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Abstract

In this paper we study the ergodicity properties of some adaptive Monte Carlo
Markov chain algorithms (MCMC) that have been recently proposed in the literature.
We prove that under a set of verifiable conditions, ergodic averages calculated from the
output of a so-called adaptive MCMC sampler converge to the required value and can
even, under more stringent assumptions, satisfy a central limit theorem. We prove
that the conditions required are satisfied for the Independent Metropolis-Hastings
algorithm and the Random Walk Metropolis algorithm with symmetric increments.
Finally we propose an application of these results to the case where the proposal
distribution of the Metropolis-Hastings update is a mixture of distributions from a
curved exponential family.
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1 Introduction

Markov chain Monte Carlo (MCMC), introduced by Metropolis et al. (1953), is a popular
computational method for generating samples from virtually any distribution π. In par-
ticular there is no need for the normalising constant to be known and the space X ⊂ Rnx

(for some integer nx) on which it is defined can be high dimensional. We will hereafter
denote B(X) the associated countably generated σ-field. The method consists of simulat-
ing an ergodic Markov chain {Xk, k ≥ 0} on X with transition probability P such that π
is a stationary distribution for this chain, i.e πP = π. Such samples can be used e.g. to
compute integrals

π (ψ) :=
∫

X
ψ (x) π (dx) ,
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for some π-integrable function ψ : X → Rnψ , for some integer nψ, using estimators of the
type

Sn(ψ) =
1
n

n∑

k=1

ψ(Xk). (1)

In general the transition probability P of the Markov chain depends on some tuning
parameter, say θ defined on some space Θ ⊂ Rnθ for some integer nθ, and the convergence
properties of the Monte Carlo averages in Eq. (1) might highly depend on a proper choice
for these parameters.

We illustrate this here with the Metropolis-Hastings (MH) update, but it should be
stressed at this point that the results presented in this paper apply to much more general
settings (including in particular hybrid samplers, sequential or population Monte Carlo
samplers). The MH algorithm requires the choice of a proposal distribution q. In order
to simplify the discussion, we will here assume that π and q admit densities with respect
to the Lebesgue measure λLeb, denoted with an abuse of notation π and q hereafter. The
rôle of the distribution q consists of proposing potential transitions for the Markov chain
{Xk}. Given that the chain is currently at x, a candidate y is accepted with probability
α(x, y) defined as

α(x, y) =

{
1 ∧ π(y)

π(x)
q(y,x)
q(x,y) if π(x)q(x, y) > 0

1 otherwise,

where a∧b := min(a, b). Otherwise it is rejected and the Markov chain stays at its current
location x. The transition kernel P of this Markov chain takes the form for x, A ∈ X×B(X)

P (x,A) =
∫

A−x
α(x, x+z)q(x, x+z)λLeb(dz)+1A(x)

∫

X−x
(1−α(x, x+z))q(x, x+z)λLeb(dz),

(2)
where A−x := {z ∈ X, x+z ∈ A}. The Markov chain P is reversible with respect to π, and
therefore admits π as invariant distribution. Conditions on the proposal distribution q that
guarantee irreducibility and positive recurrence are mild and many satisfactory choices
are possible; for the purpose of illustration, we concentrate in this introduction on the
symmetric increments random-walk MH algorithm (hereafter SRWM), which corresponds
to the case where q(x, y) = q(x − y) for some symmetric probability density q. The
transition kernel of the Metropolis algorithm is then given for x,A ∈ X× B(X) by

P SRW
q (x,A) =

∫

A−x
(1 ∧ π(x + z)/π(x)) q(z) λLeb(dz)+

1A(x)
∫

X−x
(1− (1 ∧ π(x + z)/π(x))) q(z) λLeb(dz), x ∈ X, A ∈ B(X). (3)

A classical choice for the proposal distribution is q = φ0,Γ, where φµ,Γ is the density of
a multivariate normal distribution with mean µ and covariance matrix Γ. We will later
on refer to this algorithm as the N-SRWM. It is well known that either too small or too
large a covariance matrix will result in highly positively correlated Markov chains, and
therefore estimators Sn(ψ) with a large variance (Gelman et al. (1995) have shown that
the “optimal” covariance matrix (under restrictive technical conditions not given here)
for the N-SRWM is (2.382/nx)Γπ, where Γπ is the true covariance matrix of the target
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distribution). In practice this covariance matrix Γ is determined by trial and error, using
several realisations of the Markov chain. This hand-tuning requires some expertise and
can be time-consuming.

In order to circumvent this problem, in the context of the N-SRWM update described
above, Haario et al. (2001) have proposed to “learn Γ on the fly”. The Haario et al. (2001)
algorithm can be summarized as follows,

µk+1 = µk + γk+1(Xk+1 − µk) k ≥ 0 (4)
Γk+1 = Γk + γk+1((Xk+1 − µk)(Xk+1 − µk)T − Γk)

where

• Xk+1 is drawn from Pθk
(Xk, ·), where for θ = (µ,Γ), Pθ := P SRW

φ0,λΓ
with λ > 0 a

constant scaling factor depending only on the dimension of the state-space nx and
kept constant across the iterations,

• {γk} is a non-increasing sequence of positive stepsizes such that
∑∞

k=1 γk = ∞ and∑∞
k=1 γ1+δ

k < ∞ for some δ > 0 (Haario et al. (2001) have suggested the choice
γk = 1/k).

It was realised in Andrieu and Robert (2001) that such a scheme is a particular case of a
more general framework akin to stochastic control, combined with the use of the Robbins
and Monro (1951) procedure. More precisely, let θ = (µ,Γ) ∈ Θ, denote

H(x; θ) = (x− µ, (x− µ)(x− µ)T − Γ)T. (5)

With this notation, the recursion in (4) may be written in the standard Robbins-Monro
form as

θk+1 = θk + γk+1H(Xk+1, θk), k ≥ 0, (6)

with Xk+1 ∼ Pθk
(Xk, ·). This recursion is at the core of most of classical stochastic

approximation algorithms (see e.g. Benveniste et al. (1990), Duflo (1997), Kushner and
Yin (1997) and the references therein). This algorithm is well suited to solve the equation
h(θ) = 0 where, assuming that

∫
X |H(x, θ)|π(dx) < ∞, θ 7→ h(θ) is the so-called mean

field defined as
h(θ) :=

∫

X
H(x, θ)π(dx). (7)

For the present example, assuming that
∫
X |x|2π(dx) < ∞, one can easily check that

h(θ) =
∫

X
H(x, θ)π(dx) = (µπ − µ, (µπ − µ)(µπ − µ)T + Γπ − Γ)T, (8)

with µπ and Γπ the mean and covariance of the target distribution. One can rewrite (6)
as

θk+1 = θk + γk+1h(θk) + γk+1ξk+1,

where {ξk = H(Xk, θk−1) − h(θk−1); k ≥ 1} is generally referred to as “the noise”. The
general theory of stochastic approximation (SA) provides us with conditions under which
this recursion eventually converges to the set {θ ∈ Θ, h(θ) = 0}. Practical conditions
to prove the convergence w.p. 1 of {θk} include the stability of the “noiseless” sequence
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θ̄k+1 = θ̄k +γk+1h(θ̄k) and the ergodicity of the noise sequence {ξk} (the effect of the noise
sequence should eventually average out to zero in order for {θk} to follow the behaviour
of {θ̄k}). These issues are discussed in Sections 3 and 5.

In the context of adaptive MCMC, the parameter convergence is not the central issue;
the focus is rather on the approximation of π(ψ) by Sn(ψ). However there is here a
difficulty with the adaptive approach : as the parameter estimate θk = θk(X0, . . . , Xk)
depends on the whole past, the successive draws {Xk} do not define an homogeneous
Markov chain and standard arguments for the consistency and asymptotic normality of
Sn(ψ) do not apply in this framework. Note that this is despite the fact that for any
θ ∈ Θ, πPθ = π. These are the problems that we address in the present paper and our
main general results are in words the following:

1. In situations where |θk+1 − θk| → 0 as k → +∞ w.p. 1, we prove a weak law of
large numbers for Sn(ψ) (see Theorem 6) under mild additional conditions. Such a
consistency result may arise even in situations where the parameter {θk} does not
converge.

2. In situations where θk converges w.p. 1, we prove an invariance principle for
√

n(Sn(ψ)−
π(ψ)); the limiting distribution is in general a mixture of Gaussian distributions (see
Theorem 8).

Note that Haario et al. (2001) have proved the consistency of Monte Carlo averages for
the specific N-SRWM algorithm. Our result applies to more general settings and rely on
assumptions which are less restrictive than those used in Haario et al. (2001). The second
point above, the invariance principle, has to the best of our knowledge not been addressed
for adaptive MCMC algorithms.

The paper is organized as follows. In Section 2 we detail our general procedure and
introduce some notation. In Section 3, we establish the consistency (i.e. a law of large
numbers) for Sn(ψ). In Section 4 we strengthen the conditions required to ensure the
law of large numbers (LLN) for Sn(ψ) and establish an invariance principle. In Section
5 we focus on the classical Robbins-Monro implementation of our procedure and intro-
duce further conditions that allow us to prove that {θk} converges w.p. 1. In Section 6
we establish general properties of the generic SRWM required to ensure a LLN and an
invariance principle. For pædagocical purposes we show how to apply these results to the
simple N-SRWM. In Section 7 we present another application of our theory. We focus on
the Independent Metropolis-Hastings algorithm (IMH) and establish general properties
required for the LLN and the invariance principle. We then go on to propose and analyse
an algorithm that matches the so-called proposal distribution of the IMH to the target
distribution π, in the case where the proposal distribution is a mixture of distributions
from the exponential family. The main result of this section is Theorem 19. We conclude
with the remark that this latter result equally applies to a generalisation of the N-SRWM,
where the proposal is again a mixture of distributions. Application to samplers which
consist of a mixture of SRWM and IMH is straightforward.
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2 Algorithm description and main definitions

Before describing the procedure under study, it is necessary to introduce some notation and
definitions. Let T be a separable space and let B(T) be a countably generated σ-field on T.
For a Markov chain with transition probability Π : T×B(T) → [0, 1] and any non-negative
measurable function ψ : T → [0, +∞), we denote Πψ(t) = Π(t, ψ) :=

∫
T Π(t, dt′)ψ(t′) and

for any integer k, Πk the k-th iterate of the kernel. For a probability measure µ we define
for any A ∈ B(T) µΠ(A) :=

∫
T µ(dt)Π(t, A). A Markov chain on a state space T is said

to be µ-irreducible if there exists a measure µ on B(T) such that, whenever µ(A) > 0,∑∞
k=0 Πk(t, A) > 0 for all t ∈ T. Denote by µ a maximal irreducibility measure for P

(see Meyn and Tweedie (1993) Chapter 4 for the definition and the construction of such
a measure). If Π is µ-irreducible, aperiodic and has an invariant probability measure π,
then π is unique and is a maximal irreducibility measure.

Two main ingredients are required for the definition of our adaptive MCMC algorithms:

1. A family of Markov transition kernels on X, {Pθ, θ ∈ Θ} indexed by a finite-
dimensional parameter θ ∈ Θ ⊂ Rnθ an open set. For each θ in Θ, it is assumed
that Pθ is π-irreducible and that πPθ = π, i.e. π is the invariant distribution for Pθ.

2. A family of update functions {H(θ, x) : (θ, x) 7→ Rnθ}, which are used to adapt the
value of the tuning parameter.

In order to take into account potential jumps outside the space Θ, we extend both the
parameter and state-space with two cemetery points, θc 6∈ Θ and xc 6∈ X, and define
Θ̄ = Θ∪{θc}, X̄ = X∪{xc}. In its general form the basic adaptive MCMC algorithm may
be written as follows. Set θ0 = θ ∈ Θ, X0 = x ∈ X, and for k ≥ 0 define recursively the
sequence {Xk, θk; k ≥ 0} : if θk = θc, then set θk+1 = θc and Xk+1 = xc. Otherwise, draw
Xk+1 according to Pθk

(Xk, ·) compute η = θk + ρk+1H(θk, Xk+1) and set :

θk+1 =

{
η if η ∈ Θ,

θc if η 6∈ Θ.
(9)

where {ρk}, 0 ≤ ρk ≤ 1 is a sequence of stepsizes that converges to zero. The sequence
{(Xk, θk)} is a non-homogeneous Markov chain on the product space X̄ × Θ̄. This non-
homogeneous Markov chain defines a probability measure on the canonical state space
(X̄ × Θ̄)N equipped with the canonical product σ-algebra. We denote F = {Fk, k ≥ 0}
the canonical filtration of this Markov chain and Pρ

x,θ and Eρ
x,θ the probability and the

expectation associated to this Markov chain starting from (x, θ) ∈ X×Θ.

Because of the interaction with feedback between Xk and θk, the stability of this
inhomogeneous Markov chain is often difficult to establish. This is a long-lasting problem
in the field of stochastic optimization: known practical cures to this problem include the
reprojections on a fixed set (see Kushner and Yin (1997)) or the more recent reprojection
on random varying boundaries proposed in Chen and Zhu (1986), Chen et al. (1988) and
generalized in Andrieu et al. (2002). In this latter case, reinitialization occurs when the
current value of the parameter θk wanders outside a so-called active truncation set or
when the difference between two successive values of the parameter is larger than a time-
dependent threshold. More precisely, let {Kq, q ≥ 0} be a sequence of compact subsets of
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Θ such that, ⋃

q≥0

Kq = Θ, and Kq ⊂ int(Kq+1), q ≥ 0, (10)

where int(A) denotes the interior of set A. Let γ := {γk} and ε := {εk} be two monotone
non-increasing sequences of positive numbers and let K be a compact subset of X. Let
Φ : X × Θ → K × K0 be a measurable function and φ : Z+ → Z be a function such
that φ(k) > −k for any k. It is convenient to introduce the family of transition kernels
{Qγ , γ ≥ 0}

Qγ(x, θ; A×B) =
∫

A
Pθ(x, dy)δθ+γH(θ,y)(B), A ∈ B(X), B ∈ B(Θ), (x, θ) ∈ X×Θ

where δx is the Dirac mass at point x. Define the homogeneous Markov chain {Zk =
(Xk, θk, κk, ςk, νk); k ≥ 0} on the product space Z = X×Θ× (Z+)3 with transition proba-
bility algorithmically defined as follows: for any (x, θ, κ, ς, ν) ∈ Z

• If ν = 0, then draw (X ′, θ′) ∼ Qγς (Φ(x, θ), ·),
• If ν 6= 0, then draw (X ′, θ′) ∼ Qγς (x, θ, ·).
• If |θ′ − θ| ≤ ες and θ′ ∈ Kκ, then set: κ′ = κ, ς ′ = ς + 1 and ν ′ = ν + 1; otherwise,

set κ′ = κ + 1, ς ′ = ς + φ(ν) and ν ′ = 0.

In words, κ, ς and ν are counters: κ is the index of the current active truncation set; ν
counts the number of iterations since the last reinitialisation; ς is the current index in the
sequences {γk} and {εk}. The event {νk = 0} means that a reinitialization occurs and
the condition on φ ensures that the algorithm is reinitialized with a value for γςk smaller
than that used the last time such an event occurred. This algorithm is reminiscent of the
projection on random varying boundaries proposed in Chen and Zhu (1986), Chen et al.
(1988). When the current iterate wanders outside the active truncation set or when the
difference between two successive values of the parameter is larger than a time-dependent
threshold, then the algorithm is reinitialised with a smaller initial value of the stepsize and
a larger truncation set. Various choices for the function φ can be considered. For example,
the choice φ(k) = 1 for all k ∈ N coincides with the procedure proposed in Chen et al.
(1988): in this case ςk = k. Another sensible choice consists of setting φ(k) = 1 − k for
all k ∈ N, in which case the number of iterations between two successive reinitialisations
is not taken into account. In the latter case, we have ςk = κk + νk.

The homogeneous Markov chain {Zk, k ≥ 0} defines a probability measure on the
canonical state space ZN equipped with the canonical product σ-algebra. We denote
G = {Gk, k ≥ 0}, P̄x0,θ0,κ0,ς0,ν0 and Ēx0,θ0,κ0,ς0,ν0 the filtration, probability and expectation
associated to this process initialised at (x0, θ0, κ0, ς0, ν0). For simplicity we will use the
following short notation,

P̄x0,θ0 = P̄x0,θ0,0,0,0. (11)

This probability measure depends upon the deterministic sequences {γn} and {εn} : the
dependence will be implicit here. We define recursively {Tn, n ≥ 0} the sequence of
successive reinitialisation times

Tn+1 = inf {k ≥ Tn + 1, νk = 0} , with T0 = 0, (12)
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where by convention inf{∅} = ∞. It may be shown that under mild conditions on {Pθ, θ ∈
Θ}, {H(θ, x), (θ, x) ∈ Θ× X} and the sequences {γk} and {εk} then

inf
(x,θ)∈X×Θ

P̄x,θ

(
sup
n≥0

κn < ∞
)

= inf
(x,θ)∈X×Θ

P̄x,θ

( ∞⋃

n=0

{Tn = ∞}
)

= 1,

i.e., the number of reinitialisations of the procedure described above is finite P̄x,θ-a.s., for
every (x, θ) ∈ X×Θ. We postpone the presentation and the discussion of these conditions
to Section 5. The lemma below (adapted from (Andrieu et al., 2002, Lemma 4.1)) relates
the expectation of the inhomogeneous Markov chain defined by the transition in Eq. (9) to
the expectation of the homogeneous Markov chain {Zn}. Define for K ⊂ Θ and ε = {εk},

σ(ε,K) = σ(K) ∧ ν(ε), (13)

where

σ(K) = inf{k ≥ 1, θk 6∈ K}, (14)
ν(ε) = inf{k ≥ 1, |θk − θk−1| ≥ εk}. (15)

For a sequence a = {ak} and an integer l, we define a←l = (a←l
k , k ≥ 0) as a←l

k = ak+l.

Lemma 1. For any m ≥ 1, for any non-negative measurable function Ψm : (X×Θ)m →
R+, for any integers p and q, for any x, θ ∈ X×Θ,

Ēx,θ,p,q,0{Ψm(X1, θ1, . . . , Xm, θm)I(T1 ≥ m)} =

Eγ←q

Φ(x,θ){Ψm(X1, θ1, . . . , Xm, θm)I(σ(ε←q,Kp) ≥ m)}.

3 Law of large number

As pointed out in the introduction, a LLN has been obtained for a particular adaptive
MCMC algorithm by Haario et al. (2001), using mixingale theory, McLeish (1975). Our
approach is more in line with the martingale proof of the LLN for Markov chains, and is
based on the existence and regularity of the solutions of Poisson’s equation and martingale
limit theory. The existence and appropriate properties of those solutions can be easily
established under the set of conditions (A1) below, see Proposition 2 and Proposition 3.
These two propositions then allow us to conclude about the V -stability of the projection
{Xk} of the homogeneous Markov chain {Zk} described in Section 2: this is summarized
in Proposition 4. We will need the following set of notation in what follows. For W : X →
[1,∞) and g : X → Rng define

‖g‖W = sup
x∈X

|g(x)|
W (x)

and LW = {g : ‖g‖W < ∞}. (16)

Hereafter, for any ψ : Θ× X → Rnψ a function and any θ ∈ Θ we will use the short-hand
notation ψθ : X → R for ψθ(x) = ψ(θ, x) for all x ∈ X.

(A1) For any θ ∈ Θ, Pθ is irreducible and aperiodic with stationary distribution π. In
addition there exists a function V : X → [1,∞) such that, for any compact subset
K ⊂ Θ,
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(i) There exist an integer m, constants 0 < λ < 1, b, κ, δ > 0, a subset C ⊆ X and
a probability measure ν such that

sup
θ∈K

Pm
θ V ≤ λV + bIC,

sup
θ∈K

PθV ≤ κV,

inf
θ∈K

Pm
θ (x,A) ≥ δν(A) ∀x ∈ C, ∀A ∈ B(X).

(ii) For any r ∈ [0, 1], there exist a constant C and β, 0 < β ≤ 1 such that, for any
(θ, θ′) ∈ K ×K,

‖Pθψ − Pθ′ψ‖V r ≤ C ‖ψ‖V r |θ − θ′|β ∀ψ ∈ LV r .

The drift and minorization conditions in (A1-i) imply that for any bounded set K ⊂ Θ,
uniformly in θ ∈ K then Pθ is geometrically ergodic. (A1-ii) is a Lipschitz continuity
condition on the transition Pθ with respect to θ ∈ K.

Conditions of the type (A1-i) to establish geometric ergodicity have been extensively
studied over the last decade for the Metropolis-Hastings algorithms. Typically the required
drift function depends on the target distribution π, which makes our requirement of uni-
formity in θ ∈ K in (A1-i) reasonable and relatively easy to establish (see Sections 6 and
7). Assumption (A1-ii) does not seem to have been studied for the Metropolis-Hastings
algorithm. We establish this continuity for the SRWM algorithm and the independent
MH algorithm (IMH) in Sections 6 and 7. Extension to hybrid samplers that consist of a
mixture of SRWM and IMH updates is straightforward.

3.1 Stability and regularity

The theory of V -uniformly ergodic Markov chains (see e.g. (Meyn and Tweedie, 1993,
Chapter 15,16)) shows that, under the drift and minorization conditions outlined in as-
sumption (A1-i), for any compact set K ⊂ Θ, uniformly in θ ∈ K, the iterates of the kernel
P k

θ converge to the stationary distribution π in the V -norm at exponential rate. This
automatically ensures the existence of solutions to Poisson’s equation. More precisely, we
have

Proposition 2. Assume (A1-i). Then, for any compact subset K ⊂ Θ and for any
r ∈ [0, 1] there exist constants C and ρ < 1 such that for all ψ ∈ LV r and all θ ∈ K

‖P k
θ ψ − π(ψ)‖V r ≤ Cρk ‖ψ‖V r . (17)

In addition, for all θ, x ∈ Θ × X and ψ ∈ LV r ,
∑∞

k=0 |P k
θ ψ(x) − π(ψ)| < ∞ and u :=∑∞

k=0(P
k
θ ψ − π(ψ)) is a solution of Poisson’s equation

u− Pθu = ψθ − π(ψθ). (18)

Remark 1. For a fixed value of θ, it follows from (Meyn and Tweedie, 1993, Theorem
16.0.1) that there exists a constant Cθ, such that ‖P k

θ ψ − π(ψ)‖V r ≤ Cθρ
k ‖ψ‖V r for any

ψ ∈ LV r and any r ∈ [0, 1]. The fact that the constant C can be chosen uniformly for
θ ∈ K follows from recent results on computable bounds for geometrically ergodic Markov
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chains that show that the constant can be chosen in such a way that it depends only on
the constants appearing in the Foster-Lyapunov drift condition and on the minorisation
condition over small sets (see Roberts and Tweedie (1999) and Douc et al. (2002) and the
references therein).
Remark 2. Poisson’s equation has proven to be a fundamental tool for the analysis of
additive functionals, in particular to establish limit theorems such as the (functional)
central limit theorem (see e.g. Benveniste et al. (1990), Nummelin (1991), (Meyn and
Tweedie, 1993, Chapter 17), Glynn and Meyn (1996), Duflo (1997)); The existence of
solutions to Poisson’s equation is well established for geometrically ergodic Markov chains
(see Nummelin (1991), (Meyn and Tweedie, 1993, Chapter 17)); it has been more recently
proven under assumptions weaker than geometric ergodicity (see (Glynn and Meyn, 1996,
Theorem 2.3)).

We now investigate the regularity properties of the solution to Poisson’s equation under
(A1). Let W → [1,∞) and δ ∈ [0, 1]. We say that the family of functions {ψθ : X →
R, θ ∈ Θ} is (W, δ)-regular if for any compact subset K ⊂ Θ,

sup
θ∈K

‖ψθ‖W < ∞ and sup
(θ,θ′)∈K×K,θ 6=θ′

|θ − θ′|−δ‖ψθ − ψθ′‖W < ∞. (19)

The following proposition shows that if {ψθ, θ ∈ Θ} is (V r, β)-regular for some β ∈ (0, 1]
and r ∈ [0, 1], then under (A1) the solutions to Poisson’s equation, θ → gθ, are (V r, α)-
regular for any α ∈ (0, β).

Proposition 3. Assume (A1). Let {ψθ, θ ∈ Θ} be (V r, β)-regular, where β is given in
(A1) and r ∈ [0, 1]. For any (θ, θ′) ∈ Θ×Θ,

∑∞
k=0 |P k

θ′ψθ − π(ψθ)| < ∞. In addition, for
any α ∈ (0, β), {gθ, θ ∈ Θ} and {Pθgθ, θ ∈ Θ} are (V r, α)-regular.

The proof is given in Appendix A.
Remark 3. the regularity of the solutions of Poisson’s equation has been studied, under
various ergodicity and regularity conditions on the mapping θ 7→ Pθ, by Benveniste et al.
(1990), and Bartusek (2000). The result of the proposition above improves upon these
works.

The following proposition shows how the V -stability of the projection {Xk} of {Zk} in
Section 2 is implied by the V -stability of homogeneous Markov chains generated by Pθ for
a fixed θ ∈ K and K a compact subset of Θ, provided that one can control the magnitude
of the increments {θk − θk−1} and that {θk} stays in K.

Proposition 4. Assume (A1). Let K be a compact subset of Θ. There exists a constant
C and ε > 0 such that for any sequence ρ = {ρk} and for any x ∈ X,

sup
θ∈K

sup
k≥0

Eρ
x,θ {V (Xk)1{σ(K) ∧ νε ≥ k}} ≤ CV (x), (20)

where for ε > 0 νε = inf{k ≥ 1, |θk − θk−1| > ε}. In addition let s ∈ N, then there exists a
constant Cs such that for any sequence ε = {εk} satisfying 0 < εk ≤ ε, for all k ≥ s and
for any sequence ρ = {ρk} and x ∈ X,

sup
θ∈K

sup
k≥0

Eρ
x,θ {V (Xk)1{σ(ε,K) ≥ k}} ≤ CsV (x), (21)

where σ(ε,K) is defined in Eq. (13).

The proof is given in Appendix A.
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3.2 Law of large numbers

We prove in this section a law of large numbers (LLN) under P̄ρ
x,θ for n−1

∑n
k=1 ψθk

(Xk),
where {ψθ, θ ∈ Θ} is a set of sufficiently regular functions. It is worth noticing here that
it is not required that the sequence {θk} converges in order to establish our result. The
proof is based on the identity

ψθk
(Xk)−

∫

X
π(dx)ψθk

(x) = gθk
(Xk)− Pθk

gθk
(Xk),

where u = gθ is a solution of Poisson’s equation (18). The decomposition

gθk
(Xk)− Pθk

gθk
(Xk) =

(
gθk−1

(Xk)− Pθk−1
gθk−1

(Xk−1)
)
+(

gθk
(Xk)− gθk−1

(Xk)
)

+
(
Pθk−1

gθk−1
(Xk−1)− Pθk

gθk
(Xk)

)
(22)

evidences the different terms that need to be controlled to prove the LLN. The first term
in the decomposition is a sequence of martingale differences under Pρ

x,θ, since

Eρ
x,θ{gθk−1

(Xk)− Pθk−1
gθk−1

(Xk−1)|Fk−1} = 0.

As we shall see, this is the leading term in the decomposition and the other terms are simple
remainders which are easily dealt with thanks to the regularity of the solution to Poisson’s
equation under (A1). We preface our main result, Theorem 6, with an intermediate
proposition concerned with the control of the fluctuations of n−1

∑n
k=1 ψθk

(Xk) for the
inhomogeneous chain {(Xk, θk)} under the probability Pρ

x,θ.

Proposition 5. Assume (A1). Let {ψθ, θ ∈ Θ} be a (V 1/p, β)-regular family of functions,
for some p ≥ 2 and V and β ∈ (0, 1] defined in (A1). Let ε̄ = {ε̄k} be a non-increasing
sequence such that limk→∞ ε̄k = 0 and K a compact subset of Θ. Then for any α ∈ (0, β)
there exists a constant C (depending only on α, p, ε̄, K and the constants in (A1)) such
that, for any non-increasing sequence ρ = {ρk} of positive numbers such that ρ0 ≤ 1 and
any non-increasing sequence ε = {εk} satisfying εk ≤ ε̄k for all k ≥ 0, we have, for all
x ∈ X and θ ∈ K,

Pρ
x,θ

{
1 (σ(ε,K) > m)

∣∣∣∣∣
m∑

k=1

(
ψθk

(Xk)−
∫

X
ψθk

(x)π(dx)
)∣∣∣∣∣ ≥ δ

}
≤

C δ−p sup
θ∈K

‖ψθ‖V 1/p V (x)

{
mp/2 +

( m∑

k=1

εα
k

)p
}

, (23)

where σ(ε,K) is given in (13).

Proof. For notational simplicity, we set σ := σ(ε,K). In this proof C is a constant which
only depends upon the constants α, p, the sequence ε̄, the compact set K ⊂ Θ, and
the constants in (A1); this constant may take different values upon each appearance.
Proposition 2 shows that there exists a solution gθ to Poisson’s equation ψθ − π(ψθ) =
gθ − Pθgθ. Decompose the sum 1(σ > m)

∑m
k=1(ψθk

(Xk)−
∫
X ψθk

(x)π(dx)) as
∑3

i=1 S
(i)
m

10



where

S(1)
m := 1(σ > m)

m∑

k=1

(gθk−1
(Xk)− Pθk−1

gθk−1
(Xk−1))

S(2)
m := 1(σ > m)

m∑

k=1

(gθk
(Xk)− gθk−1

(Xk))

S(3)
m := 1(σ > m) (Pθ0gθ0(X0)− Pθmgθm(Xm)) .

We consider these terms separately. First note that

1(σ > m)

∣∣∣∣∣
m∑

k=1

(
gθk−1

(Xk)− Pθk−1
gθk−1

(Xk−1)
)
∣∣∣∣∣ ≤ |Mm|

where

Mm :=
m∑

k=1

(
gθk−1

(Xk)− Pθk−1
gθk−1

(Xk−1)
)
1(σ ≥ k).

Under Proposition 3, there exists a constant C such that for all θ ∈ K and all x ∈ X,
|gθ(x)| ≤ CV 1/p(x) and |Pθgθ(x)| ≤ CV 1/p(x). Hence, by Proposition 4, there exists a
constant C such that for all k ≥ 1,

Eρ
x,θ

{
(|gθk−1

(Xk)|p + |Pθk−1
gθk−1

(Xk−1)|p)1(σ ≥ k)} ≤ CV (x), θ ∈ K, x ∈ X. (24)

Since

Eρ
x,θ

{
(gθk−1

(Xk)− Pθk−1
gθk−1

(Xk−1))1(σ ≥ k)
∣∣ Fk−1} =

(
Pθk−1

gθk−1
(Xk−1)− Pθk−1

gθk−1
(Xk−1)

)
1(σ ≥ k) = 0,

(Mm,m ≥ 0) is a F-martingale under Pρ
x,θ with increments bounded in Lp. Using the

Burkholder inequality (Hall and Heyde (1980) Theorem 2.10) and Minkowski’s inequality,
we have

Eρ
x,θ {|Mm|p} ≤ Cp Eρ

x,θ

{( m∑

k=1

|gθk−1
(Xk)− Pθk−1

gθk−1
(Xk−1)|21(σ ≥ k)

)p/2}
(25)

≤ Cp

{ m∑

k=1

(
Eρ

x,θ

{
|gθk−1

(Xk)− Pθk−1
gθk−1

(Xk−1)|p
)2/p

1(σ ≥ k)}
}p/2

,

where Cp is a universal constant. Using again Propositions 3 and 4, we obtain

Eρ
x,θ {|Mm|p|} ≤ Cmp/2V (x), θ ∈ K, x ∈ X.

We consider now S
(2)
m . Proposition 3 shows that for any α ∈ (0, β), {gθ, θ ∈ Θ} is (V 1/p, α)-

regular. Hence there exists C such that

1(σ > m)

∣∣∣∣∣
m∑

k=1

{
gθk

(Xk)− gθk−1
(Xk)

}
∣∣∣∣∣ ≤ C

m∑

k=1

εα
kV 1/p (Xk)1(σ ≥ k).

11



Now Minkowski’s inequality, Propositions 3 and 4 show that there exists C such that

Eρ
x,θ{|S(2)

m |p} ≤ C

(
m∑

k=1

εα
k

)p

V (x), θ ∈ K, x ∈ X. (26)

Consider now S
(3)
m . From Proposition 3 and 4 there exists a constant C such that, for all

θ ∈ K and all x ∈ X,

Eρ
x,θ

{
1(σ > m)

∣∣∣Pθmgθm(Xm)
∣∣∣
p}
≤ CV (x).

We can now conclude using Minkowski’s and Markov’s inequalities.

We can now state our main consistency result, under the assumption that the number
of reinitialization κn is almost surely finite.

Theorem 6. Assume (A1) and that the sequence ε = {εk} defined in Section 2 is non-
increasing and limk→∞ εk = 0. Let p ≥ 2, and let {ψθ, θ ∈ Θ} be a (V 1/p, β)-regular family
of functions where β is given in (A1). Assume in addition that for all (x, θ) ∈ X × Θ,
P̄x,θ{limn→∞ κn < ∞} = 1. Then, for any (x, θ) ∈ X×Θ, we have

n−1
n∑

k=1

(
ψθk

(Xk)−
∫

X
ψθk

(x)π(dx)
)
→P̄x,θ

0. (27)

If p > 2 and in addition ε = {εk} satisfies

∞∑

k=1

k−1/2εα
k < ∞ (28)

for some α ∈ (0, β) where β ∈ (0, 1] is defined in (A1-ii), then

n−1
n∑

k=1

(
ψθk

(Xk)−
∫

X
ψθk

(x)π(dx)
)
→ 0 P̄x,θ − a.s. (29)

Proof. Without loss of generality, we may assume that, for any θ ∈ Θ,
∫
X ψθ(x)π(dx) = 0.

Put Sn =
∑n

k=1 ψθk
(Xk) = S

(1)
n + S

(2)
n , where

S(1)
n =

Tκn∑

k=1

ψθk
(Xk) and S(2)

n =
n∑

k=Tκn+1

ψθk
(Xk),

and the Tk’s are defined in (12). We consider these two terms separately. Because S
(1)
n

has P̄x,θ-a.e finitely many terms, n−1S
(1)
n → 0, P̄x,θ-a.s. Consider now S

(2)
n . Define

κ∞ = limn→∞ κn and T∞ = limn→∞ Tκn . Under the stated assumption, for any η > 0,
there exists K and L such that

P̄x,θ {κ∞ ≥ K} ≤ η/3 and P̄x,θ {T∞ ≥ L} ≤ η/3. (30)

To prove (27), it is sufficient to show that for sufficiently large n,

P̄x,θ

{
n−1|S(2)

n | ≥ δ, T∞ ≤ L, κ∞ ≤ K
}
≤ η/3. (31)

12



By Lemma 7 (stated and proven below) and Proposition 5, there exists a constant C such
that

P̄x,θ

{
n−1|S(2)

n | ≥ δ, Tκn ≤ L, κn ≤ K
}
≤ Cδ−p sup

θ∈KK

‖ψθ‖V 1/p

{
n−p/2 +

(
n−1

n∑

k=1

εα
k

)p}
,

which shows (31). Now, in order to prove the strong law of large numbers in (29) it is
sufficient to show that

P̄x,θ

{
sup
l≥n

l−1|S(2)
l | ≥ δ, T∞ ≤ L, κ∞ ≤ K

}
≤ η/3,

and invoke the Borel-Cantelli lemma. From Proposition 5 we have

P̄x,θ

{
sup
l≥n

l−1|S(2)
l | ≥ δ, T∞ ≤ L, κ∞ ≤ K

}
≤

Cδ−p sup
θ∈KK

‖ψθ‖V 1/p

∑

l≥n

(
l−p/2 + l−p/2

(
l−1/2

l∑

k=1

εα
k

)p)
,

and the proof is concluded with Kronecker’s lemma (which shows that the condition∑∞
k=1 k−1/2εα

k < ∞ implies that n−1/2
∑n

k=1 εα
k → 0) and the fact that p > 2.

Lemma 7. Let {ψθ, θ ∈ Θ} be a family of measurable functions ψ : Θ × X → R and
K, L ∈ N. Then, for all x, θ ∈ X×Θ and δ > 0,

P̄x,θ





∣∣∣∣∣∣

n∑

k=Tκn+1

ψθk
(Xk)

∣∣∣∣∣∣
≥ δ, Tκn ≤ L, κn ≤ K



 ≤

K∑

j=0

Ēx,θ

{
An−Tj (XTj , θTj , κTj , ςTj )1 {Tj ≤ L}} ,

where for any integers κ, ς, any x, θ ∈ X×Θ and δ > 0,

Am(x, δ, θ, κ, ς) = Pγ←ς

Φ(x,θ)

{
1(σ(ε←ς ,Kκ) ≥ m)

∣∣∣∣∣
m∑

k=1

ψθk
(Xk)

∣∣∣∣∣ ≥ δ

}
. (32)

Proof. For any integers l and j, we have




∣∣∣∣∣∣

n∑

k=Tκn+1

ψθk
(Xk)

∣∣∣∣∣∣
≥ δ, Tκn = l, κn = j



 ⊂



1(Tj+1 ≥ n)

∣∣∣∣∣∣

n∑

k=Tj+1

ψθk
(Xk)

∣∣∣∣∣∣
≥ δ, Tj = l



 .

Writing Tj+1 = Tj + T1 ◦ τTj , where τ is the shift operator on the canonical space of the
chain {Zn}, and noting that by construction T1 = σ(ε←ς0 ,Kκ0), we have



1(Tj+1 ≥ n)

∣∣∣∣∣∣

n∑

k=Tj+1

ψθk
(Xk)

∣∣∣∣∣∣
≥ δ, Tj = l



 ⊂

{
1(σ(ε←ς0 ,Kκ0) ≥ n− l)

∣∣∣∣∣
n−l∑

k=1

ψθk
(Xk)

∣∣∣∣∣ ◦ τTj ≥ δ, Tj = l

}
.
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By Lemma 1 for any (x, θ) ∈ X×Θ and any integers ς and κ, we have

P̄x,θ,κ,ς,0

{
1(σ(ε←ς ,Kκ) ≥ m)

∣∣∣∣∣
m∑

k=1

ψθk
(Xk)

∣∣∣∣∣ ≥ δ

}
= Am(x, δ, θ, κ, ς),

where Am is given in (32). The proof is concluded by applying the strong Markov property.

Remark 4. It is worth noticing that for the above proposition to hold it is not necessary
that the sequence {θk} converges, but simply that P̄x,θ(limn→∞ κn < ∞) which implies
that for all k ≥ Tκ∞ , θk ∈ Kκ∞ and |θk+1− θk| ≤ εςk i.e., empirical averages are consistent
whenever the sequence {θk} stays within a compact subset of Θ and the difference between
two successive values of the parameter decreases to zero.

Remark 5. Checking P̄x,θ(limn→∞ κn < ∞) = 1 depends on the particular algorithm used
to update the parameters. Verifiable conditions have been established in Andrieu et al.
(2002) to check the stability of the algorithm; see Sections 5, 6 and 7.

4 Invariance principle

We now study the asymptotic fluctuations of In(ψ) and prove an invariance principle.
As it is the case for homogeneous Markov chains, more stringent conditions are required
here than for the simple LLN. In particular we will require here that the series {θk}
converges P̄ρ

x,θ-a.e. This is in contrast with simple consistency for which boundedness
and convergence to zero of the increments of {θk} was sufficient. The main idea of the
proof consists of approximating n−1/2(In(ψ)−π(ψ)) with a triangular array of martingale
differences sequence, and then apply an invariance principle for martingale differences to
show the desired result.

Theorem 8. Assume (A1) and that the sequence ε = {εk} satisfies (28) for some α ∈
(0, β), where β is given in (A1). Let p > 2 and ψ ∈ LV 1/(2p). Assume that, for
all (x, θ) ∈ X × Θ, P̄x,θ(limn→∞ κn < ∞) and that there exists a random variable θ∞
such that, (i) P̄x,θ(lim supn→∞ |θn − θ∞| = 0) = 1, (ii) P̄x,θ(θ∞ ∈ Θ) = 1 and (iii)
sup

{
M ≥ 0, P̄x,θ (V (θ∞, ψ) ≥ M) = 1

}
> 0, where for any θ ∈ Θ,

V 2(θ, ψ) = π{g2
θ − π{(Pθgθ)2}} with gθ :=

∞∑

k=0

P k
θ ψ − π(ψ). (33)

Then, for all (x, θ) ∈ K×K0 and u ∈ R,

lim
n→∞

∣∣∣∣∣P̄x,θ

(
n−1/2

n∑

k=1

(ψ(Xk)− π(ψ)) ≤ u

)
− Ēx,θ

{
Φ

({V (θ∞, ψ)}−1u
)}

∣∣∣∣∣ = 0, (34)

where Φ is the standard normal distribution function.

Proof. Without loss of generality, assume that π(ψ) = 0. By Proposition 3, for any θ ∈ Θ,
there exists gθ ∈ LV 1/(2p) satisfying ψ = gθ − Pθgθ. Define for k ≥ 1

ξk,n := n−1/2
(
gθk−1

(Xk)− Pθk−1
gθk−1

(Xk−1)
)
. (35)
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Using (22), we have n−1/2
∑n

k=1 ψ(Xk)−
∑n

k=1 ξk,n = S
(1)
n + S

(2)
n where

S(1)
n = n−1/2

Tκn∑

k=1

(gθk
(Xk)− gθk−1

(Xk)) + n−1/2(Pθ0gθ0(X0)− Pθngθn(Xn)),

S(2)
n = n−1/2

n∑

k=Tκn+1

(gθk
(Xk)− gθk−1

(Xk)).

As above, since P̄x,θ(Tκ∞ < ∞) = 1, S
(1)
n → 0, P̄x,θ-a.s. Consider now S

(2)
n . Choose K

and L as in (30). We only have to show that for n large enough,

P̄x,θ



n−1/2

∣∣∣∣∣∣

n−1∑

k=Tκn+1

gθk
(Xk)− gθk−1

(Xk)

∣∣∣∣∣∣
≥ δ, κn < K,Tκn < L



 ≤ η/3.

By Lemma 7 and using (26), there exists a constant C such that

P̄x,θ

{
|S(2)

n | ≥ δ, κn < K, Tκn < L
}
≤ Cδ−p n−p/2

(
n∑

k=1

εα
k

)p

.

Since under (28) we have n−1/2
∑n

k=1 εα
k → 0, by combining the results above we obtain

n−1/2
n∑

k=1

ψ(Xk)−
n∑

k=1

ξk,n →P̄x,θ
0. (36)

Define
ξ̄k,n := n−1/2

(
gθk−1

(Xk)− Ēρ
x,θ

{
gθk−1

(Xk) | Gk−1

})
, (37)

where (Gk, k ≥ 0) is defined in Section 2. By definition, {ξ̄k,n} is an array of martingale
differences with respect to P̄x,θ. Because

∑n
k=1 ξk,n and

∑n
k=1 ξ̄k,n only differ by a P̄x,θ-a.s.

finite number of P̄x,θ-a.s. finite terms, their difference converges to 0. Consequently from
(36) we have

n−1/2

(
n∑

k=1

ψ(Xk)

)
−

n∑

k=1

ξ̄k,n →P̄x,θ
0, (38)

showing that n−1/2
∑n

k=1 ψ(Xk) can be approximated by a triangular array of martingale
differences.

We now apply the triangular zero-mean martingale central limit theorem (Hall and
Heyde, 1980, Chapter 3) to the approximating term above in order to show (34). This
requires one to establish that

n∑

k=1

ξ̄2
k,n →P̄x,θ

V 2(θ∞, ψ), (39)

for all δ > 0,
n∑

k=1

ξ̄2
k,n 1(|ξ̄k,n| > δ) →P̄x,θ

0. (40)
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Using the arguments to prove that
∑n

k=1 ξ̄k,n−
∑n

k=1 ξk,n →P̄x,θ
0 we have that

∑n
k=1 ξ̄2

k,n−∑n
k=1 ξ2

k,n →P̄x,θ
0 and a straightforward adaptation of Theorem 6 shows that

n∑

k=1

ξ2
k,n − n−1

n∑

k=1

π{g2
θk−1

− π{(Pθk−1
gθk−1

)2}} →P̄x,θ
0.

The proof of (39) follows from the continuity of θ → V (θ, ψ). For any τ ∈ (0, p − 2) we
have

n∑

k=1

ξ2
k,n1(|ξk,n| ≥ δ) ≤ δ−τ

n∑

k=1

|ξk,n|2+τ

≤ 21+τδ−τn−τ/2n−1
n∑

k=1

(|gθk−1
(Xk)|2+τ + |Pθk−1

gθk−1
(Xk)|2+τ

) →P̄x,θ
0

by Theorem 6. The proof of negligibility follows since

n∑

k=1

(
ξ2
k,n1(|ξk,n| ≥ δ)− ξ̄ 2

k,n1(|ξ̄k,n| ≥ δ)
) →P̄x,θ

0.

Remark 6. It is still possible to obtain an invariance principle when {θk} does not converge
but remains bounded and satisfies limk→∞ |θk+1 − θk| = 0. In such a case, the normal-

ization is no longer
√

n but
√∑n

k=1(gθk−1
(Xk)− Pθk−1

gθk−1
(Xk))2 (see e.g. Hall (1977)).

Moreover, by resorting to results on the rate of convergence for CLT of triangular array
of martingale differences, it is possible to determine the rate of convergence in (34) (see
for example Hall and Heyde (1981))

5 Stability and convergence of the stochastic approximation
process

In order to conclude the part of this paper dedicated to the general theory of adaptive
MCMC algorithm, we now present generally verifiable conditions under which the number
of reinitializations of the algorithm that produces the Markov chain {Zk} described in
Section 2 is P̄x,θ-a.e. finite. This is a difficult problem per se, which has been worked out
in a companion paper, Andrieu et al. (2002). We here briefly introduce the conditions
under which this key property is satisfied and give (without proof) the main stability
result. The reader should refer to Andrieu et al. (2002) for more details.

As mentioned in the introduction, the convergence of the stochastic approximation
procedure is closely related to the stability of the noiseless sequence θ̄k+1 = θ̄k +γk+1h(θ̄k).
A practical technique to prove the stability of the noiseless sequence consists of finding a
Lyapunov function w : Θ → [0,∞) such that 〈∇w(θ), h(θ)〉 ≤ 0, where ∇w denotes the
gradient of w with respect to θ and for u, v ∈ Rn, 〈u, v〉 is their Euclidian inner product
(we will later on also use the notation |v| =

√
〈v, v〉 to denote the Euclidean norm of v).

This indeed shows that the noiseless sequence {w(θ̄k)} eventually decreases, showing that
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limk→∞w(θ̄k) exists. It should therefore not be surprising if such a Lyapunov function
can play an important role in showing the stability of the noisy sequence {θk}. With this
in mind, we can now detail the conditions required to prove our convergence result.

(A2) Θ is an open subset of Rnθ . The mean field h : Θ → Rnθ is continuous and there
exists a continuously differentiable function w : Θ → [0,∞) (with the convention
w(θ) = ∞ when θ 6∈ Θ) such that:

(i) For any integer M , the level set WM = {θ ∈ Θ, w(θ) ≤ M} ⊂ Θ is compact,
(ii) The set of stationary point L = {θ ∈ Θ, 〈∇w(θ), h(θ)〉 = 0} belongs to the in-

terior of Θ,
(iii) For any θ ∈ Θ, 〈∇w(θ), h(θ)〉 ≤ 0 and w(L) has an empty interior.

Some continuity conditions on the field of the algorithm are needed.

(A3) {Hθ, θ ∈ Θ} is (V 1/p, β)-regular for some p ≥ 2 with V and β defined in (A1).

Finally we require some conditions on the sequence of stepsizes γ = {γk} and ε = {εk}.

(A4) The sequences γ = {γk} and ε = {εk} are non-increasing, positive, limk→∞ εk = 0,∑∞
k=1 γk = ∞ and there exists α ∈ (0, β) such that

∞∑

k=1

{
γ2

k + k−1/2εα
k + (ε−1

k γk)p
}

< ∞,

where β and p are defined in (A1) and (A3) respectively.

The following theorem (see Andrieu et al. (2002)) shows that the tail probability of the
number of reinitialisations decreases faster than any exponential and that the parameter
sequence {θk} converges to the stationary set L.

Theorem 9. Assume (A1-4). Then, for any subset K ⊂ X such that supx∈K V (x) < ∞,

lim sup
k

k−1 log

(
sup

(x,θ)∈K×K0

P̄x,θ

{
sup

n
κn ≥ k

})
= −∞,

P̄x0,θ0

{
lim

k→∞
d(θk,L) = 0

}
, ∀x0 ∈ K, ∀θ0 ∈ K0.

6 Consistency and invariance principle for the adaptive N-
SRWM kernel

In this section we show how our results can be applied to the adaptive N-SRWM algorithm
proposed by Haario et al. (2001) and described in Section 1. We first illustrate how the
conditions required to prove the LLN in Haario et al. (2001) can be alleviated. In particular
no boundedness condition is required on the parameter set Θ, but rather conditions on
the tails of the target distribution π. We then extend these results further and prove a
central limit theorem (Theorem 13).

In view of the results proved above it is required
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(a) to prove the ergodicity and regularity conditions for the Markov kernels outlined in
assumption (A1)

(b) to prove that the reinitializations occur finitely many times (stability) and that {θk}
eventually converges. Note again that the convergence property is only required for
the CLT.

We first focus on (a). The geometric ergodicity of the RWMH kernel has been studied
by Roberts and Tweedie (1996) and refined by Jarner and Hansen (2000); the regularity
of the RWMH has, to the best of our knowledge, not been considered in the literature.
The geometric ergodicity of the RWMH kernel mainly depends on the tail properties of
the target distribution π. We will therefore restrict our discussion to target distributions
that satisfy the following set of conditions. These are not minimal but easy to check in
practice (see Jarner and Hansen (2000) for details).

(M) The probability density π has the following properties:

(i) It is bounded, bounded away from zero on every compact set and continuously
differentiable.

(ii) It is super-exponential, i.e.

lim
|x|→+∞

〈
x

|x| ,∇ log π (x)
〉

= −∞.

(iii) The contours ∂A (x) = {y : π(y) = π(x)} are asymptotically regular, i.e.

lim
|x|→+∞

sup
〈

x

|x| ,
∇π (x)
|∇π (x)|

〉
< 0.

We now establish uniform minorisation and drift conditions for P SRW
q defined in Eq. (3).

Let M(X) denote the set of probability densities w.r.t. the Lebesgue measure λLeb. Let
ε > 0 and δ > 0 and define the subset Kδ,ε ⊂M(X),

Kδ,ε = {q ∈M(X), q(z) = q(−z) and |z| ≤ ε ⇒ q(z) ≥ δ} . (41)

Proposition 10. Assume (M). For any η ∈ (0, 1), set V = π−η/(supx∈X π(x))−η. Then,

1. Any non-empty compact set C ⊂ X is a (1,δ)-small set for some δ > 0 and some
measure ν,

∀(x,A) ∈ C× B(X) inf
q∈Kδ,ε

P SRW
q (x,A) ≥ δν(A). (42)

2. Furthermore, for any δ > 0 and ε > 0,

sup
q∈Kδ,ε

lim sup
|x|→+∞

P SRW
q V (x)
V (x)

< 1, (43)

sup
(x,q)∈X×Kδ,ε

P SRW
q V (x)
V (x)

< +∞. (44)
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3. Let q, q′ ∈M(X) be two symmetric probability distributions. Then, for any r ∈ [0, 1]
and any g ∈ LV r we have

∥∥P SRW
q g − P SRW

q′ g
∥∥

V r ≤ 2 ‖g‖V r

∫

X
|q(z)− q′(z)|λLeb(dz). (45)

The proof is in Appendix B.

As an example of application one can again consider the adaptive N-SRWM introduced
earlier in Section 1, where the proposal distribution qΓ is zero-mean Gaussian with covari-
ance matrix Γ. In the following lemma, we show that the mapping Γ → PqΓ is Lipschitz
continuous.

Lemma 11. Let K be a convex compact subset of Cnx
+ and set V = π−η/(supX π)−η for

some η ∈ (0, 1). For any r ∈ [0, 1], any Γ,Γ′ ∈ K ×K, g ∈ LV r , we have
∥∥∥P SRW

qΓ
g − P SRW

qΓ′ g
∥∥∥

V r
≤ 2nx

λmin(K)
‖g‖V r |Γ− Γ′|,

where λmin(K) is the minimum possible eigenvalue for matrices in K.

The proof is in Appendix C. We now turn on to proving that the stochastic approx-
imation procedure outlined by Haario et al. (2001) is ultimately pathwise bounded and
eventually converges. In the case of the algorithm proposed by Haario et al. (2001), the
parameter estimates µk and Γk take the form of maximum likelihood estimates under the
i.i.d. multivariate Gaussian model. It therefore comes as no surprise if the appropriate
Lyapunov function is

w(µ,Γ) = K(π, qµ,Γ), (46)

the Kullback-Leibler divergence between the target density π and a normal density qµ,Γ

with mean µ and covariance Γ. Using straightforward algebra, we have

〈∇w(µ,Γ), h(µ,Γ)〉 = −2(µ− µπ)TΓ−1(µ− µπ)

− Tr(Γ−1(Γ− Γπ)Γ−1(Γ− Γπ))− (
(µ− µπ)TΓ−1(µ− µπ)

)2
, (47)

that is 〈∇w(θ), h(θ)〉 ≤ 0 for any θ := (µ,Γ) ∈ Θ, with equality if and only if Γ = Γπ and
µ = µπ. The situation is in this case simple as the set of stationary points {θ ∈ Θ, h(θ) = 0}
is reduced to a single point, and the Lyapunov function goes to infinity as |µ| → ∞ or Γ
goes to the boundary of the cone of positive matrices.

Now it can be shown that these results lead to the following intermediate lemma, see
Andrieu et al. (2002) for details.

Lemma 12. Assume (M). Then, (A2)-(A3) are verified with H, h and w defined re-
spectively in Eq. (5), Eq. (8) and Eq. (46). In addition, the set of stationary points
L := {θ ∈ Θ := Rnx × Cnx

+ , 〈∇w(θ), h(θ)〉 = 0} is reduced to a single point θπ = (µπ, Γπ)
whose components are respectively the mean and the covariance of the stationary distribu-
tion π.

From this lemma, we deduce our main theorem for this section.
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Theorem 13. Consider the adaptive N-SRWM of Haario et al. (2001) as described in
Section 1, with reprojections as in Section 2. Assume (A4), (M) and let ψ ∈ L(V r) where
V = π−1/(supx∈X π(x))−1. Then,

1. If r ∈ [0, 1/2), a strong LLN holds, i.e.

n−1
n∑

k=1

(
ψθk

(Xk)−
∫

X
ψθk

(x)π(dx)
)
→ 0 P̄x,θ − a.s. (48)

2. If r ∈ [0, 1/4) a CLT holds, i.e.

lim
n→∞

∣∣∣∣∣P̄x,θ

(
n−1/2

n∑

k=1

(ψ(Xk)− π(ψ)) ≤ u

)
− Φ

(
[V (θπ, ψ)]−1u

)
∣∣∣∣∣ = 0,

where θπ = (µπ,Γπ) and V (θπ, ψ) is defined in (33).

We refer the reader to Haario et al. (2001) for applications of this type of algorithm
to various settings.

7 Application: matching π with mixtures

7.1 Setup

The independence Metropolis-Hastings algorithm (IMH) corresponds to the case where
the proposal distribution used in a MH transition probability does not depend on the
current state of the MCMC chain, i.e. q(x, y) = q(y) for some density q ∈ M(X). The
transition kernel of the Metropolis algorithm is then given for x ∈ X and A ∈ B(X) by

P IMH
q (x, A) =

∫

A
αq(x, y)q(y) λLeb(dy) + 1A(x)

∫

X
(1− αq(x, y)) q(y) λLeb(dy)

with αq(x, y) = 1 ∧ π(y)q(x)
π(x)q(y)

. (49)

Irreducibility of Markov chains built on this model naturally require that q(x) > 0 when-
ever π(x) > 0. In fact the performance of the IMH depends on how well the proposal dis-
tribution mimics the target distribution. More precisely it has been shown in Mengersen
and Tweedie (1996) that the IMH sampler is geometrically ergodic if and only if there
exists ε > 0 such that q ∈ Qε,π ⊂M(X), where

Qε,π =
{

q ∈M(X) : λLeb ({x ∈ X : q(x)/π(x) ≤ ε}) = 0
}

. (50)

This condition implies that the whole state space X is a (1, ε)-small set. In practice, it can
be difficult to construct a proposal that ensures efficient sampling. This has motivated
several algorithms which aim at adapting the proposal distribution on the fly (see e.g.
Gilks et al. (1998), G̊asemyr (2003)). The adaptive procedure we use is different from the
aforementioned constructions, but shares the same ultimate goal of matching the proposal
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distribution π with q. As a measure of fitness, it is natural to consider the Kullback-Leibler
divergence between the target distribution π and the proposal distribution q,

K(π‖q) =
∫

X
π(x) log

π(x)
q(x)

λLeb(dx). (51)

Realistic algorithms rely on finite dimensional parametrizations. More precisely, let Ξ ⊂
Rnξ , Z ⊂ Rnz for some integers nξ and nz and define the following family of exponential
densities (defined with respect to the product measure λLeb⊗λ for some measure λ on Z)

Ec = {f : fξ(x, z) = exp {−ψ(ξ) + 〈T (x, z), φ(ξ)〉} ; ξ, x, z ∈ Ξ× X× Z} .

where ψ : Ξ → R, φ : Ξ → Rnθ and T : X× Z → Rnθ . Define E the set of densities q̃ξ that
are marginals of densities from Ec, i.e. such that for any ξ, x ∈ Ξ× X we have

q̃ξ(x) =
∫

Z
fξ(x, z)λ(dz). (52)

This family of densities covers in particular finite mixtures of multivariate normal distri-
butions, and more generally finite and infinite mixtures of distributions in the exponential
family. Here, the variable z plays the role of the label of the class, which is not observed
(see e.g. Titterington et al. (1985)). Using standard missing data terminology, fξ(x, z)
is the complete data likelihood and q̃ξ is the associated incomplete data likelihood, which
is the marginal of the complete data likelihood with respect to the class labels. When
the number of observations is fixed, a classical approach to estimate the parameters of a
mixture distribution consists of using the expectation-maximisation algorithm (EM).

7.2 Classical EM algorithm

The classical EM algorithm is an iterative procedure which consists of two steps. Given n
independent samples (X1, . . . , Xn) distributed marginally according to π: (1) Expectation
step: calculate the conditional expectation of the complete data log-likelihood given the
observations and ξk, the estimate of ξ at iteration k,

ξ 7→ Q(ξ, ξk) =
n∑

i=1

E{log(fξ(Xi, Zi))|Xi, ξk}.

(2) Maximisation step: maximise the function ξ 7→ Q(ξ, ξk) with respect to ξ. The new
estimate for ξ is ξk+1 = argmaxξ∈ΞQ(ξ, ξk) (provided that it exists and is unique). The
key property at the core of the EM algorithm is that the incomplete data likelihood∏n

i=1 q̃ξk+1
(Xi) ≥

∏n
i=1 q̃ξk

(Xi) is increased as each iteration with equality if and only
if ξk is a stationary point (i.e. a local or global minimum or a saddle point) : under
mild additional conditions (see e.g. Wu. (1983)), the EM algorithm therefore converges to
stationary points of the marginal likelihood. Note that, when n →∞, under appropriate
conditions, the renormalized incomplete data log-likelihood n−1

∑n
i=1 log q̃ξ(Xi) converges

to Eπ[log q̃ξ(X)] which is equal, up to a constant and a sign, to the Kullback-Leibler
divergence between π and qξ. In our particular setting the classical batch form of the
algorithm is as follows. First define for ξ ∈ Ξ the conditional distribution

νξ(x, z) :=
fξ(x, z)
q̃ξ(x)

, (53)
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where q̃ξ is given by (52). Now, assuming that
∫
Z |T (x, z)|νξ(x, z)λ(dz) < ∞, one can

define for x ∈ X and ξ ∈ Ξ

νξT (x) :=
∫

Z
T (x, z)νξ(x, z)λ(dz), (54)

and check that for fξ ∈ Ec and any (ξ, ξ′) ∈ Ξ× Ξ

E{log(fξ(Xi, Zi))|Xi, ξ
′} = L(νξ′T (Xi); ξ),

where L : Θ× Ξ → R is defined as

L(θ; ξ) := −ψ(ξ) + 〈θ, φ(ξ)〉, where Θ := T (X, Z).

From this, one easily deduces that for n samples,

Q(ξ, ξk) = nL

(
1
n

n∑

i=1

νξk
T (Xi), ξ

)
.

Assuming now for simplicity that for all θ ∈ Θ, the function ξ → L(θ, ξ) reaches its
maximum at a single point denoted ξ̂(θ), i.e. L(θ; ξ̂(θ)) ≥ L(θ; ξ) for all ξ ∈ Ξ, the EM
recursion can then be simply written as

ξk+1 = ξ̂

(
1
n

n∑

i=1

νξk
T (Xi)

)
.

The latest condition on the existence and uniqueness of ξ̂(θ) is not restrictive: it is for
example satisfied for finite mixtures of normal distributions. More sophisticated general-
isations of the EM algorithm have been developed in order to deal with situations where
this condition is not satisfied, see e.g. Meng and Van Dyk (1997).

Our scenario differs from the classical setup above in two respects. First the number of
samples considered evolves with time and it is required to estimate ξ on the fly. Secondly
the samples {Xi} are generated by a transition probability with invariant distribution π
and are therefore not independent. We address the first problem in Subsection 7.3 and
the two problems simultaneously in Subsection 7.4 and describe our particular adaptive
MCMC algorithm.

7.3 Sequential EM algorithm

Sequential implementations of the EM algorithm for estimating the parameters of a mix-
ture when the data are observed sequentially in time have been considered by several
authors (see (Titterington et al., 1985, Chapter 6), Arcidiacono and Bailey Jones (2003)
and the references therein). The version presented here is in many respect a standard
adaptation of these algorithms and consists of recursively and jointly estimating and max-
imising with respect to ξ the function

θ(ξ) = Eπ[log q̃ξ(X)] = π{νξ(X)},
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which, as pointed out earlier, is the Kullback-Leibler divergence between π and q̃ξ, up
to an additive constant and a sign. At iteration k + 1, given an estimate θk of θ and
ξk = ξ̂(θk), sample Xk+1 ∼ π and calculate

θk+1 = (1− γk+1)θk + γk+1νξk
T (Xk+1) = θk + γk+1 (νξk

T (Xk+1)− θk) , (55)

where {γk} is a sequence of stepsizes and γk ∈ [0, 1]. This can be interpreted as a stochastic
approximation algorithm θk+1 = θk + γk+1H(θk, Xk+1) with for θ ∈ Θ,

H(θ, x) = νξ̂(θ)T (x)− θ and h(θ) = π
(
νξ̂(θ)T

)
− θ. (56)

It is possible to introduce at this stage a set of simple conditions on the distributions in
Ec that ensures the convergence of {θk}. By convergence we mean here that the sequence
{θk} converges to the set of stationary points of the Kullback-Leibler divergence between
π and q̃ξ̂(θ), i.e.

L := {θ ∈ Θ : ∇w(θ) = 0}.
where for θ ∈ Θ

w(θ) = K(π‖q̃ξ̂(θ)), (57)

and K and q̃ξ are given by (51) and (52), respectively. It is worth noticing that these very
same conditions will be used to prove the convergence of our adaptive MCMC algorithm.

(E1) (i) The sets Ξ and Θ are open subsets of Rnξ and Rnθ respectively. Z is a compact
subset of Rnz .

(ii) For any x ∈ X, T (x) := inf{M : λLeb({z : |T (x, z)| ≥ M}) = 0} < ∞.

(iii) The functions ψ : Ξ → R and φ : Ξ → Rnθ are twice continuously differentiable
on Ξ.

(iv) There exists a function ξ̂ : Θ → Ξ such that,

∀ξ ∈ Ξ, ∀θ ∈ Θ, L(θ; ξ̂(θ)) ≥ L(θ; ξ).

Moreover, the function θ 7→ ξ̂(θ) is continuously differentiable on Θ.

Remark 7. For many models the function ξ → L(θ; ξ) admits a unique global maximum
for any θ ∈ Θ and the existence and differentiability of θ → ξ̂(θ) follows from the implicit
function theorem under mild regularity conditions.

(E2) (i) The level sets {θ ∈ Θ, w(θ) ≤ M} are compact;

(ii) The set L := {θ ∈ Θ,∇w(θ) = 0} of stationary points is included in a compact
subset of Θ;

(iii) The closure of w(L) has an empty interior.

Remark 8. Assumption (E2) depends on both the properties of π and qξ̂(θ) and should
therefore be checked on a case by case basis. Note however that (a) these assumptions
are satisfied for finite mixtures of distributions in the exponential family under classical
technical conditions on the parametrization beyond the scope of the present paper (see,
among others (Titterington et al., 1985, chapter 6) and Arcidiacono and Bailey Jones
(2003) for details) (b) the third assumption in (E2) can very often be checked using Sard’s
theorem.
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The key to establish the convergence of the stochastic approximation procedure here con-
sists of proving that w(θ) = K(π‖qξ̂(θ)) plays the role of a Lyapunov function. This is
hardly surprising as the algorithm aims at minimizing sequentially in time the incomplete
data likelihood. More precisely, we have

Proposition 14. Assume (E1). Then, for all θ ∈ Θ, 〈∇w(θ), h(θ)〉 ≤ 0 and

L = {θ ∈ Θ : 〈∇w(θ), h(θ)〉 = 0} = {θ ∈ Θ : ∇w(θ) = 0} , (58)

ξ̂ (L) = {ξ ∈ Ξ : ∇ξK(π‖qξ) = 0} . (59)

where θ 7→ h(θ) is given in (56).

The proof is in Appendix E. Another important result to prove convergence is the
regularity of the field θ 7→ Hθ. We have

Proposition 15. Assume (E1). Then {Hθ, θ ∈ Θ} is ((1 + T )2, 1)-regular, where Hθ is
defined in Eq. (56).

The proof is in Appendix E. From this and standard results on the convergence of SA,
one may show that the SA procedure converges pointwise under (E1-2).

7.4 On-line EM for IMH adaptation

We now consider the combination of the sequential EM algorithm described earlier with
the IMH sampler. As we shall see in Proposition 18, using q̃ξ̂(θ) as a proposal distribution
for the IMH transition is not sufficient to ensure the convergence of the algorithm, and
it will be necessary to use a mixture of a fixed distribution ζ (which will not be updated
during the successive iterations) and an adaptive component, here q̃ξ̂(θ). More precisely
we define the following family of parametrized IMH transition probabilities {Pθ, θ ∈ Θ}.
For some ε > 0 let ζ ∈ Qε,π be a density which does not depend on θ ∈ Θ, let ρ ∈ (0, 1)
and define the family of IMH transition probabilities

{Pθ := P IMH
qθ

, θ ∈ Θ} with {qθ := (1− ρ)q̃ξ̂(θ) + ρζ, θ ∈ Θ}. (60)

The following properties on ζ and Ec will be required:

(E3) (i) There exist ε > 0 and ζ ∈ Qε,π such that for any compact K ⊂ Ξ

sup
ξ∈K

inf
{

M : λLeb

(
q̃ξ(x)(1 + T (x))

ζ(x)
≥ M

)
= 0

}
< ∞. (61)

(ii) There exists W → [1,∞) such that for any compact subset K ∈ Ξ,
∫

X
W (x)(1 + T (x))ζ(x)λLeb(dx) + sup

ξ∈K

∫

X
W (x)(1 + T (x))q̃ξ(x)λLeb(dx) < ∞.

It is worth pointing out that the above choice for qθ and the conditions on ζ will typically
have the further benefit of ensuring better practical properties of the algorithm as they
will ensure some form of uniform ergodicity.
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The basic version (see Section 2) of our algorithm now proceeds as follows. Set
θ0 ∈ Θ, ξ0 = ξ̂(θ0) and draw X0 according to some initial distribution. At itera-
tion k + 1 for k ≥ 0, draw Xk+1 ∼ Pθk

(Xk, ·) where Pθ is given in (60). Compute
θk+1 = θk + γk+1 (νξk

T (Xk+1)− θk) and ξk+1 = ξ̂(θk+1). We will study here the corre-
sponding algorithm with reprojections which results in the homogeneous Markov chain
{Zk, k ≥ 0} as described in Section 2.

We now establish intermediate results about {Pθ, θ ∈ Θ} and {Hθ, θ ∈ Θ} which will
lead to the proof that (A1-3) are satisfied. We start with a general proposition about the
properties of IMH transition probabilities, relevant to check (A1).

Proposition 16. Let V : X → [1, +∞) and let q ∈ Qε,π for ε > 0. Then,

1. X is a (1, ε)-small set and

P IMH
q V (x) ≤ (1− ε)V (x) + q(V ), where q(V ) =

∫

X
q(x)V (x)λLeb(dx).

2. For any g ∈ LV and any proposal distributions q, q′ ∈ Qε,π

(2‖g‖V )−1
∥∥P IMH

q g − P IMH
q′ g

∥∥
V
≤

∫

X
|q(x)− q′(x)|V (x)λLeb(dx)+

[q(V ) ∨ q′(V )]
(
(1 ∧ |1− q−1q′|1) ∨ (1 ∧ |1− (q′)−1q|1)

)
. (62)

The proof is in Appendix D. In contrast with the SRWM, the V -norm ‖P IMH
q g −

P IMH
q′ g‖V can be large even in situations where

∫
X |q(x) − q′(x)|V (x)λLeb(dx) is small.

This stems from the fact that the ratio of densities q/q′ enters the upper bound above.
As we shall see in Proposition 18, this is what motivates our definition of the proposal
distributions in (60) as a mixture of q̃ξ ∈ E and a non-adaptive distribution ζ which
satisfies (E3). Before specializing the results of Proposition 16 to the family of transition
probabilities defined in Eq. (60) we prove an intermediate proposition concerned with
estimates of the variation qξ − qξ′ in various senses.

Proposition 17. Let {q̃ξ, ξ ∈ Ξ} ⊂ E be a family of distributions satisfying (E1). Then
for any convex compact set K ⊂ Ξ

1. There exists a constant C < ∞ such that

sup
ξ∈K

|∇ξ log q̃(x; ξ)| ≤ C(1 + T (x)). (63)

2. For any ξ, ξ′, x ∈ K2 × X there exists a constant C < ∞ such that

|q̃ξ(x)− q̃ξ′(x)| < C|ξ − ξ′|(1 + T (x)) sup
ξ∈K

q̃ξ(x). (64)

3. For W → [1,∞) such that supξ∈K
∫
X q̃ξ(x)[1 + T (x)]W (x)λLeb(dx) < ∞ and any

ξ, ξ′ ∈ K there exists a constant C < ∞ such that
∫

X
|q̃ξ(x)− q̃ξ′(x)|W (x)λLeb(dx) ≤ C|ξ − ξ′|. (65)
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Combining Proposition 16 and Proposition 17 we obtain:

Proposition 18. Assume that the family of distributions {q̃ξ, ξ ∈ Ξ} ⊂ E satisfies (E1)
and (E3). Then the family of transition kernels {Pθ, θ ∈ Θ} given in (60) satisfies (A1)
with V = W , m = 1, λ = 1− ρε, δ = ρε and β = 1.

We are now in a position to present our final result:

Theorem 19. Let π ∈M(X). Consider the homogeneous Markov chain {Zk = (Xk, θk, κk, ςk, νk); k ≥
0} as defined in Section 2, with

(i) {Pθ, θ ∈ Θ} as in Eq. (60) where ζ ∈ Qε,π for some ε > 0 and {q̃ξ, ξ ∈ Ξ} satisfying
(E1), (E3) with V such that T ∈ LV 1/4, and (E2).

(ii) {Hθ, θ ∈ Θ} as in Eq. (56).

(iii) {γk, k ≥ 0} and {εk, k ≥ 0} satisfying (A4).

Then for any (x, θ) ∈ K×K0,

1. For ψ ∈ LV r and r ∈ [0, 1/2)

n−1
n∑

k=1

(ψ(Xk)− π(ψ)) → 0 P̄x,θ − a.s.

2. P̄x,θ − a.s. there exists a random variable θ∞ ∈ {θ ∈ Θ : ∇θK(π‖q̃ξ̂(θ)) = 0} such
that for any ψ ∈ LV r , r ∈ [0, 1/4), provided that V (θ∞, ψ) > 0, implies that for all
u ∈ R,

lim
n→∞

∣∣∣∣∣P̄x,θ

(
n−1/2

n∑

k=1

(ψ(Xk)− π(ψ)) ≤ u

)
− Ēx,θ

{
Φ

({V (θ∞, ψ)}−1u
)}

∣∣∣∣∣ = 0,

where V (θ, ψ) is given in Eq. (33) and Φ is the standard normal distribution func-
tion.

Proof. The application of Propositions 14-15 and 18 shows that (A1-3) are satisfied and
therefore imply Theorem 9. Then we conclude with Theorems 6 and 8.

Remark 9. It is worth noticing that provided that π ∈ M(X) satisfies (M), the results
of Propositions 10, 14, 15 and 17, proved in this paper easily allow one to establish a
result similar to Theorem 19 for a generalization of the N-SRWM of Haario et al. (2001)
(described here in Section 1 and studied in Section 5) to the case where the proposal
distribution belongs to E , i.e. when the proposal is a mixture of distributions.
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A Proof of propositions 3 and 4

Proof of Proposition 3. Let φ ∈ LV r for r ∈ [0, 1]. Proposition 2 shows that, for all x ∈ X,∑∞
k=0 |P k

θ φ(x) − π(φ)| < ∞ and gθ(x) =
∑∞

k=0 P k
θ φ(x) − π(φ) is a solution to Poisson’s

equation. The first part of the statement follows, because by construction, for any θ ∈ Θ
and any φ ∈ LV r , gθ ∈ LV r . Note also that,

Pn
θ φ(x)− Pn

θ′φ(x) =
n−1∑

k=0

P j
θ (Pθ − Pθ′)P

n−j−1
θ′ φ(x) =

n−1∑

k=0

P j
θ (Pθ − Pθ′)(P

n−j−1
θ′ φ(x)− π(φ)).

Let K be a compact subset of Θ. Proposition 2 shows that there exists a constant C such
that for any l ≥ 0 and any φ ∈ LV r ,

sup
θ∈K

‖P l
θφ− π(φ)‖V r ≤ C‖φ‖V r ρl.

Under assumption (A1), supj≥0 supθ∈K ‖P j
θ V r‖V r < ∞. Thus, for any l ≥ 0,

‖(Pθ − P ′
θ)(P

l
θ′φ− π(φ))‖V r ≤ C|θ − θ′|β‖P l

θ′φ(x)− π(φ)‖V r ≤ C|θ − θ′|β‖φ‖V rρl,

showing that, for any φ ∈ LV r and all (θ, θ′) ∈ K ×K,

‖Pn
θ φ− Pn

θ′φ‖V r ≤ C|θ − θ′|β ‖φ‖V r . (66)

Let (θ, θ′) ∈ K ×K and write :

|(P k
θ ψθ(x)− π(ψθ))− (P k

θ′(x)ψθ′(x)− π(ψθ′))| ≤
|P k

θ ψθ(x)− P k
θ ψθ′(x)|+ |P k

θ ψθ′(x)− P k
θ′ψθ′(x)|+ |π(ψθ)− π(ψθ′)|.

(67)

Since {ψθ, θ ∈ Θ} is (V r, β)-regular, there exists a constant C such that, for all (θ, θ′) ∈
K ×K, ‖ψθ − ψθ′‖V r ≤ C|θ − θ′|β. Therefore, there exists a constant C such that, for all
x ∈ X, for all (θ, θ′) ∈ K ×K and for all k ≥ 0,

|P k
θ ψθ(x)− P k

θ ψθ′(x)| ≤ C|θ − θ′|βV r(x)

|π(ψθ)− π(ψθ′)| ≤ C|θ − θ′|βπ(V r) ≤ C|θ − θ′|(π(V ))r.

Combining (66) and (67), there exists C such that for all x ∈ X, for all (θ, θ′) ∈ K × K,
and for all k ≥ 0,

|(P k
θ ψθ(x)− π(ψθ))− (P k

θ′(x)ψθ′(x)− π(ψθ′))| ≤ C|θ − θ′|β.

On the other hand, by Proposition 2, there exist constants ρ < 1 and C such that, for all
(θ, θ′) ∈ K ×K,

|(P k
θ ψθ(x)− π(ψθ))− (P k

θ′ψθ′(x)− π(ψ′θ))| ≤ CρkV r(x).
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Hence, for any s and N ≥ s, we have

|P s
θ gθ(x)− P s

θ′gθ′(x)| ≤
∞∑

k=s

|(P k
θ ψθ(x)− π(ψθ))− (P k

θ′(x)− π(ψθ′))|

≤ CV r(x)

{
N |θ − θ′|β +

∞∑

k=N+s

ρk

}

≤ CV r(x)
{

N |θ − θ′|β +
ρN+s

1− ρ

}
.

The proof follows by setting N = [β log |θ − θ′|/ log ρ], for |θ − θ′| ≤ δ < 1, θ 6= θ′, N = s
otherwise, and using the fact that for any α ∈ (0, β), |θ−θ′|β log |θ−θ′| = o(|θ−θ′|α).

Proof of Proposition 4. Let ρ = {ρk} be a non-increasing sequence of positive numbers
and let K be a compact subset of Θ. For simplicity, we denote σε = σ(K) ∧ νε. We first
prove (20). (A1-i) shows that, for all k ≥ 0, l ≥ 0, all x ∈ X,

sup
θ∈K

Eρ
x,θ{V (Xk+l)1(σ(K) ≥ k + l)|Fk} ≤ κlV (Xk)1(σ(K) ≥ k). (68)

We will show that there exist constants ε > 0, 0 < ρ < 1 and C such that, for all k

Eρ
x,θ{V (Xk+m)1(σε ≥ k + m)|Fk} ≤ ρV (Xk)1(σε ≥ k) + C. (69)

For n ∈ N, write n = um + v, where v ∈ {0, . . . , m− 1}. (69) shows that

Eρ
x,θ{V (Xum+v)1(σε ≥ um + v)} ≤ ρuEρ

x,θ{V (Xv)1(σε ≥ v)}+
C

1− ρ

and the proof of (20) follows from (68). It remains to prove (69). We repeatedly use the
following result adapted from (Benveniste et al., 1990, Lemma 3, p. 292)

Lemma 20. Assume (A1). Let ψ : Θ×X → R be a function verifying supθ∈K ‖ψθ‖V < ∞.
Then, for any ε > 0, for any l ≥ 1 there exist a constant Cl such that, for all k ≥ 0,

Eρ
x,θ{ψθk

(Xk+l)1(σε ≥ k + l)|Fk} ≤
Eρ

x,θ{Pθk
ψθk

(Xk+l−1)1(σε ≥ k + l − 1)|Fk}+ Clκ
lεβ sup

θ∈K
‖ψθ‖V V (Xk)1(σε ≥ k).

Proof.

Eρ
x,θ{ψθk

(Xk+l)1(σε ≥ k + l)|Fk} = Eρ
x,θ{Pθk+l−1

ψθk
(Xk+l−1)1(σε ≥ k + l)|Fk}

= Eρ
x,θ{Pθk

ψθk
(Xk+l−1)1(σε ≥ k + l)|Fk}+ Rk,l,

where
Rk,l := Eρ

x,θ{(Pθk+l−1
− Pθk

)ψθk
(Xk+l−1)1(σε ≥ k + l)|Fk}.

Under (A1-ii), there exists a constant C such that for all x ∈ X

|(Pθk+l−1
− Pθk

)ψθk
(x)1(σε ≥ k + l)| ≤ C sup

θ∈K
‖ψθ‖V V (x)(lε)β1(σε ≥ k + l).
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Finally, (A1-ii) implies that

Eρ
x,θ{V (Xk+l−1)1(σε ≥ k + l)|Fk} ≤ κlV (Xk)1(σε ≥ k),

which implies
|Rk,l| ≤ Cκl (lε)β sup

θ∈K
‖ψθ‖V V (Xk)1(σε ≥ k).

Using repeatedly the lemma above, we may write

Eρ
x,θ{V (Xk+m)1(σε ≥ k + m)|Fk}
≤ Eρ

x,θ{Pθk
V (Xk+m−1)1(σε ≥ k + m− 1)|Fk}+ CmεβV (Xk)1(σε ≥ k)

≤ Eρ
x,θ{P 2

θk
V (Xk+m−2)1(σε ≥ k + m− 2)|Fk}+ (Cm + Cm−1κ)εβV (Xk)1(σε ≥ k)

...

≤ Pm
θk

V (Xk)1(σε ≥ k) +

(
m−1∑

i=0

Cm−iκ
i

)
εβV (Xk)1(σε ≥ k).

The proof of (69) follows for ε sufficiently small. This concludes the proof of (20).

We now turn to the proof of (21). For any sequence ε = {εk} such that εk ≤ ε for any
k ≥ s,

Eρ
x,θ[V (Xk+s)1{σ(K) ∧ ν(ε)} ≥ k + s)}

= Eρ
x,θ

{
Eρ←s

Xs,θs
{V (Xk)1{σ(K) ∧ ν(ε←s) ≥ k}}1(σ(K) ∧ ν(ε) ≥ s)

}

≤ Eρ
x,θ

{
sup
θ∈K

Eρ←s

Xs,θ{V (Xk)1{σε ≥ k}}1{σ(K) ≥ s}
}

≤ CEρ
x,θ{V (Xs)1(σ(K) ≥ s)},

and the proof is concluded by (A1-i).

B Proof of Proposition 10

For any x ∈ X, define the acceptance region A(x) = {z ∈ X;π(x + z) ≥ π(x)} and the
rejection region R(x) = {z ∈ X; π(x+z) < π(x)}. From the definition (41) of Kδ,ε (Roberts
and Tweedie, 1996, Theorem 2.2) applies for any q ∈ Kδ,ε and we can conclude that (42)
is satisfied. Noting that the two sets A(x) and R(x) do not depend on the proposal
distribution q and using the conclusion of the proof of Theorem 4.3 of Jarner and Hansen
(2000) we have

inf
q∈Kδ,ε

lim inf
|x|→+∞

∫

A(x)
q(z)λLeb(dz) > 0,

so that from the conclusion of the proof of Theorem 4.1 of Jarner and Hansen (2000),

sup
q∈Kδ,ε

lim sup
|x|→+∞

P SRW
q V (x)
V (x)

= 1− inf
q∈Kδ,ε

lim inf
|x|→+∞

∫

A(x)
q(z)λLeb(dz) < 1,
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which proves (43). Finally, for any q ∈ Kδ,ε,

P SRW
q V (x)
V (x)

=
∫

A(x)

π(x + z)−η

π(x)−η
q(z)λLeb(dz)+

∫

R(x)

(
1− π(x + z)

π(x)
+

π(x + z)1−η

π(x)1−η

)
q(z)λLeb(dz)

≤ sup
0≤u≤1

(1− u + u1−η),

which proves (44). Now notice that

P SRW
q g(x)− P SRW

q′ g(x) =
∫

X
α(x, x + z)(q(z)− q′(z))g(x + z)λLeb(dz)+

g(x)
∫

X
α(x, x + z)(q′(z)− q(z))λLeb(dz).

We therefore focus, for r ∈ [0, 1] and g ∈ LV r , on the term
∣∣∫

X α(x, x + z)(q(z)− q′(z))g(x + z)λLeb(dz)
∣∣

‖g‖V r V r(x)
≤

∫
X α(x, x + z)|q(z)− q′(z)|V r(x + z)λLeb(dz)

V r(x)
=

=
∫

A(x)

π(x + z)−rη

π(x)−rη
|q(z)− q′(z)|λLeb(dz) +

∫

R(x)

π(x + z)1−rη

π(x)1−rη
|q(z)− q′(z)|λLeb(dz)

≤
∫

X
|q(z)− q′(z)|λLeb(dz).

We now conclude that for any x ∈ X and any g ∈ LV r ,

|P SRW
q g(x)− P SRW

q′ g(x)|
V r(x)

≤ 2 ‖g‖V r

∫

X
|q(z)− q′(z)|λLeb(dz).

C Proof of Lemma 11

We have ∫

X
|qΓ(z)− qΓ′(z)|dz =

∫

X

∣∣∣∣
∫ 1

0

d

dv
qΓ+v(Γ′−Γ)(z)dv

∣∣∣∣ dz

and let Γv = Γ + v(Γ′ − Γ), so that

d

dv
log qΓ+v(Γ′−Γ)(z) = −1

2
Tr

[
Γ−1

v

(
Γ′ − Γ

)
+ Γ−1

v zzTΓ−1
v (Γ′ − Γ)

]

and consequently
∫

X

∣∣∣∣
∫ 1

0

d

dv
qΓ+v(Γ′−Γ)(z)dv

∣∣∣∣ dz ≤ |Γ′ − Γ|
∫ 1

0
|Γ−1

v |dv ≤ nx

λmin(K)
|Γ′ − Γ|,

where we have used the following inequality,

|Tr[Γ−1
v zzTΓ−1

v (Γ′ − Γ)]| ≤ |Γ′ − Γ|Tr[Γ−1
v Γ−1

v zzT].
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D Proof of Propositions 16, 18

Proof of Proposition 16. The minorization condition is a classical result, see Mengersen
and Tweedie (1996). Now notice that

P IMH
q V (x) =

∫

X
αq(x, y)V (y)q(y)λLeb(dy) + V (x)

∫

X
[1− αq(x, y)]q(y)λLeb(dy)

≤
(

1−
∫

X

(
q(x)
π(x)

∧ q(y)
π(y)

)
π(y)λLeb(dy)

)
V (x) + q(V ),

where αq is given in (49). The drift condition follows.

From the definition of the transition probability and for any g ∈ LV ,
∣∣P IMH

q g(x)− P IMH
q′ g(x)

∣∣ ≤ ‖g‖V ×{∫

X
|αq(x, y)q(y)− αq′(x, y)q′(y)|V (y)λLeb(dy) + V (x)

∫

X
|αq′(x, y)q′(y)− αq(x, y)q(y)|λLeb(dy)

}

≤ 2‖g‖V V (x)
∫

X
|αq(x, y)q(y)− αq′(x, y)q′(y)|V (y)λLeb(dy).

We therefore bound

I =
∫

X

∣∣∣∣
q(y)
π(y)

∧ q(x)
π(x)

− q′(y)
π(y)

∧ q′(x)
π(x)

∣∣∣∣π(y)V (y)λLeb(dy).

We introduce the following sets

Aq(x) =
{

y :
q(y)
π(y)

≤ q(x)
π(x)

}
and Bq(x) =

{
y :

q(y)
π(y)

≤ q′(x)
π(x)

}
,

and notice that the following inequalities hold:

∀y ∈ Ac
q′(x) ∩ Ac

q(x), π(y) <
π(x)
q(x)

q(y) ∧ π(x)
q′(x)

q′(y), and

∀y ∈ Ac
q′(x) ∩ Bc

q(x), π(y) <
π(x)
q′(x)

(q′(y) ∧ q(y)). (70)

We now decompose I into four terms I :=
∑4

i=1 Ii, where

I =
∫

Aq∩Aq′

∣∣∣∣
q(y)
π(y)

− q′(y)
π(y)

∣∣∣∣π(y)V (y)λLeb(dy) +
∫

Ac
q∩Ac

q′

∣∣∣∣
q(x)
π(x)

− q′(x)
π(x)

∣∣∣∣π(y)V (y)λLeb(dy)

+
∫

Aq∩Ac
q′

∣∣∣∣
q(y)
π(y)

− q′(x)
π(x)

∣∣∣∣ π(y)V (y)λLeb(dy) +
∫

Ac
q∩Aq′

∣∣∣∣
q(x)
π(x)

− q′(y)
π(y)

∣∣∣∣π(y)V (y)λLeb(dy),

where we have dropped x in the set notation for simplicity. We now determine bounds for
Ii, i = 2, 3. Notice that since y ∈ Ac

q ∩ Ac
q′

I2 ≤
{∣∣∣∣1−

q′(x)
q(x)

∣∣∣∣
∫

Ac
q∩Ac

q′
V (y)q(y)λLeb(dy)

}
∧

{∣∣∣∣1−
q(x)
q′(x)

∣∣∣∣
∫

Ac
q∩Ac

q′
V (y)q′(y)λLeb(dy)

}

≤
{∣∣∣∣1−

q′(x)
q(x)

∣∣∣∣ ∧
∣∣∣∣1−

q(x)
q′(x)

∣∣∣∣
} {∫

Ac
q∩Ac

q′
V (y)q(y)λLeb(dy) ∨

∫

Ac
q∩Ac

q′
V (y)q′(y)λLeb(dy)

}
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and it can easily be checked that
∣∣∣∣1−

q′

q

∣∣∣∣ ∧
∣∣∣∣1−

q

q′

∣∣∣∣ ≤
{

1 ∧
∣∣∣∣1−

q′

q

∣∣∣∣
}
∨

{
1 ∧

∣∣∣∣1−
q

q′

∣∣∣∣
}

.

The term I3 can be bounded as follows

I3 ≤
{∫

Aq∩Ac
q′∩Bc

q

q(y)V (y)λLeb(dy)

}
∧

{(
q(x)
π(x)

− q′(x)
π(x)

) ∫

Aq∩Ac
q′∩Bc

q

V (y)π(y)λLeb(dy)

}

+
∫

Aq∩Ac
q′∩Bq

(
q′(y)
π(y)

− q(y)
π(y)

)
V (y)π(y)λLeb(dy),

and using (70) we find that

I3 ≤
{

1 ∧
(

q(x)
q′(x)

− 1
)}∫

Aq∩Ac
q′∩Bc

q

q(y) V (y)λLeb(dy) +
∫

Aq∩Ac
q′∩Bq

|q′(y)− q(y)|V (y)λLeb(dy).

The bound for I4 follows from that of I3 by swapping q and q′.

Proof of Proposition 17. We first note that from Fisher’s identity we have

∀ξ ∈ Ξ, ∇ξ log q̃(x; ξ) =
∫

Z
∇ξ log f(x, z; ξ)νξ(x, z)λ(dz) = −∇ξψ(ξ) + [νξT (x)]T∇ξφ(ξ).

and from (E1) we conclude that Eq. (63) holds. Eq. (64) is a direct consequence of (63).
Now we prove Eq. (65).
∫

X
|q̃ξ(x)− q̃ξ′(x)|W (x)λLeb(dx) (71)

=
∫

X
|
∫ 1

0

∫

Z
[ψ(ξ′)− ψ(ξ) + 〈θ(x, z), φ(ξ)− φ(ξ′)〉]fv

ξ (x, z)f1−v
ξ′ (x, z)λ(dz)λLeb(dv)|W (x)λLeb(dx)

(72)

≤ |ψ(ξ′)− ψ(ξ)|
∫

X

∫ 1

0

∫

Z
fv

ξ (x, z)f1−v
ξ′ (x, z)W (x)λ(dz)λLeb(dvdx) (73)

+ |φ(ξ)− φ(ξ′)|
∫

X

∫ 1

0
T (x)

∫

Z
fv

ξ (x, z)f1−v
ξ′ (x, z)W (x)λ(dz)λLeb(dvdx) (74)

≤ |ψ(ξ′)− ψ(ξ)|
∫ 1

0

[∫

X
W (x)q̃ξ(x)λLeb(dx)

]v [∫

X
W (x)q̃ξ′(x)λLeb(dx)

]1−v

λLeb(dv)

(75)

+ |φ(ξ)− φ(ξ′)|
∫ 1

0

[∫

X
T (x)W (x)q̃ξ(x)λLeb(dx)

]v [∫

X
T (x)W (x)q̃ξ′(x)λLeb(dx)

]1−v

λLeb(dv)

(76)

and we conclude using (E1).

Proof of Proposition 18. Denote

Υξ,ξ′,ρ(x) :=
(1− ρ)q̃ξ(x) + ρζ(x)
(1− ρ)q̃ξ′(x) + ρζ(x)

= 1 +
q̃ξ(x)− q̃ξ′(x)

ζ(x)[q̃ξ′(x)/ζ(x) + ρ
1−ρ ]

.
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Therefore, from (63), for any convex compact set K ⊂ Ξ there exists C < ∞ such that for
any ξ, ξ′ ∈ K2 × X,

|1−Υξ,ξ′,ρ(x)| ≤ 1− ρ

ρ

|q̃ξ(x)− q̃ξ′(x)|
ζ(x)

≤ C|ξ − ξ′|supξ∈K q̃ξ(x)(1 + T (x))
ζ(x)

,

which with (61) implies that for all ξ, ξ′ ∈ K and for λLeb-almost all x there exists C < ∞
such that (

1 ∧ ∣∣1−Υξ,ξ′,ρ(x)
∣∣) ∨ (

1 ∧ ∣∣1−Υξ′,ξ,ρ(x)
∣∣) ≤ C |ξ − ξ′|.

Now as a direct consequence of (65) one can show that for any r ∈ [0, 1]
∫

X
|q̃ξ(x)− q̃ξ′(x)|V (x)rλLeb(dx) ≤ C|ξ − ξ′| sup

ξ∈K

∫

X
V r(x)(1 + T (x))q̃ξ(x)λLeb(dx).

The proof is concluded by application of Proposition 16.

E Proof of proposition 14 and 15

Proof of proposition 14. We first note that from Fisher’s identity we have

∀ξ ∈ Ξ, ∇ξ log q̃(x; ξ) =
∫

Z
∇ξ log f(x, z; ξ)νξ(x, z)λ(dz) = −∇ξψ(ξ) + [νξT (x)]T∇ξφ(ξ).

From (63) and (E1) we may derive under the sum sign to show that

∇ξ

∫

X
π(x) log qξ(x)λLeb(dx) =

∫

X
π(x)∇ξ log q̃ξ(x)λLeb(dx) = −∇ξψ(ξ)+[π(νξT )]T∇ξφ(ξ),

and thus by the chain rule of derivations

∇θw(θ) = −
(
−∇ξψ(ξ̂(θ)) + π

(
νξ̂(θ)T

)T

∇ξφ(ξ̂(θ))
)
∇θ ξ̂(θ).

For any θ ∈ Θ, ξ̂(θ) is a stationary point of the mapping ξ → L(θ, ξ) and thus

∇ξL(θ, ξ̂(θ)) = −∇ξψ(ξ̂(θ)) + θT∇ξφ(ξ̂(θ)) = 0.

Consequently (56) implies that ∇θw(θ) = −h(θ)T∇ξφ(ξ̂(θ))∇θ ξ̂(θ). We also notice that
∇θ∇ξL(θ, ξ) = ∇ξφ(ξ)T. Differentiation with respect to θ of the mapping θ 7→ ∇ξL(θ, ξ̂(θ))
yields

∇θ∇ξL(θ, ξ̂(θ)) = ∇ξφ(ξ̂(θ)) +∇θ ξ̂(θ)T∇2
ξL(θ, ξ̂(θ)) = 0.

We finally have

〈∇θw(θ), h(θ)〉 = h(θ)T(∇θ ξ̂(θ))T∇2
ξL(θ, ξ̂(θ))∇θ ξ̂(θ)h(θ),

which concludes the proof, since under (E1), ∇2
ξL(θ, ξ̂(θ)) ≤ 0 for any θ ∈ Θ.
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Proof of proposition 15. For any x ∈ X,

|Hθ(x)−Hθ′(x)| ≤ T (x)
∫

Z
|νξ̂(θ)(x, z)− νξ̂(θ′)(x, z)|λ(dz) + |θ′ − θ|.

From Proposition 17 one has that for any compact set K ∈ Ξ, there exists a constant C
such that, for all ξ ∈ K

|∇ξ log f(x, z; ξ)| ≤ C(1 + T (x)) and |∇ξ log q(x; ξ)| ≤ C(1 + T (x))

Thus

|∇ξ log νξ(x, z)| ≤ |∇ξ log f(x, z; ξ)|+ |∇ξ log q(x; ξ)| ≤ 2C(1 + T (x)).

Hence, for ξ, ξ′ ∈ K,

|νξT (x)− νξ′T (x)| ≤ 2C(1 + T (x))2|ξ − ξ′|

which concludes the proof.
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