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1. Introduction.

Markov chain Monte Carlo (MCMC) methods, such as the Gibbs sampler (Geman and

Geman, 1984; Gelfand and Smith, 1990; Smith and Roberts, 1993) and the Metropolis-

Hastings algorithm (Metropolis et al., 1953; Hastings, 1970), have become a very popular

means for sampling from complicated, high-dimensional posterior distributions in Bayesian

statistics. A continuing source of uncertainty is the rate of convergence of MCMC algo-

rithms. Specifically, how long should they be run until they have approximately converged

to their target stationary distribution? That is, how large should the “burn-in” time be?

Rigorous theoretical upper bounds on burn-in times for these algorithms have recently

been proposed (see e.g. Frieze, Kannan, and Polson, 1993; Frigessi, Hwang, Sheu, and di

Stefano, 1993; Ingrassia, 1994; Meyn and Tweedie, 1994; Rosenthal, 1995b; Baxendale,

1994). However, they have suffered from the difficulties of precise analysis of complicated

models, and have largely tended to concentrate on relatively simple problems, and/or to

provide impractically large upper bounds.

Consequently, most applied users of MCMC techniques have used convergence diag-

nostics (see for example, Roberts, 1992; Gelman and Rubin, 1992; Raftery and Lewis,

1992) to assess convergence. These diagnostics often work well in practice; however they

are not completely understood and offer no guarantees. See Cowles and Carlin (1996) for

a comprehensive review.

In this paper, we present a way to make use of theoretical upper bounds (taken from

Rosenthal, 1995b) without doing prohibitively difficult computations. Specifically, we con-

sider the use of auxiliary simulations to numerically verify certain hypotheses (drift and

minorization conditions) which are known to provide upper bounds on convergence times.

The auxiliary simulations provide numerical values which may then be used in the theo-

retical results. Our approach is thus an attempt to bridge the gap between theoretical and

applied work, making use of the theory while providing a practical method for exploiting

it. Details are given in the next section.

After presenting our general method, we apply it to three examples of MCMC. The

first (Section 3) is for a model for which upper bounds have already been proven analytically

(Rosenthal, 1996). This model thus allows us to check our method against a known answer,
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and we find excellent agreement of our method with the theoretical results. Our second

example (Section 4) is a variance components model, long advocated (Gelfand and Smith,

1990; Gelfand et al., 1990) as an ideal candidate for the Gibbs sampler. Our third example

(Section 5) is a Gibbs sampler for an ordinal probit model, as used in biostatistics contexts

(Carlin and Polson, 1992; Albert and Chib, 1993; Cowles, 1996).

In all three of these models, we use our auxiliary simulation method to obtain useful,

quantitative bounds on the convergence time of the Markov chain being studied.

We note that, in addition to burn-in, there are other aspects of “convergence” that are

relevant to applied use of MCMC methods (but are not directly considered in this paper).

These include: determining whether the chain has traversed the entire sample space; and

obtaining reasonable estimates of the variances of quantities that are estimated from the

dependent samples produced by MCMC algorithms. We discuss these issues briefly in the

final section.

We end this section with some notation. We shall consider Markov chains on a general

state space X (usually X ⊆ Rn), with transition probabilities P (x, ·), initial distribution

ν(·), and target stationary distribution π(·). In many applications, including all of our

examples, π(·) is the posterior distribution for a Bayesian statistical model.

We shall concentrate largely on the sequentially-updated Gibbs sampler. There, the

state space is a product X = X1 × X2 × . . . × Xn. (Note that the Xi themselves may be

either one- or multi-dimensional.) The Gibbs sampler proceeds by sequentially updating

each coordinate from the conditional distribution induced by π(·). Specifically, given the

state (x(k−1)
1 , x

(k−1)
2 , . . . , x

(k−1)
n ) at time k − 1, it chooses

x
(k)
1 ∼ π(dx1 | x

(k−1)
2 , x

(k−1)
3 , . . . x(k−1)

n ) ;

x
(k)
2 ∼ π(dx2 | x

(k)
1 , x

(k−1)
3 , . . . x(k−1)

n ) ;

...

x(k)
n ∼ π(dxn | x

(k)
1 , x

(k)
2 , . . . x

(k)
n−1) .

We shall use this notation in Lemma 2 below.
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2. A general method for bounding convergence rates.

For a Markov chain {X(k)}∞k=0 on a state space X , with stationary distribution π(·),

we are interested in bounding the total variation distance to stationarity, defined by

‖L(X(k)) − π‖ ≡ sup
S⊆X

|P (X(k) ∈ S)− π(S)| .

We begin by taking a result from Rosenthal (1995b), which gives an upper bound on

‖L(X(k)) − π‖. The following follows easily from Theorem 5 there. [For the special case

m = k0 = M = 1, it essentially coincides with Theorem 12 there. In general, it follows

immediately by applying Rosenthal’s Theorem 5 to the chain Pm, with j = rk, with

C = Vd = {x ∈ X ; V (x) ≤ d}, and with the drift function h(x, y) = 1+MV (x)+MV (y);

or, if V ≥ 1, with h(x, y) = M
2 (V (x) + V (y)) + (1−M).]

Proposition 1. Let P (x, ·) be the transition probabilities for a Markov chain on a state

space X , with initial distribution ν and stationary distribution π. Suppose for some non-

negative function V : X → R≥0, some λ < 1 and Λ < ∞, some ε > 0, some probability

measure Q(·) on X , some positive integers m and k0, and some d > 2Λ
1−λ , we have

E(V (X(m)) | X(0) = x) ≤ λV (x) + Λ , x ∈ X , (1)

and also

Pmk0(x, ·) ≥ εQ(·) , x ∈ Vd , (2)

where Vd = {x ∈ X ;V (x) ≤ d}. Then for any 0 < r < 1 and M > 0, we have

‖L(X(k)) − π‖ ≤ (1− ε)[rk/mk0] + C0 (αA)−1
(
α−(1−rk0)Ar

)[k/m]

,

where

α−1 =
1 + 2MΛ + Mλd

1 + Md
; A = 1+2(λMd+MΛ) ; C0 =

(
1 +

MΛ
1− λ

+ MEν(V (X(0)))
)

.

If furthermore it is known that V (x) ≥ 1 for all x ∈ X , then it suffices that d > 2Λ
1−λ − 1,

and these values may be improved slightly to

α−1 = λ +
MΛ + (1− λ)(1−M)

1 + M
2 (d− 1)

; A = M(λd + Λ) + (1−M) ;
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C0 =
M

2

(
Λ

1− λ
+ Eν(V (X(0)))

)
+ (1−M) .

We note that the hypotheses imply that α−1 < 1. Hence, choosing r > 0 sufficiently

small, this proposition provides a quantitative, exponentially-decreasing upper bound on

the total variation distance ‖L(X(k)) − π‖ between the distribution of our Markov chain

after k iterations, and the stationary distribution π(·). Hence, for a given MCMC algo-

rithm, it is then possible to choose an appropriate value of k to make this distance as small

as desired.

We further note that, in principle at least, Proposition 1 and the methods of this

paper can be applied to any discrete-time Markov chain. In particular, the state space

can be finite, countably infinite, or uncountable; the chain can be reversible or not; the

chain could arise from a Gibbs sampler, or a Metropolis-Hastings algorithm, or a hybrid

Monte Carlo algorithm, or whatever; and so on. Of course, it will still be computationally

difficult to apply Proposition 1 to very complicated chains.

To apply Proposition 1, it is necessary to choose a function V , and then to verify the

drift condition (1) and the minorization condition (2). We discuss these issues in turn.

The selection of V is non-trivial. Clearly, V need depend only on those parameters

which are “remembered” at the next iteration, i.e. on those parameters for which ini-

tial values must be supplied. For example, for the sequentially-updated Gibbs sampler, if

X
(k)
1 , ..., X

(k)
n are conditionally independent of X

(k−1)
1 , ..., X

(k−1)
G , given X

(k−1)
G+1 , ..., X

(k−1)
n ,

then V need depend only on XG+1, ..., Xn. (This always holds with G = 1.) Such obser-

vations are used in all of the examples in this paper. Furthermore, V may depend on the

data, on any constants associated with the model, and on various numerical values chosen

by the user.

The conditions (1) and (2) imply the following informal goals for the function V : (a) if

the chain is “far away”, then the value of V should tend to decrease on the next iteration;

and (b) the transition probabilities P (x, ·) should have reasonably large “overlap” from

all points x with V (x) ≤ d. By keeping these two goals in mind, and by qualitatively

examining the behavior of the chain, a reasonable choice of V can sometimes be made

by inspection. Furthermore, if conditions (1) and (2) can be verified for any function V ,
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then by Proposition 1 this implies a bound on the total variation distance of the chain to

stationarity; we do not need to worry if we have made the “best” choice of V .

On the other hand, verification of equations (1) and (2) (for a given function V ) can

be quite difficult, especially for complicated, high-dimensional statistical models. Further-

more, to get good values of λ and ε it is often desirable to have k0 > 1 or m > 1, and

in this case analytic verification is often practically impossible. This has tended to limit

the effectiveness of theoretical analysis for such models. (We do note that verification of

(1) alone is sufficient to establish geometric ergodicity of the Markov chain, but without

providing a quantitative bound. See Meyn and Tweedie, 1993; Roberts and Tweedie, 1994;

Geyer, 1994.)

Our approach is to approximately verify equations (1) and (2) numerically, through

auxiliary Monte Carlo computer simulation. This has the disadvantage that it does not

provide rigorous proofs of the convergence rates. However, by doing careful Monte Carlo

estimation, including computation of standard errors, we provide results which appear

to be quite convincing. As a test case, our method works very well on a problem for

which analytic results are also available (Section 3). Furthermore, our method is much

more straightforward to implement than is theoretical analysis, especially for complicated

models or for mk0 > 1.

Our method makes use of the following two results for simplifying the computation

of ε above. They are taken from Lemmas 6 and 7 of Rosenthal (1995b). The first, specific

to the sequentially-updated Gibbs sampler, reduces the computation of the minorization

condition on all n variables, to a minorization on only the first D < n variables. The

second, for general Markov chains with densities, gives a formula for ε in terms of an

integral of minimums of densities. (This integration is often not feasible directly, especially

for mk0 > 1; however it is the inspiration for step three of our method below.)

Lemma 2. Consider a sequentially-updated Gibbs sampler, as above. Suppose that for

some D, conditional on values for X
(k)
1 , . . . , X

(k)
D , the random variables X

(k)
D+1, . . . , X

(k)
n

are conditionally independent of all X
(k′)
i for all k′ < k. (For example, this always holds

with D = n − 1.) Suppose further that for some R ⊆ X and ε > 0, there is a probability
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measure Q(·) on X1 × . . .×XD such that

L(X(mk0)
1 , . . . , X

(mk0)
D | (X(0)

1 , . . . , X(0)
n ) = x) ≥ ε Q(·) , for all x ∈ R .

Then there is a probability measure Q′(·) on X such that

Pmk0(x, ·) ≥ ε Q′(·) , for all x ∈ R .

Lemma 3. Suppose a Markov chain satisfies that Pmk0(x, ·) = f(x, y)dy, where f(x, ·) is

a density function and dy is Lebesgue measure (or some other σ-finite reference measure).

Then there exists a probability measure Q(·) such that

Pmk0(x, ·) ≥ ε Q(·) for all x ∈ R ,

where

ε =
∫
X

(
inf
x∈R

f(x, y)
)

dy .

Remark. Strictly speaking, it is possible (though rare) that the function inf
x∈R

f(x, y)

may not be integrable. In that case, the definition of ε above should be taken to be a

lower integral (cf. Spivak, 1980, p. 277). (Equivalently, we may take ε =
∫
X

g(y)dy for any

integrable function g satisfying g(y) ≤ f(x, y) for all x ∈ R and y ∈ X .)

Our method is designed to approximately verify conditions (1) and (2), after the

selection of a function V has been made. It consists of three steps.

First, we find a lower bound on Λ, as follows. For each point x ∈ X such that V (x) = 0,

we simulate N0 draws from L(X(m)|X(0) = x), and thus estimate E(V (X(m))|X(0) = x)

as the mean of V (X(m)) over the N0 draws. N0 is chosen to obtain a standard error of

this mean that is less than or equal to some desired tolerance. The maximum of these

estimated expected values, over different choices of x, provides a lower bound Λ̂. (If we

know that V ≥ 1, then we instead apply this procedure to V − 1, and then add 1 to our

resulting lower bound.)

Second, for a given value of Λ̂ (at least as large as the previously computed lower

bound), we estimate a corresponding value for λ as follows. We generate N1 different
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initial values x ∈ X randomly, from some appropriate scheme designed to make them

cover all potentially “bad” parts of the space. (In practice, we generate them from various

normal distributions with a variety of variances.) For each such initial value x, we simulate

N2 (again chosen to obtain satisfactory standard errors) draws from L(X(m)|X(0) = x),

and thus estimate e(x) = E(V (X(m))|X(0) = x). The maximum of

(e(x)− Λ̂)/V (x), (3)

over different choices of x, provides an estimate λ̂ corresponding to the given Λ̂. (Note

that the estimate is less stable, and requires a larger value of N2, if V (x) is close to 0. This

is a motivation for choosing functions V satisfying V ≥ 1.) If λ̂ < 1, then we have found

evidence for a useful drift condition. If not, then we increase our value of Λ̂ and try again.

Third, for an appropriate value of d chosen to be comfortably larger than 2Λ̂/(1− λ̂),

we estimate a corresponding value for ε. To do this, we divide our state space (or at least

those coordinates over which a minorization is required, according to Lemma 2) into a

large number of little “bins,” designed to be small enough so that transition probabilities

have densities which are roughly constant over each bin. We then generate a set of initial

values x, each in Vd = {x ∈ X ; V (x) ≤ d}, designed so that transition probabilities from

these different initial values have minimal overlap among all choice of x ∈ Vd. (In practice,

we do this by inspection, choosing starting values from all of the “corners” of the set Vd.)

For each initial value x, we generate N3 different samples from L(X(mk0)|X(0) = x), and

keep track of what fraction of them land in each of our little bins. We then compute an

estimate ε̂ by summing, over all little bins, the minimum over different choices of x, of the

fraction of samples landing in that bin. This approximates the sum of
∫

Bj

(
inf
x∈R

f(x, y)
)

dy,

summed over all the little bins Bj . [Formally, it is necessary first to ensure that the bins

are sufficiently small to avoid fluctuation in the densities, and then to ensure that N3 is

sufficiently large for that particular choice of bin size. In practice, this means that for a

given bin size, we should choose N3 larger and larger until the results appear stable. We

should then repeat this process for smaller and smaller bin sizes, choosing larger and larger

N3 for each new bin size, until the resulting estimate ε̂ appears to be stable as the bin size

decreases. In sum, appropriate size of bins and of N3 is a delicate question and can require
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some experimentation.]

(We note that the bound of Proposition 1 improves with smaller values of Λ and λ,

but with larger values of ε. Thus, to be conservative, we round up our estimates Λ̂ and λ̂,

and round down our estimates ε̂, by amounts at least comparable to the observed standard

error of the estimate. We thus obtain bounds which are protected against numerical errors

in the auxiliary simulations.)

Having found estimates Λ̂, λ̂, and ε̂, we then obtain an estimate for a bound on the

convergence rate of our chain, by using Proposition 1. In applying the estimate, we are

free to choose r and M as we wish (subject to 0 < r < 1 and M > 0); some experimenting

with different values is recommended. Generally speaking, we will say that k iterations

suffice to achieve convergence if, for some r and M , the bound can be made to be less than

0.01 for the particular choice of k. We emphasize that such a k is an upper bound on the

time to convergence. Thus, running k iterations to achieve burn-in is sufficient, but may

be overly conservative.

Remark. Examining the proof of Rosenthal (1995b, Theorem 12), we see that condition

(1) above is used to bound exponential moments of the return times of the chain to the

set Vd. In theory, it might be possible to forget about condition (1), and instead use

auxiliary simulation to estimate these exponential moments directly. However, in practice,

the resulting estimates would be extremely unstable due to the heavy-tail behavior. Thus,

we do not consider them further here.

3. Example: A model related to James-Stein estimators.

We first try our method on a model related to James-Stein estimators, taken from

Rosenthal (1996), which followed a suggestion of Jun Liu. This model is similar to the full

variance components model, but is simpler in that one of the components of variance is

fixed. Since Rosenthal (1996) analytically obtained numerical convergence bounds for this

problem with m = k0 = 1, we can use it as a check of our method.

This model is defined by

Yi | θi ∼ N(θi, v) (1 ≤ i ≤ K)
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θi |µ,A ∼ N(µ,A) (1 ≤ i ≤ K)

Here Y1, . . . , YK are observed data, µ has a flat prior, v is an (empirically estimated)

constant, and A has prior IG(a, b) for fixed constants a and b. We are interested in the

posterior distribution

π(·) = L(A,µ, θ1, . . . , θK |Y1, . . . , YK) .

The Gibbs sampler acts on the (K + 2)-dimensional space (A,µ, θ1, . . . , θK), condi-

tional on data Y1, . . . , YK and constants a and b, as follows. After choosing initial values

A(0), µ(0), θ
(0)
1 , . . . , θ

(0)
K from some initial distribution, it updates these variables repeatedly

(for iterations k = 1, 2, 3, . . .) by the conditional distributions

A(k) ∼ L(A | θi = θ
(k−1)
i , Yi) = IG

(
a +

K − 1
2

, b +
1
2

∑
(θ(k−1)

i − θ
(k−1)

)2
)

; (4)

µ(k) ∼ L(µ |A = A(k), θi = θ
(k−1)
i , Yi) = N(θ

(k−1)
, A(k)/K) ; (5)

θ
(k)
i ∼ L(θi |A = A(k), µ = µ(k), Yi) = N

(
µ(k)v + YiA

(k)

v + A(k)
,

A(k)v

v + A(k)

)
; (6)

where θ
(k)

= 1
K

∑
θ
(k)
i . For derivation of these conditional distributions and further details,

see Rosenthal (1996). In particular, note that the updating order was chosen so that we

may take D = 2 in Lemma 2.

For the data {Yi}, we use the baseball data presented in Morris (1983, Table 1). This

data has K = 18, v = 0.00434, and ∆ =
∑
i

(Yi − Y )2 = 0.0822. We further choose prior

values a = −1 and b = 2.

This model was analyzed rigorously in Rosenthal (1996). There, it was shown that

for this data, with m = k0 = 1 and d = 1, we may satisfy equations (1) and (2) with

V (A,µ, θ1, . . . , θK) =
K∑

i=1

(θi − Y )2 ; (7)

λ = 0.000289; Λ = 0.161; ε = 0.0656 . (8)

This led to the useful bound

‖L(X(k)) − π(·)‖ ≤ (0.967)k + (0.935)k
(
1.17 + E

(∑
(θ(0)

i − Y )2
))

,

10



which equals 0.009 if (say) k = 140 and θ
(0)
i ≡ Y . Thus, it was shown that approximately

140 iterations suffice to achieve convergence of this Gibbs sampler.

To compare these results with a commonly-used convergence diagnostic, Figure 1

shows the traces of A, µ, θ1, and θ2 from three Gibbs sampler chains, each run for 500

iterations. The median and .975 quantile of Gelman and Rubin’s (1992) convergence

diagnostic are shown above each plot. Certainly the visual impression is that the chains

indeed are drawing from the same target distribution well before the 200th iteration, but

Gelman and Rubin’s diagnostic suggests that more iterations are needed before we can

have any confidence that all the chains have traversed the entire state space. Thus, the

theoretical bounds appear to be sensible, but do not give all the information needed for

estimation purposes.

We proceed to apply our simulation method to the same problem.

Choosing the V() function. With the conditional distributions given in (4) - (6), initial

values are needed only for θ1, . . . , θK . Thus we adopted the V function given in (7).

Obtaining a lower bound for Λ. With V (x) defined as in (7), V (x0) = 0 only if x0

corresponds to θ
(0)
i = Y for all i = 1, . . . ,K. Thus, to determine a lower bound on Λ in

(1), we ran N0 = 30, 000 single-iteration chains, all started with all θ
(0)
i = Y , and obtained

Λ̂ = 0.157, the mean of V (X(1)|X(0) = x0), with a standard error of .00045. We rounded

this mean up to 0.16, which agreed well with the value obtained analytically.

Obtaining a lower bound for λ. We generated 5 sets of initial values θ
(0)
i , i = 1, . . . ,K,

from each of 4 normal distributions, all centered at Y , and with standard deviations

ranging from 0.05 to 0.50. To keep the expression (3) from “blowing up,” any set of initial

values that produced V (X(0)) < .01 was rejected and redrawn. From each set of initial

values x
(l)
0 , l = 1, . . . , N1 = 20, we ran a minimum of N2 = 500 single-iteration chains

and computed the mean V (X(1)|X(0) = x
(l)
0 ). When V (x(l)

0 ) < 1, N2 was multiplied by a

suitable constant so that the standard errors of these means were approximately constant,

with none larger than .0021. The largest value of (3) gave λ̂ = .0011. If there had been a

trend toward larger values of (3) with larger standard deviations of the normal generating

distribution for the starting values, we would have repeated the process with still larger

standard deviations. Because instead the mean V (X(1)|X(0) = x
(l)
0 ) did not vary greatly
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as a function of x
(l)
0 , we concluded that our choices of starting places had covered the space

satisfactorily.

Estimating ε in the minorization condition. Our estimates Λ̂ = 0.16 and λ̂ = 0.0011

enabled us to choose d = 1 as in Rosenthal (1996), to ensure that d > 2Λ̂

1−λ̂
. By Lemma 2,

we need establish overlap in the transition probabilities only for A and µ. By inspection

of the full conditionals (4) and (5) and computations similar to those in Rosenthal (1996),

we find that the starting points with the least overlap, subject to the constraint that

V (x0) ≤ d, are those such that the pair
(∑

(θ(0)
i − θ

(0)
)2, θ

(0)
)

equals one of the four

choices (
d, Y

)
;

(
0, Y

)
;

(
0, Y −

√
d/K

)
;

(
0, Y +

√
d/K

)
.

We ran N3 = 40000 single-iteration Gibbs sampler chains from each of these four starting

points. We then used an S-Plus routine to construct a grid of 2-dimensional bins spanning

the range of the A′s and the µ′s in the 4 samples combined, to compute what fraction of

the points in each sample fell into each of the bins, and finally to estimate ε by summing

over all bins the minimum fraction falling into that bin from each of the 4 samples.

We used three different grid sizes to assess our estimate of ε. When each dimension

was chopped into 16 equal-length intervals, ε̂ = .0958. When each dimension was chopped

into 32 intervals, ε̂ = .0726, and with 64×64 bins, ε̂ = .0715. We conclude that estimating

ε at approximately .071 is reasonable, since the estimate did not change substantially with

the final repartitioning.

We see that our simulation-based estimates of Λ̂, λ̂, and ε̂ correspond closely to the

values (8) obtained analytically by Rosenthal (1996). This suggests that our method

works well in this model, and may justify applying it to a related model, the convergence

properties of which have not been as precisely determined analytically.
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4. Example: Variance components model.

We next consider the full variance components model. This model was used by Gelfand

and Smith (1990) as an example which is difficult to analyze without the help of the Gibbs

sampler. The resulting Gibbs sampler was analyzed heuristically by Gelfand, Hills, et

al. (1990), who reported good success. Asymptotic convergence rates were derived by

Rosenthal (1995a). In a very complicated calculation, Geyer (1994) analytically verified

a drift condition of the form (1), for a simplified version of this Gibbs sampler. However,

he did not provide a minorization condition or convergence rate estimate. This model has

remained a standard application of the Gibbs sampler, with no clear understanding of its

convergence rate or properties.

The model is defined by

θi|σ2
θ , σ2

e , µ ∼ N(µ, σ2
θ); (1 ≤ i ≤ K)

Yij |σ2
θ , σ2

e , µ, θ1, . . . , θK ∼ N(θi, σ
2
e); (1 ≤ i ≤ K; 1 ≤ j ≤ J)

where σ2
θ and σ2

e correspond respectively to A and v in the model in Section 3. Here,

however, the simplifying assumption that v is known is removed, and σ2
e is an additional

unknown parameter. Here Yij are observed data, and σ2
θ , σ2

e , and µ have the conjugate

prior distributions

σ2
θ ∼ IG(a1, b1); σ2

e ∼ IG(a2, b2); µ ∼ N(µ0, σ
2
0);

where a1, b1, a2, b2, µ0, and σ2
0 are fixed constants.

The Gibbs sampler proceeds on the (K + 3)-dimensional space (σ2
θ , σ2

e , µ, θ1, . . . , θK),

conditional on data {Yij ; 1 ≤ i ≤ K, 1 ≤ j ≤ J}. After choosing initial values, it

repeatedly updates them (for iterations k = 1, 2, 3, . . .) by the conditional distributions

σ2
θ
(k) ∼ L(σ2

θ | µ(k−1), σ2
e
(k−1)

, θ
(k−1)
1 , . . . , θ

(k−1)
K , Yij)

= IG

(
a1 +

1
2
K, b1 +

1
2

∑
i

(θ(k−1)
i − µ(k−1))2

)
;

σ2
e
(k) ∼ L(σ2

e | µ(k−1), σ2
θ
(k)

, θ
(k−1)
1 , . . . , θ

(k−1)
K , Yij)
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= IG

a2 +
1
2
KJ, b2 +

1
2

∑
i,j

(Yij − θ
(k−1)
i )2

 ;

µ(k) ∼ L(µ | σ2
θ
(k)

, σ2
e
(k)

, θ
(k−1)
1 , . . . , θ

(k−1)
K , Yij)

= N

σ2
θ
(k)

µ0 + σ2
0

∑
i

θ
(k−1)
i

σ2
θ
(k) + Kσ2

0

,
σ2

θ
(k)

σ2
0

σ2
θ
(k) + Kσ2

0

 ;

θ
(k)
i ∼ L(θi | µ(k), σ2

θ
(k)

, σ2
e
(k)

, θ
(k)
1 , . . . , θ

(k)
i−1, θi+1, . . . , θK , Yij)

= N

(
Jσ2

θ
(k)

Y i + σ2
e
(k)

µ(k)

Jσ2
θ
(k) + σ2

e
(k)

,
σ2

θ
(k)

σ2
e
(k)

Jσ2
θ
(k) + σ2

e
(k)

)
(1 ≤ i ≤ K) .

[Here Y i = 1
J

J∑
j=1

Yij .] We have chosen the updating order so that we may take D = 3 in

Lemma 2.

We proceed to apply our method to two datasets illustrating the one-way variance

components model, which are analyzed in Chapter 5 of Box and Tiao (1973). One, taken

from Davies (1967), involves between- and within- batch variation in yield of dyestuff. The

other is simulated data, to which Gelfand, Hills et al. (1990) applied the Gibbs sampler.

In both cases, K = 6 and J = 5.

For both datasets we specified the following flat prior on σ2
e , and weak but proper

priors on µ and σ2
θ :

µ0 = 0; σ2
0 = 1012;

a1 = 0.5; b1 = 1.0;

a2 = 0.0; b2 = 0.0.

The proper prior on σ2
θ ensured parameter identifiability and prevented the Gibbs sampler

from “getting stuck” due to values of σ2
θ too close to 0.

Choosing the V() function. For V() we needed a function that would control both µ

and θ, since those are the parameters for which initial values are required. We reasoned

that, since the priors were so weak, the marginal posterior distributions would be almost
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entirely driven by the data. Accordingly, we chose the following V() function, which

incorporates data-based estimates of σ2
θ and σ2

e .

V (σ2
θ , σ2

e , µ, θ1, . . . , θK) =
1
K

K∑
i=1

(
θi −

Jv1Y i + v2Y

Jv1 + v2

)2

+ (µ− Y )2 (9)

where v1 = 1
KJ

∑
i,j

(Yij − Y i)2 and v2 = 1
K

∑
i

(Y i − Y )2.

Obtaining a lower bound for Λ. Here as in the James-Stein model, there is only one

configuration of starting values for which V (x0) = 0. For each of the two datasets, we ran

N0 = 10000 single-iteration chains (i.e., m = 1) from this configuration and computed the

mean value of V (X(1)). For the simulated data, this was 1.60, and for the dyestuff data it

was 818.

We decided that, for this problem, we would add 1.0 to the V function to prevent

problems in estimating λ and to enable us to use the improved bounds mentioned in

Proposition 1. Accordingly, we added 1.0 to these respective initial estimates of Λ.

Obtaining a lower bound for λ. We again chose initial values by specifying dispersion

parameters for generating µ(0) and the θ
(0)
i , i = 1, . . . ,K, from normal distributions cen-

tered at Y . For the simulated data, we chose 5 values of standard deviations ranging from

0.125 to 3.0, and generated 10 sets of initial values using each. From each of those 50 sets

of initial values we ran 5000 single-iteration chains. With the V() function defined as 1.0

+ the expression in (9), the largest value of λ̂ computed as in (3) was 0.54.

For the dyestuff data, from each of 20 sets of initial values generated at each of 5

dispersions ranging from 1 to 625, we ran 20000 single-iteration chains. Our largest value

of λ̂ was 0.65.

Estimating ε in the minorization condition. Our estimates Λ and λ enabled us to

choose d = 15 for the simulated dataset and d = 5, 000 for the dyestuff dataset. By

Lemma 2, we need establish overlap in the transition probabilities only for σ2
e , σ2

θ , and µ.

We specified expressions for conservative upper and lower bounds for the three quantities

required in the full conditionals for these parameters –
∑
i

(θi − µ)2,
∑
ij

(Yij − θi)2, and

θ – subject to the constraint that V (X(0)) ≤ d. For each dataset, we then plugged the

appropriate numbers into these expressions to obtain 8 sets of initial values.
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For the simulated data, we constructed 3-dimensional bins with two grid sizes, cor-

responding to 25 intervals per dimension and 50 intervals per dimension. After some

experimentation, we chose k0 = 10, and ran 30,000 ten-iteration chains from each of the 8

starting points. The sum over all bins of the minimum fraction of points falling into that

bin from each of the 8 samples was .749 for the coarser grid and .709 for the finer. We

conclude that .70 is a reasonable choice for ε̂ for these data.

For the dyestuff data, a similar procedure (but with k0 = 50) led to ε̂ = .28. The

difference between these results and those for the simulated data is due to the much larger

numerical values in the dyestuff dataset. These caused the upper and lower bounds for the

initial values for the samples used in estimating ε to be very far apart, which in turn caused

the means of the resulting full conditionals to be widely separated. Hence many iterations

(large k0) were required for the chains to reach overlapping parts of the parameter space.

Bounding the convergence to stationarity. Having found estimates Λ̂, λ̂, and ε̂, we

now use these values in the bound provided by Proposition 1.

For the simulated data, we have Λ̂ = 2.6, λ̂ = 0.54, and ε̂ = 0.70, with d = 15, m = 1,

and k0 = 10. After some experimenting, we choose r = 0.042 and M = 0.1. Recalling that

V ≥ 1, and assuming that we start with V (X(0)) = 1, we obtain from Proposition 1 that

‖L(X(k)) − π(·)‖ ≤ (0.30)b0.0042 kc + (0.586)(0.990)k .

For example, if k = 955, this bound is equal to 0.00816.

For the dyestuff data, we have Λ̂ = 820, λ̂ = 0.65, and ε̂ = 0.28, with d = 5, 000,

m = 1, and k0 = 50. We choose r = 0.0076 and M = 0.0001. Again using that V ≥ 1 and

assuming V (X(0)) = 1, we obtain from Proposition 1 that

‖L(X(k)) − π(·)‖ ≤ (0.72)b0.000152 kc + (0.7905)(0.99985)k .

For example, if k = 98, 750, this bound is equal to 0.0072. (This value of k is, of course,

overly conservative. Tighter upper and lower bounds for the starting values used in esti-

mating ε most likely would help.)
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5. Example: Ordinal probit model.

Our final example comes from an ordinal probit model, common in biostatistical and

econometric applications (Carlin and Polson, 1992; Albert and Chib, 1993; Cowles, 1996).

We take the simplest case of K observations of a response variable wi, i = 1, . . . ,K

that can take on three ordered values arbitrarily labeled −1, 0, and 1 corresponding to,

say, “worse,” “no change”, and “improved.” In addition a single continuous covariate xi

is observed for each subject. Following the formulation of Albert and Chib (1993) we

introduce latent continuous variables y∗i underlying the ordinal wi’s and a set of cutpoints

−∞, 0, γ, and∞ that divide the real line into three intervals such that wi = −1 corresponds

to y∗i < 0, wi = 0 corresponds to 0 < y∗i < γ, and wi = 1 corresponds to γ < y∗i . We

assume that the y∗i’s are distributed N(β0 + β1xi, 1) for some β0 and β1.

The unknown parameters in this model are thus the intercept β0, the coefficient β1 of

the covariate, and the cutpoint γ. For β = (β0, β1)T we specify a flat prior, and for γ we

specify a flat prior constrained to the set {γ > 0.05}.

The Gibbs sampler for this model runs on the (K+3)-dimensional space (β0, β1, γ, y∗1 , . . . , y∗K).

For notational ease, we set

M0 = max{y∗i ; wi = 0} ; m1 = min{y∗i ; wi = 1} ; B = (B0, B1)T = (XT X)−1XT Y ,

where X is a K × 2 matrix consisting of a column of 1’s and a column of the xi’s. The

Gibbs sampler has (conditional) updating distributions

L(β | w,Y) = N
(
B, (XT X)−1

)
;

L(γ | w,Y, β) = U [max(M0, 0.05), m1] ;

L(y∗i | β, γ,w, y∗−i) = TNwi,γ(β0 + β1xi, 1), (1 ≤ i ≤ K) .

[Here TNwi,γ is a normal distribution truncated to the appropriate interval, i.e. to (−∞, 0)

if wi = −1; to (0, γ) if wi = 0; or to (γ,∞) if wi = 1.] Again, we have chosen the updating

order intentionally so that we may take D = 3 in Lemma 2.

For the data {xi, wi}, we take the first 50 observations from the simulated data set

reported in Cowles (1996); thus, K = 50. We now proceed to apply our method. The

17



procedure is similar to the previous examples, and will be described in somewhat less

detail.

Choosing the V () function. We need our function to “control” the values of B0, B1,

M0, and m1. Accordingly, we set

V (β0, β1, γ, y∗1 , . . . , y∗K) = (B0−0.4302)2+(B1−2.3361)2+(M0−1.8175)2+(m1−1.9347)2 ,

where the numerical values were chosen empirically, based on maximum likelihood esti-

mates obtained from the SAS module proc logistic (SAS Institute, 1990).

Obtaining a lower bound for Λ. We chose m = 3, and generated N0 = 5000 different

3-iteration chains, from the unique (aside from the unimportant value β) starting point

which has V () = 0. This led to the (rather small) estimate Λ̂ = 0.2. As in the previous

example, we then added 1.0 to the function V (), and hence also to Λ̂.

Obtaining an estimate for λ. We generated 5 sets of initial values from each of 6

normal distributions with different standard deviations. From each such initial value, we

ran N2 = 1000 different 3-iteration chains. Using (3) gave an estimate of λ̂ = 0.70.

Obtaining an estimate for ε. Our values Λ̂ and λ̂ require that d > 2Λ̂

1−λ̂
− 1 = 7.0,

so we chose d = 10. To find starting distributions with the least overlap subject to

the constraint V () ≤ d, we considered the following 9 different choices for the starting

quadruple (B0, B1,M0,m1):

(−0.6698,−3.4361, 0.05, 0.06); (−1.1198,−2.3361, 0.05, 0.06); (1.9802,−2.3361, 0.05, 0.06);

(1.5302,−1.2361, 0.05, 0.06); (−1.6930,−4.4593, 1.8175, 1.9347);

(−1.6930,−0.2129, 1.8175, 1.9347); (2.5534,−4.4593, 1.8175, 1.9347);

(2.5534,−0.2129, 1.8175, 1.9347); (0.4302,−2.3361, 4.00, 4.01) .

We created little bins by dividing up the state space into 40 intervals for each of the 3

different parameters. Taking k0 = 10, and running 40, 000 different chains from each of

these 9 starting points, with mk0 = 30 iterations each, and computing ε̂ as before, we

obtained the estimate 0.182, which we rounded down to ε̂ = 0.18.
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Bounding the convergence to stationarity. We use the values Λ̂ = 1.2, λ̂ = 0.70, and

ε̂ = 0.18, with d = 10, m = 3, and k0 = 10. We choose r = 0.035 and M = 0.05. Recalling

again that V ≥ 1, and assuming again that we start with V (X(0)) = 1, we obtain from

Proposition 1 that

‖L(X(k)) − π(·)‖ ≤ (0.82)b0.00117 kc + (0.7759) (0.9987)bk/3c .

For k = 21, 000, this bound is equal to 0.00863.

6. Discussion and conclusion.

We have presented a method for bounding the burn-in time for complicated Markov

chains to converge to their stationary distribution. We consider our method to be a

middle ground between ad-hoc convergence diagnostics (which offer little in the way of

guarantees), and rigorous theoretical analysis (which is often difficult to apply). We make

use of a theoretical result (Proposition 1) for bounding the distance to stationarity, but we

supplement this by a method for estimating the drift and minorization conditions which

Proposition 1 requires. In this sense, our work is similar in spirit to related works by Garren

and Smith (1995) and by Geyer (1992). Furthermore, as in the approach of Garren and

Smith (1995), our numerical estimates are all taken from preliminary, auxiliary simulations,

so they do not in any way bias the results of the final MCMC run.

We have applied our method to several realistic examples of the Gibbs sampler. In

each case we have obtained upper bounds on the time required to approximately converge

to stationarity. In some cases these bounds were probably overly conservative, but in all

cases they required less than 100, 000 iterations and thus were feasible to implement. This

is to be compared with some theoretical results (which may require billions of iterations to

be of use), and with convergence diagnostics (which may be overly optimistic and suggest

too few iterations to properly achieve burn-in).

Our method has advantages and disadvantages when compared with either non-

simulation-based theoretical bounds or convergence diagnostics. We avoid the traditional

limitations of theoretical bounds on convergence, both by making the computations feasi-

ble and by allowing for the superior results which may be obtained for mk0 > 1 (which is
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nearly impossible to compute analytically for large examples). In addition, our method is

almost certainly less easily fooled than are convergence diagnostics applied to the output

of an MCMC sampler.

On the other hand, our method is not as automatic as are the convergence diagnostics

of Gelman and Rubin (1992), Raftery and Lewis (1992), and others; analytic work is

required to choose a useful V function and to identify the extremes of Vd. In addition,

our method is computer-intensive, requiring substantial additional auxiliary simulation in

addition to the actual MCMC run.

Furthermore, like all diagnostic techniques, our method does not come with guaran-

tees. Specifically, there are no guarantees that we have chosen enough starting values, or

small enough bins, in estimating λ and ε. This question must always be handled with care.

However, our current investigations, including the comparison to analytic work (Section

3) and the varying of the various parameters involved, suggest that the method is fairly

stable and is working well.

Similarly, like all other analytical approaches but unlike some diagnostics, our method

becomes more prohibitive in high dimensions. This “curse of dimensionality” is somewhat

unavoidable. However, we do have the advantage that, for the sequentially-updated Gibbs

sampler, our little bins need only cover D of the n dimensions, and this can often result

in great savings. Furthermore, the ease of implementation, and allowance for mk0 > 1,

suggests that the method will work well for “moderate” dimensional models, and will also

allow for exploratory work in moderate dimensions which could offer insight into higher-

dimensional situations.

Unlike the convergence diagnostics of Gelman and Rubin (1992), Raftery and Lewis

(1992) and Geweke (1992), and the work of Geyer (1992), our method addresses only

burn-in and not the issues of whether the chain has traversed the entire sample space and

whether the variances of estimates are reasonable.

Although these disadvantages make our method currently too unwieldy to be used by

applied statisticians for every data analysis involving MCMC techniques, we believe that

our approach can be of practical value. At minimum, it could be used by mathematical

statisticians to screen out candidate V functions that are not worth pursuing analytically.
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At best, it might be extendible to compute approximate convergence bounds for whole

classes of models. It is even possible that it could suggest approximate formulas into

which applied users could simply plug constants such as number of observations, number

of variance components, number of categories, values of hyperparameters, etc. in order to

determine the number of burn-in iterations required for specific analyses.

[We would recommend that, after running the sample for the number of iterations so

computed, the applied user turn to methods such as those of Geweke (1992) and Geyer

(1992) to determine the number of subsequent iterations required to obtain the desired

precision of estimation of quantities of interest from the dependent samples.]

We are particularly encouraged by our results for the variance components model, the

simplest random effects model. We look forward to extending our method to the more

complex random effects models that form the basis of many biostatistical analyses for

which MCMC methods are used. We also plan to use our method to more fully compare

different models, different data sets, and different choices of V functions.

An additional area for future research is developing an adaptive method for con-

structing the bins used in verifying the minorization condition that will enable automated

assessment of the accuracy of the estimate ε̂.

In conclusion, we are cautiously optimistic that our simulation method for comput-

ing convergence bounds can make a useful contribution toward bridging the gap between

theoretical analysis and applied MCMC usage.
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