1) Fixed Change-point K=3

Density of Height with Running Length (N) = 300
Density of Height with Running Length (N) = 1000
Density of Height with Running Length \((N) = 10000\)
Density of Height with Running Length \((N) = 15000\)
Comparsion of density of height

Running Length=300

N = 900 Bandwidth = 0.2666

Running Length=1000

N = 3000 Bandwidth = 0.2135
Running Length=10000

N = 30000 Bandwidth = 0.1387

Density

0.0 0.2 0.4 0.6

0 1 2 3 4

0 1 2 3 4

N = 30000 Bandwidth = 0.1387
Running Length=15000

N = 45000 Bandwidth = 0.1265
Result:

For $N < 10000$, the modes are not very clear. Thus, running length is too short if it is less than 10000. Besides, the modes tends to be clearer as running length reaches and beyonds 10000.
Density of Position with Running Length \(N = 300 \)

\[\text{Running Length} = 300 \]

\[N = 300 \quad \text{Bandwidth} = 0.4784 \]
Density of Height with Running Length (N) = 1000

Running Length = 1000

N = 1000 Bandwidth = 0.3127
Density of Height with Running Length (N) = 10000

Running Length = 10000

N = 10000 Bandwidth = 0.3358
Density of Height with Running Length \((N) = 15000 \)

\[\text{Running Length} = 15000 \]

\[\text{N} = 15000 \quad \text{Bandwidth} = 0.2475 \]
ACF of S2
Result:

1) The density of s_2 and s_3 overlap around 1900, which makes it be an important changepoint. The plot shows that h_2 and h_3 also jumps to h_1 at same running length. Thus, the jump of position may caused by the change of height.

2) The distance between the mode of s_1 and s_2 dataset gets farther as running time increases. Besides, one mode finally "wins" with the highest probability for the choice of both s_1 and s_2. Thus, the choice of s_1 and s_2 converges to the "true" value with the increase of running length.
2) Varied K

Histogram of K with Running Length = 300

<table>
<thead>
<tr>
<th>K</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Histogram of K with Running Length = 10000

<table>
<thead>
<tr>
<th>K</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Histogram of K with Running Length = 15000
Result:

The range of k values tends to be wider as running length increases. Besides, the proportion of extreme values tends to be smaller as running length increases and $k = 3$, $k = 4$ are always the most frequent choice of k value.
Density of Height with $K=3$ and Running length=15000

h1

![Graph of density distribution] N = 3746 Bandwidth = 0.04724

h2

![Graph of density distribution] N = 3746 Bandwidth = 0.02359
Density of Height

N = 11238 Bandwidth = 0.163
Running Length = 15000

![Graph showing running length vs height]
Series $H3[, 2]$
Running Length=15000

Position

Running length
Result:

Compared with fixed $k = 3$ case, s_2 jumps close to s_1 more frequently as well as h_3, h_2 and h_1, although the density of height are similar.