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Abstract. This report provides a comprehensive overview of fundamental theoretical
convergence results in Markov chains on general state spaces, along with a brief glimpse
into their applications. Two applications of probability theory to MCMC (central limit
theorems and optimal scaling problems) are also discussed

While the majority of the theorems and proofs are drawn from [RR04], I have
enriched the content with additional details and examples.
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1. Introduction

The subsequent content offers an overview and summary of the supervised reading
course I took with Professor Jeffrey Rosenthal at the University of Toronto in Summer
2023. During my study, he motivated me to explore the areas of MCMC that I found
intriguing and clarified every concept I was not familiar with. I am grateful for his
thoughtful guidance and inspiring advice.

2. General State Markov Chains

In this section, we will delve into the concepts of Markov chains on general state
spaces, with a focus on ergodicity and asymptotic convergence. The material presented
here draws heavily from the works of [Ros06], [MT93], and [RR04].

2.1. Fundamentals. In this subsection, we generalize most of the notions of discrete
Markov chains to general (possibly uncountable) state spaces.

Let X be a general state space, which is non-empty (possibly uncountable) set, to-
gether with a σ-algebra G of measurable subsets. We define transition probabilities
{P (x,A)}x∈X ,A∈G as follows:

(1) For each fixed x ∈ X , P (x, ·) is a probability measure on (X ,G).
(2) For each fixed A ⊂ G, P (x,A) is a non-negative measurable function on X .

If X is countable, then P (x, {i}) corresponds to the transition probability pxi of discrete
Markov chains, which is the probability of moving from State x into State i in a single
step. However, in the case of uncountable state spaces, we may have P (x, {i}) = 0 for
all i ∈ X (continuous probability distribution). Instead, we use P (x,A) to represent the
probability of jumping into the subset A in a single step if the current state is x.

We first consider a finite sequence {X0, X1, X2, . . . , Xn} of random variables on the
product space

󰁔n
i=0X (the direct product of n copies of X ), equipped with the product

σ-algebra
󰁑n

i=0 G.
For any measurable sets Ai ∈ X , fix a starting point x ∈ X , we have

P(X1 ∈ A1|X0 = x) = P (x,A),

P(X1 ∈ A1, X2 ∈ A2|X0 = x) =

ˆ

x1∈A1

P (x, dx1)P (x1, A2),

...
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P(X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An|X0 = x) =

ˆ

x1∈A1

P (x, dx1)

ˆ

x2∈A2

P (x1, dx2) · · ·

· · ·
ˆ

xn−1∈An−1

P (xn−2, dxn−1)P (xn−1, An).

We also need an initial distribution ν for X0, which is any probability distribution on
(X ,G). Then, we have

P(X0 ∈ A0, X1 ∈ A1, . . . , Xn ∈ An) =

ˆ

x0∈A0

ν(dx0)

ˆ

x1∈A1

P (x, dx1) · · ·

· · ·
ˆ

xn−1∈An−1

P (xn−2, dxn−1)P (xn−1, An).

The integrals are well-defined by the measuribility of the function P (x,A) of x ∈ X .
Then, we want to extend the above property to the infinite product space:

Theorem 2.1. For any initial distribution ν over (X ,G) and any transition probabil-
ity {P (x,A)}, there exists an stochastic process X = {X0, X1, . . .} on Ω :=

󰁔∞
i=0X

measurable with respect to F :=
󰁑∞

i=0 G and a probability measure Pν on F such that

(1) Pν(B) is the probability of the event {X ∈ B} for B ∈ F ;
(2) for any n and measurable sets Ai ⊂ X , i = 0, 1, . . . , n,

Pν(A0 ×A1 × · · ·×An) =

ˆ

x0∈A0

ν(dx0)

ˆ

x1∈A1

P (x, dx1) · · ·(2.1)

· · ·
ˆ

xn−1∈An−1

P (xn−2, dxn−1)P (xn−1, An).

The proof can be found in [MT93] Theorem 3.4.1.
We are ready to define Markov chains on general state space:

Definition 2.2 (General State Space Markov chains). The stochastic process defined
in Theorem 2.1 is called a general state space(discrete-time, time-homogeneous) Markov
chain, i.e. the stochastic process X = {X0, X1, . . .} on (Ω,F) with transition probability
{P (x,A)} and initial distribution ν satisfying Equation (2.1)

Analogous to the countable state space case (discrete Markov chains), general state
space Markov chains have the property of being memoryless. This means that the fu-
ture outcome of the process solely relies on the current state and is independent of the
entire past history. Consequently, the transition probability after n steps is solely deter-
mined by the initial state. We can inductively establish the n-step transition probability,
denoted as Pn(x,A), as follows:

P 1(x,A) = P (x,A),

and

Pn(x,A) =

ˆ

X
P (x, dz)Pn−1(z,A), ∀n > 1.

Lemma 2.3. For any 1 < m < n,

(2.2) Pn(x,A) =

ˆ

X
Pm(x, dy)Pn−m(y,A), x ∈ X , A ∈ G.
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Proof.
ˆ

X
Pm(x, dy)Pn−m(y,A) =

ˆ

x1∈X
P (x, dx1)

ˆ

y∈X
Pm−1(x1, dy)P

n−m(y,A)

=

ˆ

x1∈X
P (x, dx1)

ˆ

x2∈X
P (x1, dx2)

ˆ

y∈X
Pm−2(x2, dy)P

n−m(y,A)

=

ˆ

x1∈X
P (x, dx1)

ˆ

x2∈X
P (x1, dx2) · · ·

ˆ

xm∈X
P (xm−1, dxm)Pn−m(xm, A)

=

ˆ

x1∈X
P (x, dx1)P

n−1(z,A) = Pn(x,A).

□

Intuitively, when X transitioning from x to A in n steps, X may takes any value y ∈ X
at the intermediate state m; at the m-th step, due to the memorylessness property of
Markov chains, the process continues the subsequence n −m steps with respect to the
transition probability Pn−m(y,A).

Alternatively, we can write Equation (2.2) as

Px(Xn ∈ A) =

ˆ

X
Px(Xm ∈ dy)Py(Xn−m ∈ A),

where Px(·) denotes the probability of an event conditioning on X0 = x.
Similar to discrete Markov chains, we are interested in the stationary distribution of

a Markov chain:

Definition 2.4 (Stationary Distribution). The stationary distribution of a Markov chain
is a probability distribution π(·) over (X ,G) such that

π(A) =

ˆ

X
π(dx)P (x,A), ∀A ∈ G,

or equivalently,

π(dy) =

ˆ

x∈X
π(dx)P (x, dy)

Example 2.5. Consider the Markov chain on the real line, where P (x, ·) ∼ N
󰀃
x
2 ,

3
4

󰀄
for

each x ∈ X . Equivalently, Xn+1 =
1
2Xn + Un, where Un

i.i.d.∼ N
󰀃
0, 34

󰀄
.

Consider π(·) ∼ N(0, 1). It suffices to prove the stationary distribution condition over
{[a, b] : a, b ∈ R}:

ˆ

R
π(dx)P (x, [a, b]) =

ˆ

R

1√
2π

exp

󰀕
−1

2
x2

󰀖
ˆ b

a

1󰁴
3
2π

exp

󰀣
−2

󰀃
y − x

2

󰀄2

3

󰀤
dydx

=

ˆ b

a

ˆ

R

1√
3π2

exp

󰀣
−1

2
x2 +

−2
󰀃
y − x

2

󰀄2

3

󰀤
dxdy

=

ˆ b

a

1√
2π

exp

󰀕
−1

2
y2
󰀖
dy = π([a, b]).
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Then, by countable additivity of probability measures, the stationary distribution con-
dition holds for all A ∈ G.

Moreover, notice that the stationary distribution of a Markov chain may or may not
exist. A key notion related to the existence of stationary distributions is reversibility, as
follows.

Definition 2.6 (Reversibility). A Markov chain on X is reversible with respect to a
probability distribution π(·) on X if

π(dx)P (x, dy) = π(dy)P (y, dx), ∀x, y ∈ X ,

or equivalently,
ˆ

x∈A
π(dx)P (x,B) =

ˆ

y∈B
π(dy)P (y,A), ∀A,B ∈ G.

Here comes an important property of reversibility:

Proposition 2.7. If a Markov chain is reversible with respect to π(·), then π(·) is
stationary for the chain.

Proof. By reversibility,
ˆ

x∈X
π(dx)P (x, dy) =

ˆ

x∈X
π(dy)P (y, dx) = π(dy)

ˆ

x∈X
P (y, dx) = π(dy).

□

However, it should be noted that a Markov chain might not necessarily converge to a
stationary state even if it has stationary distribution:

Example 2.8 (Reducible Markov Chain). Suppose X = {1, 2, 3} and π({1}) = π({2}) =
π({3}) = 1

3 . Consider the Markov chain on (X , 2X ) with transition probability P (1, {1}) =
P (1, {2}) = P (2, {1}) = P (2, {2}) = 1

2 and P (3, {3}) = 1. Then, the Markov chain is
reversible:

π({i})P (i, {j}) = π({j})P (j, {i}) = 1

3
· 1
2
=

1

6
, i, j = 1, 2,

π({i})P (i, {j}) = π({j})P (j, {i}) = 0, i = 1, 2 and j = 3,

and

π({i})P (i, {j}) = π({j})P (j, {i}) = 1

3
· 1 =

1

3
, i, j = 3.

It follows that π(·) is the stationary distribution for this Markov chain. However, if
we start from State 1, i.e. X0 = 1, then the Markov chain will never reach State 3, i.e.
P (Xn = 3) = 0 ∕= π({3}) = 1

3 for all n, which means it fails to converge to the stationary
distribution π(·).

Moreover, in this case, the stationary distribution is not unique; it is easy to verify
that π({1}) = π({2}) = 1

2 is another stationary distribution.

To avoid this problem, it is natural to consider the case that every state of a Markov
chain is accessible from any other state. For countable state spaces, one may be familiar
with the concept of irreducibility, which entails that for all i, j ∈ X , there is n ∈ N



6 XINYU HUO

such that P (Xn = j|X0 = i) > 0. As previously mentioned, in the context of uncount-
able state spaces, it is possible to encounter situations where the transition probability
P (i, {j}) is zero for all i, j ∈ X . Consequently, P (Xn = j|X0 = i) is zero for n. There-
fore, we introduce the concept φ-irreducibility for Markov chains on general state spaces,
which can be viewed as a weaker version of irreducibility.

Definition 2.9 (φ-irreducibility). A chain is φ-irreducible if there exsits a non-zero σ-
finite measure φ on X such that for all A ⊂ X with φ(A) > 0, and for all x ∈ X , there
exists a positive integer n = n(x,A) such that Pn(x,A) > 0.

In short, for a φ-irreducible Markov chain, there almost every subset A ⊂ X is acces-
sible from any state in X in finite steps.

It is easy to verify that every irreducible discrete Markov chain is φ-irreducible with
respect to any σ-finite measure φ.

Then, we present a running example that we will revisit multiple times throughout
the report, which involves the Metropolis-Hastings algorithm introduced in Section 3.2.

Running Example. Here we present an example of a φ-irreducible Markov chain.
Let π(·) be a probability measure characterized by an unnormalized density function

πu with respect to d-dimensional Lebesgue measure. Consider the Metropolis-Hastings
algorithm for πu with proposal density q(x, ·) with respect to d-dimensional Lebesgue
measure. We will show that the resulting Markov chain constructed by the algorithm is
π-irreducible if q(·, ·) is positive and continuous on Rd×Rd and πu is positive everywhere.

Fix an arbitrary subset A ⊂ X such that π(A) > 0. Then, there exists R > 0 such
that π(AR) > 0, where AR = A∩BR(0) (BR(0) represents the ball of radius R centered
at 0). By continuity, for any x ∈ Rd, infy∈AR

min{q(x,y), q(y,x)} ≥ 󰂃 for some 󰂃 > 0.
Recall that P (x, dy) = q(x,y)α(x,y)dy. We have

P (x, A) ≥ P (x, AR) ≥
ˆ

AR

q(x,y)min

󰀗
1,

πu(y)q(y,x)

πu(x)q(x,y)

󰀘
dy

=

ˆ

AR

min

󰀗
q(x,y),

πu(y)q(y,x)

πu(x)

󰀘
dy

≥
ˆ

AR

󰂃 ·min

󰀗
1,

πu(y)

πu(x)

󰀘
dy

= 󰂃

ˆ

y∈AR: πu(x)≤πu(y)
1dy + 󰂃

ˆ

y∈AR: πu(x)>πu(y)

πu(y)

πu(x)
dy

= 󰂃Leb ({y ∈ AR : πu(x) ≤ πu(y)}) +
󰂃K

πu(x)
π ({y ∈ AR : πu(x) > πu(y)}) ,

where K =
´

X πu(x)dx is the normalizing constant for πu.

Since π(A) =
´

A π(y)dy

K for any A ⊂ G, π(·) is absolutely continuous with respect to
Lebesgue measure. We need to consider three cases:

• If Leb ({y ∈ AR : πu(x) ≤ πu(y)}) ∕= 0 and π ({y ∈ AR : πu(x) > πu(y)}) ∕= 0,
then it directly follows from the above calculation that P (x, A) > 0.
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• If Leb ({y ∈ AR : πu(x) ≤ πu(y)}) = 0, then π ({y ∈ AR : πu(x) ≤ πu(y)}) =
0. It follows that

π ({y ∈ AR : πu(x) > πu(y)}) = π(AR)− 0 > 0.

Hence, P (x, A) > 0.
• If π ({y ∈ AR : πu(x) ≤ πu(y)}) = 0, then π ({y ∈ AR : πu(x) > πu(y)}) =
π(AR)− 0 > 0. By absolute continuity,

Leb ({y ∈ AR : πu(x) ≤ πu(y)}) > 0.

Hence, P (x, A) > 0.

Therefore, the Markov chain is φ-irreducible.

In general, it is easy to verify that Markov chains generated by most algorithms are
φ-irreducible (e.g. with respect to Lebesgue measure over an appropriate region).

However, even if a Markov chain is φ-irreducible, it might not converge in distribution.
An example is given as follows:

Example 2.10 (Periodic Markov Chain). Suppose X = {1, 2, 3} and π({1}) = π({2}) =
π({3}) = 1

3 . Consider the Markov chain on (X , 2X ) with transition probability P (1, {2}) =
P (2, {3}) = P (3, {1}) = 1. It is easy to verify that π(·) is the stationary distribution.

Let φ(·) = δ1(·). Then, φ(A) > 0 if and only if 1 ∈ A. For any A ∋ 1,

P 3(1, A) > P 3(1, {1}) = 1 > 0,

P 2(2, A) > P 2(2, {1}) = 1 > 0,

P 1(3, A) > P 1(3, {1}) = 1 > 0.

It follows that this Markov chain is φ-irreducible.
However, if X0 = 1, then Xn = 1 if and only if n is a multiple of 3, which means

P (Xn = 1) oscillates between 0 and 1. Hence, P (Xn = 1) ∕→ π({3}).

Hence, the concept of aperiodicity becomes necessary. In this report, we adopt the
following definition:

Definition 2.11 (Aperiodicity). A Markov chain with stationary distribution π(·) is
aperiodic if there do not exist d ≥ 2 and disjoint subsets X1,X2, . . . ,Xd ⊂ X with
P (x,Xi+1) = 1 for all x ∈ Xi (1 ≤ i ≤ d − 1), and P (x,X1) = 1 for all x ∈ Xd, such
that π(X1) > 0 (and hence π(Xi) > 0 for all i). Otherwise, the chain is periodic, with
period equal to the largest such value of d, and corresponding periodic decomposition
X1, . . . ,Xd.

Intuitively, a periodic Markov chain alternates between visiting disjoint subsets of
states, following a specific pattern.

Then, we return to the running example:

Running Example. We will show that the Markov chain constructed before is aperi-
odic.

Suppose that it is periodic with period d and periodic decomposition X1, . . . ,Xd. In
particular, we have P (x,X2) = 1 for all x ∈ X1. Take any x ∈ X1. Since the chain
is π-irreducible and π(X1) > 0, we have proved previously that P (x,X1) > 0. Then,
P (x,X2) ≤ 1− P (x,X1) < 1, which contradicts to P (x,X2) = 1.
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(Alternatively, since π(X1) > 0, X1 has positive Lebesgue measure. It follows that

P (x,X1) ≥
ˆ

y∈X1

q(x,y)α(x,y)dy > 0.

This again leads to contradiction.)

Similar results holds true for many other MCMC algorithms, including the Gibbs
sampler discussed in Section 3.4. In fact, it is quite uncommon for MCMC algorithms
to be periodic.

2.2. Total Variation Measure. Our focus lies in studying the convergence behaviour
of Markov chains. Specifically, we are interested in investigating whether Pn(x,A) is
“close” to π(A) for sufficiently large values of n, as well as determining the threshold at
which the value of n can be considered ”large enough” for practical purposes. Hence, it
becomes necessary to employ a measure that can quantify the distance between proba-
bility measures.

Definition 2.12 (Total Variation Distance). For two probability measures ν1(·) and
ν2(·) defined on (X ,G), the total variation distance between ν1(·) and ν2(·) is

󰀂ν1(·)− ν2(·)󰀂 = sup
A∈G

|ν1(A)− ν2(A)|.

We then present some simple properties of total variation distance.

Proposition 2.13. (1) 󰀂ν1(·)− ν2(·)󰀂 = supf :X→[0,1]

󰀏󰀏´ fdν1 −
´

fdν2
󰀏󰀏.

(2) 󰀂ν1(·)− ν2(·)󰀂 = 1
b−a supf :X→[a,b]

󰀏󰀏´ fdν1 −
´

fdν2
󰀏󰀏 for any a < b, and in partic-

ular 󰀂ν1(·)− ν2(·)󰀂 = 1
2 supf :X→[−1,1]

󰀏󰀏´ fdν1 −
´

fdν2
󰀏󰀏.

(3) If π(·) is stationary for a Markov chain with transition probability {P (x,A)},
then 󰀂Pn(x, ·)− π(·)󰀂 is non-increasing in n, i.e. 󰀂Pn(x, ·)− π(·)󰀂 ≤

󰀐󰀐Pn−1(x, ·)− π(·)
󰀐󰀐

for all n ∈ N.
(4) More generally, letting (νiP )(A) :=

´

νi(dx)P (x,A), we always have 󰀂(ν1P )(·)−
(ν2P )(·)󰀂 ≤ 󰀂ν1(·)− ν2(·)󰀂.

(5) Let t(n) = 2 supx∈X 󰀂Pn(x, ·)− π(·)󰀂, where π(·) is stationary. Then t is sub-
multiplicative, i.e. t(m+ n) ≤ t(m)t(n) for m,n ∈ N.

(6) If µ(·) and ν(·) have densities g and h, respectively, with respect to some σ-finite
measure ρ(·), and M = max(g, h) and m = min(g, h), then

󰀂µ(·)− ν(·)󰀂 =
1

2

ˆ

X
(M −m) dρ = 1−

ˆ

X
mdρ.

(7) Given probability measures µ(·) and ν(·), there are jointly defined random vari-
ables X and Y such that X ∼ ν(·), Y ∼ ν(·), and P[X = Y ] = 1−󰀂µ(·)− ν(·)󰀂.

Proof. (1) Apply (2) with a = 0 and b = 1.
(2) Let ρ be any σ-finite measure such that both ν1 and ν2 are absolutely continuous

with respect to ρ (e.g. ρ = ν1 + ν2). By Radon-Nikodym Theorem, there exists
a measure function g : X → [0,∞) and h : X → [0,∞) such that

ν1(A) =

ˆ

A
g dρ and ν2(A) =

ˆ

A
h dρ, ∀A ∈ G.
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Then,

󰀏󰀏󰀏󰀏
ˆ

f dν1 −
ˆ

f dν2

󰀏󰀏󰀏󰀏 =
󰀏󰀏󰀏󰀏
ˆ

fg dρ−
ˆ

fh dρ

󰀏󰀏󰀏󰀏

=

󰀏󰀏󰀏󰀏
ˆ

f(g − h) dρ

󰀏󰀏󰀏󰀏

=

󰀏󰀏󰀏󰀏󰀏

ˆ

{g≥h}
f(g − h) dρ+

ˆ

{g<h}
f(g − h) dρ

󰀏󰀏󰀏󰀏󰀏 ,

which is maximized over 0 ≤ f ≤ 1 when f = b on {x ∈ X : g(x) ≥ h(x)} and
f = a on {x ∈ X : g(x) < h(x)}. Hence,

sup
f :X→[a,b]

󰀏󰀏󰀏󰀏
ˆ

f dν1 −
ˆ

f dν2

󰀏󰀏󰀏󰀏 =

󰀏󰀏󰀏󰀏󰀏

ˆ

{g≥h}
b(g − h) dρ+

ˆ

{g<h}
a(g − h) dρ

󰀏󰀏󰀏󰀏󰀏

=

󰀏󰀏󰀏󰀏󰀏b
ˆ

{g≥h}
(g − h) dρ+ a

ˆ

{g<h}
(g − h) dρ

󰀏󰀏󰀏󰀏󰀏

=

󰀏󰀏󰀏󰀏󰀏b
ˆ

{g≥h}
g dρ− b

ˆ

{g≥h}
h dρ+ a

ˆ

{g<h}
g dρ− a

ˆ

{g<h}
h dρ

󰀏󰀏󰀏󰀏󰀏

= |bν1({g ≥ h})− bν2({g ≥ h}) + aν1({g < h})− aν2({g < h})|
= |aν1({g ≥ h})− aν2({g ≥ h}) + b[1− ν1({g ≥ h})]− b[1− ν2({g ≥ h}])|
= (a− b) |ν1({g ≥ h})− ν2({g ≥ h})|

= (a− b)

󰀏󰀏󰀏󰀏󰀏

ˆ

{g≥h}
(g − h) dρ

󰀏󰀏󰀏󰀏󰀏(2.3)

On the other hand, for A ∈ G,

|ν1(A)− ν2(A)| =
󰀏󰀏󰀏󰀏
ˆ

A
(g − h) dρ

󰀏󰀏󰀏󰀏 ,

which is maximized when A = {x : g(x) ≥ h(x)}. Hence,

(2.4) 󰀂ν1(·)− ν2(·)󰀂 =

󰀏󰀏󰀏󰀏󰀏

ˆ

{g≥h}
(g − h) dρ

󰀏󰀏󰀏󰀏󰀏 .

Combing Equation (2.3) and (2.4), we get

󰀂ν1(·)− ν2(·)󰀂 =
1

b− a
sup

f :X→[a,b]

󰀏󰀏󰀏󰀏
ˆ

fdν1 −
ˆ

fdν2

󰀏󰀏󰀏󰀏 .

(3) Apply (4) with ν1(·) = Pn−1(x, ·) and ν2(·) = π(·) since Pn(x,A) =
´

y∈X Pn−1(x, dy)P (y,A) =

(Pn−1P )(A) and π(A) =
´

x∈X π(dx)P (x,A) = (πP )(A) for all n ∈ N and A ∈ G.
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(4) For all A ∈ G,

|(ν1P )(A)− (ν2P )(A)| =
󰀏󰀏󰀏󰀏
ˆ

ν1(dx)P (x,A)−
ˆ

ν2(dx)P (x,A)

󰀏󰀏󰀏󰀏

=

󰀏󰀏󰀏󰀏
ˆ

ν1(dx)f(y)−
ˆ

ν2(dx)f(y)

󰀏󰀏󰀏󰀏(f(y) := P (y,A))

≤ 󰀂ν1(A)− ν2(A)󰀂.(By (1))

(5) Let P̂ (x, ·) := Pn(x, ·)− π(·), Q̂(x, ·) := Pm(x, ·)− π(·), and

P̂ Q̂f(x) :=

ˆ

y∈X
f(y)

ˆ

z∈X
P̂ (x, dz)Q̂(z, dy).

We have

P̂ Q̂f(x) =

ˆ

y∈X
f(y)

ˆ

z∈X
P̂ (x, dz)Q̂(z, dy)

=

ˆ

y∈X
f(y)

ˆ

z∈X
[Pn(x, dz)− π(dz)] [Pm(z, dy)− π(dy)]

=

ˆ

y∈X
f(y)

ˆ

z∈X
Pn(x, dz)Pm(z, dy)− Pn(x, dz)π(dy)− π(dz)Pm(z, dy) + π(dz)π(dy)

=

ˆ

y∈X
f(y)

ˆ

z∈X
[Pn(x, dz)Pm(z, dy)− π(dz)Pm(z, dy)]

−
ˆ

y∈X
f(y)π(dy)

ˆ

z∈X
[Pn(x, dz)− π(dz)]

=

ˆ

y∈X
f(y)Pn+m(x, dy)− π(dy)−

ˆ

y∈X
π(dy)(Pn(x,X )󰁿 󰁾󰁽 󰂀

=1

−π(X )󰁿 󰁾󰁽 󰂀
=1

)

=

ˆ

y∈X
f(y)

󰀅
Pn+m(x, dy)− π(dy)

󰀆
(2.5)

Let g(x) :=
󰀓
Q̂f

󰀔
(x) :=

´

y∈X Q̂(x, dy)f(y) and g∗ := supx∈X |g(x)|. Consider

f : X → [0, 1]. Then,

g∗ = sup
x∈X

󰀏󰀏󰀏󰀏
ˆ

y∈X
[Pm(x, dy)− π(dy)] f(y)

󰀏󰀏󰀏󰀏

= sup
x∈X

sup
f :X→[0,1]

󰀏󰀏󰀏󰀏
ˆ

y∈X
[Pm(x, dy)− π(dy)] f(y)

󰀏󰀏󰀏󰀏

≤ sup
x∈X

󰀂Pm(x, ·)− π(·)󰀂(By (1))

=
1

2
t(m).
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If g∗ = 0, then g(x) =
󰀓
Q̂f

󰀔
(x) = 0 and

󰀓
P̂ Q̂f

󰀔
(x) = 0 for all x ∈ X . If g∗ ∕= 0,

2 sup
x∈X

󰀏󰀏󰀏
󰀓
P̂ Q̂f

󰀔
(x)

󰀏󰀏󰀏 = 2 sup
x∈X

󰀏󰀏󰀏
󰁫
P̂
󰀓
Q̂f

󰀔󰁬
(x)

󰀏󰀏󰀏

= 2g∗ sup
x∈X

󰀏󰀏󰀏󰀏

󰀗
P̂

󰀕
g

g∗

󰀖󰀘
(x)

󰀏󰀏󰀏󰀏

≤ t(m) sup
x∈X

󰀏󰀏󰀏󰀏

󰀗
P̂

󰀕
g

g∗

󰀖󰀘
(x)

󰀏󰀏󰀏󰀏

Since g(x) < g∗ ⇒ −1 ≤ g
g∗ ≤ 1, applying (2) with a = −1 and b = −1 gives

sup
x∈X

󰀏󰀏󰀏󰀏

󰀗
P̂

󰀕
g

g∗

󰀖󰀘
(x)

󰀏󰀏󰀏󰀏 ≤ sup
x∈X

sup
f :X→[−1,1]

󰀏󰀏󰀏󰀏
ˆ

y∈X
P̂ (x, dy)f(y)− 0

󰀏󰀏󰀏󰀏

= sup
x∈X

2󰀂P̂ (x, ·)󰀂

= 2 sup
x∈X

󰀂Pn(x, ·)− π(·)󰀂

= t(n).

It follows that for all f : X → [0, 1],

(2.6) 2 sup
x∈X

󰀏󰀏󰀏
󰀓
P̂ Q̂f

󰀔
(x)

󰀏󰀏󰀏 ≤ t(m)t(n).

Moreover,

t(m+ n) = 2 sup
x∈X

󰀐󰀐Pm+n(x, ·)− π(·)
󰀐󰀐

= 2 sup
x∈X

sup
f :X→[0,1]

󰀏󰀏󰀏󰀏
ˆ

y∈X
f(y) dPm+n(x, dy)−

ˆ

y∈X
f(y) dπ(dy)

󰀏󰀏󰀏󰀏

= 2 sup
x∈X

sup
f :X→[0,1]

|P̂ Q̂f(x)|(By Equation (2.5))

= sup
f :X→[0,1]

2 sup
x∈X

|P̂ Q̂f(x)|

≤ t(m)t(n).(By Equation (2.6))
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(6) For the first equality: applying (2) with a = −1 and b = 1 gives

󰀂µ(·)− ν(·)󰀂 =
1

2
sup

f :X→[−1,1]

󰀏󰀏󰀏󰀏
ˆ

f dµ−
ˆ

f dν

󰀏󰀏󰀏󰀏

=
1

2
sup

f :X→[−1,1]

󰀏󰀏󰀏󰀏
ˆ

f(g − h)dρ

󰀏󰀏󰀏󰀏

=
1

2
sup

f :X→[−1,1]

󰀏󰀏󰀏󰀏
ˆ

g≥h
f(g − h)dρ+

ˆ

g<h
f(g − h)dρ

󰀏󰀏󰀏󰀏

=
1

2

󰀏󰀏󰀏󰀏
ˆ

g≥h
(g − h)dρ+

ˆ

g<h
(h− g)dρ

󰀏󰀏󰀏󰀏

=
1

2

󰀕
ˆ

g≥h
(M −m)dρ+

ˆ

g<h
(M −m)dρ

󰀖

=
1

2

ˆ

(M −m)dρ.

For the second equality: since M +m = g + h, we have

ˆ

X
(M +m)dρ =

ˆ

X
(g + h) dρ

=

ˆ

X
g dρ+

ˆ

X
h dρ

= µ(X ) + ν(X ) = 2.

Hence,

1

2

ˆ

(M −m)dρ = 1− 1 +
1

2

ˆ

(M −m) dρ

= 1− 1

2

󰀕
2−
ˆ

(M −m) dρ

󰀖

= 1− 1

2

󰀕
ˆ

X
(M +m)dρ−

ˆ

(M −m) dρ

󰀖

= 1−
ˆ

X
mdρ.

(7) Define g, h,M, n as in (6). Let a =
´

X mdρ, b =
´

X (g −m) dρ, and c =
´

X (h−
m) dρ. If any of a, b, c equals 0, the statement is trivial. Assume a, b, c > 0.
We then construct random variables Z,U, V, I such that Z has density m

a , U

has density g−m
b , V has density h−m

c , and I is independent of Z,U, V with
P[I = 1] = a and P[I = 0] = 1 − a. We then let X = Y = Z if I = 1, and
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X = U , Y = V if I = 0. For any A ∈ G,

P(X ∈ A) = P(U ∈ A, I = 0) +P(Z ∈ A, I = 1)

= P(U ∈ A)P(I = 0) +P(Z ∈ A)P(I = 1)

=

ˆ

A

g −m

b
dρ · (1− a) +

ˆ

A

m

a
dρ · a

=
1− a

b

ˆ

A
(g −m) dρ+

ˆ

A
mdρ

=
1−
´

X mdρ
´

X (g −m) dρ

ˆ

A
(g −m) dρ+

ˆ

A
mdρ

=
1−
´

X mdρ

µ(X )−
´

X mdρ

ˆ

A
(g −m) dρ+

ˆ

A
mdρ

=

ˆ

A
(g −m) dρ+

ˆ

A
mdρ

=

ˆ

A
g dρ = µ(A)

and

P(Y ∈ A) = P(V ∈ A, I = 0) +P(Z ∈ A, I = 1)

= P(V ∈ A)P(I = 0) +P(Z ∈ A)P(I = 1)

=

ˆ

A

h−m

c
dρ · (1− a) +

ˆ

A

m

a
dρ · a

=
1− a

c

ˆ

A
(h−m) dρ+

ˆ

A
mdρ

=
1−
´

X mdρ
´

X (h−m) dρ

ˆ

A
(h−m) dρ+

ˆ

A
mdρ

=

ˆ

A
h dρ = ν(A).

Hence, X ∼ ν(·) and Y ∼ ν(·). Moreover,

P(X = Y ) = P(X = Y, I = 0) +P(X = Y, I = 1)

= P(I = 1)

= a

=

ˆ

X
mdρ

= 1− 󰀂µ(·)− ν(·)󰀂.(By (6))

□

2.3. Asymptotic Convergence Theorem. Now, we are prepared to present the main
asymptotic convergence theorem, the proof of which can be found in Section 4.
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Theorem 2.14. Let X = {X1, . . . , } be a Markov chain on a state space X with count-
ably generated σ-algebra G. If X is φ-irreducible and aperiodic, and has a stationary
distribution π(·), then for π-a.e. x ∈ X ,

lim
n→∞

󰀂Pn(x, ·)− π(·)󰀂 = 0,

where 󰀂 · 󰀂 is the total variation distance.
In particular, limn→∞ Pn(x,A) = π(A) for all measurable A ⊂ X .

Note that the theorem applies only when the state space’s σ-algebra is countably
generated. Indeed, this condition is quite lenient. In fact, any countable state space
is guaranteed to be countably generated. Additionally, subsets of Rd equipped with
the standard Borel σ-algebra satisfy this condition as well. This is because the Borel
σ-algebra is generated by open balls with rational centers and rational radii, which are
countable.

Remark 2.15. (1) Under the given conditions of Theorem 2.14, if h : X → R with
π(|h|) < ∞, then the strong law of large numbers holds for h, i.e.

lim
n→∞

1

n

n󰁛

i=1

h(Xi) = π(h) with probability 1.

This result can be extended to positive and Harris recurrent chains (see [MT93],
Theorem 17.0.1). A Markov chain is Harris recurrent if for all A ⊂ X with
π(A) > 0 and x ∈ X , the chain will eventually reach A from x with probability
1, i.e. P(∃n s.t. Xn ∈ A|X0 = x) = 1.

(2) To utilize Theorem 2.14, Markov chains must satisfy three conditions: φ-irreducibility,
aperiodicity, and possess a stationary distribution. Theorem 2.14 is widely ap-
plied to MCMC algorithms because most MCMC algorithms inherently produce
chains that are φ-irreducible and aperiodic, while also aiming to generate chains
with a desired stationary distribution π.

It is important to note that the convergence mentioned in Theorem 2.14 is specifically
for almost every x ∈ X with respect to the stationary distribution π. However, the chain
may exhibit unpredictable behaviour on a null set of π-measure 0, leading to failure of
convergence in that region. To illustrate this, consider the following simple example:

Example 2.16. Let X = {1, 2, . . . , }. Let P (1, {1}) = 1, and for x ≥ 2, P (x, {1}) = 1
x2

and P (x, {x+ 1}) = 1− 1
x2 . The chain has stationary distribution π(·) = δ1(·). Indeed,

ˆ

x∈X
π(dx)P (x, {1}) = π({1})P (1, {1}) = π({1}),

and
ˆ

x∈X
π(dx)P (x, {i}) = π({1})P (1, {i}) = 0 = π({i}), ∀i > 1.

Also, it is π-irreducible since for all A containing 1,

P (i, A) = 1 > 0, if i = 1,

and

P (i, A) ≥ 1

x2
> 0, if i > 1.
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Moreover, it is aperiodic since a subset has positive π-measure if and only if it contains
1.

Hence, by applying Theorem 2.14, we have for π-a.e. x ∈ X , the chain converges to
the stationary distribution π with probability 1.

Consider X0 = x ≥ 2, then P[Xn = x + n for all n] =
󰁔∞

j=x

󰀓
1− 1

j2

󰀔
> 0. Hence,

Pn(x, {3, 4, . . .}) ∕→ π({3, 4, . . .}) = 0. Here Theorem 2.14 holds only for x = 1 which is
indeed π-a.e. x ∈ X , but it does not hold for x ≥ 2.

Remark 2.17. The transient behaviour of the chain on the null set in Example 2.16
is not a random occurrence. In the scenario where the chain converges to a different
stationary distribution on the null set, it will still possess a positive probability of es-
caping the null set due to its φ-irreducibility (for all states in the null set, we have
φ(A) > 0 ⇒ ∃n s.t. Pn(x,A) > 0). Then, the chain would eventually exit the null set
with probability 1 and thus converge to π(·) from the null set.

Under what circumstances do the conclusions of Theorem 4 hold for all x ∈ X , rather
than just π-almost everywhere? This occurs when the transition probability P (x, ·) is
absolutely continuous with respect to π(·) for all x ∈ X . In such cases, the chain will not
be able to escape the null set since π(A) = 0 ⇒ P (x,A) = 0. Consequently, the chain
will converge to π(·) within the null set. This property also holds for any Metropolis
algorithm where the proposal distributions Q(x, ·) are absolutely continuous with respect
to π(·). More generally, we can extend the same result to Harris recurrent chains, which
is a stronger condition compared to φ-irreducibility with respect to π(·).

Lastly, we explore periodic chains, as they occasionally emerge in MCMC algorithms,
and many of the theory can be applied to this case.

Corollary 2.18. If a Markov chain is φ-irreducible, with period d ≥ 2, and has a
stationary distribution π(·), then for π-a.e. x ∈ X ,

lim
n→∞

󰀐󰀐󰀐󰀐󰀐
1

d

n+d−1󰁛

i=n

P i(x, ·)− π(·)

󰀐󰀐󰀐󰀐󰀐 = 0

and also the strong law of large numbers in Remark 2.15 (1) continues to hold without
change.

Proof. Let X1, . . . ,Xd ⊂ X be the periodic decomposition. Let P ′ be the d-step chain
P d restricted to X1. Clearly, P

′ is φ-irreducible and aperiodic.
Let π′(·) denote the stationary distribution of P ′. Then, for

(π′P j−1)(A) :=

ˆ

x∈X1

π′(dx)P j−1(x,A),
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we have

ˆ

x∈Xj

(π′P j−1)(dx)P d(x,A) =

ˆ

x∈Xj

ˆ

y∈X1

π′(dy)P j−1(y, dx)P d(x,A)

=

ˆ

x∈Xj

ˆ

y∈X1

ˆ

z∈X1

π′(dy)P j−1(y, dx)P d−(j−1)(x, dz)P j−1(z,A)

=

ˆ

y∈X1

ˆ

z∈X1

π′(dy)P d(y, dz)P j−1(z,A)

=

ˆ

z∈X1

π(dz)P j−1(z,A)

= (π′P j−1)(A).

Hence, (π′P j−1)(·) is the stationary distribution of the d-step chain restricted to Xj .
Moreover,

ˆ

x∈X

󰀳

󰁃1

d

d−1󰁛

j=0

(π′P j)(dx)

󰀴

󰁄P (x,A) =
1

d

d󰁛

j=1

ˆ

x∈Xj

(π′P j−1)(dx)P (x,A)

=
1

d

d󰁛

j=1

ˆ

x∈Xj

ˆ

y∈X1

π′(dy)P j−1(y, dx)P (x,A)

=
1

d

d󰁛

j=1

ˆ

y∈X1

π′(dy)P j(y,A)

=
1

d

d󰁛

j=1

(π′P j)(A)

=
1

d

d−1󰁛

j=0

(π′P j)(A),(by periodicity)

and

1

d

d−1󰁛

j=0

(π′P j)(Xj) =
1

d

d−1󰁛

j=0

1 = 1.

It follows that π(·) = 1
d

󰁓d−1
j=0(π

′P j)(·).
Due to periodicity, we assume WLOG that x ∈ X1. From Proposition 2.13 (4), we

have

󰀂Pmd+j(x, ·)− (π′P j)(·)󰀂 ≤ 󰀂Pmd(x, ·)− π′(·)󰀂, ∀j ∈ N.
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Then,

󰀐󰀐󰀐󰀐󰀐
1

d

md+d−1󰁛

i=md

P i(x, ·)− π(·)

󰀐󰀐󰀐󰀐󰀐 =

󰀐󰀐󰀐󰀐󰀐󰀐
1

d

d−1󰁛

i=0

Pmd+j(x, ·)− 1

d

d−1󰁛

j=0

(π′P j)(·)

󰀐󰀐󰀐󰀐󰀐󰀐

≤ 1

d

d−1󰁛

i=0

󰀐󰀐󰀐Pmd+j(x, ·)− (π′P j)(·)
󰀐󰀐󰀐(triangle inequality)

≤ 1

d

d−1󰁛

i=0

󰀐󰀐󰀐Pmd(x, ·)− π′(·)
󰀐󰀐󰀐 =

1

d

d−1󰁛

i=0

󰀐󰀐P ′(x, ·)− π′(·)
󰀐󰀐

Applying Theorem 2.14 to P ′ gives

lim
m→∞

󰀐󰀐󰀐Pmd(·)− π′(·)
󰀐󰀐󰀐 = 0, ∀π-a.e. x ∈ X .

Hence,

lim
m→∞

󰀐󰀐󰀐󰀐󰀐
1

d

md+d−1󰁛

i=md

P i(x, ·)− π(·)

󰀐󰀐󰀐󰀐󰀐 ≤ lim
m→∞

󰀐󰀐󰀐Pmd(·)− π′(·)
󰀐󰀐󰀐 = 0, ∀π-a.e. x ∈ X .

By Proposition 2.13 (3), we can conclude that

lim
n→∞

󰀐󰀐󰀐󰀐󰀐
1

d

n+d−1󰁛

i=n

P i(x, ·)− π(·)

󰀐󰀐󰀐󰀐󰀐 ≤ lim
m→∞

󰀐󰀐󰀐󰀐󰀐
1

d

md+d−1󰁛

i=md

P i(x, ·)− π(·)

󰀐󰀐󰀐󰀐󰀐 = 0, ∀π-a.e. x ∈ X .

To establish the strong law of large numbers, let P be the transition probability over
the state space X1×· · · Xd with corresponding sequence {(Xmd, Xmd+1, . . . , Xmd+d−1)}∞m=0.
It is obvious that the chain induced by P is φ-irreducible and aperiodic with the sta-
tionary distribution

π = π′ × (π′P )× · · ·× (π′P d−1).

Let h : X → R with π(|h|) < ∞. Define h : X1 × · · · Xd → R by h(x0, . . . , xd−1) =
1
d

󰁓d−1
j=0 h(xj). We have π(|h|) < ∞ and then applying the strong law of large numbers

to P gives

lim
n→∞

1

n

n󰁛

i=1

h(Xid, Xid+1, . . . , Xid+d−1) = π(h) with probability 1.

It follows that

lim
n→∞

1

n

n󰁛

i=1

h(Xi) = π(h) with probability 1.

□

Remark 2.19. In the case of an irreducible Markov chain with a finite state space, the
assumption of periodicity is not required to establish Corollary 2.18.
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2.4. Uniform Ergodicity. Theorem 2.14 establishes the convergence of a Markov chain
to its stationary distribution under certain conditions. However, in practice, we are often
interested in understanding the speed at which the chain converges to the stationary dis-
tribution. Our“qualitative result” regarding the convergence rate is uniform ergodicity.

Definition 2.20 (Uniform Ergodicity). A Markov chain with stationary distribution
π(·) is uniformly ergodic if

󰀂Pn(x, ·)− π(·)󰀂 ≤ Mρn, n = 1, 2, 3, · · ·

for some ρ < 1 and M < ∞.

An equivalence of uniform ergodicity is stated as follows:

Proposition 2.21. A Markov chain with stationary distribution π(·) is uniformly er-
godic if and only if supx∈X 󰀂Pn(x, ·)− π(·)󰀂 < 1

2 for some n ∈ N.

Proof. Assume the chain is uniformly ergodic. Then,

sup
x∈X

󰀂Pn(x, ·)− π(·)󰀂 ≤ Mρn ⇒ lim
n→∞

sup
x∈X

󰀂Pn(x, ·)− π(·)󰀂 ≤ lim
n→∞

Mρn = 0.

Hence, for sufficiently large n, we have

sup
x∈X

󰀂Pn(x, ·)− π(·)󰀂 <
1

2
.

Conversely, assume supx∈X 󰀂Pn(x, ·)− π(·)󰀂 < 1
2 for some n ∈ N. Recall the notation

introduced in Proposition 2.13 (5), where t(n) = 2 supx∈X |Pn(x, ·)− π(·)| is defined.
Let β := t(n) < 1. Then, by the submultiplicative property,for all j ∈ N,

t(jn) ≤ (t(n))j = βj .

It follows from Proposition 2.13 (c) that

󰀂Pm(x, ·)− π(·)󰀂 ≤
󰀐󰀐󰀐P ⌊m/n⌋n(x, ·)− π(·)

󰀐󰀐󰀐 ≤ 1

2
t (⌊m/n⌋n) ≤ β⌊m/n⌋ ≤ β−1

󰀓
β1/n

󰀔m
.

Therefore, the chain is uniformly ergodic with M = β−1 and ρ = β1/n. □

The above proposition holds if we replace 1
2 by δ for any 0 < δ < 1

2 . However, it

is false for δ ≥ 1
2 . Let’s see a simple example. Consider X = {1, 2} with P (1, {1}) =

P (2, {2}) = 1, and π(·) is uniform on X . Then, 󰀂Pn(x, ·)− π(·)󰀂 = 1
2 for all x ∈ X and

n ∈ N and thus the chain is not uniformly ergodic.
Next, we explore the condition that guarantees uniform ergodicity. Prior to delving

into that discussion, we require the following definition:

Definition 2.22 (Small Set). A subset C ⊂ X is small (or, (n0, 󰂃, ν)-small if there
exists a positive integer n0, 󰂃 > 0, and a probability measure ν(·) on X such that the
following minorisation condition holds:

(2.7) Pn0(x, ·) ≥ 󰂃ν(·), ∀x ∈ C,

i.e. Pn0(x,A) ≥ 󰂃ν(A) for all x ∈ C and all measurable A ⊂ X .
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Remark 2.23. Alternative formulations of this definition may additionally require that
C has positive stationary measure. However, for the sake of simplicity, we do not explic-
itly impose this requirement. However, π(C) > 0 follows under the additional assump-
tion of the drift condition discussed in the subsequent section.

Intuitively, this condition means that all of the n0-step transitions from within C have
a overlapped component of size 󰂃.

Example 2.24. Let X be a countable space. If

󰂃n0
:=

󰁛

y∈X
inf
x∈C

Pn0(x, {y}) > 0,

then C is (n0, 󰂃n0 , ν)-small where ν({y}) = 󰂃−1
n0

infx∈C Pn0(x, {y}). Indeed,

Pn0(x, {y}) ≥ 󰂃n0 · ν({y}) = inf
x∈C

Pn0(x, {y}),

ν(X ) =
󰁛

y∈X
󰂃−1
n0

inf
x∈C

Pn0(x, {y}) = 󰂃−1
n0

󰁛

y∈X
inf
x∈C

Pn0(x, {y})

󰁿 󰁾󰁽 󰂀
=󰂃n0

= 1,

and for all y1 ∕= y2,

ν({y1, y2}) = 󰂃−1
n0

inf
x∈C

Pn0(x, {y1, y2})

= 󰂃−1
n0

inf
x∈C

Pn0(x, {y1}) + 󰂃−1
n0

inf
x∈C

Pn0(x, {y2})

= ν({y1}) + ν({y2}).

For a finite state space, if the chain is irreducible (or just indecomposible) and aperiodic,
then 󰂃n0 > 0 for sufficiently large n0. Indeed, for any states i, j, there is an Nij ∈ N such
that Pn(i, j) > 0 for all n ≥ Nij due to irreducibility and aperiodicity. Then, we can
take M = max{Nij : i ∈ X , j ∈ X}, which smaller than infinity since X is finite. Hence,
PM (i, j) > 0 for all i, j ∈ X .

For a general state space, if the transition probability is absolutely continuous with
respect to some measure η(·), i.e. Pn0(x, dy) = pn0(x, y), then we can take 󰂃n0 =
´

y∈X (infx∈X pn0(x, y)) η(dy).

Definition 2.25 (Pseudo-small Set). A subset C ⊂ X is pseudo-small if there exists a
n0 ∈ Z, 󰂃 > 0, and a probability measure νxy(·) on X (depending on x, y) such that the
following pseudo-minorisation condition holds: for all x, y ∈ C,

Pn0(x, ·) ≥ 󰂃νxy(·),

and

Pn0(y, ·) ≥ 󰂃νxy(·).

The above notion of pseudo-small set is weaker than that of small set. Intuitively,
this condition means for every pair (x, y) ∈ C × C of states, the n0-step transitions has
a overlapped component, the size of which depends on the choice of x and y.
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Theorem 2.26. Consider a Markov chain with stationary probability distribution π(·).
Suppose the minorisation condition (2.7) is satisfied for some n0 ∈ N and 󰂃 > 0 and
probability measure ν(·), in the special case C = X (i.e. the entire state space is small).

Then the chain is uniformly ergodic, and in fact 󰀂Pn(x, ·)− π(·)󰀂 ≤ (1− 󰂃)⌊n/n0⌋ for all
x ∈ X .

Remark 2.27. (1) The pseudo-minorisation conditon is perfectly adequate for pair-
wise coupling construction, which is used to prove Theorem 2.26 in Section 4.
Consequently, the minorisation condition in the above theorem can be replaced
by the pseudo-minorisation condition, without affecting any bounds that rely on
pairwise coupling. This includes all of the bounds explored in this section.

(2) Theorem 2.26 allows us to find a quantitative bound on the distance to stationary
distribution 󰀂Pn(x, ·)− π(·)󰀂. After determining the values of 󰂃 and n0, we can
identify an appropriate n∗ such that 󰀂Pn∗(x, ·) − π(·)󰀂 ≤ c, where the specific
choice of c depends on the context. We can then say that n∗ iterations “suffices
for convergence” of the Markov chain to a certain standard or level of accuracy.
Moreover, for a discrete state space, we can use 󰂃n0 specified in Example 2.16.

Running Example. Recalling our previously introduced running example, we have
imposed strong conditions of strong continuity on q. Therefore, it is reasonable to
conjecture that compact sets would be small. However, without additional regularity
conditions, this conjecture proves to be false. Consider the following example: suppose

dimension d = 1, πu(x) = 10<|x|<1|x|−1/2, and q(x, y) ∝ exp
󰁱
− (x−y)2

2

󰁲
. Let N be any

neighbourhood containing zero. We will show that N is not small. We have

P (x, dy) = q(x, y)min

󰀝
1,

πµ(y)

πν(x)

󰀞
dy ∝ exp

󰀝
−(x− y)2

2

󰀞
min

󰀫
1,

10<|y|<1|y|−1/2

10<|x|<1|x|−1/2

󰀬
dy.

Let x ∈ N . If x → 0, we observe that P (x, dy) → 0. Hence, the minorisation condition
is not satisfied.

Return to the general setup of our running example. Let C be any compact set on
which πu is bounded by k < ∞. We will show that C is small. Let x ∈ C and D be any
compact set of positive Lebesgue and π measure such that infx,y∈C∪D q(x,y) = 󰂃 > 0
and supx∈C,y∈D q(x,y) = M < ∞ (this is possible since q is continuous). We then have
for any x ∈ C, y ∈ D,

P (x, dy) ≥ q(x,y) dymin

󰀝
1,

πµ(y)q(y,x)

πµ(x)q(x,y)

󰀞
≥ 󰂃 dymin

󰀝
1,

󰂃πµ(y)

Mk

󰀞
.

Therefore, C is small.
We can conclude that if πu is continuous, the state space X is compact, and q is

continuous and positive, then X is small; as a result, the Markov chain is guaranteed to
be uniformly ergodic.

2.5. Geometric ergodicity. Since only a few MCMC algorithms satisfy the require-
ment of uniform ergodicity, it becomes necessary to relax the minorization condition
imposed on the entire state space. Our goal is to establish a more general theorem that
can provide bounds on the convergence rate of MCMC algorithms. To this end, we
introduce a weaker condition known as geometric ergodicity, defined as follows:
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Definition 2.28. A Markov chain with stationary distribution π(·) is geometrically
ergodic if

󰀂Pn(x, ·)− π(·)󰀂 ≤ M(x)ρn, n = 1, 2, 3, . . .

for some ρ < 1, where M(x) < ∞ for π-a.e. x ∈ X .

In contrast to uniform ergodicity, geometric ergodicity allows the constant M to de-
pend on the initial state x.

As we have previously shown that all irreducible and aperiodic Markov chains on finite
state spaces are uniformly ergodic, it follows that they are also geometrically ergodic.
However, in the case of an infinite state space X , the conditions of irreducibility and
aperiodicity alone are insufficient to guarantee geometric ergodicity. For example, a
symmetric random-walk Metropolis algorithm is geometrically ergodic essentially if and
only if π(·) has finite exponential moments. As a result, we will now delve into the
conditions that establish geometric ergodicity.

Definition 2.29. Given Markov chain transition P on a state space X , and a mea-
surable function f : X → R, define the function Pf : X → R such that (Pf)(x) is
the conditional expected value of f(Xn+1), given that Xn = x. In symbols, (Pf)(x) =
´

y∈X f(y)P (x, dy).

Definition 2.30 (Drift Condition). A small set C satisfies a drift condition (or, uni-
variate geometric drift condition if there are constants 0 < λ < 1 and b < ∞, and a
function V : X → [1,∞] such that

(2.8) PV ≤ λV + b1C ,

i.e.
´

y∈X P (x, dy)V (y) ≤ λV (x) + b1C(x) for all x ∈ X .

Th main result guaranteeing geometric ergodicity can be stated as follows:

Theorem 2.31. Consider a φ-irreducible, aperiodic Markov chain with stationary dis-
tribution π(·). Suppose that minorisation condition 2.7 is satisfied for some C ⊂ X
and 󰂃 > 0 and probability measure ν(·). Suppose further that the drift condition 2.8 is
satisfied for some constants 0 < λ < 1 and b < ∞, and a function V : X → [1,∞] with
V (X) < ∞ for at least one x ∈ X (and hence for π-a.e.) x ∈ X . Then, the chain is
geometrically ergodic.

Theorem 2.31 is proven in Section 4 by direct coupling constructions.

Example 2.32. Here we consider a simple example of geometric ergodicity of Metropolis
algorithms on R. Let X = R+ and πu(x) = e−x. We will use a symmetric (about x)
proposal distribution q(x, y) = q(|y − x|) with support contained in [x− a, x+ a]. Take
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a drift function V (x) = ecx for some c > 0. Then, for x ≥ a, we compute

PV (x) =

ˆ

y∈X
V (y)P (x, dy)

=

ˆ x+a

x−a
V (y)P (x, dy) + V (x)

ˆ x+a

x−a
(1− P (x, dy))

=

ˆ x

x−a
V (y)q(x, y)α(x, y)dy +

ˆ x+a

x
V (y)q(x, y)α(x, y)dy +

ˆ x

x−a
V (x)q(x, y)α(x, y)dy

+

ˆ x+a

x
V (x)q(x, y)α(x, y)dy

=

ˆ x

x−a
V (y)q(x, y) · 1dy +

ˆ x+a

x
V (y)q(x, y)

πu(y)

πu(x)
dy +

ˆ x

x−a
V (x)q(x, y) · (1− 1)dy

+

ˆ x+a

x
V (x)q(x, y)

󰀕
1− πu(y)

πu(x)

󰀖
dy

=

ˆ x

x−a
V (y)q(x, y)dy +

ˆ x+a

x
V (y)q(x, y)

πu(y)

πu(x)
dy +

ˆ x+a

x
V (x)q(x, y)

󰀕
1− πu(y)

πu(x)

󰀖
dy

=

ˆ x+a

x
V (2x− y)q(x, y)dy +

ˆ x+a

x
V (y)q(x, y)

πu(y)

πu(x)
dy +

ˆ x+a

x
V (x)q(x, y)

󰀕
1− πu(y)

πu(x)

󰀖
dy

=

ˆ x+a

x
q(x, y)

󰀗
V (2x− y) + V (y)

πu(y)

πu(x)
+ V (x)

󰀕
1− πu(y)

πu(x)

󰀖󰀘

󰁿 󰁾󰁽 󰂀
=:I(x,y)

dy

We have

I(x, y) = V (2x− y) + V (y)
πu(y)

πu(x)
+ V (x)

󰀕
1− πu(y)

πu(x)

󰀖

= ec(2x−y) + ecy
e−y

e−x
+ ecx

󰀕
1− e−y

e−x

󰀖

= e2cx−cy + ecy+x−y + ecx − ecxex−y

= ecx
󰁫
e−c(y−x) + e(c−1)(y−x) + 1− e−(y−x)

󰁬

= ecx
󰁫
e−cu + e(c−1)u + 1− e−u

󰁬
(u := y − x)

= 2ecx

󰀵

󰀹󰀷1−
(1− e(c−1)u)(1− e−cu)

2󰁿 󰁾󰁽 󰂀
=:󰂃

󰀶

󰀺󰀸

= 2V (x)(1− 󰂃),

Note that 0 < 󰂃 < 1 if c < 1. Then, take any 0 < 󰂃 < 1, we have

PV (x) ≤ V (x)(1− 󰂃)

ˆ x+a

x
2q(x, y)dy = (1− 󰂃)V (x)
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Similarly, one can show that PV (x) is bounded on [0, a]. Additionally, since [0, a] is
compact and πu(x) is bounded on [0, a], it is a small set. Hence, we have shown that
both minorisation and drift conditions are satisfied. The resulting Markov chain is
geometrically ergodic by Theorem 2.31.

Geometric ergodicity is a useful property that provides insights into the convergence
behaviour of MCMC algorithms. However, it is important to note that while geometric
ergodicity is desirable, it does not always guarantee the efficacy of an MCMC algorithm.

Example 2.33 (Witch’s Hat). Let X = [0, 1], δ = 10−100. Consider πu(x) = δ +
1[a,a+δ](x), where 0 < a < 1− δ. Then,

π([a, a+ δ]) =

´

[a,a+δ] πu(x)dx
´

[0,1] πu(x)dx
=

(δ + 1)δ

(δ + 1)δ + δ(1− δ)
= 0.55.

Let’s run a Metropolis algorithm on πu. Since the interval [a, a+ δ] is very small, unless
the sampler gets really lucky, the outcome will appear to converge to Uniform([0, 1]),
which is very different from π(·). However, the algorithm is still geometrically ergodic
(and even uniformly ergodic). Hence, the example illustrates that geometric ergodicity
does not necessarily ensure the behaviour of a sampler.

In addition to the above example, there are numerous examples of MCMC algorithms
which generate geometrically ergodic, but exhibit extremely slow convergence to the
stationary distribution since Theorem 2.31 does not provides no quantitative bounds on
M(x) and ρ. As a result, it is preferable, whenever feasible, to obtain explicit quantitative
bounds on the convergence of Markov chains.

2.6. Quantitative Convergence Rates. Considering the aforementioned, our objec-
tive is to establish explicit quantitative bounds on convergence rates. Specifically, we
seek bounds of the form

Pn(x, ·)− π(·) ≤ g(x, n)

where g(x, n) is an explicit function that, ideally, remains small for large n.
Our result requires the following bivariate drift condition:

Definition 2.34 (Bivariate Drift Condition). A small set satisfies a bivariate drift con-
dition if there is a constant α > 0 and a function h : X × X → [1,∞) such that

(2.9) Ph(x, y) ≤ h(x, y)

α
, ∀(x, y) /∈ C × C,

where

Ph(x, y) :=

ˆ

X

ˆ

X
h(z, w)P (x, dz)P (y, dw).

Intuitively, P represents running two independent copies of the chain. The bivariate
drift condition is closely related to the univariate one, as exemplified by the following
proposition:

Proposition 2.35. Suppose the univariate drift condition (2.8) is satisfied for some
V : X → [1,∞], C ⊂ X , λ < 1, and b < ∞. Let d = infx∈C∁ V (x). Then, if d >
b

1−λ−1, then the bivariate drift condition (2.9) is satisfied for the same C, with h(x, y) =
1
2 [V (x) + V (y)] and α−1 = λ+ b

d+1 < 1.
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Proof. If (x, y) ∕∈ C × C, then either x /∈ C or y /∈ C (or both). Assume WLOG that
x /∈ C, then V (x) ≥ d and

h(x, y) =
1

2
[V (x) + V (y)] ≥ 1

2
(d+ 1) ⇒ h(x, y)

1
2(d+ 1)

≥ 1.

Moreover, it follows from the univariate drift condition that PV (x)+PV (y) ≤ λV (x)+
λV (y) + b. Then, we compute Ph

Ph(x, y) =

ˆ

X

ˆ

X
h(z, w)P (x, z)P (y, dw)

=

ˆ

X

ˆ

X

1

2
[V (z) + V (w)]P (x, dz)P (y, dw)

=

ˆ

X

1

2
V (w) +

1

2
PV (x)P (y, dw)

=
1

2
[PV (x) + PV (y)]

≤ 1

2
[λV (x) + λV (y) + b]

= λh(x, y) +
b

2

≤ λh(x, y) +
b

2

h(x, y)
1
2(d+ 1)

= h(x, y)

󰀕
λ+

b

d+ 1

󰀖
.

Since d > b
1−λ − 1 by assumption, we have

d+ 1 >
b

1− λ
⇒ b

d+ 1
< 1− λ

⇒ b

d+ 1
+ λ < 1.

Therefore, the bivariate drift is satisfied with α−1 = λ+ b
d+1 . □

Now, take

(2.10) B := max

󰀝
1,αn0(1− 󰂃) sup

C×C
Rh

󰀞
,

where for (x, y) ∈ C × C,

Rh(x, y) :=

ˆ

X

ˆ

X
(1− 󰂃)−2h(z, w) (Pn0(x, dz)− 󰂃ν(dz)) (Pn0(y, dw)− 󰂃ν(dw)) .

Given these assumptions, we present our result as follows:

Theorem 2.36. Consider a Markov chain on a state space X , having transition kernel
P . Suppose there is C ⊂ X , h : X × X → [1,∞), a probability distribution ν(·) on X ,
α > 1, n0 ∈ N, and 󰂃 > 0, such that the minorisation condition (2.7) and bivariate drift
condition (2.9). Define Bn0 by (2.10). Then for any joint initial distribution L(X0, X

′
0),
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and any integers 1 ≤ j ≤ k, if {Xn} and {X ′
n} are two copies of the Markov chain started

in the joint initial distribution L(X0, X
′
0), then󰀐󰀐L(Xk)− L(X ′

k)
󰀐󰀐 ≤ (1− 󰂃)j + α−k(Bn0)

j−1E[h(X0, X
′
0)].

In particular, by choosing j = ⌊rk⌋ for sufficiently small r > 0, we obtain an explicit,
quantitative convergence bound which goes to 0 exponentially quickly as k → ∞.

Theorem 2.36 is proved in Section 4.

Remark 2.37. Although applying Theorem 2.36 to realistic MCMC algorithms can be
challenging, it is feasible and often can rigorously provide a reasonably small number of
iterations which is is adequate to ensure convergence.

Alternatively, in cases where applying Theorem 2.36 to complicated Markov chains
proves challenging, MCMC practitioners often rely on ”convergence diagnostics”. These
diagnostics involve conducting statistical analyses on the realized output X1, X2, . . .
to assess whether the distributions of Xn appear to be ”stable” for sufficiently large
values of n. For instance, one approach is to run the Markov chain multiple times from
different initial states and observe if the chains all converge to approximately the same
distribution. This technique often yields satisfactory results in practice. However, it
does not provide rigorous guarantees and can occasionally be misled into prematurely
claiming convergence.

2.7. More examples. Consider a Markov chain {Xn} on the real line, where P (x, ·) =
N(x2 ,

3
4) for each x ∈ R. Equivalently, Xn+1 = 1

2Xn + Un+1, where {Un} are i.i.d. with

Un = N(0, 34).
Note that for any A ∈ B(R),

ˆ

R
π(dx)P (x,A) =

ˆ

x∈R

1√
2π

e−
1
2
x2

󰀕
ˆ

y∈A

2√
3
√
2π

e−
2
3
(y−x

2
)2dy

󰀖
dx

=

ˆ

x∈R

ˆ

y∈A

1√
2π

e−
1
2
x2 2√

3
√
2π

e−
2
3
(y−x

2
)2dydx

=

ˆ

y∈A

ˆ

x∈R

2

2π
√
3
e−

1
2
x2− 2

3
(y−x

2
)2dxdy

=

ˆ

y∈A

1√
2π

e−
y2

2 = π(A),

which means the Markov chain {Xn} is stationary with respect to N(0, 1).
Then, for any A ⊂ B(R) such that λ(A) > 0 (λ is the Lebesgue measure on R), for all

x ∈ R,
P (x,A) =

ˆ

y∈A

2√
3
√
2π

e−
2
3
(y−x

2
)2dy > 0.

It follows that {Xn} is λ-irreducible.
The next is to show that {Xn} is aperiodic. Suppose to the contrary that {Xn} is

periodic with periodic decomposition X1, . . . ,Xd.
Let x ∈ X1, then

P (x,X2) =

ˆ

y∈X2

2√
3
√
2π

e−
2
3
(y−x

2
)2dy = 1.
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It follows that
ˆ

y∈X ∁
2

2√
3
√
2π

e−
2
3
(y−x

2
)2dy = 0.

Since 0 < 2√
3
√
2π
e−

2
3
(y−x

2
)2 < ∞, we have λ(X ∁

2 ) = 0. Since X1 ⊂ X ∁
2 , λ(X1) = 0. Hence,

for x ∈ Xd,

P (x,X1) =

ˆ

y∈X1

2√
3
√
2π

e−
2
3
(y−x

2
)2dy = 0,

which contradicts to periodicity. Applying Theorem 2.14 gives

lim
n→∞

󰀂Pn(x, ·)− π(·)󰀂 = 0;

more explicitly,

1

2n−1
x+

1

2n−2
U2 +

1

2n−3
U3 + · · ·+ Un → N(0, 1),

for any x ∈ R.
We now start to build a small set C. Consider C := {x : x2 ≤ c}, where 0 < c < 1.

Then, let

󰂃 :=

ˆ

R

󰀕
inf
x∈C

P (x, dy)

󰀖

=

ˆ

R
inf

x∈[−
√
c,
√
c]

2√
3
√
2π

e−
2
3
(y−x

2
)2dy

=

ˆ 0

−∞
inf

x∈[−
√
c,
√
c]

2√
3
√
2π

e−
2
3
(y−x

2
)2dy +

ˆ ∞

0
inf

x∈[−
√
c,
√
c]

2√
3
√
2π

e−
2
3
(y−x

2
)2dy

=

ˆ 0

−∞

2√
3
√
2π

e−
2
3
(y+

√
c

2
)2dy +

ˆ ∞

0
inf

x∈[−
√
c,
√
c]

2√
3
√
2π

e−
2
3
(y−

√
c

2
)2dy > 0.

Additionally, define ν(A) :=

´

y∈A infx∈C P (x,dy)
´

y∈R infx∈C P (x,dy)
=

´

y∈A infx∈C P (x,dy)

󰂃 for all measurable A.

Clearly, ν is a probability measure. Then, for x ∈ C and all measurable subsets A,

P (x,A) =

ˆ

y∈A
P (x, dy) ≥

ˆ

y∈A

󰀕
inf
x∈C

P (x, dy)

󰀖
= 󰂃ν(A),

which means C is a small set.
Then, we are going to build the bivariate drift condition based on this small set C.

Note that

E[X2
n+1|Xn = x] =

ˆ

y2 · 2√
3
√
2π

e−
2
3
(y−x

2
)2 =

x2 + 3

4
.

Let h(x, y) := 1+ x2 + y2 and {Xn}, {X ′
n} be two copies of the Markov chain. We have

Ph(x, y) = E[h(Xn+1, X
′
n+1)|Xn = x,X ′

n = y]

= 1 + E[X2
n+1|Xn = x] + E[(X ′

n+1)
2|X ′

n = y]

= 1 +
x2 + 3

4
+

y2 + 3

4
=

h(x, y)

4
+

9

4
.
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If (x, y) ∕∈ C × C, then h(x, y) > 1 + 2c ⇒ h(x,y)
1+2c > 1. It follows that

Ph(x, y) =
h(x, y)

4
+

9

4
≤ h(x, y)

4
+

9

4

h(x, y)

1 + 2c
=

(10 + 2c)h(x, y)

4 + 8c
.

Since 0 < c < 1, we have α := 10+2c
4+8c > 1. Therefore, we can apply Theorem 2.36 to get

quantitative convergence rates.
However, if the transition probability P (x, ·) is instead given by N(x, 34), then the

chain does not have a stationary distribution. Suppose to the contrary that π(·) is the
stationary distribution for {Xn} with P (x, ·) = N(x, 34). Then,

π(dx) =

ˆ

π(dy)P (y, dx),

which means

X + Y ∼ π(·), where X ∼ π(·) and Y ∼ N(0,
3

4
).

It follows that for n ≥ 1 ,

Zn := X + Y1 + Y2 + · · ·+ Yn ∼ π(·), where X ∼ π(·) and Y1, . . . , Yn
i.i.d∼ N(0,

3

4
).

Then, for any a ∈ R,

π((a,∞) = lim
n→∞

P(Zn > a) =
1

2
.

This leads to a contradiction since lima→∞ π((a,∞)) = 0.

3. Markov Chains Monte Carlo Algorithms

MCMC algorithms are widely used in statistics to sample from complicated probability
distributions in high dimensions. They not only offer practical solutions but also raise
intriguing questions related to probability theory and the mathematics of Markov chains.
In this section, we will explore some classic MCMC algorithms and provide illustrative
examples.

3.1. Motivation. Let’s consider a density function πu defined over a measure space
(X ,G, µ). The density function may be unnormalized but satisfies 0 <

´

X πudµ < ∞.

Typically, X represents an open subset of Rd, and the densities are taken with respect to
Lebesgue measure, though other settings are also possible. This density function gives
rise to a probability measure π(·) on X using the following formula:

π(A) =

´

A πu(x)dx
´

X πu(x)dx
, ∀A ∈ G.

Our objective is to estimate expectations of functions f : X → R with respect to π(·),
i.e.

π(f) = Eπ[f(X)] =

´

A f(x)πu(x)dx
´

X πu(x)dx
.

However, when X is high-dimensional, and πu is a complicated function, computing the
integrals in the above equation, either analytically or numerically, becomes extremely
challenging.
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The classical Monte Carlo solution to this problem is to simulate i.i.d. random vari-
ables Z1, Z2, . . . , ZN ∼ π(·), and then estimate π(f) by

π̂(f) :=
1

N

N󰁛

i=1

f(Zi).

Note that π̂(f) is an unbiased estimator of π(f), with standard deviation of order

O
󰀓

1√
N

󰀔
. Furthermore, if π(f) < ∞, then by the classical central limit theorem, the

error π̂(f)−π(f) will have a limiting normal distribution. However, if πu is complicated,
it is very difficult to directly simulate i.i.d random variables from π(·).

MCMC algorithms provide a solution to the drawbacks of Monte Carlo methods by
constructing a Markov chain that can be efficiently run on a computer and has the
desired stationary distribution π(·). Assuming that the Markov chain satisfies certain
conditions (e.g., as stated in Theorem 2.36), the MCMC algorithm is guaranteed to
converge after a certain number of iterations. For sufficiently large n, the distribution
of Xn will be approximately stationary, i.e. L(Xn) ≈ π(·). We can then use Z1 = Xn as
a starting point and restart the Markov chain to generate Z2, Z3, and so on. Then, we
can use these samples to compute the unbiased estimator π̂(f) as in the classical Monte
Carlo method.

Remark 3.1. In practice, instead of starting a fresh Markov chain for each new sample,
we often take an entire tail of Markov chain to create an estimate such as 1

N−B

󰁓N
i=B+1 f(Xi),

where the burn-in value B is chosen to ensure L(XB) ≈ π(·).
However, in this case, the different f(Xi) are not independent, but the estimate can

be computed more efficiently. We tend to ignore this issues.

Remark 3.2. MCMC is just one method among various approaches for sampling and
estimating from complicated probability distributions, such as “rejection sampling” and
“importance sampling”. However, other algorithms have limited applicability and are
effective only in specific cases.

Next, we discuss one of the most prevalent applications of MCMC algorithms, which
is Bayesian statistical inference.

Let L(y|θ) be the likelihood function (i.e. the density function of data y given unknown
parameters θ) of a statistical model, for θ ∈ X . Usually, X ⊂ Rd. Let the prior density
of θ be p(θ). The (unnormalized) posterior density given y is

πu(θ) := L(y|θ)p(θ).

The posterior mean of any functional f is given by

π(f) =

´

X f(x)πu(x)dx
´

X πu(x)dx
.

MCMC algorithms have proven to be extremely helpful for such Bayesian estimates.
In the next few subsections, we will see that constructing an appropriate Markov chain

with a desired stationary distribution is surprisingly straightforward.



GENERAL STATE SPACE MARKOV CHAINS 29

3.2. The Metropolis-Hastings Algorithm. Suppose again that π(·) has a (possibly
unnormalized) density πu. Let Q(x, ·) be any easily-simulated Markov chain, whose
transition probability has a (possibly unnormalized) density with respect to Lebesgue
measure, i.e. Q(x, dy) ∝ q(x, y)dy.

The Metropolis-Hastings algorithm proceeds as follows:

1. Choose some X0.
2. Given Xn, generate a proposal Yn+1 from Q(Xn, ·).
3. Flip an independent coin, whose probability of heads equal to α(Xn, Yn+1), where

α(x, y) := min

󰀝
1,

πu(y)q(y, x)

πu(x)q(x, y)

󰀞
.

To avoid ambiguity, we set α(x, y) = 1 whenever π(x)q(x, y) = 0.
4. If the coin is heads, accept the proposal by setting Xn+1 = Yn+1; if the coin is tails,

then reject the proposal by setting Xn+1 = Xn.
5. Replace n by n+ 1 and repeat.

To simulate the flipping of an independent coin with a desired probability α, we can
achieve this by generating Un+1 ∼ Uniform([0, 1]) and accepting the proposal if Un+1 ≤
α, otherwise rejecting the proposal.

The transition probability of the resulting Markov chain can be expressed as follows:

P (x,A) =

ˆ

y∈A
α(x, y)q(x, dy) + δx(A)

ˆ

y∈X
(1− α(x, y)q(x, dy), x ∈ X , A ∈ G.

The derivation of the Metropolis-Hasting algorithms relies on the following proposi-
tion:

Proposition 3.3. The Metropolis-Hastings algorithm (as described above) produces a
Markov chain {Xn} which is reversible with respect to π(·).

Proof. Assume x ∕= y and set c =
´

X πu(x)dx. We have

π(dx)P (x, dy) =
󰀅
c−1πu(x)dx

󰀆
[q(x, y)α(x, y)dy]

= c−1πu(x)q(x, y)min

󰀝
1,

πu(y)q(y, x)

πu(x)q(x, y)

󰀞

= c−1min {πu(x)q(x, y),πu(y)q(y, x)} ,
which is symmetric in x and y. Hence, we have

π(dx)P (x, dy) = π(dy)P (y, dx).

□
If follows from Proposition 2.7 that converges to the stationary distribution π(·). How-

ever, there is no guarantee that starting from any initial state will lead to convergence
to the stationary distribution (e.g. Example 2.8 and 2.10); one may additionally require
φ-irreducibility and aperiodicity (Theorem 2.14). To determine the required number of
iterations, one can refer to Section 2.

To run the Metropolis-Hastings algorithm, we only need to compute ratios of densities
πu(y)
πu(x)

in α(x, y), eliminating the need to calculate the integral
´

X πu(x)dx. Hence, with

an appropriate Q(x, ·), running the algorithm would be quite feasible.
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The choice of proposal distributions Q(x, ·) is another critical factor to consider. There
are several commonly used approaches for choosing the proposal density, including:

• Symmetric Metropolis Algorithm: q(x, y) = q(y, x), and the acceptance proba-
bility simplifies to

α(x, y) = min

󰀝
1,

πu(y)

πu(x)

󰀞
.

• Random walk Metropolis-Hastings: q(x, y) = q(y − x). For example, Q(x, ·) =
N(x,σ2) or Q(x, ·) = Uniform([x− 1, x+ 1]).

• Independence sampler: q(x, y) = q(y), i.e. Q(x, ·) does not depend on x.
• Langevin algorithm: The proposal is generated by

Yn+1 ∼ N

󰀕
Xn +

δ

2
∇ log π(Xn), δ

󰀖
,

• for some (small) δ > 0. This is motivated by a discrete approximation to a
Langevin diffusion processes.

3.3. Combining Chains. If P1 and P2 are two distinct chains, each with stationary dis-
tribution π(·), then the new chain P1P2 also has stationary distribution π(·). Therefore,
one can make new MCMC algorithms out of old ones, by specifying that new algorithm
applies first the chain P1, followed by the chain P2, and then repeats the chain P1, and
so on. More generally, it is possible to combine many different chains in this manner.
It is important to note that even if each individual chain, P1 and P2, is reversible, the
resulting combined chain P1P2 may not be reversible in general.

3.4. The Gibbs Sampler. Suppose again that πu(·) is d-dimensional density, with X
an open subset of Rd, and write x = (x1, . . . , xd). The i-th component Gibbs sampler is
defined such that Pi leaves all components besides i unchanged, and replaces the i-th
component by a draw from the full conditional distribution of π(·) conditional on all the
other components. More formally, let

Sx,i,a,b := {y ∈ X : yj = xj for j ∕= i, and a ≤ yi ≤ b},
then

Pi(x, Sx,i,a,b) :=

´ b
a πu(x1, . . . , xi−1, t, xi+1, . . . , xn)dt
´∞
−∞ πu(x1, . . . , xi−1, t, xi+1, . . . , xn)dt

, a ≤ b.

Proposition 3.4. Pi is reversible with respect to π(·) for any i ∈ {1, . . . , d}.

Proof. For x and y such that yj = xj for j ∕= i, we have

π(dx)Pi(x, dy) =
πu(dx)
´

X πu(x)dx

πu(x1, . . . , xi−1, y, xi+1, . . . , xn)dy
´∞
−∞ πu(x1, . . . , xi−1, t, xi+1, . . . , xn)dt

=
πu(dx)

´∞
−∞ πu(x1, . . . , xi−1, t, xi+1, . . . , xn)dt

πu(x1, . . . , xi−1, y, xi+1, . . . , xn)dy
´

X πu(x)dx

=
πu(dx)

´∞
−∞ πu(y1, . . . , xi−1, t, yi+1, . . . , xn)dt

πu(y1, . . . , yi−1, y, yi+1, . . . , xn)dy
´

X πu(x)dx

= Pi(y, dx)π(dy).
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□
It follows that Pi has π(·) as its stationary distribution. In fact, Pi can be viewed as a

special case of Metropolis-Hastings algorithm with acceptance probability of α(x, y) = 1.
Next, we can build the full Gibbs sampler by combining different Pi chains using one

of the following approaches:

• Deterministic-scan Gibbs sampler: P = P1P2 · · ·Pd, that is, it performs the d
different Gibbs sampler components, in sequential order.

• Random-scan Gibbs sampler: P = 1
d

󰁓d
i=1 Pi, that is, it does one of the d different

Gibbs sampler components, chosen uniformly at random.

Both versions yield an MCMC algorithm with π(·) as its stationary distribution. The
output of a Gibbs sampler exhibits a ”zig-zag pattern,” where the components are up-
dated one at a time. Moreover, the random-scan Gibbs sampler is reversible, while the
deterministic-scan Gibbs sampler is usually not.

3.5. Detailed Bayesian Example: Variance Components Model. The model con-
sists of fixed constants µ0 and positive constants a1, b1, a2, b2, and σ2

0. There are three
hyperparameters: σ2

θ , σ
2
e , and µ, each with priors based on these constants as follows:

σ2
θ ∼ IG(a1, b1),

σ2
e ∼ IG(a2, b2),

µ ∼ N(µ0,σ
2
0).

Additionally, there are K further parameters θ1, θ2, . . . , θK , which are conditionally in-
dependent given the hyperparameters. Specifically, θi ∼ Normal(µ,σ2

θ). The data Yij ,
where 1 ≤ i ≤ K and 1 ≤ j ≤ J , is assumed to be distributed as Yij ∼ Normal(θi,σ

2
e),

conditionally independently given the parameters. A graphical representation of the
model is shown below:

µ

θ1 · · · θK θi ∼ N(µ,σ2
θ)

Y11, . . . , Y1J · · · YK1, . . . , YKJ Yij ∼ N(θi,σ
2
e)

The Bayesian paradigm then involves conditioning on the values of the data {Yij},
and considering the joint distribution of all K + 3 parameters given this data. That is,
we are interested in the distribution

π(·) = L(σ2
θ ,σ

2
e , µ, θ1, . . . , θK |{Yij})

defined on the state space X = (0,∞)2 × RK+1. We would like to sample from this
distribution π(·). We compute that this distributions’ unnormalized density is given by

πu(σ
2
θ ,σ

2
e , µ, θ1, . . . , θK) ∝ e

− b1
σ2
θ (σ2

θ)
−a1−1e

− b2
σ2
e (σ2

e)
−a2−1e

− (µ−µ0)
2

2σ2
0 ×

K󰁜

i=1

e
−(θi−µ)2

2σ2
θ

σθ
×

K󰁜

i=1

J󰁜

j=1

e
−(Yij−θi)

2

2σ2
e

σe
.
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The above expression appears to be complicated and high-dimensional. Now, let’s focus
on constructing MCMC algorithms to sample from the target density πu. We will start
with the Gibbs sampler. In order to run a Gibbs sampler, we need to compute the full

conditional distributions by π(·)
´

π(·)dx (1-dimensional integration) as follows:

L(σ2
θ |µ,σ2

e , θ1, . . . , θK , Yij) = IG

󰀣
a1 +

1

2
K, b1 +

1

2

󰁛

i

(θi − µ)2

󰀤
,

L(σ2
e |µ,σ2

θ , θ1, . . . , θK , Yij) = IG

󰀳

󰁃a2 +
1

2
KJ, b2 +

1

2

󰁛

i,j

(Yij − θi)
2

󰀴

󰁄 ,

L(µ|σ2
θ ,σ

2
e , θ1, . . . , θK , Yij) = N

󰀕
σ2
θµ0 + σ2

0

󰁓
i θi

σ2
θ +Kσ2

0

,
σ2
θσ

2
0

σ2
θ +Kσ2

0

󰀖
,

L(θi|µ,σ2
θ ,σ

2
e , θ1, . . . , θi−1, θi+1, . . . , θK , Yij) = N

󰀕
Jσ2

θY i + σ2
eµ

Jσ2
θ + σ2

e

,
σ2
θσ

2
0

Jσ2
θ + σ2

e

󰀖
,

where Y i =
1
J

󰁓J
j=1 Yij , and the last equation holds for 1 ≤ i ≤ K.

The Gibbs sampler then proceeds by updating the K + 3 variables in turn (either
deterministic- or random-scan), according to the conditional distributions. This process
is feasible because the conditional distributions can be easily simulated.

Alternatively, we can run a Metropolis-Hastings algorithm to sample from this model.
For example, we can choose a symmetric random-walk Metropolis algorithm with pro-
posals of the form N(Xn,σ

2IK+1) for some σ2 > 0. This algorithm can be effective for
this model as long as the value of σ2 is appropriately selected.

4. Convergence Proofs using Coupling Constructions

In this section, we present proofs for some of the theorems mentioned earlier using
the method of coupling, which appears to be particularly effective for analyzing MCMC
algorithms on general state spaces. This method offers a more concise alternative to the
other lengthy analytical arguments found in the literature.

4.1. The Coupling Inequality. Consider two random variables, X and Y , defined
jointly on a space X . Let L(X) and L(Y ) be their respective probability distributions.
Then, we have

󰀂L(X)− L(Y )󰀂 =sup
A

|P(X ∈ A)−P(Y ∈ A)|

=sup
A

|[P(X ∈ A,X = Y ) +P(X ∈ A,X ∕= Y )]

− [P(Y ∈ A, Y +X) +P(Y ∈ A, Y ∕= X)]|
=sup

A
|P(X ∈ A,X ∕= Y )−P(Y ∈ A, Y ∕= X)|

≤P(X ∕= Y ).

In short, we have the relationship

(4.11) 󰀂L(X)− L(Y )󰀂 ≤ P(X ∕= Y )
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The fundamental concept of coupling relies on the above relationship. The goal is to
construct two random variables: one updates according to the transition probability
and another follows the stationary distribution. Then, we can demonstrate desired
convergence results using Equation (4.11).

4.2. The Coupling Construction. Suppose that C is a small set. Consider the fol-
lowing coupling construction.

Begin with X0 = x and X ′
0 ∼ π(·), and set n = 0. Then, repeat the following loop

forever.
Beginning of the loop. Given Xn and X ′

n:

(1) If Xn = X ′
n, choose Xn+1 = X ′

n+1 ∼ P (Xn, ·), and replace n by n+ 1.
(2) Else, if (Xn, X

′
n) ∈ C × C, then:

(a) With probability 󰂃, choose Xn+n0 = X ′
n+n0

∼ ν(·);
(b) Else, with probability 1− 󰂃, conditionally independently choose

Xn+n0 ∼ 1

1− 󰂃
[Pn0(Xn, ·)− 󰂃ν(·)]

X ′
n+n0

∼ 1

1− 󰂃
[Pn0(X ′

n, ·)− 󰂃ν(·)]

In the case n0 > 1, for completeness, we go back and construct Xn +
1, . . . , Xn+n0−1 from their correct conditional distributions given X0 and
Xn+n0 , and similarly (and conditionally independently) constructX ′

n+1, . . . , X
′
n+n0−1

from their correct conditional distributions given X ′
n and X ′

n+n0
.

Replace n by n+ n0.
(3) Else, conditionally independently choose Xn+1 ∼ P (Xn, ·) and X ′

n+1 ∼ P (X ′
n, ·).

Then return to the beginning of the loop.
We then check the marginal distributions of Xn and X ′

n are correctly updates:
Given that X0 = x and X ′

0 ∼ π(·), it is straightforward to check that conditions (1)
and (3) ensure that the two chains marginally follow the correct distributions (P (Xn, ·)
and π(·), respectively.

For condition (2), when (Xn, X
′
n) ∈ C × C, we have

Xn+n0 ∼ 󰂃 · ν(·) + (1− 󰂃) · 1

1− 󰂃
[Pn0(Xn, ·)− 󰂃ν(·)] = Pn0(Xn, ·),

and

X ′
n+n0

∼ 󰂃 · ν(·) + (1− 󰂃) · 1

1− 󰂃
[Pn0(X ′

n, ·)− 󰂃ν(·)] = Pn0(X ′
n, ·).

Therefore, P (Xn ∈ A) = Pn(x,A) and P (X ′
n ∈ A) = π(A) (since X ′

0 starts from the
stationary distribution) for all n.

For the intermediate steps Xn+1, . . . , Xn+n0−1, we update inductively by

P(Xn+i ∈ A|Xn+i−1 = b,Xn+n0 = c) =

ˆ

A
P (b, dx)Pn0−i(x, c) ∀1 ≤ i ≤ n0 − 1.
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4.3. Proof of Theorem 2.26.

Theorem 2.26. Consider a Markov chain with stationary probability distribution π(·).
Suppose the minorisation condition (2.7) is satisfied for some n0 ∈ N and 󰂃 > 0 and
probability measure ν(·), in the special case C = X (i.e. the entire state space is small).

Then the chain is uniformly ergodic, and in fact 󰀂Pn(x, ·)− π(·)󰀂 ≤ (1− 󰂃)⌊n/n0⌋ for all
x ∈ X .

Proof. In this theorem, the small set C = X ; hence, we only need to consider the second
step in the coupling construction. Obviously, every n0 steps, we have probability at least
󰂃 of coupling (making Xn = X ′

n). Consider n = n0m where n0,m ∈ N,
P(Xn ∕= X ′

n) ≤ (1− 󰂃)m.

It follows from the coupling inequality (4.11) that

󰀂Pn(x, ·)− π(·)󰀂 ≤ (1− 󰂃)m = (1− 󰂃)
n
n0 .

Generally, by Proposition 2.13 (3), we have

󰀂Pn(x, ·)− π(·)󰀂 ≤ (1− 󰂃)

󰁭
n
n0

󰁮

∀n ∈ N.
□

4.4. Proof of Theorem 2.36. Prior to proving Theorem 2.31, let us first take a look
at Theorem 2.36 since we will need this results to establish Theorem 2.31.

Theorem 2.36. Consider a Markov chain on a state space X , having transition kernel
P . Suppose there is C ⊂ X , h : X × X → [1,∞), a probability distribution ν(·) on X ,
α > 1, n0 ∈ N, and 󰂃 > 0, such that the minorisation condition (2.7) and bivariate drift
condition (2.9). Define Bn0 by (2.10). Then for any joint initial distribution L(X0, X

′
0),

and any integers 1 ≤ j ≤ k, if {Xn} and {X ′
n} are two copies of the Markov chain started

in the joint initial distribution L(X0, X
′
0), then󰀐󰀐L(Xk)− L(X ′

k)
󰀐󰀐 ≤ (1− 󰂃)j + α−k(Bn0)

j−1E[h(X0, X
′
0)].

In particular, by choosing j = ⌊rk⌋ for sufficiently small r > 0, we obtain an explicit,
quantitative convergence bound which goes to 0 exponentially quickly as k → ∞.

Proof of Theorem 2.36. We first consider the case n0 = 1 in the minorisation condition
for the small set C. In this case, we write Bn0 as B.

Let
Nk := #{m : 0 ≤ m ≤ k, (Xm, X ′

m) ∈ C × C},
and let τ1, τ2, . . . be the times of the successive visits of {(Xn, X

′
n)} to C ×C. Then for

any integer j with 1 ≤ j ≤ k,

(4.12) P(Xk ∕= X ′
k) = P(Xk ∕= X ′

k, Nk−1 ≥ j) +P(Xk ∕= X ′
k, Nk−1 < j).

Then, we are going to bound the probability that Xn and X ′
n are unequal by bounding

the two terms on the right hand side of the above equation.
Notice that the event (Xk ∕= X ′

k, Nk−1 ≥ j) implies that after at least j times entering
C×C before the k−1-th step (including k−1), the Markov chains have not successfully
coupled. This indicates, whenever the Markov chains enter C × C before the k − 1-the
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step, the chains are updated using (b) of condition 2 in the coupling construction. Hence,
we have

P(Xk ∕= X ′
k, Nk−1 ≥ j) ≤ (1− 󰂃)j .

For the second term in (4.12), let

Mk := αkB−Nk−1h(Xk, X
′
k)1(Xk ∕= X ′

k), k = 0, 1, . . .

(where N−1 = 0). We want to prove {Mk} is supermartingale.

Lemma 4.1. We have

E[Mk+1|X0, . . . , Xk, X
′
0, . . . , X

′
k] ≤ Mk,

i.e. {Mk} is a supermartingale.

Proof of Lemma 4.1. If (Xk, X
′
k) ∕∈ C × C, then Nk = Nk−1. It follows that

E[Mk+1|X0, . . . , Xk, X
′
0, . . . , X

′
k] = αk+1B−Nk−1E[h(Xk+1, X

′
k+1)1(Xk+1 ∕= X ′

k+1)|Xk, X
′
k]

Notice that 1(Xk+1 ∕= X ′
k+1) ≤ 1(Xk ∕= X ′

k) since Xk+1 ∕= X ′
k+1 for (Xk, X

′
k) ∕∈ C × C

implies Xk ∕= X ′
k. We have

E[Mk+1|X0, . . . , Xk, X
′
0, . . . , X

′
k] ≤ αk+1B−Nk−1E[h(Xk+1, X

′
k+1)1(Xk ∕= X ′

k)|Xk, X
′
k]

= αk+1B−Nk−1E[h(Xk+1, X
′
k+1)|Xk, X

′
k]1(Xk ∕= X ′

k)

= Mkα
E[h(Xk+1, X

′
k+1)|Xk, X

′
k]

h(Xk, X
′
k)

≤ Mk

by the bivariate drift condition (2.9).
If (Xk, X

′
k) ∈ C ×C, then Nk = Nk−1 + 1. If Xk = X ′

k, we have Mk+1 = Mk = 0 and
then the supermartingale inequality holds trivially. Assume Xk ∕= X ′

k, we have

E[Mk+1|X0, . . . , Xk, X
′
0, . . . , X

′
k] = αk+1B−Nk−1−1E[h(Xk+1, X

′
k+1)1(Xk+1 ∕= X ′

k+1)|Xk, X
′
k]

= αk+1B−Nk−1−1(1− 󰂃)(R̄h)(Xk, X
′
k)

= Mk
α(1− 󰂃)(R̄h)(Xk, X

′
k)

h(Xk, X
′
k)B

;

≤ Mk

by the definition of B and the fact h(x, y) ≥ 1.
Therefore, {Mk} is a supermartingale. □
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Since B ≥ 1,

P(Xk ∕= X ′
k, Nk−1 < j) = P(Xk ∕= X ′

k, Nk−1 ≤ j − 1)

≤ P(Xk ∕= X ′
k, B

−Nk−1 ≥ B−(j−1))

= P(1(Xk ∕= X ′
k)B

−Nk−1 ≥ B−(j−1))

≤ Bj−1E[1(Xk ∕= X ′
k)B

−Nk−1 ](by the Markov’s inequality)

≤ Bj−1E[1(Xk ∕= X ′
k)B

−Nk−1h(Xk, X
′
k)](h(x, y) ≥ 1)

= α−kBj−1E[Mk](by defintion)

≤ α−kBj−1E[M0](by Lemma 4.1)

= α−kBj−1E[h(X0, X
′
0)](by defintion)

Therefore, we have

󰀂Pn(x, ·)− π(·)󰀂 ≤ P(Xn ∕= X ′
n)

= P(Xn ∕= X ′
n, Nn−1 ≥ j) +P(Xn ∕= X ′

n, Nn−1 < j)(by 4.12)

≤ (1− 󰂃)j + α−nBj−1E[h(X0, X
′
0)],

which prove Theorem 2.36 in the case where n0 = 1.
Finally, we consider the case that n0 > 1. In this case, we do not count the vis-

its to C × C corresponding to the “filling in ” times for going back and constructing
Xn+1, . . . , Xn+n0−1 in condition 2 of the coupling construction. Instead, we define Nk

as the number of visits to C ×C, and τi as the actual visit times, excluding any “filling
in” times. Moreover, replace Nk−1 with Nk−n0 in (4.12) and the definition of {Mk}. Let
t(k) be the latest time smaller than k which does not correspond to a “filling in” time.

Lemma 4.2. {Mt(k)} is a supermartingale, whereMt(k) = αt(k)B−Nt(k)−n0h(Xt(k), X
′
t(k))1(Xt(k) ∕=

X ′
t(k)).

Proof of Lemma 4.2. If (Xt(k), X
′
t(k)) /∈ C × C, then Nk = Nk−n0 and t(k) = k. In this

case, the proof follows exactly the same steps as in Lemma 4.1.
If (Xt(k), X

′
t(k)) ∕∈ C × C, we assume Xt(k) ∕= X ′

t(k) (otherwise it is trivial). Then

Nt(k) = Nt(k)−n0
+ 1 and the rest of the proof follows as in Lemma 4.1. □
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Since Bn0 ≥ 1,

P(Xt(k) ∕= X ′
t(k), Nt(k)−n0

< j) = P(Xt(k) ∕= X ′
t(k), Nt(k)−n0

≤ j − 1)

≤ P(Xt(k) ∕= X ′
t(k), B

−Nt(k)−n0
n0 ≥ B−(j−1)

n0
)

= P(1(Xt(k) ∕= X ′
t(k))B

−Nt(k)−n0
n0 ≥ B−(j−1)

n0
)

≤ Bj−1
n0

E[1(Xt(k) ∕= X ′
t(k))B

−Nt(k)−n0
n0 ](by the Markov’s inequality)

≤ Bj−1
n0

E[1(Xt(k) ∕= X ′
t(k))B

−Nt(k)−n0
n0 h(Xk, X

′
k)](h(x, y) ≥ 1)

= α−t(k)Bj−1
n0

E[Mt(k)](by defintion)

≤ α−t(k)Bj−1
n0

E[M0](by Lemma 4.1)

= α−t(k)Bj−1
n0

E[h(X0, X
′
0)](by defintion)

Combining the above inequality with (4.12) gives Theorem 2.36. □

4.5. Proof of Theorem 2.31. The proof of Theorem 2.31 relies on the previous theo-
rem (Theorem 2.36). Let’s first recall 2.31:

Theorem 2.31. Consider a φ-irreducible, aperiodic Markov chain with stationary dis-
tribution π(·). Suppose that minorisation condition 2.7 is satisfied for some C ⊂ X
and 󰂃 > 0 and probability measure ν(·). Suppose further that the drift condition 2.8 is
satisfied for some constants 0 < λ < 1 and b < ∞, and a function V : X → [1,∞] with
V (X) < ∞ for at least one x ∈ X (and hence for π-a.e.) x ∈ X . Then, the chain is
geometrically ergodic.

Proof of Theorem 2.31. We may assume WLOG that

(4.13) sup
x∈C

V (x) < ∞

due to the following lemma:

Lemma 4.3. Given a small set C and drift function V satisfying (2.7) and (2.8), we
can find a small set C0 ⊂ C such that (2.7) and (2.8) still hold (with the same n0, 󰂃 and
b, but with λ replaced by some λ0 < 1), and such that (4.13) also holds.

Proof of Lemma 4.3. Consider λ and b as defined in (2.8). Choose δ such that 0 < δ <
1− λ. Set λ0 = 1− δ and K = b

1−λ−δ , then define C0 as follows:

C0 := C ∩ {x ∈ X : V (x) ≤ K}.

Since C0 ⊂ C, (2.7) continues to hold over C0.
Then, we are going to check if (2.8) holds with C replaced by C0 and λ replaced by

λ0. For x ∈ C0, since δ < 1− λ, we have

(PV )(x) ≤ λV (x) + b ≤ (1− δ)V (x) + b = λ0V (x) + b.

Similarly, for x /∈ C, we have

PV (x) ≤ λV (x) ≤ (1− δ)V (x) = λ0V (x).
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Finally, we consider the case x ∈ C\C0. Since V (x) ≥ K, we have

(PV )(x) ≤ λV (x) + b

= (1− δ)V (x)− (1− λ− δ)V (x) + b

≤ (1− δ)V (x)− (1− λ− δ)K + b

= (1− δ)V (x)

= λ0V (x),

which shows the drift condition (2.8) holds with C replaced by C0 and λ replaced by
λ0. □

(4.13) together with (2.8) implies

sup
(x,y)∈C×C

Rh(x, y) < ∞,

which also ensures that the quantity Bn0 is finite.
Let h(x, y) = 1

2 [V (x) + V (y)] and d := infx∈C∁ V (x). Then, if d > b
1−λ − 1, the

bivariate drift condition will hold by Proposition 2.35. In this case, applying Theorem
2.36 proves Theorem 2.31.

If d ≤ b
1−λ − 1, then the previous argument is not applicable. Our strategy involves

enlarging the set C in a way that the updated value of d meets the condition d > b
1−λ−1,

and then using aperiodicity to demonstrate that this modified C remains a small set,
i.e. satisfies (2.7) with possibly larger n0 and smaller 󰂃. Then, applying Theorem 2.36
again proves Theorem 2.31.

To proceed, we choose any d′ > b
1−λ − 1. Let S := {x ∈ X : V (x) ≤ d′} and

C ′ := C ∪ S. Then, infx∈C′∁ V (x) > d′ > b
1−λ − 1. Hence, by Proposition 2.35, the

bivariate drift condition hold. It remains to show that C ′ is a small set:

Lemma 4.4. C ′is a small set.

To prove the above lemma, we need to introduce the concept of “petite set,” as follows:

Definition 4.5 (Petite Set). A subset C ⊂ X is petite (or (n0, 󰂃, ν)-petite), relative to
a Markov chain P , if there exists a positive integer n0, 󰂃 > 0, and a probability measure
ν(·) on X such that

n0󰁛

i=1

P i(x, ·) ≥ 󰂃ν(·), x ∈ C.

A petite set allows states in C to cover the minorisation measure 󰂃ν(·) at different
times i, while a small set restricts states in C to cover 󰂃ν(·) at a single, specific time.
Obviously, any small set is petite. However, the opposite does not hold true in general
since a petite set does not rule out periodic behaviour of the chain. For example,
some of the states x ∈ C cover 󰂃ν(·) only at odd times, and other only at even times.
Nevertheless, we can establish the following lemma:

Lemma 4.6. For an aperiodic, φ-irreducible Markov chain, all petite sets are small sets

The proof is provided in Appendix A.
With the help of Theorem 4.6, we can prove Lemma 4.4.
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Proof of Lemma 4.4. Choose N large enough that r := 1 − λNd′ > 0. Define τC :=
inf{n ≥ 1 : Xn ∈ C} as the first return time to C, and let Zn := λ−nV (Xn) and Wn :=
Zmin(n,τC). Then, the univariate drift condition implies that Wn is a supermartingale;
indeed, if τC ≤ n, then

E[Wn+1|X0, X1, . . . , Xn] = E[ZτC |X0, X1, . . . , Xn] = ZτC = Wn

while if τC > n, then Xn /∈ C and the univariate drift condition gives

E[Wn+1|X0, X1, . . . , Xn] = λ−(n+1)(PV )(Xn)

≤ λ−(n+1)λV (Xn)

= λ−nV (Xn)

= Wn.

Hence, for x ∈ S, using Markov’s inequality and the fact that V ≥ 1,

P(τC ≥ N |X0 = x] = P(λ−τC ≥ λ−N |X0 = x)

≤ λNE[λ−τC |X0 = x](Markov’s inequality)

≤ λNE[λ−τCV (XτC )|X0 = x](V (x) ≥ 1)

= λNE[WτC |X0 = x](by definition)

≤ λNE[W0|X0 = x](Wn is a supermartingale)

= λNV (x)

≤ λNd′.

It follows that
P(τC < N |X0 = x) ≥ r.

On the other hand, since C is (n0, 󰂃, ν(·))-small,

Pn0(x, ·) ≥ 󰂃ν(·), ∀x ∈ C.

Then,

N+n0󰁛

i=1

P i(x, ·) ≥
N+n0󰁛

i=1+n0

P i(x, ·)

=

N󰁛

i=1

P i+n0(x, ·)

≥
N󰁛

i=1

ˆ

y∈C
P i(x, dy)Pn0(y, ·)

≥
ˆ

y∈C

N󰁛

i=1

P i(x, dy)󰂃ν(·)

= P(τC ≤ N |X0 = x)󰂃ν(·)
≥ r󰂃ν(·)

Therefore, S ∪ C is petite. Then, by Lemma 4.6, C ′ = S ∪ C is small. □
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Since the minorisation condition and bivariate drift condition holds for C ′, applying
Theorem 2.36 proves Theorem 2.31.

□

5. Proof of Theorem 2.14

Theorem 2.14. Let X = {X1, . . . , } be a Markov chain on a state space X with count-
ably generated σ-algebra G. If X is φ-irreducible and aperiodic, and has a stationary
distribution π(·), then for π-a.e. x ∈ X ,

lim
n→∞

󰀂Pn(x, ·)− π(·)󰀂 = 0,

where 󰀂 · 󰀂 is the total variation distance.
In particular, limn→∞ Pn(x,A) = π(A) for all measurable A ⊂ X .

By the previous proofs, we can see that the coupling construction is particularly
effective for handling small sets. However, the above theorem does not assume the
existence of any small set. As a result, we need the following result about the existence
of small sets:

Theorem 5.1. Every φ-irreducible Markov chain, on a state space with countably gen-
erated σ-algebra, contains a small set C ⊂ X with φ(C) > 0. (In fact, each B ⊂ X
with φ(B) > 0 in turn contains a small set C ⊂ B with φ(C) > 0.) Furthermore, the
minorisation measure ν(·) may be taken to satisfy ν(C) > 0.

The key idea in proving Theorem 2.14 is to show that (Xn, X
′
n) will hit C × C in-

finitely often, which means they will have infinitely many opportunities to couple, with
probability ≥ 󰂃 > 0 of coupling each time. As a result, they will eventually couple with
probability 1, which proves Theorem 2.14.

Proof of Theorem 2.14. Let us start by presenting the following lemma about return
probabilities:

Lemma 5.2. Consider a Markov chain on a state space X , having stationary distribution
π(·). Suppose that for some A ⊂ X , we have Px(τA < ∞) > 0 for all x ∈ X . Then for
π-almost everywhere x ∈ X , Px(τA < ∞) = 1

Proof of Lemma 5.2. Suppose, for the sake of contradiction, that the stated conclusion
does not hold, i.e.

(5.14) π({x ∈ X : Px(τA = ∞) > 0}) > 0.

Then, we present the following claims (proved later):

Claim 1. Condition (5.14) implies that there are constants l, l0 ∈ N, δ > 0, and B ⊂ X
with π(B) > 0, such that

Px(τA = ∞, sup{k ≥ 1 : Xkl0 ∈ B} < l) ≥ δ, x ∈ B.

Proof of Claim 1. By (5.14), we can find δ1 and a subset B1 ⊂ X with π(B1) > 0 such
that Px(τA < ∞) ≤ 1− δ1 for all x ∈ B1 (Trivially, we can take {x ∈ X : Px(τA = ∞) >
0} as B1).

On the other hand, given that Px(τA < ∞) > 0 for all x ∈ X , we can find l0 ∈ N, δ2
and B2 ⊂ B1, such that π(B2) > 0 and P l0(x,A) ≥ δ2 for all x ∈ B2.
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Let η := #{k ≥ 1 : Xkl0 ∈ B2}. Recall that for any x ∈ B2, we have Px(τA = ∞) ≤
1− P l0(x,A) ≤ 1− δ2. This means, once the Markov chain enters the states within B2,
the probability of the event {τA = ∞} occurring becomes less than 1− δ2. If the chain
enters B2 for r times, the probability of {τA = ∞} happening would then be less than
(1− δ2)

r, i.e. for any r ∈ N and x ∈ X , we have

Px(τA = ∞, η = r) ≤ (1− δ2)
r.

In particular,

Px(τA = ∞, η = ∞) = 0.

Hence, for x ∈ B2, we have

Px(τA = ∞, η < ∞) = 1−Px(τA = ∞, η = ∞)−Px(τA < ∞) ≥ 1− 0− (1− δ1) = δ1.

If η < ∞, then sup{k ≥ 1 : Xkl0 ∈ B2} is finite. It follows that there is l ∈ N, δ > 0, and
B ⊂ B2 with π(B) > 0 such that

Px(τA = ∞, sup{k ≥ 1 : Xkl0 ∈ B2} < l) ≥ δ, ∀x ∈ B.

Finally, since B ⊂ B2, we have

sup{k ≥ 1 : Xkl0 ∈ B2} ≥ sup{k ≥ 1 : Xkl0 ∈ B},
which gives the desired result

Px(τA = ∞, sup{k ≥ 1 : Xkl0 ∈ B} < l) ≥ δ, x ∈ B.

□

Claim 2. Let B, l, l0, and δ be as in Claim 1. Let L := ll0, and S := sup{k ≥ 1 : XkL ∈
B}, using the convention that S = −∞ if the set {k ≥ 1 : XkL ∈ B} is empty. Then,
for all integers 1 ≤ r ≤ j,

ˆ

x∈X
π(dx)Px(S = r,XjL /∈ A) ≥ π(B)δ.

Proof of Claim 2. We have
ˆ

x∈X
π(dx)Px(S = r,XjL /∈ A) =

ˆ

x∈X
π(dx)

ˆ

y∈B
P rL(x, dy)Py(S = −∞, X(j−r)L /∈ A)

=

ˆ

y∈B

ˆ

x∈X
π(dx)P rL(x, dy)Py(S = −∞, X(j−r)L /∈ A)

=

ˆ

y∈B
π(dy)Py(S = −∞, X(j−r)L /∈ A)(By stationarity)

≥
ˆ

y∈B
π(dy)Py(τA = ∞, sup{k ≥ 1 : Xkl0 ∈ B} < l)

({sup{k ≥ 1 : Xkl0 ∈ B} < l} ⊂ {S = −∞}, {τA = ∞} ⊂ {X(j−r)L /∈ A})

≥
ˆ

y∈B
π(dy)δ(By Claim 1)

= π(B)δ

□
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With these two claims, we are ready to complete the proof of this lemma. By station-
arity, for any j ∈ N, we have

π(A∁) =

ˆ

x∈X
π(dx)P jL(x,A∁)

=

ˆ

x∈X
π(dx)Px(XjL /∈ A)

≥
j󰁛

r=1

ˆ

x∈X
π(dx)Px(S = r,XjL /∈ A)

≥
j󰁛

r=1

π(B)δ(by Claim 2)

= jπ(B)δ

For j > 1
π(B)δ , the above inequality gives π(A∁) > 1, which is impossible. This gives a

contradiction and proves Lemma 5.2. □

Next, let us first take a small set C as in Theorem 5.1. Returning to the coupling
construction (Xn, Yn), consider the set G ⊂ X × X , which consists of pairs (x, y) for
which P(x,y)(∃n ≥ 1 : Xn = Yn) is satisfied. By the coupling construction, if (X0, X

′
0) :=

(x,X ′
0) ∈ G, then limn→∞P(Xn = X ′

n) = 1. It follows from the coupling inequality
(4.11) that

lim
n→∞

󰀂Pn(x, ·)− π(·)󰀂 = 0,

which proves Theorem 2.14. It remains to show that

P((x,X ′
0) ∈ G) = 1, ∀π-a.e. x ∈ X .

Let Gx := {y ∈ X : (x, y) ∈ G} for x ∈ X and G := {x ∈ X : π(Gx) = 1}. It suffices
to prove the following lemma:

Lemma 5.3. π(G) = 1.

Proof. To begin, we are going to show that (π × π)(G) = 1. Since ν(C) > 0, as proved
in Theorem 5.1, it follows from the minorisation condition and Lemma A.1 that, for
any (x, y) ∈ X × X , the joint chain has a positive probability of eventually entering
C × C. According to Lemma 5.2, the joint chain will return to C × C with probability
1 for π-a.e. Once the joint chain reaches C × C, then it will update from R, which is
absolutely continuous with respect to π× π, if the joint chain is not coupled. Again, by
Lemma 5.2, the chain will return to C×C with probability 1. As a result, the chain will
repeatedly revisit C × C with probability 1, until such a time that Xn = X ′

n. By the
coupling construction, each time of the joint chain being in C × C yields a probability
of at least 󰂃 for Xn = X ′

n. Consequently, we will eventually reach Xn = X ′
n, thereby

showing that (π × π)(G) = 1.

Assume that π(G) < 1. Then, since π(Gx) < 1 on G
∁
,

(π × π)(G∁) =

ˆ

X
π(dx)π(G∁

x) ≥
ˆ

G
∁
π(dx)(1− π(Gx) > 0,
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contradicting the fact that (π × π)(G) = 1.
□

□

6. Central Limit Theorems for Markov Chains

Let’s consider a Markov chain {Xn} on a state space X , which is φ-irreducible and
aperiodic, and has a stationary distribution π(·). We start the chain from stationarity,
i.e. X0 follows the distribution π(·). Additionally, let h : X → R be a functional with a
finite stationary mean denoted as π(h) :=

´

x∈X h(x)π(dx).

Definition 6.1 (Central Limit Theorem). If there is some σ2 < ∞ such that the nor-

malized sum n− 1
2
󰁓n

i=1[h(Xi)− π(h)] converges weakly to a N(0,σ2) distribution, then
h is said to satisfy a Central Limit Theorem (CLT, or

√
n-CLT ).

We allow for the special case σ2 = 0, corresponding to the constant 0.

Under the assumptions of reversibility or uniform integrability, we find that

(6.15) σ2 = lim
n→∞

1

n
E

󰀵

󰀷
󰀣

n󰁛

i=1

[h(Xi)− π(h)]

󰀤2
󰀶

󰀸 ,

and also σ2 = τVarπ(h), where τ :=
󰁓

k∈ZCorr(h(X0), h(Xk)) represents the integrated
autocorrelation time. In the reversible case, this is also related to spectral measures;
however, we will not discuss this topic in this paper. It is evident that σ2 < ∞ requires
that Varπ(h) < ∞, i.e. π(h2) < ∞.

These Central Limit Theorems (CLTs) play a crucial role in understanding the errors
originating from Monte Carlo estimation, making them an important topic of discussion
in the MCMC literature.

6.1. A Negative Result. In this subsection, we will illustrate that where CLTs might
not hold, even when π(h2) < ∞. For example, Metropolis-Hastings algorithms with very
low acceptance probabilities can lead to τ = ∞, resulting in the failure of

√
n-CLTs. To

elaborate further, we will establish the following result:

Lemma 6.2. Consider a reversible Markov chain, beginning in its stationary distribution
π(·), and let r(x) := P(Xn+1 = Xn|Xn = x). Then if

(6.16) lim
n→∞

nπ([h− π(h)]2rn) = ∞,

then a
√
n-CLT does not hold for h.
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Proof. We compute directly from (6.15) that

σ2 = lim
n→∞

1

n
E

󰀵

󰀷
󰀣

n󰁛

i=1

[h(Xi)− π(h)]

󰀤2
󰀶

󰀸

≥ lim
n→∞

1

n
E

󰀵

󰀷
󰀣

n󰁛

i=1

[h(Xi)− π(h)]

󰀤2

1(X0 = X1 = · · · = Xn)

󰀶

󰀸

= lim
n→∞

1

n
E
󰁫
(n[h(Xi)− π(h)])2 r(X0)

n
󰁬

= lim
n→∞

1

n
· n2E

󰀅
(h(Xi)− π(h))2r(X0)

n
󰀆

= lim
n→∞

nπ
󰀃
[h− π(h)]2rn

󰀄

= ∞(By (6.16))

Therefore, a
√
n-CLT does not exist. □

The next question to address is what conditions on the transitions of the Markov
chain, as well as on the functional h, ensure a

√
n-CLT for h.

6.2. Conditions Guaranteeing CLTs. In this subsection, we introduce several posi-
tive results about the existence of CLTs and some of these results will be proved in the
following subsections.

For i.i.d. samples, the classical theory ensures a CLT when the second moments are
finite. For uniformly ergodic chains, an identical result exists:

Theorem 6.3. If a Markov chain with stationary distribution π(·) is uniformly ergodic,
then a

√
n-CLT holds for h whenever π(h2) < ∞.

Then, it is natural to consider the scenario where a chain is geometrically ergodic but
not uniformly ergodic. Interestingly, a similar result exists:

Theorem 6.4. If a Markov chain with stationary distribution π(·) is geometrically
ergodic, then a

√
n-CLT holds for h whenever π(|h|2+δ) < ∞ for some δ > 0.

The above result can be strengthened if the chain is reversible:

Theorem 6.5. If the Markov chain is geometrically ergodic and reversible, then a
√
n-

CLT holds for h whenever π(h2) < ∞.

It is worth pondering over the following open issue: Consider a Markov chain that is
geometrically ergodic, but not necessarily reversible. Let h : X → R where π(h2) < ∞.
Does a

√
n-CLT always hold for h in this context?

To explore possible solutions for this open question, a promising starting point could
involve examining chains of the form P = P1P2, where each of P1 and P2 is reversible
with respect to π(·), but P is not reversible. Showing that

√
n-CLT’s must exist whenever

π(h2) < ∞ may gives interesting results.
On the other hand, demonstrating a counterexample would involve a Markov chain

that is geometrically ergodic but not reversible, and a functional h : X → R such that
π(h2) < ∞ but π(|h|2+δ) = ∞ for all δ > 0, which does not have a

√
n-CLT.



GENERAL STATE SPACE MARKOV CHAINS 45

Olle Häggström has produced a counterexample showing that the answer is no in
general; see [Hä05] for details.

If P is reversible, then as demonstrated in the following theorem, the only requirement
for the establishment of a

√
n-CLT is the finiteness of σ2:

Theorem 6.6. For a φ-irreducible and aperiodic Markov chain which is reversible, a√
n-CLT holds for h whenever σ2 < ∞, where σ2 is given by (6.15).

In a different direction, we have the following:

Theorem 6.7. Suppose a Markov chain is geometrically ergodic, satisfying the univari-
ate drift condition (2.8) for some V : X → [1,∞] which is finite π-a.e. Let h : X → R
with h2 ≤ KV for some K < ∞. Then a

√
n-CLT holds for h.

Before we proceed with the proofs of the previously mentioned results, let us consider
the following propositions, which could have practical significance.

Proposition 6.8. The above CLT results (Theorem 6.3 - Theorem6.7) all remain true if
instead of beginning with X0 ∼ π(·), as above, we begin with X0 = x, for π-a.e. x ∈ X .

Proof. The assumptions of the above CLT results all indicate that the chain is φ-
irreducible and aperiodic, with stationary distribution π(·). Hence, by Theorem 2.14,
the chain converges to π(·) from π-a.e. x ∈ X . Fix such an x ∈ X and an arbitrary
󰂃 > 0. There exists some m ∈ N such that

󰀂Pm(x, ·)− π(·)󰀂 ≤ 󰂃, ∀n ≥ m.

Then, by Proposition 2.13 (7), we can jointly construct copies {Xn} and {X ′
n} of the

Markov chain, starting from X0 = x and X ′
0 ∼ π(·), such that

P(Xn = X ′
n, ∀n ≥ m) ≥ 1− 󰀂Pm(x, ·)− π(·)󰀂 ≥ 1− 󰂃.

Therefore, for any A ⊂ X ,

lim sup
n→∞

󰀏󰀏󰀏󰀏󰀏P
󰀣
n− 1

2

n󰁛

i=1

[h(Xi)− π(h)] ∈ A

󰀤
−P

󰀣
n− 1

2

n󰁛

i=1

[h(X ′
i)− π(h)] ∈ A

󰀤󰀏󰀏󰀏󰀏󰀏

= lim sup
n→∞

󰀏󰀏󰀏󰀏󰀏P
󰀣
n− 1

2

n󰁛

i=1

[h(Xi)− π(h)] ∈ A,Xn = X ′
n

󰀤
+P

󰀣
n− 1

2

n󰁛

i=1

[h(Xi)− π(h)] ∈ A,Xn ∕= X ′
n

󰀤

−P

󰀣
n− 1

2

n󰁛

i=1

[h(X ′
i)− π(h)] ∈ A,Xn = X ′

n

󰀤
−P

󰀣
n− 1

2

n󰁛

i=1

[h(X ′
i)− π(h)] ∈ A,Xn ∕= X ′

n

󰀤󰀏󰀏󰀏󰀏󰀏

≤ lim sup
n→∞

󰀏󰀏󰀏󰀏󰀏P
󰀣
n− 1

2

n󰁛

i=1

[h(Xi)− π(h)] ∈ A,Xn ∕= X ′
n

󰀤
−P

󰀣
n− 1

2

n󰁛

i=1

[h(X ′
i)− π(h)] ∈ A,Xn ∕= X ′

n

󰀤󰀏󰀏󰀏󰀏󰀏

≤1−P(Xn = X ′
n, ∀n ≥ m)

≤1− (1− 󰂃)

=󰂃
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Since 󰂃 > 0 is arbitrary, and P
󰀓
n− 1

2
󰁓n

i=1[h(X
′
i)− π(h)]

󰀔
converges weakly to N(0,σ2)

by the previous CLT results, we have P
󰀓
n− 1

2
󰁓n

i=1[h(Xi)− π(h)]
󰀔
, which starts from

x ∈ X , also follows
√
n-CLTs. □

Proposition 6.9. Theorem 6.3 and Theorem 6.4 remain true if the chain is periodic of
period d ≥ 2, provided that the d-step chain P ′ = P d|X1 (as in the proof of Corollary
2.18) has all the other properties required of P in the original result (i.e. φ-irreducibility,
and uniform or geometric ergodicity), and that the function h still satisfies the same
moment condition.

Proof. Recall the proof of Corollary 2.18, let P be the d-step chain defined on X1×. . .×Xd

and h(x0, . . . , xd−1) := h(x0)+· · ·+h(xd−1). Clearly, As in the proof of Corollary 2.18, let
P be the d-step chain defined on X1×. . .×Xd and h(x0, . . . , xd−1) := h(x0)+· · ·+h(xd−1).
Then P inherits the irreducibility and ergodicity properties of P ′:

• Irreducibility: Since P ′ is irreducible, there exists a σ-finite measure φ on X
such that for all A ⊂ X with φ(A) > 0, and for all x ∈ X , there exists a
positive integer n = n(x,A) such that (P ′)n(x,A) > 0. Then, consider the
measure φ := φ × (φP ) × · · · × (φP d−1). If A1 × · · · × Ad ⊂ X1 × · · · × Xd

φ(A1 × · · · × Ad) > 0, then φ(A1) > 0, (φP )(A2) > 0, . . . , (φP d−1)(Ad) > 0. It
follows from the φ-irreducibility of P ′ that there exists n ∈ N such that

(P )n((x1, . . . , xd), A1 × · · ·×Ad) > 0.

• Ergodicity: By [RR01b] Theorem 1, since P ′ is de-initializing for P , we have

󰀂P ((x1, . . . , xd), ·)− π(·)󰀂 ≤ 󰀂P ′(x, ·),π(·)󰀂.
Then, ergodicity follows.

Then, Applying Theorem 6.3 or 6.4 establishes a CLT for P and h, which implies a CLT
for P and h.

□
Remark 6.10. In particular, for any irreducible (or indecomposible) Markov chain
on a finite space (then it is uniformly ergodic), we can deduce from Theorem 6.3 and
Proposition 6.9 that a

√
n-CLT is always valid since π(h2) is always finite.

6.3. CLT Proofs using the Poisson Equation. In this subsection, we will prove
some of the previously mentioned results using the Poisson euqation. We will start by
introducing a version of the martingale central limit theorem, a theorem widely covered
in standard textbooks.

Theorem 6.11. Let {Zn} be a stationary ergodic sequence, with E[Zn|Z1, . . . , Zn−1] =

0 and E[(Zn)
2] < ∞. Then, n− 1

2
󰁓n

i=1 Zi converges weakly to N(0,σ2) distribution for
some σ2 < ∞.

To make use of Theorem 6.11, consider the Poisson equation h − π(h) = g − Pg. A
useful result is the following:

Theorem 6.12. Let P be a transition kernel for an aperiodic, φ-irreducible Markov
chain on a state space X , having stationary distribution π(·), with X0 ∼ π(·). Let
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h : X → R with π(h2) < ∞, and suppose there exists g : X → R with π(g2) < ∞
which solves the Poisson equation, i.e. such that h− π(h) = g − Pg. Then h satisfies a√
n-CLT.

Proof. Let Zn := g(Xn) − Pg(Xn−1). Then, since the Markov chain starts from the
stationary distribution, we have Xn ∼ π(·) and {Zn} is stationary. Additionally, {Z}n
inherits irreducibility and aperiodicity from {Xn}. It follows from Theorem 2.14 that
the Markov chain converges asymptotically, which implies {Zn} is ergodic. We notice
that

E[g(Xn)− Pg(Xn−1)|X0, . . . , Xn−1] = E[g(Xn)|Xn−1]− Pg(Xn−1)

= Pg(Xn−1)− Pg(Xn−1)

= 0.

Since Z1, . . . , Zn−1 ∈ σ(X0, . . . , Xn−1), we have

Eπ[Zn|Z1, . . . , Zn−1)] = E[g(Xn)− Pg(Xn−1)|X0, . . . , Xn−1] = 0.

Then, by Theorem 6.11, n− 1
2
󰁓n

i=1 Zi converges to N(0,σ2). Moreover,

n− 1
2

n󰁛

i=1

[h(Xi)− π(h)] = n− 1
2

n󰁛

i=1

[g(Xi)− Pg(Xi)]

(by the Poisson equation)

= n− 1
2

n󰁛

i=1

[g(Xi)− Pg(Xi−1)] + n− 1
2Pg(X0)− n− 1

2Pg(Xn)

= n− 1
2

n󰁛

i=1

Zi + n− 1
2Pg(X0)− n− 1

2Pg(Xn).

Since n− 1
2Pg(X0) and n− 1

2Pg(Xn) converge to zero in probability as n → ∞ and

n− 1
2
󰁓n

i=1 Zi converges weakly toN(0,σ2), we have built an
√
n-CLT for h, i.e. n− 1

2
󰁓n

i=1[h(Xi)−
π(h)] converges weakly to N(0,σ2). □

Corollary 6.13. Let P be a transition kernel for an aperiodic, φ-irreducible Markov
chain on a state space X , having stationary distribution π(·), with X0 ∼ π(·). Let

h : X → R with π(h2) < ∞. If
󰁓∞

k=0

󰁳
π ((P k[h− π(h)])2) < ∞, then h satisfies a√

n-CLT.

Proof. Let g(x) :=
󰁓∞

k=0 gk(x), and

gk(x) := P kh(x)− π(h) = P k[h− π(h)](x),
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where by convention P 0h(x) = h(x). By direct computation, we have

(g − Pg)(x) =

∞󰁛

k=0

gk(x)−
∞󰁛

k=0

Pgk(x)

=

∞󰁛

k=0

gk(x)−
∞󰁛

k=0

P k+1h(x)− Pπ(h)󰁿 󰁾󰁽 󰂀
=π(h)

=

∞󰁛

k=0

gk(x)−
∞󰁛

k=0

gk+1(x)

= g0(x)

= P 0h(x)− π(h)

= h(x)− π(h),

and the Poisson equation is satisfied. Then, we are going to show that π(g2) < ∞. Since
the L2(π) norm satisfies the triangle inequality,

󰁳
π(g2) =

󰁹󰁸󰁸󰁸󰁷π

󰀵

󰀷
󰀣 ∞󰁛

k=0

gk

󰀤2
󰀶

󰀸 ≤
∞󰁛

k=0

󰁴
π(g2k) =

∞󰁛

k=0

󰁴
π ((P k[h− π(h)])2) < ∞.

It follows from Theorem 6.12 that h satisfies a
√
n-CLT. □

In the rest of this subsection, we will provide the proofs for Theorem 6.5 and Theorem
6.7.

Theorem 6.5. If the Markov chain is geometrically ergodic and reversible, then a
√
n-

CLT holds for h whenever π(h2) < ∞.

Proof of Theorem 6.5. Consider the usual L2(π) operator norm for P , which is

󰀂P󰀂L2(π) = sup
π(f)=0
π(f2)=1

π
󰀃
(Pf)2

󰀄
= sup

π(f)=0
π(f2)=1

ˆ

x∈X

󰀕
ˆ

y∈X
f(y)P (x, dy)

󰀖2

π(dx).

It is shown in Theorem 2 of [RR97] that reversible chains are geometrically ergodic if
and only if they satisfy

󰀂P󰀂L2(π) < 1.

It follows that there is β < 1 such that

π((Pf)2) ≤ β2π(f2), ∀ f with π(f) = 0 and π(f2) < ∞.

Furthermore, since reversibility implies self-adjointness of P in L2(π), we have

󰀂P k󰀂L2(π) = 󰀂P󰀂kL2(π).

By the above inequality and equality, we have

π((P kf)2) ≤ β2kπ(f2).
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Let gk = P kh − π(h) as in the proof of Corollary 6.13. Then, since π(g) = 0 and
π(g2) < ∞, we have

π((gk)
2) ≤ β2kπ((h− π(h))2).

It follows that
∞󰁛

k=0

󰁴
π(g2k) ≤

∞󰁛

k=0

󰁴
β2kπ((h− π(h))2) =

󰁳
π((h− π(h))2)

∞󰁛

k=0

βk =

󰁳
π((h− π(h))2)

1− β
< ∞.

Therefore, the result follows from Corollary 2.18. □
Theorem 6.7. Suppose a Markov chain is geometrically ergodic, satisfying the univari-
ate drift condition (2.8) for some V : X → [1,∞] which is finite π-a.e. Let h : X → R
with h2 ≤ KV for some K < ∞. Then a

√
n-CLT holds for h.

Proof of Theorem 6.7. Proposition 1 in [RR97] builds the equivalence between geometric
ergodicity and V -uniformly ergodic. This equivalence implies that there is C < ∞ and
ρ < 1 such that for x ∈ X and |f | ≤ V ,

|Pnf(x)− π(f)| ≤ CV (x)ρn.

Let gk = P k[h − π(h)] as in the proof of Corollary 6.13. By the Cauchy-Schwartz
inequality,

(gk)
2 = (P k[h− π(h)])2 ≤ P k([h− π(h)]2).

□
6.4. Proof of Theorem 6.4.

Theorem 6.4. If a Markov chain with stationary distribution π(·) is geometrically
ergodic, then a

√
n-CLT holds for h whenever π(|h|2+δ) < ∞ for some δ > 0.

In this subsection, we will use regeneration theory to to provide a relatively straight-
forward proof of Theorem 6.4.

Th regeneration construction is very similar to the coupling construction, except now
just for a single chain {Xn}. A small set is still crucial, as in the coupling construction.
An important fact we will leverage is the equivalence of the minorization condition
(2.7) and the univariate drift condition (2.8) with geometric ergodicity (also equivalent
to V -uniform ergodicity); this fact follows form Theorem 15.0.1, Theorem 16.0.1, and
Theorem 14.3.7 of [MT93], and Proposition 1 of [RR04].

The regeneration construction is given as follows:
Begin with X0 = x where x ∈ X , and set n = 0. Then, repeat the following loop

forever.
Beginning of the loop. Given Xn

(1) If Xn ∈ C, then:
(a) With probability 󰂃, choose Xn+n0 ∼ ν(·);
(b) Else, with probability 1− 󰂃, choose

Xn+n0 ∼ R(Xn, ·).
In the case n0 > 1, for completeness, we go back and construct Xn +
1, . . . , Xn+n0−1 from their correct conditional distributions given X0 and
Xn+n0 .
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Replace n by n+ n0.
(2) Else, choose Xn+1 ∼ P (Xn, ·).

Then return to the beginning of the loop.
Consider the regeneration times T1, T2, . . ., which are the moments when XTi ∼ ν(·)

as in Condition 1 of the regeneration construction.
Thus, the regeneration times occur with probability 󰂃 precisely n0 iterations after each

time the chain enters C (not counting those entries of C which are within n0 of a previous
regeneration attempt). Obviously, provided the chain enters C, the regeneration times
occur with probability 󰂃 precisely n0 iterations (excluding those entries of C which are
within the “filling in” times for going back and constructing Xn+1, . . . , Xn+n0).

We can break sums
󰁓n

i=0[h(Xi)− π(h)] into sums of independent and identically dis-
tributed (i.i.d.) “tours”. Indeed, take the random variables Yj := (XTj , XTj+1, . . . , XTj+1−1)
as a complete tour; it is not hard to see that Y1, Y2, . . . begin from the same fixed distri-
bution ν(·) and are i.i.d. Let T0 = 0, and let r(n) := sup{i ≥ 0 : Ti ≤ n}. We can break
the sum as

(6.17)

n󰁛

i=1

[h(Xi)− π(h)] =

r(n)󰁛

j=1

Tj+1−1󰁛

i=Tj

[h(Xi)− π(h)] + E(n),

where E(n) := X0 + · · · + XT1−1 + XTr(n)+1
+ · · · + Xn is an error term which collects

the terms corresponding to the first tour X0, . . . , XT1−1 and the incomplete final tour
XTr(n)+1, . . . , Xn.

By the elementary renewal theory,

r(n)

n
→ 󰂃π(C) in probability.

If each sum has finite second moment and the error term is bounded in probability, we
can apply classic central limit theorem and then prove Theorem 6.4.

Lemma 6.14. E(n) is Op(1) as n → ∞.

Proof. Geometric ergodicity implies (as in the proof of Lemma 4.6) exponential tails on
the return times to C, i.e. there exists N ∈ N such that

P(τC ≥ n|X0 = x) ≤ λnV (x), ∀n ≥ N.

It then follows that

(6.18) Eπ[β
T1 ] < ∞, and E[βTj+1−Tj ] < ∞.

By the above inequalities, standard renewal theory ensures that E(n) has limiting distri-
bution as n → ∞. Hence, E(n) is Op(1) as n → ∞ and can be neglected when multiplied

by n− 1
2 . □

Since each tour starts from the distribution ν(·), the finiteness of second moments of
each term in (6.17) can be concluded by the following lemma:

Lemma 6.15.
´

x∈X ν(dx)E

󰀗󰀓󰁓T1−1
i=0 [h(Xi − π(h)]

󰀔2 󰀏󰀏󰀏X0 = x

󰀘
< ∞.
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Proof. Note that

π(·) =
ˆ

x∈X
π(dx)P (x, ·)(By stationarity)

≥
ˆ

x∈C
π(dx)P (x, ·)(C ⊂ X )

≥ π(C)󰂃ν(·).(C is small)

It follows that

ν(dx) ≤ π(dx)

ν(C)󰂃

and then

ˆ

x∈X
π(dx)E

󰀵

󰀷
󰀣

T1−1󰁛

i=0

[h(Xi)− π(h)]

󰀤2 󰀏󰀏󰀏X0 = x

󰀶

󰀸

≤
ˆ

x∈X

π(dx)

ν(C)󰂃
E

󰀵

󰀷
󰀣

T1−1󰁛

i=0

[h(Xi)− π(h)]

󰀤2 󰀏󰀏󰀏X0 = x

󰀶

󰀸 .

It suffices to prove that the right hand side is finite, which is equivalent to prove

ˆ

x∈X
E

󰀵

󰀷
󰀣

T1−1󰁛

i=0

[h(Xi)− π(h)]

󰀤2 󰀏󰀏󰀏X0 = x

󰀶

󰀸π(dx) < ∞.

For notational simplicity, set Hi = h(Xi)− π(h). We have

󰀣
T1−1󰁛

i=1

[h(Xi)− π(h)]

󰀤2

=

󰀣 ∞󰁛

i=0

1i<T1Hi

󰀤2

.

Then, by Cauchy-Schwartz inequality E[AB] ≤
󰁳

E[A2]E[B2],

Eπ

󰀵

󰀷
󰀣

T1−1󰁛

i=1

[h(Xi)− π(h)]

󰀤2
󰀶

󰀸 = Eπ

󰀵

󰀷
󰀣 ∞󰁛

i=0

1i<T1Hi

󰀤2
󰀶

󰀸

=

∞󰁛

i=0

∞󰁛

j=0

Eπ [(1i<T1Hi)(1j<T1Hj)]

≤
∞󰁛

i=0

∞󰁛

i=0

󰁴
Eπ [(1i<T1Hi)2]Eπ [(1j<T1Hj)2]

≤
󰀣 ∞󰁛

i=1

󰁴
Eπ

󰀅
1i<T1H

2
i

󰀆
󰀤2

(6.19)

□
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Let p = 1+ 2
δ and q = 1+ δ

2 . We have pq = 2+ 2
δ +

δ
2 = p+ q ⇒ 1

p +
1
q = 1. Then, by

Holder’s inequality,

(6.20) Eπ[1i<T1H
2
i ] ≤ Eπ[1i<T1 ]

1
pEπ[|Hi|2q]

1
q .

Since X0 ∼ π(·), Eπ[|Hi|2q] is a constant, independent of i, say K := Eπ[|Hi|2q]. Addi-
tionally, K < ∞ since π(|h|2+δ) < ∞.

Then, we again take a look at (6.18). By Markov’s inequality,

(6.21) Eπ[10≤i<T1 ] ≤ Eπ[1βT1>βi ] ≤ β−iEπ[β
T1 ].

Combining (6.19) and (6.20) gives

Eπ

󰀵

󰀷
󰀣

T1−1󰁛

i=0

[h(Xi)− π(h)]

󰀤2
󰀶

󰀸 ≤
󰀣 ∞󰁛

i=1

󰁴
Eπ[1i<T1 ]

1
pEπ[|Hi|2q]

1
q

󰀤2

=

󰀣
K

1
2q

∞󰁛

i=0

󰁴
Eπ[1i<T1 ]

1
p

󰀤2

≤
󰀣
K

1
2q

∞󰁛

i=0

󰁴
(β−iEπ[βT1 ])

1
p

󰀤2

(by (6.21))

=

󰀣
K

1
2qEπ[β

T1 ]
1
2p

∞󰁛

i=0

β
− i

2p

󰀤2

=

󰀣
K

1
2qEπ[β

T1 ]
1
2p

1− β
− 1

2p

󰀤2

(since β
1
2p > 1)

< ∞(by (6.18) and finiteness of K)

7. Optimal Scaling and Weak Convergence

In this section, we will provide a brief overview of another application of probability
theory to MCMC, known as the optimal scaling problem. However, we will only give an
introduction and not delve into extensive details here.

Sometimes, the Metropolis-Hastings algorithms might be very inefficient, i.e. it will
take too many iterations to reach the target distribution.

Let πu : Rd → [0,∞) be a continuous d-dimensional density (d large). Consider
running a random walk Metropolis algorithm for πu, with proposal distribution given by
Q(x, ·) = N(x,σ2Id). The acceptance probability simplifies to

α(x, y) = min

󰀝
1,

πu(y)

πu(x)

󰀞
.

We are interested in the following question: How do we determine the appropriate
value for σ?

If σ2 is chosen to be too small, then the proposal Yn+1 generated from Xn will be

very close to Xn. Due to continuity, πu(y)
πu(x)

will be relatively large, resulting in a high

acceptance probability. Consequently, the next state Xn+1 will either be very closed to
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Xn (accept Xn+1 = Yn+1), or stay at Xn (reject, and set Xn+1 = Xn). Therefore, the
chain will moves very slowly, leading to very poor performance.

On the other hand, if σ2 is chosen to be too large, then the generated proposal Yn+1

will often be far from the current state Xn. This can be advantageous since accepting
such a big jump would pushes the Markov chain forward. However, again by continuity,
the acceptance probability will be quite low. Hence, unless the chain happens to be very
“lucky”, most of these large-step proposals will be rejected, causing the chain becoming
“trapped” in the same state for long periods of time. This scenario would also result in
poor performance.

Therefore, we aim to pick values that satisfy a Goldilocks Principle: σ should be “just
right”, neither too small nor too large.

To prove theorems about this, assume for now that

(7.22) πu(x) =

d󰁜

i=1

f(xi),

i.e. that the density πu can be factored into i.i.d. components, each with (smooth)
density f . Although this assumption is quite restrictive and not practically useful,
as it would allow each coordinate to be simulated independently, it does provide a
framework for developing interesting theoretical insights. Also, assume that chain begins
in stationarity, i.e. that X0 ∼ π(·).

7.1. The Random Walk Metropolis (RWM) Case. Define I := E[((log f(Z))′)2]
where Z ∼ f(z)dz. In this subsection, we will provide a brief overview of how to show

that under the assumption (7.22), as the dimension d → ∞, choosing σ2 ≈ (2.38)2

Id
becomes optimal. This choice results in an approximate asymptotic acceptance rate of
0.234.

We set σ2
d = l2

d , where l > 0 is to be determined later. Let {Xn} denote the Markov

chain generated by the random walk Metropolis algorithm for π(·) on Rd with proposal
distribution Q(x, ·) = N(x,σ2

dId). Additionally, let {N(t)}t≥0 be an Poisson process
with rate d which is independent of {Xn}. Finally, let

Zd := X
(1)
N(t), t ≥ 0,

where X(1) denotes the first component of a multidimensional random variable. Obvi-
ously, {Zd

t }t≥0 follows the first component of {Xn}, with time speeded up by the Poisson
process {N(t)}t≥0.

It is proved in [GGR97] that as d → ∞, the process {Zd
t }t≥0 converges weakly to a

diffusion process {Zt}t≥0, which satisfies the following stochastic differential equation:

dZt = h(l)
1
2dBt +

1

2
h(l)∇ log πu(Zt)dt,

where

h(l) = 2l2Φ

󰀣
−
√
Il

2

󰀤
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corresponds to the speed of the limiting diffusion, and Φ(x) = 1√
2π

´ x
−∞ e−

s2

2 ds is the

cumulative distribution function of N(0, 1).
In the paper [GGR97], the authors argue that as d → ∞, the optimal choice for l is

the value that maximizes the speed function h(l). Through straightforward calculations,
we find that the derivative of h(l) with respect to l is given by:

d

dl
h(l) =

4l√
2π

ˆ −
√
Il
2

−∞
e−

s2

2 ds− l2√
2π

√
Ie−

Il2

8 .

Setting this expression equal to zero yields two solutions: l = 0 and l ≈ 2.381√
I
. It turns

out the value l ≈ 2.381√
I

that maximizes the aforementioned speed function and results in

optimally fast mixing. It is also proved in [GGR97] that the expected acceptance rate

Ad(l) =

ˆ

Rd

ˆ

Rd

πd(x)α(x,y)q(x,y)dxdy

of the random walk Metropolis algorithm in d dimensions converges toA(l) = 2Φ
󰀓
−

√
Il
2

󰀔
.

Plug l = 2.38√
I

into A(l), we have A(l) ≈ 0.234, which gives the optimal asymptotic ac-

ceptance rate.

7.2. The Langevin Algorithm Case. Let J := E
󰁫
5((log f(Z))′′)2−3((log f(Z))′′)3

48

󰁬
where

again Z ∼ f(z)dz. In this subsection, we will provide a brief overview of how to show

that under the assumption (7.22), as the dimension d → ∞, choosing σ2 ≈ (0.825)2

J
1
2 d

1
3

becomes optimal. This choice results in an approximate asymptotic acceptance rate of
0.574.

We set σ2
d = l2

d
1
3
, where l > 0 is to be determined later. Let {Xn} denote the Markov

chain generated by the Langevin Algorithm for π(·) on Rd with proposal distribution

Q(x, ·) = N(x+ σ2

2 ∇ log πu(x),σ
2Id). Additionally, let {N(t)}t≥0 be an Poisson process

with rate d
1
3 which is independent of {Xn}. Finally, let

Zd := X
(1)
N(t), t ≥ 0,

where X(1) denotes the first component of a multidimensional random variable. Obvi-
ously, {Zd

t }t≥0 follows the first component of {Xn}, with time speeded up by the Poisson
process {N(t)}t≥0.

It is proved in [RR02] that as d → ∞, the process {Zd
t }t≥0 converges weakly to a

diffusion process {Zt}t≥0, which satisfies the following stochastic differential equation:

dZt = g(l)
1
2dBt +

1

2
g(l)∇ log πu(Zt)dt,

where

g(l) = 2l2Φ(−Jl3)

corresponds to the speed of the limiting diffusion.
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It can be shown that the value of l which maximizes the speed function g(l) gives an
optimal choice for l in the Langevin Algorithm. By direct computation, we find that the
derivative of g(l) with respect to l is given by:

d

dl
g(l) =

4l√
2π

ˆ −Jl3

−∞
e−

s2

2 ds− 6Jl4√
2π

e−
1
2
J2l6 .

Setting this expression equal to zero yields two solutions: l = 0 and l ≈ 0.825
3√J

. It turns

out the value l ≈ 0.825
3√J

that maximizes the aforementioned speed function and results in

optimally fast mixing. It is also proved in [RR02] that the expected acceptance rate of
the Langevin algorithm in d dimensions converges to A(l) = 2Φ

󰀃
−Jl3

󰀄
. Plug l = 0.825

3√J

into A(l), we have A(l) ≈ 0.574, which gives the optimal asymptotic acceptance rate.

7.3. Discussion of Optimal Scaling. The above result offers a straightforward guide-
line for tuning the RWM and the Langevin algorithm under the assumption (7.22): adjust
the proposal scaling to achieve an acceptance rate close to the optimal asymptotic rate
(0.234 for RWM, 0.574 for Langevin). Applying these results in practice is actually quite
simple, as computers can easily track the acceptance rate the the algorithm, allowing
users to adjust σ2 accordingly to achieve the desired acceptance rates. Furthermore,
adaptive MCMC algorithms, which speed up the efficiency, have been widely used in
recent times. That is, at each iteration, we allow MCMC algorithms to update the pro-
posal distribution Q(x, ·) according to specific rules, so that the optimal algorithm can
be learnt. However, since adaptive MCMC algorithms violate the Markov property, they
in general do not converge to the target distribution. Hence, adaptive MCMC algorithms
should be carefully implemented to ensure stationarity; see for example [GRS98].

The above results also shed light on the computational complexity of these algorithms.

To elaborate, we have σ2 = l2

d and thus the efficiency of RWM algorithms scales like

d−1; it follows that its computational complexity is O(d). Similarly, for the Langevin

algorithms, we have σ2 = l2

d
1
3
and thus its computational complexity is O(d

1
3 ), imply-

ing that the Langevin algorithms are more efficient than RWM algorithms in terms of
computational complexity.

It is worth highlighting that achieving an acceptance rate of exactly 0.234 (or 0.574)
isn’t essential for achieving good efficiency; a fairly close value is enough. Additionally,
in practice, we don’t need a very large dimensions in order to approach the asymptotic
behaviour; in fact, even in dimensions as small as 5 or 10, the value of 0.234 (or 0.574)
is close to being optimal. One can refer to the review article [RR01a] for further details.

The results presented above are established under the strong assumption 7.22. Numer-
ous researchers have attempted to relax and generalize this assumption. For example,
the optimal-scaling results are extended to inhomogeneously-scaled components of the

form πu(x) =
󰁔d

i=1Cif(Cixi), [Rob98] in [RR01a], to discrete hypercubes in [Rob98],
to finite-range homogeneous Markov random fields in [BR00]; in particular, the opti-
mal acceptance rate remains 0.234 (under appropriate assumptions) in all of these three
scenarios. On the other hand, if the chain starts far out in the tails of the stationary
distribution π(·), instead of X0 ∼ π(·), we will encounter some surprising behaviours; see
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[CRR05] for details. The true level of generality of these optimal scaling results remains
an open problem.

Appendix A. Proof of Lemma 4.6

Lemma 4.6. For an aperiodic, φ-irreducible Markov chain, all petite sets are small.

To prove this, we require a lemma related to aperiodicity

Lemma A.1. Consider an aperiodic Markov chain on a state space X , with stationary
distribution π(·). Let ν(·) be any probability measure on X . Assume that ν(·) ≪
π(·), and that for all x ∈ X , there is n = n(x) ∈ N and δ = δ(x) > 0 such that
Pn(x, ·) ≥ δν(·) (for example, this always holds if ν(·) is a minorisation measure for
a small or petite set which is reachable from all states). Let T := {n ≥ 1 : ∃δn >
0 s.t.

´

ν(x)Pn(x, ·) ≥ δnν(·)}, and assume that T is non-empty. Then there is n∗ ∈ N
with T ⊃ {n∗, n∗ + 1, n∗ + 2, . . .}.

Proof. Since Pn(x)(x, ·) ≥ δ(x)ν(·) for all x ∈ X , T is non-empty. If n,m ∈ T , we have
ˆ

x∈X
ν(dx)Pn+m(x, ·) =

ˆ

x∈X

ˆ

y∈X
ν(dx)Pn(x, dy)Pm(y, ·)

≥
ˆ

y∈X
δnν(dy)P

m(y, ·)(since n ∈ T )

≥ δnδmν(·).(since m ∈ T )

Therefore, if n,m ∈ T , n + m ∈ T . Then, we are going to show that gcd(T ) = 1 by
contradiction. Suppose to the contrary that gcd(T ) = d > 1. For 1 ≤ i ≤ d, define

Xi :=
󰁱
x ∈ X : ∃l ∈ N and δ > 0 s.t. P ld−i ≥ δν(·)

󰁲
.

Since Pn(x, ·) ≥ δν(·) holds for any x ∈ X , it follows from the assumption that
󰁖d

i=1Xi =
X . Set

S :=
󰁞

i ∕=j

(Xi ∩ Xj)

and

S := S ∪ {x ∈ X : ∃m ∈ N s.t. Pm(x, S) > 0}.
We can see that S is the union of common areas shared by at least two Xi’s and S is
the set of all elements in X which can reach S. Let X ′

i := Xi\S. X ′
i ’s are by definition

disjoint. We note that for x ∈ X ′
i , P (x, S) = 0; hence, P (x,

󰁖
iX ′

i ) = 1 − P (x, S) = 1.
In fact, for x ∈ X ′

i ,

P (x,X ′
i+1) = 1, if i < d,

and

P (x,X ′
1) = 1, if i = d.

Indeed, suppose x ∈ X ′
i for i < d, and P (x,X ′

j) > 0 for some j ∕= i + 1. Then, by
definition, there exists l ∈ N and δ > 0 such that

P ld−j(x, ·) ≥ δν(·).
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It follows that

P ld−(j−1)(x, ·) ≥
ˆ

y∈X ′
j

P (x, dy)P ld−j(y, ·)

≥
ˆ

y∈Xj

P (x, dy)δν(·)

= P (x,X ′
j)δν(·)

= δ′ν(·).(Let δ′ = P (x,X ′
j)δ > 0)

Hence, x ∈ X ′
j−1. However, X

′
j−1 and X ′

i are disjoint, contradiction.

We claim that for all m ≥ 0, νPm(Xi ∩ Xj) :=
´

X ν(dx)Pm(x,Xi ∩ Xj) = 0 whenever
i ∕= j. Indeed, if νPm(Xi ∩ Xj) > 0, then there would be S′ ⊂ X , l1, l2 ∈ N and δ > 0
such that for all x ∈ S′,

P l1d−i(x, ·) ≥ δν(·)
and

P l2d−i(x, ·) ≥ δν(·).
This implies l1d− i+m ∈ T and l2d−j+m ∈ T , contradicting the fact that gcd(T ) = d.
Setting m = 0 gives ν(Xi ∩ Xj) = 0 for i ∕= j and setting m > 0 gives ν({x ∈ X : m ∈
N s.t. Pm(x, S) ≥ δν(·)}) = 0. Then, by subadditivity of measures, we have

ν(S) ≤
󰁛

i ∕=j

ν(Xi ∩ Xj) + ν({x ∈ X : m ∈ N s.t. Pm(x, S) ≥ δν(·)}) = 0.

It follows that

ν

󰀣
d󰁞

i=1

X ′
i

󰀤
= ν

󰀣
d󰁞

i=1

Xi

󰀤
− ν(S) = ν(X ) = 1.

Additionally, since ν ≪ π, we have π
󰀓󰁖d

i=1X ′
i

󰀔
> 0. Since X ′

1, . . . , X
′
d have positive

π-measure, the Markov chain is periodic with periodic decomposition X ′
1, . . . , X

′
d. This

contradicts the the assumption of aperiodicity. Therefore, gcd(T ) = 1. By [Bil95]
p.541 (A numer theoretic fact), we can conclude that there is n∗ ∈ N such that T ⊃
{n∗, n∗ + 1, n∗ + 2, . . .} as desired. □

Then, we are ready for the proof of Lemma 4.6.

Proof. Suppose that R is a (n0, 󰂃, ν(·))-petite set. Then,
n0󰁛

i=1

P i(x, ·) ≥ 󰂃ν(·), ∀x ∈ R.

Let T be as in Lemma A.1. Since
n0󰁛

i=1

ˆ

x∈X
ν(dx)P i(x, ·) ≥ 󰂃ν(·), ∀x ∈ R.

Hence, there is at least one 1 ≤ i ≤ n0 satisfying
ˆ

x∈X
ν(dx)P i(x, ·) ≥ 󰂃ν(·), ∀x ∈ R,
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which implies T is not empty. By Lemma A.1, there is n∗ ∈ N such that for all n ≥ n∗,
there exists δn > 0 satisfying

ˆ

x∈X
ν(dx)Pn(x, ·) > δnν(·).

Let r := min {δn : n∗ ≤ n ≤ n∗ + n0 − 1}, and set N = n∗ + n0. Then, for x ∈ R,

PN (x, ·) ≥
n0󰁛

i=1

ˆ

y∈X
PN−i(x, dy)P i(y, ·)

≥
n0󰁛

i=1

ˆ

y∈R
rν(dy)P i(y, ·)

≥
ˆ

y∈R
rν(dy)󰂃ν(·) = r󰂃ν(·).

Therefore, R is (N, r󰂃, ν(·)-small. □
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