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Section 1: Introduction 
 
Sequential data is a common attribute or form of “real-world” processes found in all areas 
of science and engineering.  Hidden Markov models (HMMs) provide a flexible means of 
modeling the behavior of such natural processes.  Its mathematically tractable form 
allows for these processes to be discrete or continuous in nature and can be characterized 
as signals.  Such signals possess different traits – pure or distorted, stationary or non-
stationary, for example.  These properties of the signal can be used to model the specific 
form of a signal (random) process.  This paper focuses on the class of models referred to 
as hidden Markov models which tries to characterize the statistical properties of a 
stochastic process and demonstrate their applicability to “real-world” processes. 
 

1.1 Use of HMMs 
 
Hidden Markov models hold a fundamental interest in a wide range of applications.  
Though there are several reasons why such models are of interest, in general, these 
models are used for two purposes.  Prediction systems are commonly employed HMMs 
in the field of speech recognition, medical prognosis and financial arenas.  HMMs are 
widely used as a pattern recognition method for gene recognition, word recognition in 
speech processing, visual and gesture recognition, and in various other capacities.   
 
HMMs also provide a means of describing the dynamical structure of real-world process.  
In this capacity, HMMs capture over-dispersion in the observed data which is attributed 
to the assumption that the observations from one of several marginal distribution, each 
associated with a hidden state.  HMMs provide a natural modeling of the process, 
especially when a physical meaning can be attributed to the states.  
 
Another important use of HMMs is their potential in describing the structure such that the 
source would not have to be available.  Thus, given a good model, the source could be 
simulated and still maintain the ability to learn as much about the source and the process 
it outputs via simulations.  This attribute is particularly important and of interest to 
researchers using signal processes (especially) since the cost of a signal process from an 
actual source is quite high.   
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1.2 Motivation 

 
Electromyographical (EMG) signals are another source of data which may be 
appropriately modeled by HMMs.  EMG signals or simply EMG are often used as an 
interface device, since they are electrical simulations which indicate the activity level of 
motor units associated with muscle contractions.  Different motions resulting from 
different muscle activities generate different EMG patterns.  Many researchers have used 
EMG signals in a variety of applications in the medical field including prosthetic control 
and musculoskeletal disorders (MSDs).   
 
Exposures associated with work-related musculoskeletal disorders (WMSDs) have not 
been clearly defined as there are many factors which are considered “risks”.  All jobs 
involve certain tasks which take a certain amount of time.  Some jobs may have tasks 
which are considered to be more detrimental than others with respect to (w.r.t) 
developing a WMSD, such as repeated tasks.  Some tasks may also be impeded by other 
physical attributes of the office environment which may be quantified via dimension and 
posture measures.  Many researchers have tried to use EMG signals to determine the 
differences in muscle load for different tasks. 
 
EMG signals provide a valuable understanding in the effects of different risks on muscle 
activity.  However, studies tend to use more conventional modeling approaches to 
determine differences in performance.  In most instances, studies with EMG data are 
small in number as they are an extremely costly process to output.  Hence, hidden 
Markov models provide a valuable resource in modeling EMG signals and in uncovering 
the dynamical structure of correlated multivariate time series model.   
 
Some studies have used autoregressive (AR) models to represent the EMG signal when 
measured from a single electrode site while others have used a multi-dimensional AR 
models to discriminate between various forearm motions (Bu et. al., 2003).  Moore et. al. 
(2003) used simple generalized linear models.  The study of HMMs is obviously not new 
and there is much theory available in the area of obtaining maximum likelihood estimates 
and various other algorithmic approaches for HMMs.  However, there is much gap in 
both the use of HMMs in modeling EMG and in handling multiple processes (time series) 
with time-variant observations.  This research paper attempts to demonstrate the use of 
HMMs for EMG signals as a pattern recognition method in understanding the dynamical 
structure induced by WMSDs.  This paper does not attempt to solve the problem but 
introduces the concept of HMMs to show their applicability to EMG data. 
 

1.3 Overview 
 
This paper is partitioned into four core sections.  Section 2 introduces hidden Markov 
models for a single observed process.  It also concentrates on presenting some of the 
theoretical aspects and underpinnings of HMM theory.  Section 3 is an extension of the 
standard HMM introduced in section 2 as it considers continuous and autoregressive 



 8

models.  HMMs and their variants are also formulated as left-right models (as opposed to 
ergodic or other forms) which is essential in representing HMMs as probabilistic 
graphical models.  Section 4 forms the crux of HMM methodology as it exposes the 
fundamental problems of interest for HMMs and provides mathematical formulations for 
the solutions to these problems.  Section 5 introduces the concept of using EMG signals 
as another source of data which can be modeled by HMMs within the context of 
understanding the dynamical structure imposed by WMSDs.  The concluding section 
proposes further work in the application of HMMs to EMG as a pattern recognition 
method. 
 

1.4 Data and Software 
 
The data used in the application setting of this paper were provided by the Institute for 
Work & Health which focuses on research in the prevention of injury in the workplace.  
The data in this study was obtained from a large newspaper office in Southern Ontario.  
The EMG data used in this study was collected in the summer of 2000.  Permission for 
use of the data was obtained from the principal investigator Dr. Donald Cole (Professor 
in Public Health Sciences, University of Toronto) and from the author’s supervisor and 
senior statistician at the Institute for Work & Health, Dr. Sheilah Hogg-Johnson 
(Professor of Biostatistics, University of Toronto). 
 
The software used to clean and prepare the data was SAS.  S-plus was used for much of 
the analysis steps.  Brian Ripley’s function for cluster analysis, pattern recognition and 
neural networks were implemented.  For experimental purposes, MATLAB and 
toolboxes developed by Kevin Murphy were used in implementing HMM algorithms. 
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Section 2: Hidden Markov Models for a 
Single Process 
 
This section provides a formal definition of a HMM for a single process.  Some of the 
underlying assumptions relevant to the theoretical presentation are also given.  This 
provides the background and lays the foundation for the structural framework of the 
model.  The purpose of this section is to introduce the basic concepts and elements of 
HMMs and shed insight into possible applications and extensions of such models. 
 

2.1 Elements of a HMM 
 
In brief, an HMM is a double stochastic process, denoted λ. That is, HMMs describe the 
relationship between an observed process and an unobserved (hidden) process.  Define tY  
to be the observed response at time t and tZ  be the hidden state at time t. The 
characterization of an HMM is based on five elements, forming a 5-tuple.   
 

1. N denotes the number of states (which are hidden) in the model.  Of interest are 
the possible interconnections of individual states denoted },...,{ 1 NSSS = such that 
any state can be reached from any other state.  Let tq  denote the state at time t. 

 
2. M denotes the number of distinct observation symbols per state or more explicitly 

correspond to the observed response process which is being modeled.  Let 
},...,{ 1 mvvV =  denote the set of observation symbols. 

 
3. A state transition probability distribution (set of state transition probabilities), also 

called transition matrix }{ ijaA = , representing the probability of going from state 

iS  to jS .  
 

 
,,1    ]|[ 1 NjiSqSqPa itjtij ≤≤=== +  

 
where tq denotes the current state.  The transition probabilities should also satisfy 
the normal stochastic constraints, 
 

Njiaij ≤≤> ,1    ,0  
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 and 

.1    ,1
1

Nia
N

j
ij ≤≤=∑

=

 

 
4. An observation symbol probability distribution, also called emission matrix 

)}({ kbB j= , indicating the probability of emission of symbol kv  when system 
state is jS . 

 
MkNSqvoPkb jtktj ≤≤≤≤=== 1   ,j1   },|{)(  

 
where kv  denotes the kth observation symbol, and to  the current parameter vector.  
The following stochastic constraints must be satisfied 
 

MkNjkb j ≤≤≤≤≥ 1  ,1    ,0)(  
 

 and 
 

.1    ,1)(
1

Njkb
M

k
j ≤≤=∑

=

 

 
5. An initial state probability distribution }{ iππ = , representing probabilities of 

initial states. 

.1    ,0    ,1     ][
1

1 ∑
=

=≥≤≤==
N

i
iiii NiSqP πππ  

 
Thus, using conventional notation, there are five key elements of an HMM.  However, 
assuming a fixed N and M, we can define an HMM as a triplet composed of the 
distributional parameters ),,( πλ BA= . 
 

2.2 Model Generation and Definition of an HMM 
 
Before describing the Hidden Markov model, it is necessary to describe the foundation, 
the Markov process.  For brevity purposes, a theoretical discussion on Markov chains is 
deferred from this paper.  However, in simplicity, a sequential pattern usually has a 
sufficient structure to influence the probability of the next event.  A stochastic process is 
called a jth-order Markov process if the conditional probability density of the current 
event, given all past and present events, depends only on the j most recent events. 
 
More formally, a Hidden Markov model is described as a double stochastic process.  It 
consists of a first stochastic layer which is an underlying first-order Markov process.  It 
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models the state transition where each state is a possible observation of the Markov 
process, and a transition probability from state iS  to state jS  is )|( 1 itjt SqSqP ==+ , 
the probability of going to state jS  at time t+1 given that the state at time t is iS .  The 
second stochastic layer of the HMM is the set of emission probabilities for each state.  
For instance, the emission probabilities of state iS  specifies the likelihood of seeing 
certain observations, given the HMM is actually in state iS .  This second layer of 
probabilities creates the image of a veil so that, given a sequence of observations, the 
actual sequence of states is ambiguous; it is “hidden” from the observer. 
 
Recalling the notation previously defined, the five elements of an HMM can be used both 
as a generator of observations as well as a model for how a given observation sequence 
can be generated from an appropriate HMM given appropriate values for the 5-tuple.  A 
procedure for such a generation of an observation sequence was given in Rabiner (1989) 
and is given as follows: 
 

1. Choose an initial state iSq =1  according to the initial state distribution π . 
 
2. Set t = 1. 

 
 
3. Choose kt vO =  according to the symbol probability distribution in state iS , i.e. 

)(kbi .   
 
4. Transition to a new state jt Sq =+1  according to the state transition probability 

distribution for state iS , i.e. ija . 
 

 
5. Set 1+= tt ; return to step (3) if Tt < ; otherwise terminate the procedure. 

 
In summary, the hidden Markov model is a finite set of states, each of which is associated 
with a (generally multidimensional) probability distribution.  Transitions among the 
states are governed by a set of probabilities, commonly referred to as transition 
probabilities.  In a particular state an outcome or observation can be generated, according 
to the associated probability distribution.  It is only the response or output process which 
is observed while the states are “hidden” or unobserved. 
 

2.3 Assumptions in the Theory of HMMs 
 
The mathematically tractable form of hidden Markov models is due to the theoretical 
underpinnings.  Below three of the most common assumptions employed in HMMs are 
briefly discussed.  HMMs are not confined to just these three assumptions and others 
have relaxed some of these assumptions as well depending on the type of HMM. 
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Perhaps the most palpable assumption is the Markovian assumption.  As given in the 
definition of HMMs, transition probabilities are defined as, 
 

].|[ 1 itjtij SqSqPa === +  
It is assumed that the next state is dependent only upon the current state.  This is called 
the Markov assumption and the resulting model becomes actually a first order HMM.  
However, generally the next state may depend on the past k states and it is possible to 
obtain such a model, referred to as a kth order HMM by defining the transition 
probabilities as follows. 
 

.,,...,,1    },,...,,|{ 21111,... 2121
NjiiiSqSqSqSqPa kiktititjtjiii kk

≤≤===== +−−+  
 

Even though the first-order HMMs are the most common, some attempts have been made 
to use the higher order HMMs, despite their obvious higher complexity. 
 
Another standard assumption in the theory of HMMS is that of the stationarity.  }{ tq  is a 
Markov chain with transition probabilities ija  and initial probabilities iπ ; and }{ tq  is 
assumed to be stationary.  It is assumed that state transition probabilities are independent 
of the actual time at which the transitions take place.  Mathematically, it can be stated as 
 

],|[]|[
2211 11 itjtitjt SqSqPSqSqP ===== ++  

 
for any 1t  and 2t . 
 
The output independence assumption, prominent in HMMs, is the assumption that the 
current output (observation) is statistically independent of the previous outputs 
(observations).  This assumption can be mathematically formulated by considering a 
sequence of observations, 
 

ToooO ,..., 21= . 
 

Then according to the parameter triplet of the HMM, 
 

∏
=

=
T

t
ttT qoPqqqOP

1
21 ),|{},,...,,|{ λλ . 

 
This assumption is commonly stated as a weakness of HMMs. 
 
In discrete-time HMMs (as has been discussed so far), there are several other common 
assumptions.  Some of these include that N is finite and known and that the time points t 
= 1,….,n are equally spaced.  The first of these assumptions is usually relaxed as 
addressed in section 4 with the issue of estimating N.  The equal spacing of time is a 
useful simplification but not a necessary criterion as will be addressed in section 3.  Some 
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of these assumptions in HMM theory are advantageous which sometimes permits the 
extension of existing theory to the HMM setting. 
 

2.4 Some Theoretical Aspects and Consequences of   

Assumptions in HMM Theory 
 

The relationship between two stochastic processes: an observed process and a “hidden” 
unobserved process can be described via hidden Markov models.  Some of the theoretical 
aspects or underpinnings of HMMs are based on certain assumptions, such as those stated 
in the previous subsection.  Of eminence, the assumption that the hidden states have a 
Markovian structure and rather not assumed to be independent has an invariably 
interesting consequence.  It suggests that the observed data are also correlated.  Further, 
as the distance between observations increases (to infinity), the dependence between the 
observations decreases to zero (MacKay, 2003).   
 
If the parameter (unobserved) process is a series of independent random variables, the 
observed responses are also independent.  But if the parameter process is taken to be a 
Markov chain, the resulting process of observations allows for serial dependence in 
addition to overdispersion.  (MacDonald and Zucchini, 1997).  In practice, many time 
series (of counts) observed are overdispersed and also exhibit serial dependence.  HMMs 
allow for overdispersion and by assumption imply serial dependence. 
 
A useful device for depicting the dependence structure of such a model is the conditional 
independence graph, presented in section IV of Statistical Decision Theory: Concepts, 
Methods and Applications.  In summary, the absence of an edge between two vertices 
indicates that the two variables concerned are conditionally independent given the other 
variables.  Figure 1 below displays the independence of the observations given the states 
occupied by the Markov chain, as well as the Markovian property. 
 
 
 
 
Figure 1:  A typical graphical 
representation of an HMM. 

 
 
 
 
 
 
 
 
 
 

 

Y3 Y2 Y1 

X3 X2 X1
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Much of the definition of HMMs, thus far, has been provided based on discrete 
distributions.  However, much of the properties can be attributed to a wide range of 
discrete-valued time series models.  In instances where continuous observations are 
required, continuous conditional distributions can be used (MacDonald and Zucchini, 
1997).  It has been reported that continuous-time valued hidden Markov models have 
been applied successfully in applications.   
 
An important feature of any time series model is its serial dependence structure.  In the 
theory of normal models, the autocorrelation function reveals this quality.  This function 
is also useful when dealing with discrete-time valued time series models.  However, 
depending on the structure of the process, the autocorrelation function is not the only tool 
accessible to revealing the serial structure.  These correlation properties lead to the 
central trait which makes HMMs feasible as practical statistical models. 
 
The Markovian assumption results in long-range correlations (MacKay, 2003) or serial 
dependence.  This property reveals that the likelihood of even a very long sequence of 
observations can be computed sufficiently fast to enable parameters to be estimated by 
direct numerical maximization of the likelihood.  Thus, the underlying principle or 
assumption of the HMMs is that the process can be well characterized as a parametric 
process, and that the parameters of the stochastic process can be estimated precisely 
(Rabiner, 1989).  Before delving into the computational methods employed for solving 
HMM problems (in section 4), it is important to describe the various types or variants of 
hidden Markov models. 
 

2.5 Summary Remarks 
 
This section has formally defined hidden Markov models and presented some of the 
underlying theory.  Although much of the formulations have been provided for the 
discrete case, theoretical arguments were given for continuous and other time series 
models.  These extensions and variants of HMMs are discussed in further detail in the 
next section.  Since the objective of HMMs is to characterize the dynamic structure of the 
random stochastic process, much of the computational issues are focused on the training 
and testing of HMMs.  These algorithms exist and are explored in detail in section 4. 
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Section 3: Types of Hidden Markov Models 
 
There are three basic types of HMMs, differentiated by their method of modeling output 
probabilities.  The observations of the discrete HMM are discrete symbols of a finite 
alphabet that typically correspond to quantization levels (classes) of a vector quantization 
codebook.  Each state has a discrete probability mass function (PMF) for describing the 
probability that the state would produce a certain symbol.  Much of the discussion, to this 
point, has considered this discrete case with the mention of the theoretical extensions to 
other observational forms.  This section extends the definition of hidden Markov models 
to include (semi-)continuous densities and autoregressive models.  Furthermore, 
representation of HMMs and their variants as dynamic Bayesian networks (DBNs) are 
discussed.  HMMs take various forms including ergodic (fully connected) or holding 
other properties of signals which are desirable for the process being modeled.  This 
section begins with an alternative to the conventional ergodic model.   
 

3.1 Left-Right Model 
 
The hidden Markov models defined in section 2 were described as being ergodic.  That is 
that they held the property that every state can be reached from every other state of the 
model in a finite number of steps.  Such ergodic models are fully connected which infers 
that every state can be reached in a single step.  This type of model holds certain 
advantageous traits such as every ija  coefficient is positive which constitute the elements 
of the state transition probability distribution.  However, other types of HMMs have been 
developed which account for more of the processes attributes than the conventional 
ergodic model.  Such models are more beneficial to a wide range of applications. 
 
Of most prominence is the left-right model (also commonly referred to as the Bakis 
model) (Rabiner, 1989).  As the name infers, this model has the underlying assumption 
that the states proceed from left to right.  Thus, the state sequence associated with the 
model has the property that as time increases the state index increases or remains the 
same.  Processes which have the property of changing over time are readily described by 
such HMMs.   
 
In HMMs of the ergodic form, every ija  coefficient is positive; however, in the left-right 
type of HMMs, the state transition coefficients have the property that  
 

.    ,0 ijaij <=  
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This contests that no transitions are allowed to states in which the indices are lower than 
the current state.  Comparatively, the state transition matrix for an ergodic model takes 
the form 
 





















=

ijii

j

j

ergodic

aaa

aaa
aaa

A

L

MOMM

L

L

21

22221

11211

, 

 
while the state transition matrix for a left-right model has the form 
 





















=−

ij

j
rightleft

a

aa
aa

A

L

MOM

L

L

00
0

0
0

222

1211

. 

 
In the left-right model, the specifications for the state transition coefficients are generally 
given as 
 

.    ,0
1

Nia
a

Ni

NN

<=
=

 

 
Additional constraints are often placed to ensure that large jumps in states do not occur.  
In general, such a constraints has the form 
 

.    ,0 ∆+<= ijaij  
 

For instance, if the model was to ensure that no jumps of more than two states are to 
incur than ∆ would simply be set to two.  The left-right model holds other desirable 
properties due to the underlying state sequence associated with the model.  Since the state 
sequence begins in state 1 and proceeds right to N, the initial state probabilities take the 
form 
 





=
≠

=
.1    ,1
 1    ,0

i
i

iπ  

 
Left-right type HMMs also have the advantage of being easily represented 
diagrammatically.  This representation will be shown to be more conducive in the latter 
part of this section.  It is important to note that left-right type HMMs and ergodic HMMs 
are not the only forms of state-space models can be represented.  Many other variants of 
HMMs exist and are discussed extensively in the literature and have been shown to be 
quite favorable in various applications (Rabiner, 1989; Murphy, 2002). 
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3.2 Continuous and Semi-continuous HMMs 
 
In many applications, the observations are continuous processes (or vectors).  To this 
point, the discussion has centered round observations which are discrete and hence 
characterized by finite discrete symbols.  It is possible, in a similar manner, to quantize 
such continuous responses via codebooks; however, there may be some degradation 
associated with such quantization.  Hence, it is important to provide plausible restrictions 
to the formulation of continuous HMMs which allow them to be feasible. 
 
In contrast to the discrete HMMs, the states of the continuous HMMs each have a 
mixture of probability density functions (PDFs) to represent the probability of observing 
certain multi-dimensional continuous data.  Since the observations are continuous then 
the parameters have to be specified for a continuous PDF instead of a discrete PMF.  
Typically, mixtures of Gaussian (normal) PDFs are used to accurately model the state’s 
membership in the space of observation vectors.  It is usually approximated by a 
weighted sum of M Gaussian distributions (ℵ).  Such a finite mixture of takes the form 
 

∑
=

Σℵ=
M

1m
),,()( jmjmjmj cb µOO  

 
where, 
 

. statein component  mixture  for thematrix  covariance 

,rmean vecto 

, statein  mixture  for thet coefficien mixture 

jm

jmc

th
jm

jm

th
jm

=Σ

=

=

µ  

 
Although ℵ is not confined to being a Gaussian distribution it most typically is.  
However, it should be log-concave or elliptically symmetric (Rabiner, 1989).  Moreover, 
the mixture coefficients should satisfy the following stochastic constraints, 
 

MmNjc jm ≤≤≤≤≥ 1    ,1    ,0  
 

and 
 

∑
=

≤≤=
M

m
jm Njc

1
1    ,1 . 

 
Then, for an HMM with continuous densities, ),,,,( πλ jmjmjmcA Σµ= . 
 
A modification of continuous HMMs is semi-continuous HMMs.  The semi-continuous 
HMM is a hybrid of the discrete and continuous case.  Like the discrete HMM, the 
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observation vectors are quantized into one of a finite set of classes, reducing the number 
of free parameters.  However, like the continuous HMM, the observation classes are 
modeled by a multivariate Gaussian PDF, removing the distortion due to quantization and 
effectively modeling the variance of an observation class.  This formulation is similar to a 
continuous HMM with parameter tying in which states are forced to share the same 
PDFs.  Initially formed by clustering the sample data, the classes are re-estimated with 
the HMM parameters to form an integrated model. 
 
The concept of parameter tying is based on an equivalence relation between HMM 
parameters in different states.  This reduces the number of independent parameters in the 
model and simplifies parameter estimation (Rabiner, 1989).  Such HMMs are used in 
applications where the densities for two or more states are considered to be the same.  An 
interesting HMM variant is one in which the observations are associated with transitions 
which produce no output.  That is, it moves from one state to another without an observed 
response.  Such transitions are called null transitions.  These and other variants find 
purpose in a wide range of applicants.  The reader is deferred to Murphy (2003) for a 
discussion of HMMs and their variant structures. 
 

3.3 Autoregressive (AR) HMMs 
 
Discrete and continuous HMMs or even their hybrids form the two of the basic types of 
HMMs based on the output distributions.  Another class of HMMs is that which draws 
upon real-world processes which are autoregressive.  In such models, the observation 
vectors are drawn from an autoregressive process.  In simplicity, an autoregressive (AR) 
model is in time series analysis where the observation is postulated to be a linear function 
of previous values of the series (Everitt, 2002).  A first-order autoregressive model has 
the form 
 

ttt eaxx += −1  
 

where tx  is an observation at time t, a  is a parameter of the model and te  is a random 
disturbance of the model.  A p-order model takes the form 
 

tptpttt exaxaxax ++++= −−− ...2211  
 

which includes the p parameters of a.   
 
Now consider an observation vector O with components ),...,,,( 1210 −kxxxx .  Assuming a 
Gaussian distribution, the observation vector is a p-order Gaussian autoregressive and the 
components of the observation vector have the following relationship (Rabiner, 1989) 
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where 1,...,2,1,0 , −= Kkek  are Gaussian independent identically distributed random 
variables with zero mean and variance 2σ , and ia  are the autoregression coefficients. 
 
The density function for O is approximated by 
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Recall in section 2.3 that the importance of the serial dependence structure in time series 
models is revealed via the autocorrelation function.   See MacDonald and Zucchini 
(1997) for a full derivation of the autocorrelation function and many of the corresponding 
theoretical aspects.  It should be noted that the functions )(ir  and )(ira  are the 
autocorrelation functions of the observed samples and the autoregressive coefficients, 
respectively.  These autocorrelation functions take the following form 
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To define an (Gaussian) autoregressive HMM, the elements of the emission matrix 
assume a mixture density of the form 
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where )(Ojmb  is the density with autoregression vector jma  
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The standard conditional independence assumption in HMMs (described earlier) is quite 
strong and which can be relaxed in its autoregressive form.  It reduces the effect of the 
hidden nodes “bottleneck” by allowing the previous observation to help predict the 
current observation.  The consequence is that it results in models with higher likelihood 
(Murphy, 2002).  Generalized autoregressive HMMs also exist which allow for non-
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linear dependencies between the observable responses.  These models find value in their 
applications to speech processing, finance and various areas of engineering. 
   

3.4 Representation of HMMs 
 
This section has focused on HMMs and their variants with little discussion on the 
versatility these models demonstrate through their representational forms.  In many 
applications of HMMs, the attempt is to explain the dynamic structure of the random 
(stochastic) process.  Representation of HMMs as dynamic Bayesian networks (DBNs) is 
one novel approach.  Thus, the objective is to model a dynamic system rather than a 
networks change over time.  See Murphy (2002) for a discussion of DBNs which change 
their structure over time.  The reader is also deferred to section IV of Statistical Decision 
Theory: Concepts, Methods and Applications for a formal discussion on probabilistic 
graphical models in sequential methods.   
 
Consider a discrete stochastic process where K,, 21 ZZ  are random variables (r.v.) and 
that ),,( tttt YXUZ =  can be partitioned into its input, hidden, and output variables of a 
hidden Markov model.  Recall that each node has a conditional probability distribution 
(CPD) which defines the structure.  An assumption in HMMs is that { }tZ  is time-
homogeneous.  That is, the assumption that the parameters of the CPDs are time- 
invariant.  Murphy (2002) and Jordan (1999) argue that if the parameters can change, 
then they can be treated as r.v.s.  Alternatively, if there are a finite number of parameter 
values, then a hidden variable can be used to select a suitable set of random variables. 
 
Representing HMMs and their variants as probabilistic graphical models has the 
advantage to create extensions and modifications on the basic theme.  Below are a series 
of HMMs and their variants (as discussed in this section). 
 

  
Figure 2:  An HMM in which the 
parameters are explicitly shown. 
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Figure 3:  An HMM with mixture of Gaussian outputs. 
 
 

 
 

Figure 4:  An HMM with semi-tied mixtures. 
 
 

 
 

Figure 5: An autoregressive HMM. 
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3.5 Other Remarks 
 
As demonstrated in this section, hidden Markov models have been designed for various 
output probabilities.  Furthermore, extensions and modification of HMMs have also been 
developed for a wide variety of applications.  At the beginning of this section, the left-
right model was introduced and subsequently, imposed constraints on the state transition 
matrix.  The transient nature of the states within the model only allows a small number of 
observations for any state (Rabiner, 1989); thus, to make the parameter estimates reliable, 
multiple processes are suggested.  MacKay (2003) explores multiple processes in HMMs 
with random effects building on the ideas of generalized linear mixed models.  AR-
HMMs for multivariate time series have also been discussed in MacDonald and Zucchini 
(1997) for count processes.  However, there is still deficiency in this area which is still 
needed to be filled. 
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Section 4: Computational Methods for HMMs 
 
The goal or underlying postulation of hidden Markov models is that the observed 
response can be characterized as a parametric random process, and that such parameters 
of the stochastic process can be estimated precisely.  The previous sections described the 
various formulations of HMMs; however, their application is based on three fundamental 
problems.  These problems are most commonly referred to as the evaluation problem, the 
decoding problem, and the learning problem.  In this section, these three fundamental 
problems for HMMs are stipulated in their probabilistic context and formal mathematical 
solutions for each problem are presented. 
 

4.1 The Three Fundamental Problems for HMMs 
 
A discrete-time or discrete-space dynamical system governed by a Markov chain emits a 
sequence of observable outputs where one output (observation) for each state is in 
trajectory of such states.  From the observable sequence of output, the most dynamical 
system can be inferred.  The result is a model for the underlying process.  Alternatively, 
given a sequence of outputs, the most likely sequence of states can be inferred.  Hidden 
Markov models are used in a wide variety of applications.  The motivation for using these 
models lays in its assumed ability to divulge the dynamical structure of real-world 
processes.  Thus, given an HMM there are three basic problems of interest.   
 
The Evaluation Problem: 
Given an HMM λ  and a sequence of observations TOOOO ,...,, 21= , what is the 
probability that the observations are generated by the model )|( λOP ?  Thus, the 
objective of this problem is to compute the probability that the observed sequence was 
produced by the model.  Since the objective is to determine whether a given model 
matches an observation sequence, this conceptualization can be extended to determine 
model selection.   
 
The Decoding Problem: 
Given an HMM λ  and a sequence of observations TOOOO ,...,, 21= , what is the most 
likely state sequence in the model that produced the observations?  Thus, the objective of 
the decoding problem is to unveil or uncover the hidden states.  Since the objective is to 
learn about the topological structure of the model, optimality criteria are usually used to 
decode the state sequence. 
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The Learning Problem: 
Given an HMM λ  and a sequence of observations TOOOO ,...,, 21= , how should the 
model parameters be adjusted in order to maximize the probability that observations are 
generated by the model )|( λOP ?  This latter problem is central to many applications of 
HMMs as it allows for an optimal adaptation of the model parameter to an observation 
sequence.  Such an observation sequence is referred to as a training set as it is used to 
train the HMM.  Thus, the objective of the learning problem is to optimize the model 
parameters so to best describe the observation process. 
 
The computational process of solving these three basic problems assumes that a 
codebook with M unique feature vectors have been coded; hence each observation is the 
index of the feature vector closest (in some distance sense) to the actual state.  Thus, for 
every object of interest (albeit characters, words, textures, tasks, “states” of a system), 
there is a training sequence consisting of a number of repetitions of sequences of 
codebook indices of the “state”.  Then the first task is to build individual object models or 
state-space models which are accomplished by estimating model parameters for each 
object.  Then to understand the dynamic structure of the process, the solution to the 
decoding problem must be implemented.  Since the ultimate goal is to refine the model so 
it will recognize an unknown observation sequence.  The evaluation problem can be used 
to determine whether the observed pattern is recognized based on likelihood methods. 
 

4.2 The Evaluation Problem 
 
The evaluation problem is determining the probability of the observation sequence given 
the model.  Using simple probabilistic arguments, given the model λ  and an observation 
sequence, )|( λOP  can be determined.  See Rabiner (1989).  But this calculation requires 
a large number of operations in the order of TN , since there are N possible states.  Even if 
the length of the sequence of T is quite moderate, this would be computationally 
unfeasible.  Fortunately, a more feasible and efficient algorithm exists – the forward-
backward procedure. 
 
This procedure makes use of an auxiliary variable )(itα  called the forward variable.  The 
forward variable is defined as the probability of the partial observation sequence, 

tOOO ,...,, 21 , until it terminates at state i.  This can be mathematically stated as 
 

)|,,...,,()( 21 λα ittt SqOOOPi == . 
 

Recursively, the following relationship holds 
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NiObi ii ≤≤= 1    ),()( 11 πα . 
 

Using this recursion, )(iTα  for Ni ≤≤1  can be calculated and the required probability 
can be determined as  
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In summary, the first step is to initialize the forward probabilities as the joint probabilities 
of the state iS  and the initial observation 1O .  The next step is the recursion formula 
which determines the probability of the joint event that tOOO ,...,, 21  is observed and state 

jS  is reached a time t + 1.  Summing these probabilities and multiplying them by the 
probability )( 1+tj Ob , )(1 jt+α  is obtained.  Finally, the sum of the terminal forward 
variables gives )|( λOP .  This forward probability calculation is based on the lattice 
structure (Ripley, 1987) which resides in the understanding that the all the possible state 
sequences will remerge in to the N nodes.  This algorithm requires TN 2  calculations and 
is less computationally intensive then direct calculations.   
 
In a similar manner, the backward variable can be defined as the probability of the partial 
observation sequence Ttt OOO ,...,, 21 ++ , given that the current state is i.  Mathematically, 
this is stated as  
 

)|,,...,,()( 21 λβ itTttt SqOOOPi == ++ . 
 

As in the case of )(itα , there is a recursive relationship which can be used to calculate 
)(itβ  efficiently as follows 

 

∑ ≤≤−−=++ NiTTtjObai ttjijt 1    ,1,...,2,1    ),()()( 11 ββ  

where 
 

NiiT ≤≤= 1    ,1)(β . 
 
Further, it can be seen that 
 

)|,()()( λβα ittt SqPii == O . 
 
Therefore, the )|( λOP  can be computed by using both the forward and backward 
variables as follows 
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This latter calculation of the backward variable is very useful for solving the decoding 
and learning problem. 
 

4.3 The Decoding Problem and Pattern Recognition 
 
The goal of the decoding problem is to determine the dynamical structure of the observed 
process. This involves the construction of a pattern recognition system.  Performing a 
recognition algorithm or decoding procedure is a simpler process than the latter problem 
of training an HMM.  However, it is a mathematically rigorous filed with the purpose of 
classifying objects into one of a number of classes. 
 
The construction of a pattern recognition system involves learning from a set of example 
patterns and has two forms.  A supervised pattern recognition assumes that the classes of 
the example patterns are known.  The correct classification of an individual pattern is 
used to evaluate the performance of the system and the feedback system allows the 
system to iteratively improve itself.  If the classes are not known, the task is more 
difficult as it must also define a classification procedure.  This latter type of system is 
called unsupervised pattern recognition. 
 
The actual pattern recognition process is performed in two phases, the first of which is 
feature extraction, where the observation x of a pattern is transformed into a vector y, 
whose components are called features.  These features may be physical attributes of the 
problem or mathematical constructs for reducing the dimensionality of the observations.  
The second phase is the classification of the feature vectors.  A classifier partitions the 
feature space of y into disjoint regions, each corresponding to a pattern class.  A classifier 
for a supervised recognition system is relatively simple since the classes are known; 
however, if the classes are unknown then cluster analysis methods are required.  The 
classification redeems model as the system recognizes the phenomenon. 
 
Statistically, the solution to the decoding problem depends on the way “the most likely 
sequence” is defined.  Although there are several optimality criteria available, the most 
common is based on dynamic programming methods (explained in section V of 
Statistical Decision Theory: Concepts, Methods and Applications), and is called the 
Viterbi algorithm.  This algorithm facilitates the single best state sequence with the 
maximum likelihood.  Much like the forward-backward algorithm, it makes use of an 
auxiliary variable 
 

)|...,...(max)( 2121,...,, 121
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−

 

 
which gives the highest probability that the partial observation sequence and state 
sequence at time t can have.  Thus, the following recursive relationship holds 
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11    ,1    ),(])(max[)( 111 −≤≤≤≤⋅= +≤≤+ TtNiObaij tjijtNit δδ  

 
where, 
 

NiObi ii ≤≤= 1    ),()( 11 πδ . 
 
So the procedure to finding the most likely state sequence starts from calculation of 

)( jTδ , Nj ≤≤1  using the recursion formula, while always keeping a pointer to the 
optimal state.  Finally, the state j* is found by  
 

)(maxarg*
1

jj T
Nj

δ
≤≤

=  

 
and starting from this state, the sequence of states is back-tracked as the pointer indicates, 
giving the required set of states.  Thus, this algorithm is a search procedure whose nodes 
represent states in an HMM, as discussed in section 3.4. 
 

4.4 The Learning Problem 
 
Generally, the learning problem is determining how to adjust the HMM parameters, so 
that the given set of observations (the training set) is represented by the model in the best 
way for the intended application. Thus, the learning process can be different from 
application to application. In other words there may be several optimization criteria for 
learning, out of which a suitable one is selected depending on the application.  There are 
two main optimization criteria found in the literature; Maximum Likelihood (ML) and 
Maximum Mutual Information (MMI). A solution to the learning problem under the ML 
criteria is presented and brief disucussion to the MMI criteria is given below. 
 
In ML, the objective is to maximize the probability of a given sequence of observations, 
given the HMM ),,( πλ BA= .  This probability is the total likelihood of the observations 
and can be expressed mathematically as )|( λOPL = .  Since there is no analytic method 
to solve for the model ),,( πλ BA= , which maximizes )|( λOPL = , an iterative 
procedure can be used to choose model parameters such that it is locally maximized such 
as the Baum-Welch method (equivalently known as the expectation-modification (EM) 
method) or a gradient based method.  This section focuses on the Baum-Welch approach. 
 
In many regards the Baum-Welch algorithm is an extension of the Forward-Backward 
algorithm.  Similar to the forward and backward variables, this procedure requires the use 
of two more auxiliary variables which can be expressed in terms of the forward and 
backward auxiliary variables.  The first defines the probability of being in state iS  at time 
t and at state jS  at time t+1 and can be expressed as 
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Re-expressing this in terms of the forward and backward variables gives 
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The second auxiliary variable used in the Baum-Welch algroithm is the a posteriori 
probability, ),|()( λγ OSqPi itt == , which is the probability of being in state iS  given 
the observation sequence and model.  Re-expressing this variable in terms of the forward 
and backward variables gives 
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Thus, the relationship between )(itγ  and ),( jitξ  is  
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Summing )(itγ  and ),( jitξ  over t from t=1 to t=T-1 can be easily interpreted as the 
expected number of transitions from state iS  and the expected number of transitions from 
state iS  to jS .  Now, having defined all of the auxliary variables, the Baumm-Welch 
learning process can be described where the parameters of the HMM are updated such 
that )|( λOP  is maximized.   
 
Assuming an initial model ),,( πλ BA= , the forward and backward variables α  and β  
can be calculated using the previously described recursion formula.  Subsequently, the 
auxiliary variables γ  and ξ  can be calculated using their corresponding recursion 
methods.  The next step is to update the HMM parameters according to the re-estimation 
formulas given below (for the discrete case): 
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These re-estimation formulas can also be given for the continuous case (see Rabiner, 
1989) and for autoregressive models (see MacDonald and Zucchini, 1997).  Iteratively 
using λ  and repeating the re-estimation calculation, the probability of the observation 
sequence obtained from the model is being improved.  The final result is the maximum 
likelihood estimate of the HMM.  An advantage to the Baum-Welch algorithm is that it 
converges to a critical point – guaranteed convergence. 
 
Another popular approach in achieving ML, is using gradient based methods which can 
be determined with resepct to transition probabilities or with respect to observation 
(emission) probabilities.  This approach can also be extended to the other optimization 
criterion Maximum Mutual Information (MMI).  The goal in ML was to optimize an 
HMM one at a time (for a particular class).  This minimizes the discrimination ability 
which is critical to pattern recognition.  Thus, Thus the ML learning procedure gives a 
poor discrimination ability to the HMM system, especially when the estimated 
parameters (in the training phase) of the HMM system do not match with the speech 
inputs used in the recognition phase. These types of mismatches can arise due to two 
reasons. One is that the training and recognition data have considerably different 
statistical properties, and the other is the difficulties of obtaining reliable parameter 
estimates in the training.  The  MMI criterion considers HMMs of all the classes 
simultaneously during training. Parameters of the correct model are updated to enhance 
it's contribution to the observations, while parameters of the alternative models are 
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updated to reduce their contributions.  Both criteria pose advantages and are appropriate 
in different applications.     
 

4.5 Other Remarks 
 
Implementation of HMM algorithms gives rise to several computational issues including 
initial parameter estimates, missing values and choice model size and type.  These issues 
are not discussed further in this paper and the reader is deferred to (Rabiner, 1989; 
MacDonald and Zucchini, 1997; and MacKay, 2003).  However, critical to HMM 
problems is the concept of classification.  Moreover, since a model is developed for each 
class, cluster analysis plays a critical role in pattern recognition.   
 
Clustering is the process of constructing a classifier for unsupervised pattern recognition.  
The problem is not only to classify the given data but to simultaneously define the 
classes.  Generally, clusters are groups of similar points according to some measure of 
similarity defined as proximity measured by a distance function, such as the Euclidian 
distance or the Mahalanbis square-distance, of feature vectors in the state-space.  As 
mentioned earlier, these clusters may have a physical characterization or a mathematical 
criterion.   
 
In signal processing, vector quantization (clustering using Euclidean distance) is used and 
the clusters of a classifier are called the quantization levels of a VQ code book.  The 
distance of each sample to the mean of its enclosing cluster is no longer a measure of 
similarity but rather a measure of distortion.  Thus, the goal is to determine the set of 
quantization levels that minimizes the average distance over all samples.  However, this 
minimal average is intractable (Ripley, 1989).  Nonetheless, given the number of k-
clusters, convergence to a local minimum can be achieved through a K-means algorithm. 
 
Another computational approach or issue is that of multidimensional scaling.  Unlike 
clustering methods which use the observations and a dissimilarity matrix, 
multidimensional scaling (MDS) techniques seek to find a low dimensional coordinate 
system to represent the k objects using a proximity matrix usually without observing the 
observation vectors.  Given perceptions or judgments regarding the objects, a low 
dimensional space to represent the judgments is constructed.  This provides another 
classifying technique.  There are various other cluster analysis approaches.  However, it 
is important to apply the appropriate classifying method to the appropriate application. 



 31

 
 
 
 
 

Section 5: HMMs for EMG Pattern 
Recognition 
 
Work-related musculoskeletal disorders (WMSDs) may be attributed to several possible 
risk factors which can be measured in a variety of capacities.  Electromyographical 
(EMG) signals of the shoulder and forearm muscles have been used to examine 
relationships between worker-workstation interactions for different tasks.  This section 
explores the use of EMG signals as a source of data which may be appropriately modeled 
by HMMs.  Various types of HMMs and corresponding algorithmic approaches are 
discussed as a means of EMG pattern recognition.  Some preliminary results also 
demonstrate the achievability of the approach.  A proposed framework is given as an 
extension of existing methodology to assert the use of HMMs and its variants as feasible 
tools for EMG pattern recognition.   
 

5.1 Rationale/Background 
 
Repetitive tasks and workstation configuration are two of many contributing factors to 
work-related musculoskeletal disorders (WMSDs).  Although there is no clear defining 
measure of factors which are considered risk, there are several techniques which have 
been studied and provide constructive information.  Different tasks may also exhibit 
unique characteristics which may be potentially more hazardous.  Non-optimal 
positioning of work equipment may also pose as an unfavorable constraint.  Posture 
measures have also been associated with WMSDs (Gerr et. al., 2002); however, such 
physical attributes may vary accordingly with workstation configurations, tasks 
performance, and individual behavioral patterns.  A more novel approach has been to use 
electromyographical (EMG) signals to monitor muscle load for different tasks. 
 
Modeling exposure measures of WMSDs has predominantly focused on simple 
regression methods and generalized linear methods.  These approaches, although useful 
in identifying differences in subgroups, provide little information on the dynamic 
structure of the physical processes (such as postures).  Alternatively, Vasko et. al. (2000) 
proposed an application of hidden Markov model topology estimation to repetitive lifting 
data to describe the dynamic structure of posture (angle) measures.  Their sample was 
composed of three groups of patients: low back pain pre-treatment, low back pain post- 
treatment, and a control group with no low back pain.  The HMM approach revealed 
different topology estimates for patients with low back pain versus patients without low 
back pain.  However, there was no dynamic structural difference between the two types 
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of low back pain groups.  This provides evidence that posture measures can be 
successfully modeled using HMM-based pattern recognition methods.  
 
Modeling EMG signals provide the advantage of not only taking into account the level of 
muscle activity but also the duration and intensity of each muscle contraction.  Similar to 
other physical measures, generalized linear models have been primarily used to examine 
differences in EMG performance for different tasks or groups of subjects.  Since different 
physical motions impose different modes of muscle activation, distinct EMG patterns are 
generated.  Literature in the discrimination (or recognition) of EMG patterns is minimal; 
however, various techniques have been proposed.  Of primary interest has been the use of 
autoregressive (AR) models to represent an EMG signal (Graupe et. al., 1978) and a 
multi-dimensional AR models to model multi-channel EMG signals (Tsuji et. al., 1987).  
More recently, neural networks have been employed to model the dynamic structure of 
the physical process in the field of prosthetic control (Bu et. al., 2003; Soares et. al., 
2003).  Both used neural networks as an EMG pattern recognition method and 
demonstrated successful discrimination of forearm motions. 
 
The purpose of this paper is to demonstrate the feasibility and performance of HMMs as 
a novel device in determining the dynamic structure of such physical (stochastic) 
processes as EMG.  This section begins by describing EMG signal processing and 
extends itself as a source of data which can be precisely modeled by HMMs.  A 
discussion on the use of HMMs as a model-based indicator of WMSDs is explored via 
classification methods.  Results lead to a presentation of a theoretical framework of an 
EMG pattern recognition method based on HMM algorithms.  Guidelines for future work 
conclude this paper. 
 

5.2 EMG Signal Processing 
 
Electromyographical (EMG) signals are electrical manifestations of the neuromuscular 
activation associated with contracting a muscle (Cram, 1998).  This signal process is 
exceedingly complicated by extraneous factors such as muscle fatigue, sweat and changes 
in electrode location.  Thus, the process of detecting an EMG signal is not trivial as it is 
superceded by impure signals that come from various difference sources of noise.  Other 
factors related to the electrode-skin interface may also impede the detection of an EMG 
signal.  The distance between pairs of electrodes and the region where must be carefully 
considered in experimental procedures used in this work.  Filters also exist which can 
remove unwanted components of the EMG signal. 
 
EMG signals are detected by surface electrodes and filtered before data acquisition.  In 
order to process the correct portion of the signal, the start point of the EMG activity 
needs to be determined so that a portion can be extracted (forming a feature).  The 
resulting EMG signal is regarded as a stochastic process which is formulated as the sum 
of the “spike potential” generated in the motor units.  Thus, the goal then becomes to 
characterize this dynamic structure by classifying the EMG pattern.  This paper proposes 
the use of HMM-based classifiers to accomplish this task. 
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5.3 Methods and Analysis 
 
A study was conducted to examine the relationships between measures of workstation-
worker interaction and EMG signals of the shoulder and forearm muscles for different 
tasks.  It was hypothesized that a higher level of muscle activity would be identified for 
workers whose equipment was considered to be in a non-optimal position.   
 
A sample of 41 workers was recruited from a workplace study at a large urban 
newspaper: (71% female), they had a mean of 41 years (sd=9.6), a mean height of 168cm 
(sd=10.3) and a mean weight of 74kg (sd=19).  Various methods were used to obtain 
information on work exposures to WMSDs including the administration of a 
questionnaire and task diary, direct observation, video recording and various physical 
exposures such as dimension and posture measures as well as EMG data.  Of particular 
interest to this paper is the EMG data collected on these workers. 
 
Electromyographical signals were recorded bilaterally from Extensor Carpi Radialis 
Brevis (ECRB) and trapezius (shoulder and forearm muscles) on two different days for a 
two hour period each day.  The EMG was recorded simultaneously with the videotape.  
Root Mean Square (RMS) EMG was collected at 10 Hz using a commercially available 
portable system (ME3000P8, MEGA electronics, Finland, CMRR 110 dB, 15-500 Hz).  
It was collected using silver/silver-chloride disposable electrodes at a 2 cm spacing.  For 
ECRB, the electrodes were placed one third of the distance from the lateral epicondyle to 
the radial styloid.  For trapezius, the electrodes were placed midway between C7 and the 
Acromion.  The EMG was started in view of the camera and was later marked using a 
switch provided by the equipment to allow for synchronization of the EMG video.  EMG 
measures were calibrated both to Maximum Voluntary Contraction (MVC) and to 
Relative Voluntary Exertion (RVE).  For trapezius, the MVC was achieved by having 
participants pull maximally against straps that were fixed to the floor and looped over 
their elbows while they stood with both shoulders abducted 90 degrees.  For the ECRB, 
MVC was recorded while the participants simultaneously performed a maximal grasp 
while extending their wrist.  For the RVE, they supported a 5 Kg load hung by a strap 
over their joints.   Tests were also performed to confirm signal quality and quiet level. 
 
The EMG signal was analyzed using two methods commonly used for workplace 
analysis: APDF-Amplitude Probability Distribution Function (Jonsson, 1982) and a Gaps 
Analysis (Veiersted et al., 1990).  The APDF allows for a cumulative summary of all the 
EMG levels used throughout a specified  time period, and is usually summarized using 
three points – the static level (10th %ile), the median (or dynamic) level (50th %ile), and 
the peak level (90th %ile).  The gap analysis calculates the portion of the period of interest 
in which the muscle gets rest for at least 0.2 seconds.  The periods of interest consisted of 
the EMG corresponding to the performance of a specific task or group of tasks.  This was 
achieved using custom software which linked the video analysis with the EMG 
recordings in time.  Once linked, all samples of EMG corresponding to a particular task 
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were concatenated (“chunked”) together (Moore, et al., 2003).  This process is depicted 
in the figure below. 
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Figure 6:  Graphical depiction of EMG “chunking” method. 

 
Moore et al. (2003) used generalized linear models with the EMG output measures as the 
dependent variable and modeled the performance (on/off) state, worker and day as 
independent variables to determine differences between tasks in an office environment.  
Further, the relationship between task performed and physical exposure was assessed by 
comparing the EMG levels across different tasks as performed on their own and specific 
combinations of tasks.  Mazumder et al. (2003) used box plots to illustrate the 
distribution of EMG measures based on workers’ responses about the workstation setup. 
 
The ability to differentiate characteristics between tasks performed in an office setting 
requires the identification and modeling of the physical process.  A pattern recognition 
(discrimination) method of EMG signals can be used to distinguish between forearm and 
shoulder muscle activation in various positions and to estimate the dynamic structure of 
EMG from a sequence of work tasks.   
 
In this application (of WMSDs), four features can be used to describe the motion or 
muscle activity during the performance of a task in a task sequence.  These features are 
defined in terms of the EMG signals which change as a worker performs a task.  These 
include the three APDF (10, 50, and 90) responses and the gap time.  The task sequence 
consists of 32 possible tasks.  In order to devise an implement an EMG pattern 
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recognition method via HMM algorithms, however, a codebook or some form of 
classification method must be devised in order to determine the number of possible 
classes.  There are two (most eminent) ways in which from a physical judgment this can 
be devised.  Workers can be classified into two groups: optimal workstation setup versus 
non-optimal workstation setup.  Or workers can be classified according to symptoms 
(pain or discomfort) of WMSDs to determine differences in the topological structure of 
each of these groups.  Both k-means clustering and multidimensional scaling approaches 
are explored in order to create a codebook. 
 

5.4 Preliminary Results and Discussion 
 
Comparison between EMG measures for performing a task and not performing a task 
found significant differences.  A significant increase in the 10th percentile state EMG 
level was recorded for time spent keying versus not keying for all muscles recorded 
(Figure 5).  The gap time decreased significantly for both ECRBs which suggest that 
there is a measurable difference in the EMG levels between performing keying and the 
performance of other tasks within the workplace.  The performance of keying was found 
to have high static loads and reduced gap time indicating a reduced availability in muscle 
rest in the forearm muscles. 
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Figure 7: Static EMG levels for keying versus not keying. 

 
Combining video and EMG over long term recordings in the workplace allows for 
differentiation of the muscle loading by task even where tasks may occur simultaneously 
and may switch frequently.  Of the 33 workers (on whom there was complete data), 14 
reported that their mouse was in a non-optimal position.  Box-plots (shown in the figure 
below) illustrate that the EMG measures of the right ECRB tended to be higher for those 
with a non-optimal mouse position versus those indicating an optimal position. 
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Figure 8: Static, dynamic and peak EMG levels of the right ECRB  

partitioned based on workers indication of optimal versus  
non-optimal placement of the mouse. 

 
These results indicate that levels of musculoskeletal loading vary according to a worker’s 
report of her/his workstation equipment being in an optimal position.  There are a number 
of EMG measures that showed differences between workers reporting optimal and non-
optimal positions.  EMG levels also discriminated between performances of a task and 
not.  The variability in these signals however may be attributed to other physiological or 
anatomical factors which may have not been considered such as the presence of pain or 
discomfort or other symptoms of WMSDs already present.   
 
The k-means clustering algorithm chooses a pre-specified number of cluster centers to 
minimize the within-class sum of squares from those centers.  Starting points for the 
algorithm are based on group means.  This was implemented using the hclust function 
and invoking the average method in S-plus.  Results revealed that there were three 
obvious clusters with cluster one containing 11 data points, cluster two containing 5 data 
points and cluster three containing 17 data points.  The clusters are shown in principal 
component space in the figure below. 
 
The data was also examined visually to see whether any obvious clustering was present.  
Clusters of interest would be those correlated with outcome status of some form.  For 
instance, the workers could be labeled in four groups: 
 

0 Workers known to have no symptoms 
1 Workers known to have minimal pain in the last six months 
2 Workers known to have moderate pain in the last six months 
3 Workers known to have severe pain in the last six months 

 
Another potential grouping based on three groups as found below: 
 

0 Workers’ equipments in optimal positions 
1 Workers’ equipment varies in positioning (due to posture) 
2 Workers’ equipment in non-optimal positioning 
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Thus, there are a variety of possible descriptions which this data can be classified into. 
 
For experimental purposes, a backward propagation method (a variation of the forward-
backward algorithm) used in neural networks employed in S-plus was employed to 
determine the dynamic structure for two different workers.  One worker indicated having 
a keyboard in a non-optimal position while the other claimed having a keyboard in an 
optimal position.  Each modeled demonstrated structural differences for some of the 
features; however, static levels did not appear to be very different across subjects. 
 

5.5 Proposed Framework for an EMG Pattern Recognition 
Method 
 
The proposed discrimination method is an extension and modification of existing work in 
the field.  The structure of the method consists of three parts in sequence: (1) EMG signal 
processing, (2) HMM-based learning algorithm, and (3) a discrimination rule. 
 
The first step of which involves signal processing as it extracts the feature patterns.  This 
can be done quite attractively by the method previously employed.  And thus, there are 
four measures which describe the structure of the physical process: the 10th, 50th, and 90th 
percentile of the APDF and the gap time measure. 
 
The next step is the crux of the method as it employs HMM algorithms for pattern 
discrimination.  Consider a dynamic probabilistic model where there are K classes in this 
model and each class k }),...,1{( Kk ∈ is composed of N states.  Suppose that for the given 
observation sequence (a time series) TxxxO ,...,, 21= , at any time tx must occur from one 
state iS  to state jS  of class k in the model.  Thus, the a posteriori probability for class k, 
is calculated as 
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Thus, the k

tα ’s are the alpha variables which is equivalent to that given in section 4.2 for i 
= 1 and can also be derived as 
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where k

tt ,1+γ  is the probability of the state changing from state iS  to state jS  of class k, 

and )( t
k
t Ob  is the a posteriori probability for state iS  in class k corresponding to tt xO = . 
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In this model, the a posteriori probability )( t

k
t Ob  is approximated by summing up 

jkM , components of a Gaussian mixture distribution and has the form 
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Thus, for an input series, the a posteriori probability for each class can be estimated with 
a well trained framework as given above.   
 
The final step which is required to determine whether or not the motion has actually 
occurred or not (the task performed).  The motion is identified as having occurred if it 
reaches a certain threshold (or criterion).  Bu et al. (2003) provide a calculation for the 
entropy of an output sequences.  Thus, if the entropy is lower than the threshold, the 
specific motion whose probability is the highest is determined according to the Bayes 
decision rule; if not, it is terminated. 
 
This proposes a formulation of an EMG pattern recognition method based on Gaussian 
mixtures for concatenated EMG data by drawing upon existing methodology and 
modifying it for the application setting. 
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Section 6: Concluding Remarks 
 
As with any research project, many enhancements and extensions have become apparent 
through the course of the work.  First, studies in which example data sets should be 
performed should enhance the training process and perhaps optimize recognition results.  
Furthermore, a very interesting extension to the system would allow independence of 
feature subspaces.  For example taking into account both optimal positions and symptoms 
of WMSDs would reduce the number of parameters as it minimizes the number of codes 
in the codebook.  Alternatively, two separate codebooks could be created.   
 
Second, the modeling of time duration and multiple processes are areas of depletion in 
the statistical literature.  MacKay (2003) has provided some insight into handling 
multiple processes within the context of multiple sclerosis.  MacDonald and Zucchini 
(1997) also provide details in handling correlated multivariate time series data.  Both of 
these issues are introduced in Rabiner’s paper but have not been carried forth.  These 
issues are essential to all forms of HMMs.  Yet, there are still large gaps.  Further, 
representation of HMMs and their variants as DBNs as proposed by Murphy also hold 
substantial ground and value importance.  Hence, exploring such alternatives may be 
beneficial especially with regards to neural networks. 
 
From a practical standpoint, HMMs offer a structural framework which is advantageous 
to researchers using EMG signals.  They can help to explain variation in a postulated 
hidden process.  They can describe the theoretical structure to be used in a prediction 
system or a recognition system.  They provide a cost-effective means of understanding 
the physical process of interest.  Thus, extensions of the theoretical literature to 
accommodate the exceedingly complex behavior of EMG is both beneficial to the 
literature in the field of HMM algorithms as it is in explaining the physical exposures of 
WMSDs in a variety of settings. 
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