu).

Available from http://probability.ca/jeff/comp/

Licensed for general copying, distribution and modification

according to the GNU General Public License

(http://www.gnu.org/copyleft/gpl.html).

----------------------------------------------------

Tab size is 3 spaces

----------------------------------------------------

Save as "adaptlog.c".

55
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Compile with "cc adaptlog.c -lm", then run with "a.out".

Upon completion, can run ’source("adaptlogx")’ in R to see a trace

plot.

Normal case: Can check pilogest in Mathematica (0.534822) with

command: NIntegrate[ (2*Pi)^(-0.5) * E^(-x*x/2) * Log[1+Abs[x]],

{x,-Infinity,Infinity}] Cauchy case: Can check pilogest in

Mathematica (0.929695) with command: NIntegrate[ 1/(1+x*x) *

Log[1+Abs[x]], {x,-Infinity,Infinity}] / NIntegrate[ 1/(1+x*x),

{x,-Infinity,Infinity}]

==========================================================================

*/

#include <stdio.h> #include <math.h> #include <sys/time.h>

#define PI 3.14159265

#define ADAPTLENGTH 100

#define PRINTLENGTH 1

#define NUMITS 10000

/* Target acceptance rate */ #define TARGACCEPT 0.45

#define XFILE "adaptlogx" #define AFILE "adaptloga" #define BFILE

"adaptlogb" #define PIFILE "adaptlogpi" #define ACCFILE

"adaptlogacc" #define MSQFILE "adaptlogmsq" /* #define CAUCHYTARG

true */

#define MAXABSB 10000.0

double drand48();
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main()

{

int i,j,k,t, adaptcount, printcount, xspacing;

/* Global Iteration Count: numit */

int numit, numaccept, accepted;

int posaccept, negaccept;

/* Simulation chain: x, Proposal chain: y*/

double x, logsigma, sigma, a, b, y, A, logalpha;

double possum, negsum, pilogest, pilogsum, logval;

double absval(), normal(), targlogdens();

/* int m1count; */

FILE *fpx, *fpa, *fpb, *fppi, *fpacc, *fpmsq;

/* INITIALISATIONS. */

seedrand();

numit = 0;

x = 1.0;

a = b = 0.0;

logval = pilogest = pilogsum = 0.0;

printf("\nBeginning \"pi(1+log|x|)\" adaption run.\n");

printf("\nAdapting every %d iterations.\n", ADAPTLENGTH);

printf("\nPrinting every %d iterations.\n", ADAPTLENGTH*PRINTLENGTH);

printf("\n");

if ((fpx = fopen(XFILE,"w")) == NULL) {

fprintf(stderr, "Unable to write to file %s.\n", XFILE);

}

if ((fpa = fopen(AFILE,"w")) == NULL) {

fprintf(stderr, "Unable to write to file %s.\n", AFILE);

}

if ((fpb = fopen(BFILE,"w")) == NULL) {

fprintf(stderr, "Unable to write to file %s.\n", BFILE);

}

if ((fppi = fopen(PIFILE,"w")) == NULL) {

fprintf(stderr, "Unable to write to file %s.\n", PIFILE);

}

if ((fpacc = fopen(ACCFILE, "w")) == NULL) {
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fprintf(stderr, "Unable to write to file %s.\n", ACCFILE);

}

if ((fpmsq = fopen(MSQFILE,"w")) == NULL) {

fprintf(stderr, "Unable to write to file %s.\n", MSQFILE);

}

xspacing = 1;

printf("\nxspacing = %d \n\n", xspacing);

fprintf(fpx, "\nxvector <- c(0.0");

fprintf(fpa, "\navector <- c(");

fprintf(fpb, "\nbvector <- c(");

fprintf(fppi, "\npivector <- c(");

fprintf(fpacc, "\naccvector <- c(");

fprintf(fpmsq, "\nmsqvector <- c(0");

/* MAIN ITERATIVE LOOP. */

for (t=1; t<=NUMITS; t++)

{

/* THE PRINT CONTROL LOOP */

for (printcount=0; printcount<PRINTLENGTH; printcount++)

{

/* Zero some counters. */

numaccept = possum = negsum = posaccept = negaccept = 0;

/* INDIVIDUAL ADAPTATION CYCLE LOOP */

for (adaptcount=1; adaptcount<=ADAPTLENGTH; adaptcount++)

{

/* GENERATE PROPOSAL VALUE (stored in y). */

sigma = exp(a/2)*pow((1+absval(x)),(b/2));

y = x + sigma * normal();

/* ACCEPT/REJECT. */

logalpha = targlogdens(y) - targlogdens(x)

+ b/2 * (log(1.0+absval(x)) - log(1.0+absval(y)) )

- (x-y)*(x-y)/2 *

( exp( -a-b*(log(1.0+absval(y))) )

- exp( -a-b*(log(1.0+absval(x)) ) ) );

accepted = ( log(drand48()) < logalpha );
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if (accepted){

fprintf(fpmsq, ", %f", pow(x-y, 2));

x = y;

numaccept++;

}

else

{

fprintf(fpmsq, ", 0");

}

fprintf(fpx, ", %f", x);

/* Update various counts. */

numit++;

/* if (x<-1) m1count++; */

/* printf("TESTER: numit=%d, m1count=%d\n", numit, m1count); */

logval = log(1+absval(x));

pilogsum = pilogsum + logval;

// update certain counters

if (logval > pilogest) {

possum++;

if (accepted) {

posaccept++;

}

} else {

negsum++;

if (accepted) {

negaccept++;

}

}

} /* End of adaptcount for loop. */

/* Update various estimates etc. */

pilogest = pilogsum / numit;
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/* DO THE ADAPTING. */

/* Adapt variable a. */

if (numaccept > ADAPTLENGTH * TARGACCEPT ) {

a = a + 1.0/adaptcount;

} else {

a = a - 1.0/adaptcount;

}

/*

> If average acceptance probability in the region where

>

> \log (1 + |x| ) - E_\pi (\log (1+|x|)) > 0

>

> is smaller than that in the region’s compelment then decrease b by 1/i

> otherwise increase it by 1/i.

*/

/* Adapt b. */

/* if ( posaccept * negcount < negaccept * poscount ) */

if ( posaccept * negsum < negaccept * possum ) {

b = b - 1.0/adaptcount;

} else if (posaccept * negsum > negaccept * possum){

b = b + 1.0/adaptcount;

}

/* Prevent b from getting too extreme. */

if (b > MAXABSB)

b = MAXABSB;

if (b < -MAXABSB)

b = -MAXABSB;

if (t == xspacing * (t/xspacing)) {

/* Write X[0] to file. */

if (t > xspacing) { /* Not first one printed, so need commas. */

fprintf(fpa, ",");

fprintf(fpb, ",");

fprintf(fppi, ",");
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fprintf(fpacc, ",");

}

fprintf(fpa, " %f", a);

fprintf(fpb, " %f", b);

fprintf(fppi, " %f", pilogest);

fprintf(fpacc, " %f", ((double)numaccept)/ADAPTLENGTH);

}

} /* End of printcount for loop. */

/* OUTPUT SOME VALUES TO SCREEN. */

printf("%9d: x=%.3f, acc=%.3f, pilogest=%f, a:=%.5f, b:=%.5f\n",

numit, x, ((double)numaccept)/ADAPTLENGTH, pilogest, a, b);

} /* End of main iteration loop. */

fprintf(fpx, " )\n");

fprintf(fpx, "plot(xvector, type=\"l\", main=\"x convergence\")\n");

fclose(fpx);

fprintf(fpa, " )\n");

fprintf(fpa, "plot(avector, type=\"l\", main=\"a convergence\")\n");

fclose(fpa);

fprintf(fpb, " )\n");

fprintf(fpb, "plot(bvector, type=\"l\", main=\"b convergence\")\n");

fclose(fpb);

fprintf(fppi, " )\n");

fprintf(fppi, "plot(pivector, type=\"l\", main=\"pi convergence\")\n");

fclose(fppi);

fprintf(fpacc, " )\n");

fprintf(fpacc, "plot(accvector, type=\"l\", main=\"acc convergence\")\n");

fclose(fpacc);

fprintf(fpmsq, " )\n");

fprintf(fpmsq, "plot(msqvector, type=\"l\", main=\"msq convergence\")\n");

fclose(fpmsq);

return(0);

}
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/* TARGLOGDENS Target Log Density

*/

double targlogdens( double w ) { #ifdef CAUCHYTARG

return( -log(1.0+w*w) );

#endif

return(-w*w/2);

}

/* ABSVAL */ double absval( double w ) {

if (w<0)

return(-w);

else

return(w);

}

/* SEEDRAND: SEED RANDOM NUMBER GENERATOR. */ seedrand() {

int i, seed;

struct timeval tmptv;

gettimeofday (&tmptv, (struct timezone *)NULL);

/* seed = (int) (tmptv.tv_usec - 1000000 *

(int) ( ((double)tmptv.tv_usec) / 1000000.0 ) ); */

seed = (int) tmptv.tv_usec;

srand48(seed);

(void)drand48(); /* Spin it once. */

return(0);

}

/* NORMAL: return a standard normal random number. */ double

normal() {

double R, theta, drand48();

R = - log(drand48());

theta = 2 * PI * drand48();
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return( sqrt(2*R) * cos(theta));

}
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