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Abstract. We review and discuss some recent progress on the theory of Markov chain

Monte Carlo applications, particularly oriented to applications in statistics. We attempt

to assess the relevance of this theory for practical applications.

1. Introduction.

Markov chain Monte Carlo (MCMC) algorithms – such as the Metropolis-Hastings

algorithm (Metropolis et al., 1953; Hastings, 1970) and the Gibbs sampler (Geman and

Geman, 1984; Gelfand and Smith, 1990) – have been an extremely popular tool in statis-

tics (see for example the recent reviews Smith and Roberts, 1993; Tierney, 1994; Gilks,

Richardson, and Spiegelhalter, 1996). In addition to the large body of applied work which

uses them, there has been a substantial amount of progress on the theoretical aspects of

these algorithms. To the applied user, it is often unclear what lessons (if any) can be

learned from these theoretical results. This paper will attempt to bridge this gap, by

describing some practical implications of various theoretical results about MCMC.

The huge complexity of these MCMC algorithms means that only partial theoretical

results are feasible. Thus, in considering practical implications, it is often necessary to
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extrapolate somewhat from what can be rigorously proven. As a result, some of the

suggestions made in this paper will not be strictly implied by the theory. In addition,

theoretical results cannot hope to answer all questions about how to use MCMC; an applied

user must also rely on intuition, experimenting, instinct, previous experience, etc.

Furthermore, we do not attempt a comprehensive review of all possible implications of

all theoretical results about MCMC. Rather, we concentrate on certain specific results only.

For example, we will not mention results on the development of algorithms using auxiliary

variables (see for example, Besag and Green, 1993, Neal, 1993, Marinari and Parisi, 1992);

on the development of adaptive methods (for example Gilks, Roberts, and George, 1994;

Gilks, Roberts, and Sahu, 1996); or results on updating strategies for Gibbs sampler

schemes (see Roberts and Sahu, 1997); and there are doubtless many other omissions as

well.

This paper is organised as follows. The basics of MCMC algorithms are presented in

Section 2. Convergence issues of various sorts are reviewed and discussed in Sections 3,

4, and 5. Optimal scaling issues are presented in Section 6, and sensitivity of MCMC to

computer approximation is considered in Section 7.

2. Basic algorithms.

MCMC algorithms are required in the following context. Suppose we have a proba-

bility distribution π(·), on a state space X (e.g., X = Rd). The distribution π(·) often

describes the posterior distribution in a Bayesian inference problem. Typically, the state

space X is so high-dimensional, and/or π(·) is so complicated, that direct computations

regarding π(·) are impossible. (Indeed, even the normalising constant for π(·) is typically

unknown.)

In such situations, MCMC proceeds by constructing a Markov chain X , with transition

probabilities P (x, ·), such that π(·) is a stationary distribution for this chain, i.e.,

πP (·) ≡
∫

π(dx)P (x, ·) = π(·) .

One then hopes that, if this chain is simulated long enough on a computer, with resulting

values X0, X1, . . ., the distributions L(Xn) will eventually be approximately π(·).

2



It is perhaps surprising that it could ever be easier to construct and simulate such a

Markov chain with stationary distribution π(·), than it is to analyse π(·) directly. However,

it turns out that there are a number of quite straightforward algorithms for constructing

the transition probabilities P (x, ·) in quite general contexts.

A very useful concept in constructing such transition probabilities is reversibility. A

Markov chain is reversible with respect to π(·) if

π(dx)P (x, dy) = π(dy)P (y, dx) .

This means that, if started in stationarity, the Markov chain has the same chance of starting

at x and jumping to y as starting at y and jumping to x. It follows immediately that π(·)

is a stationary distribution, since πP (dy) ≡
∫

π(dx)P (x, dy) =
∫

π(dy)P (y, dx) = π(dy).

Thus, the problem of satisfying an integral equation for P (x, ·) is simplified considerably.

A further important observation is that, if π(·) is stationary for both P1(x, ·) and

P2(x, ·), then it is also stationary for P1P2 (i.e., performing first P1 and then P2), for
1
2 (P1 +P2) (i.e., performing either P1 or P2, with probability 1

2 each), etc. In other words,

it is possible to build up more complicated algorithms out of simpler ones.

Because of this observation, most algorithms used in practice are built up from the

following basic “building block”, the Metropolis-Hastings algorithm. Suppose π(dx) =

f(x)µ(dx), where µ(·) is an arbitrary reference measure (e.g. Lebesgue measure). We begin

with a proposal distribution Q(x, dy) = q(x, y)µ(dy). The Markov chain then proceeds by

at each step proposing a new point y ∼ Q(x, ·), and then either accepting the proposal and

moving to it, with probability

α(x, y) = min(1,
f(y)q(y, x)
f(x)q(x, y)

) , (1)

or else rejecting it and not moving, with probability 1 − α(x, y). (If f(x)q(x, y) = 0 then

we automatically set α(x, y) = 1.) The resulting transition probability is thus

P (x, dy) = q(x, y)α(x, y)µ(dy) , y 6= x ,

with P (x, {x}) = 1−
∫

q(x, y)α(x, y)µ(dy). It is easily seen that α(x, y) has been defined

precisely so that P is reversible with respect to π. Thus, π is a stationary distribution for

this chain.
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The arbitrariness of the choice of Q(x, ·) allows us considerable freedom to design a

multitude of different chains, each with stationary distribution π. Some examples include:

• The independence sampler: (see for example Tierney, 1994) Here Q(x, dy) = Q(dy)

does not depend on x.

• The random-walk Metropolis algorithm: (Metropolis et al., 1953) Here Q(x, dy) =

q(y − x)µ(dy) depends only on the difference y − x.

• The Langevin algorithm: (see for example Rossky et al., 1978; Grenander and Miller,

1994; Neal, 1993) Here f is a C1 function on Rd, and µ(·) is d-dimensional Lebesgue

measure. The proposal is of the form

x + hZ +
h2

2
∇ log π , (2)

where h > 0 is constant, and where Z ∼ N(0, 1) has a standard normal distribu-

tion. (This choice of Q is motivated by the approximating continuous-time Langevin

diffusion with stationary distribution π(·).)

• The Gibbs sampler: (Geman and Geman, 1984, Tanner and Wong, 1987, Gelfand and

Smith, 1990) Here X = X1 × . . .×Xd, and Q = Qi leaves all coordinates fixed except

the ith one, which it proposes according to the conditional distribution π(xi | {xj}j 6=i).

This implies that α(x, y) = 1 for all x and y, so there are no rejections. If the resulting

ith component Gibbs sampler is called Pi, then these components can be combined to

yield the random-scan Gibbs sampler which is the average PRS = 1
d (P1 + . . . + Pd), or

the deterministic-scan Gibbs sampler which is the product PDU = P1 . . . Pd.

More sophisticated algorithms, constructed by combining basic version of Metropolis-

Hastings chains, have been suggested in the literature. Many involve the introduction of

so-called auxiliary variables (see for example Duane et al., 1987; Besag and Green, 1993;

Neal, 1994) which aid the mixing of the chain. A huge variety of different types of chains

have been constructed in the literature. Indeed, for some of them, the implementation

itself (e.g. computing the acceptance probability) is highly non-trivial.
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Practical implication #1. When studying complicated probability distributions, there

are a large number of MCMC algorithms available. A variety of algorithms should be

considered, to determine which one is best for the specific problem at hand.

3. Asymptotic convergence.

It is important to note that just because π(·) is a stationary distribution for P (x, ·), it

does not follow that the distributions L(Xn) will necessarily converge to π(·), as n → ∞.

For example, suppose X = R2 and the distribution π(·) satisfies that π(X = Y ) = 1; then

the deterministic-scan Gibbs sampler for π(·) will simply replace each coordinate by the

initial value of the second coordinate, and then not move again!

Fortunately, there are some simple conditions which guarantee that L(Xn) will con-

verge to π(·), as n → ∞. Specifically, if the chain is φ-irreducible and aperiodic, then it

follows that we will have asymptotic convergence in total variation distance from almost

every starting point (cf. Tierney, 1994, p. 1758). Here “φ-irreducible” means that there is

some non-zero measure φ (e.g. Lebesgue measure) such that, for every set A with φ(A) > 0,

there is positive probability that the chain will eventually enter the set A started from any

starting value x ∈ X . Also “aperiodic” means that X does not contain nonempty disjoint

subsets X1,X2, . . .Xj , with j ≥ 2, such that P (x,Xi+1 mod j) = 1 whenever x ∈ Xi. Fi-

nally, the total variation distance between two probability measures µ and ν is defined

to be ‖µ − ν‖ ≡ sup
A⊆X

|µ(A) − ν(A)|. In terms of these definitions, the formal statement

of the convergence theorem is as follows: Let P (x, ·) be the transition probabilities for a

Markov chain on a state space X , with stationary distribution π(·). Suppose the chain is

φ-irreducible and aperiodic. Then for π-almost all starting points x ∈ X , we have that as

n →∞,

‖L(Xn |X0 = x)− π(·)‖ → 0 .

Note that the above result does allow for some exceptional starting points from which

convergence will not take place. However, such exceptional points rarely arise in practice;

in particular, for most φ-irreducible Gibbs samplers and for all φ-irreducible Metropolis-

Hastings algorithms, the chain is Harris recurrent and there are no exceptional points (cf.
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Tierney, 1994, Section 3.1). A detailed treatment of φ-irreducibility and aperiodicity may

be found in Meyn and Tweedie (1993, Chapters 4 and 5).

More problem-specific criteria for φ-irreducibility and aperiodicity are available. For

instance, if π(·) has continuous density with respect to Lebesgue measure, and if the interior

of the support of π(·) is connected, then the resulting Gibbs sampler is always φ-irreducible

where φ is Lebesgue measure (Roberts and Smith, 1994).

It is worth noting that hybrid chains do not necessarily inherit the irreducibility and

aperiodicity properties of the constituent parts. For instance, if P1 and P2 are φ-irreducible

and aperiodic and both have stationary distribution π, it does not necessarily follow that

P1P2 is irreducible. For instance, let X = {1, 2, 3} and suppose P1(1, 2) = P1(2, 3) =

P2(1, 3) = P2(2, 1) = 1 with Pi(3, i) = Pi(3, 3) = 1/2 for i = 1, 2. Here P1 and P2 are both

aperiodic and irreducible, each with stationary distribution given by π(1) = π(2) = 1/4,

π(3) = 1/2, but P1P2(1, 1) = 1 so that P1P2 is not irreducible.

On the other hand, random-scan hybrids of φ-irreducible algorithms are always φ-

irreducible. This can be seen easily from the fact that if Pn
1 (x,A) > 0 then the random-

scan samplers always have positive probability of sampling from P1 at each of the first n

iterations, so that [12 (P1 + P2)]n(x,A) > 0 also.

In practice hybrid algorithms are often constructed from reducible component algo-

rithms (for example the Gibbs sampler, where the component algorithms each act on just

one coordinate), so that convergence properties of the hybrid algorithm have to be analysed

directly.

Practical implication #2. When considering different MCMC algorithms, it is impor-

tant – and often not very difficult – to verify that the Markov chain is φ-irreducible and

aperiodic.
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4. Geometric convergence.

Even if a chain is asymptotically convergent, questions remain about the nature and

speed of this convergence. In particular, one convergence property of interest is geometric

ergodicity. A chain is geometrically ergodic if for π-almost all x ∈ X , there is ρ < 1 and

M(x) < ∞, such that ‖L(Xn |X0 = x) − π(·)‖ ≤ M(x)ρn. (Furthermore, it may be

assumed without loss of generality that ρ above is independent of x, see e.g. Nummelin

and Tweedie, 1978; Roberts and Rosenthal, 1996.)

To study geometric ergodicity, we introduce the following concepts. A subset C ⊆ X

is small if there exists n0 ∈ N, ε > 0, and a probability measure ν(·), such that

Pn0(x, ·) ≥ ε ν(·) , x ∈ C . (3)

The chain satisfies a geometric drift condition for the small set C, if there is a π-almost

everywhere finite function V : X → [1,∞], and constants λ < 1 and b < ∞, such that

PV (x) ≡
∫

V (y)P (x, dy) ≤ λV (x) + b1C(x) , x ∈ X . (4)

Then a basic result (cf. Meyn and Tweedie, 1993, Chapter 15) is that a chain is geo-

metrically ergodic if and only if it satisfies a geometric drift condition for some small set

C.

(If X itself is small, we say the Markov chain is uniformly ergodic. However, this does

not often occur in statistical models with unbounded parameters.)

Often, all bounded subsets of X are small for P . (For example, this will be the case

if some power Pn(x, ·) has density bounded below in an ε-neighbourhood of x, uniformly

over x ∈ X , see e.g. Roberts and Tweedie, 1996a; Roberts and Rosenthal, 1997b.) In such

cases, to prove geometric ergodicity, it suffices to prove that, for some function V ,

lim sup
|x|→∞

PV (x)
V (x)

< 1 .

Such ideas are used to prove geometric ergodicity for a variety of MCMC algorithms, in

Chan (1993), Roberts and Tweedie (1996a, 1996b), and Roberts and Rosenthal (1997b).

For further background about drift conditions and geometric ergodicity, see Nummelin

(1984) and Meyn and Tweedie (1993). For other approaches to geometric ergodicity of

7



MCMC algorithms under different norms, see Frieze et al. (1994), Roberts and Polson

(1994), Schervish and Carlin (1992), Liu et al. (1994, 1995), Baxter and Rosenthal (1995),

Polson (1996), Roberts and Rosenthal (1997a), and Holden (1996). Roberts and Rosenthal

(1997a, 1997b) consider results which imply geometric ergodicity of hybrid algorithms in

terms of conditions on the constituent algorithms.

Of course, geometric ergodicity is an asymptotic property and is therefore not directly

connected to finite-time simulations. However, it still provides a very useful guideline in

determining which algorithms are likely to perform well in practice.

In addition, geometric ergodicity implies the existence of central limit theorems for

ergodic averages of functionals (Tierney, 1994; Geyer, 1992; Chan and Geyer, 1994; Roberts

and Rosenthal, 1997a). While not the weakest condition to imply central limit theorems,

geometric ergodicity is one of the easiest to check and leads to clean statements. For

example, it follows from Roberts and Rosenthal (1997a, Theorem 4) that: If P (x, ·) is

geometrically ergodic and reversible, and g ∈ L2(π) with
∫

g(y)π(dy) = 0, then there is

σ2
g < ∞, such that

L

 1√
n

n∑
j=1

g(Xj)

 ⇒ N(0, σ2
g) .

In fact, σ2
g = Varπ(g) + 2

∞∑
i=1

Cov (g(X0), g(Xi)) (cf. Geyer, 1992). The finiteness of this

sum is ensured by geometric ergodicity.

For non-geometrically ergodic chains, central limit theorems can easily fail to hold (see

for example the results of Roberts, 1996). For a specific example, consider the independence

sampler with X = R+, π(·) = Exp(1), and Q(x, ·) = Q(·) = Exp(k) (i.e., with density

ke−ky) for some k > 2. It can be shown that central limit theorems for this chain do not

hold. Instead, once the chain reaches a very large value, it will tend to reject subsequent

proposals with high probability, and get “stuck” there.

To make these ideas more concrete, we consider the above example with two possible

values for k, namely k = 0.01 and k = 5, giving rise to transition kernels P1 and P2

say. Clearly neither choice is particularly effective at representing π. General results

about the independence sampler (see Smith and Tierney, 1996) imply that in fact P2 is
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not geometrically ergodic, while P1 is, albeit with the somewhat slow convergence rate of

ρ = 0.99. In fact, from Roberts and Rosenthal (1997a) a central limit theorem holds for

P1, whereas from Roberts (1996) a central limit theorem does not hold for P2. So what

happens in practice?

The following experiment was carried out for both P1 and P2 to assess the effect of

running these two algorithms on their corresponding ergodic estimates. Chains of one

million iterations each were simulated 55 times, for each of the two algorithms. In each

case the algorithm was started at X0 = 1, the mean value under π. Figure 1 gives kernel

density estimates of the distribution of the ergodic average

10−6
106∑
i=1

Xi

for both P1 and P2, in each case based on the 55 observed values.

Figure 1. Kernel density estimates of the distribution of the ergodic
mean for P1 (with k = 0.01) and P2 (with k = 5), each based on 55 runs
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of one million iterations each. Note that for P1 (which is geometrically
ergodic), the density is much more symmetric and is also much more
concentrated around the true mean of 1.0.

It is seen that P1 mixes somewhat slowly, but after such a long run, its ergodic

estimates are approximately normally distributed about 1 with small variance. On the

other hand, P2 appears to converge reasonably in most of the 55 runs, though usually to

values significantly below 1. Some runs however, which have managed to reach relatively

high values, get “stuck” there for large numbers of iterations. The effect of this is that the

ergodic estimates for P2 have median considerably below 1 and are very heavily positively

skewed.

Figure 2. Two typical simulation runs for the non-geometric chain P2,
each of length one million iterations. Note the widely different quali-
tative behaviour, leading to very different sample means and autocor-
relation functions. This demonstrates that for non-geometric chains,
different runs can have widely different characteristics, making estima-

10



tion hazardous.

The dangers of using P2 are illustrated by observing traces of two selected runs and

their corresponding autocorrelation plots, as shown in Figure 2. The first trace sticks

for about 400 000 iterations at a high value. In no sense can the run be said to have

“converged” after 106 iterations. However the second trace appears to have settled down

sufficiently and its autocorrelation plot shows some signs of stability. (Indeed, this run

would likely fool most standard convergence diagnostics into thinking convergence had

occurred; see Section 5.) Its ergodic average value, on the other hand, is 0.812, considerably

less than the correct value 1.

Considerations such as those occurring in this example imply the following.

Practical implication #3. When choosing an MCMC algorithm, it is desirable if pos-

sible to find an algorithm which can be shown to be geometrically ergodic.

5. Quantitative convergence rates.

Even geometric ergodicity of a Markov chain gives no quantitative information about

how long the chain needs to be simulated until approximate stationarity is achieved. We

consider those questions in this section.

In some cases it is possible to prove rigorous results about convergence times. For

Markov chains on finite spaces, there has been a great deal of work in this area (see

e.g. Jerrum and Sinclair, 1988; Sinclair, 1992, 1993; Frigessi et al., 1992, 1993; Frieze

et al., 1994; Diaconis and Stroock, 1991; Ingrassia, 1994). Unfortunately, most statistical

inference problems have uncountable parameter spaces so that these results do not directly

apply (though through truncation arguments they can sometimes be used anyway to some

extent, cf. Tweedie, 1996; Rosenthal, 1996). Also, the special case of the independence

sampler has been solved exactly (Liu, 1996; Smith and Tierney, 1996), leading to precise

information about distance to stationarity. However, this result does not generalise to

other MCMC algorithms.

To consider infinite state spaces for algorithms other than the independence sampler,

various authors have derived quantitative bounds on the distance to stationarity of Markov
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chains after n iterations, in terms of a minorisation condition (3) and a drift condition (4).

Such considerations led (Rosenthal, 1995a) to a result about asymptotic running times

(with large numbers of parameters) for the Gibbs sampler for variance component models,

though the result did not give clear quantitative bounds for finite numbers of parame-

ters. This approach was extended to general models in Meyn and Tweedie (1994), where

quantitative exponentially-decreasing bounds were obtained. However, to deal with near-

periodicity issues it was necessary either to make very strong assumptions (e.g. strong

aperiodicity), or to have the resulting bounds depend on the minorisation and drift condi-

tions in a very complicated way, and therefore be extremely large. The method of Meyn

and Tweedie was applied to Metropolis-Hastings algorithms by Mengersen and Tweedie

(1996), and specialised to stochastically-ordered Markov chains by Lund et al. (1996).

Related results were also developed by Baxendale (1994).

Problems of near-periodicity were circumvented in Rosenthal (1995b), by requiring

that the minorisation and drift conditions satisfy d > 2b
1−λ , where d = supx∈C V (x). This

implied that in theory two chains (one started in stationarity) could be forced to couple

at a finite “coupling time” whose distribution had specified tails. The coupling inequality

then gave the following result. Suppose a Markov chain satisfies the minorisation condition

(3), and also satisfies the drift condition (4). Suppose further that C = {x ∈ X ; V (x) ≤ d}

for some d > 2b
1−λ . Then for any 0 < r < 1, the total variation distance to stationarity of

the chain after n iterations is bounded above by

(1− ε)rk +
(
α−(1−r)γr

)k
(

1 +
b

1− λ
+ E (V (X0))

)
,

where

α−1 =
1 + 2b + λd

1 + d
< 1 ; γ = 1 + 2(λd + b) .

This result thus gives a quantitative, exponentially-decreasing bound on the distance

to stationarity for any Markov chain, provided minorisation and drift conditions can be

verified (with d > 2b
1−λ ). In particular, the bounding quantities α and γ are simple func-

tions of the constants in these two conditions. The result was applied (Rosenthal 1995b,

1996a) to some realistic, high-dimensional Gibbs samplers for certain posterior distribu-
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tions, leading to useful, reasonable, quantitative bounds on the running times of these

algorithms.

Concerns about near-periodic behaviour, which made the Meyn and Tweedie (1994)

result much more complicated, and forced the condition d > 2b
1−λ in Rosenthal (1995a),

were avoided altogether in Roberts and Rosenthal (1996). There, rather than considering

the distributions of the individual values L(Xn), the ergodic averages of distributions,
1
n

∑n
i=1 L(Xi), were considered instead. This removed the restriction d > 2b

1−λ since it

allowed for the application of shift-coupling rather than ordinary coupling. It gave the

result that the total variation distance to stationarity of 1
n

∑n
i=1 L(Xi) was bounded above

by

1
n

n∑
k=1

(
2(1− ε)rk + λ(1−r)kArk

(
E (V (X0)) +

b

1− λ

))
,

where 0 < r < 1 is arbitrary and where ε, λ, and b are as in (3) and (4). This result

was applied (Roberts and Rosenthal, 1996) to a number of examples, giving substantially

improved bounds over previous analyses.

Comparisons of these different general methods for obtaining rigorous quantitative

bounds on convergence were begun in Mengersen et al. (1996). Various convergence rate

theorems were directly applied to a variety of simple examples of Metropolis-Hastings

algorithms. It was found there that, of the theorems considered, those of Roberts and

Rosenthal (1996) proved the quickest (i.e. best) convergence times; those of Rosenthal

(1995) were second quickest; those of Baxendale (1994) were third; and those of Mengersen

and Tweedie (1996) were the slowest. On the other hand, for some different examples which

satisfied the special condition of stochastic monotonicity, the method of Lund et al. (1996)

provided substantially improved bounds.

Despite some clear successes, it must be recognised that analytic verification of mi-

norisation and drift conditions is not feasible in most very complicated, high-dimensional

problems. Moreover, even when verification is possible, the resulting computable bounds

may be too large to be of practical value. Thus, it remains the case that these rigorous

quantitative bounds are not available in general.

Given the difficulties in analytically verifying drift and minorisation conditions, it is
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sometimes not possible to do this for complicated models of interest. In such cases, it

may be possible to estimate the constants ε, λ, and b, in equations (3) and (4), through

auxiliary simulation. This is pursued in Cowles and Rosenthal (1996), where convergence

rates are estimated for several different Gibbs samplers, including for variance components

models and for ordinal probit models. The method appears to hold promise for further

analysis of other models.

An alternative approach, similarly bridging the gap between rigorous and non-rigorous

results, is pursued in Roberts and Sahu (1996). There, rates of convergence for Gibbs sam-

plers are approximated by rates of convergence of approximating Gaussian target densities.

Since posterior distributions from most statistical models, with enough data, are approx-

imately Gaussian, this approach does a good job of approximating convergence rates in

many practical problems.

When neither rigorous nor approximation methods are available, all that remains

are purely empirical convergence diagnostics. Specifically, chosen functions of a simulated

Markov chain are monitored, and statistical procedures of used to assess stationarity of the

monitored functions. Two of the most popular convergence diagnostics are those of Gelman

and Rubin (1992) and Raftery and Lewis (1992); for reviews see Cowles and Carlin (1995)

and Brooks and Roberts (1996). Unfortunately, it is well known (cf. Cowles and Carlin,

1995) that all convergence diagnostics can sometimes prematurely claim convergence, for

example on the notorious “witch’s hat” example (Polson, 1991; Mathews, 1993).

We also wish to draw attention to another potential problem with convergence diagnos-

tics, which is perhaps less well known. This is the problem that, even if the Markov chain

is converging perfectly, the mere act of waiting for diagnostic success may itself introduce

biases in the result. To illustrate this, consider a very simplified convergence diagnostic,

one which waits until two successive batch means (each of size m) are within ε of each other,

and then outputs the resulting final batch mean. That is, we set Am,i = 1
m

m(i+1)∑
t=mi+1

g(Xt),

set i∗ = inf{i ; |Am,i∗ − Am,i∗−1| < ε}, and consider Am,i∗ as an approximation of the

expected value of g under π(·). This seems like a reasonable procedure, and is similar in

spirit to currently used diagnostics. However, biases are introduced. To see this, suppose

that the Markov chain itself is actually perfectly converging, so that X1, X2, . . . are in fact
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i.i.d. distributed as π(·). Even still, for small ε, if the distribution of Am,i has density f ,

then the distribution of Am,i∗ will have density approximately proportional to f2, which

typically will have a different mean. For a specific example, if L(Xi) = Gamma(a, b), then

L(Am,i) = Gamma(ma,mb) and (as ε → 0) we have L(Am,i∗) ≈ Gamma(2ma−1, 2mb).

It follows that the bias in the estimator will be −1
2mb , which could be significant if the batch

size m is not sufficiently large. (Of course, because of the i.i.d. nature of this chain, if we

instead use Am,i∗+1 then we will avoid bias. But for a more realistic non-i.i.d. chain, the

bias of Am,i∗+1 would be comparable to that of Am,i∗ .)

Practical implication #4. Quantitative rates of convergence are always an important

issue. It is best to have rigorous computable bounds if possible, though this can be difficult.

If not, then it may be easier to use auxiliary-simulation or approximation results. If such

results are too difficult or time-consuming to obtain, then convergence diagnostics must

be used. However, they should only be used with extreme caution, being careful to avoid

both premature diagnoses of convergence and the introduction of bias into the result.

6. Scaling.

One of the problems with Metropolis-Hastings algorithms is the abundance of choice

available for choosing the proposal distribution Q(x, ·). For instance even if the type of

algorithm (perhaps the random walk Metropolis algorithm) has been chosen, it is necessary

to scale the proposal variance to be appropriate for π(·). Such a problem is known as a

scaling problem.

To make this question more concrete, consider the following problem. Suppose that

π(·) is absolutely continuous with respect to d-dimensional Lebesgue measure, with density

again denoted by π say. Suppose also that Q(x.·) is distributed as the d-dimensional normal

distribution Nd(x, σ2Id), for some σ2 > 0. We recall that the acceptance probabilities for

this algorithm are given by (1).

For very small values of σ2, small jumps are attempted by the algorithm, and because

of the form of (1), these moves are almost always accepted. The Markov chain mixes very

slowly because its increments are so small. On the other hand, if σ2 is chosen to be very

large, long distance jumps are attempted by the algorithm, most of which are rejected. The
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algorithm therefore spends long periods of time in the same state, and thus the algorithm

still converges slowly.

For this problem, “very large” and “very small” have to be interpreted in a way related

to the particular form of π. It seems reasonable that “moderate” values of σ2 should be

preferred. However, it is difficult to see how to figure out what values are “moderate”,

especially if π is very complicated.

Since the efficiency of a Markov chain for estimation varies with the quantity to be

estimated, to be able to make any useful statement about the Markov chain as a whole,

it has been necessary to consider a suitably regular sequence of target densities on state

spaces {Xd} of increasing dimension, and to consider asymptotics as the dimension d →∞.

The following approach follows Gelman, Roberts, and Gilks (1996) and Roberts, Gelman,

and Gilks (1997).

Set πd =
∏d

i=1 f(xi) and suppose that we take σ2
d to be `2/d for some constant `.

Now consider a continuous time process {Zd}, defined by the first component of the d-

dimensional Markov chain, with time scaled by a factor of 1/d. Now Zd is not Markov, but

as d →∞ (and under suitable regularity conditions) it converges to the limiting Langevin

diffusion process:

dZt = h(`)1/2dBt +
h(`)∇ log π(Zt)

2
dt ,

where

h(`) = `2 × 2Φ
(
−I`

2

)
,

with I = Ef [((log f(X))′)2] and Φ(x) = 1√
2π

x∫
−∞

e−s2/2ds.

Thus the optimal limiting algorithm is that which maximises h(`) and this optimal

limit is independent of which functions of π are of interest. Numerical maximisation

of h is easy but leaves a solution which is a function of I. Unfortunately I is not in

general available. However the optimal solution can be characterised by the solution which

produces an algorithm which accepts approximately 0.234 of its proposed iterations.

Extensions of this result to larger classes of target distribution is possible; these and

other practical issues are discussed in Gelman, Roberts, and Gilks (1996) and Roberts,

Gelman, and Gilks (1997). The useful property of these results is that the optimal limiting
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acceptance rate is not affected by the type of target density, so that its use as a guideline

in practice is straightforward.

It should be stressed however that this is an asymptotic result, in two senses. First, the

asymptotic acceptance rate is defined as the average acceptance rate, averaged with respect

to the asymptotic (i.e., stationary) distribution π(·), which may be different from the

observed rate if the chain is started in some other distribution and run for too short a time.

Second, the optimality results are only proven asymptotically as the dimension d → ∞.

Although for some examples the convergence to the large-d limit is relatively quick as a

function of dimension, in general for heavily correlated target densities, optimal scalings can

be very different from 0.234. It is also worth noting that it is rarely a sensible idea to fine

tune scalings too carefully, since even in the asymptotic case, reasonably efficient algorithms

(relative to maximal possible efficiency) can be achieved with scalings between acceptance

rates of approximately 0.15 and 0.5 (see e.g. Roberts and Rosenthal, 1995, Figure 3.1). In

addition, interactive scaling of any kind is liable to alter the stationarity properties of the

chain (and thus invalidate the algorithm) if continued indefinitely. Therefore any tuning

of the algorithm should be carried out as a pilot sample analysis only. As a result, any

efficiency gain from excessive fine-tuning is usually lost in the time spent carrying out pilot

studies.

The optimal asymptotic value of 0.234 also occurs for other types of problems. For

instance, if the target density is the product of discrete densities and a Metropolis type

update is used, there is a corresponding limit theorem (though this time not to a Langevin

diffusion) resulting in the same asymptotically optimal acceptance rate (see Roberts, 1997).

For more problem specific algorithms such as Langevin algorithms, similar asymptotic

results are available (see Roberts and Rosenthal, 1995). In fact for the basic Langevin al-

gorithm of equation (2), the optimal acceptance rate is approximately 0.574. Like the

random-walk Metropolis case discussed above, this is proved rigorously only for i.i.d. dis-

tributions (with certain generalisations available). Again, acceptance rates near to optimal

will also result in relatively good performance.

One of the most interesting aspects of these results is their implications for running-

time complexity. It follows from the nature of the convergence of these algorithms to their
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limiting diffusions, that the running time of random-walk Metropolis is O(d), and that

of the classical Langevin diffusion algorithms (as in equation (2)) is O(d1/3), at least for

sufficiently smooth densities of product form (see also Kennedy and Pendleton, 1991). Note

that we do not expect this result to hold for certain multimodal sequences of densities; see

Roberts, Gelman, and Gilks (1997) for a discussion of some of these possibilities.

Practical implication #5. For certain algorithms, simple and easy-to-use rules of thumb

are available as guidelines for scaling proposal distributions. These rules are supported by

limiting results for high-dimensional problems. However, excessive fine tuning of proposal

distributions is not necessary.

7. Sensitivity analysis.

In practice, all algorithms are ultimately carried out by computer simulation. There-

fore, the Markov chain actually simulated is only an approximation of the true chain. Such

effects as finite precision and finite range are introduced and pose further questions about

the validity of these algorithms.

Pseudo-randomness is well known to be a thorny issue requiring great care and po-

tentially adversely affecting results (see e.g. Ripley, 1987; Hammersley and Handscomb,

1964), however to the best of our knowledge the implications of these problems in these

context of Markov chain simulation are largely unexplored, and we do not pursue them

here. (For some interesting and cautionary preliminary results, see Ferrenberg et al., 1992;

Vattulainen et al., 1994.)

Issues related to finite-precision arithmetic (i.e., “roundoff error”) were considered

in Roberts, Rosenthal, and Schwartz (1995). Roundoff error was defined in terms of a

function h : X → X , with h(x) “close” to x for each x ∈ X . The resulting approximate

Markov chain has transition kernel

P̂ (x, A) = P (x, h−1(A)) .

The paper showed (Proposition 1) that for some chains – even if geometrically ergodic

and strong Feller continuous – an arbitrarily small roundoff error may result in a transient

chain, having no stationary distribution at all!
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On the other hand, it was proven (Roberts, Rosenthal, and Schwartz, 1995, Theorems

4 and 7) that if the original chain is geometrically ergodic, with a drift function V having

the property that log V is uniformly continuous on X , then P̂ will automatically be geo-

metrically ergodic, for sufficiently small sup |h(x)− x|. It was further shown (Theorems 9

and 11) that the stationary distribution of P̂ will be close (weakly) to that of P .

The need to truncate Markov chains for their implementation on computers can also

cause problems. In fact, since computer programs are likely to just crash if a value is

recorded which is “out of range”, it is arguable that the appropriate limit of interest for

truncated MCMC is

π̃ = lim
n→∞

L(Xn|τ > n) ,

where τ is the first time that the computer records an out of range value. Moreover,

the correct ergodic limit for the estimation of the moment
∫
X g(x)π(dx) is arguably the

following weak limit:

lim
n→∞

L
(∑n

i=1 g(Xi)
n

∣∣∣ τ > n
)
.

It is known (cf. Breyer and Roberts, 1997) that (at least for large enough range) the

above limits would approximate the appropriate classical stationary limit. Such results

fall into the domain of the area known as quasi-stationarity. Geometric ergodicity plays a

role here as well, and in fact it turns out that for non-geometrically ergodic chains, such

quasi-stationary limits usually do not exist.

An alternative approach to the truncation problem, without resorting to quasi-stationary

methods, was considered in Tweedie (1996).

Practical implication #6. When running MCMC algorithms, it is possible that com-

puter limitations will adversely affect the results. However, for many chains (including

those which are geometric with a log-uniformly-continuous drift function), small roundoff

errors do not significantly affect the convergence properties. Truncated algorithms have

unstable convergence properties for non-geometric algorithms.
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8. Conclusions.

MCMC algorithms are clearly a very exciting and widely used application of Markov

chains to complicated problems of inference, estimation, and integration. While in many

ways MCMC renders these problems far easier, on the other hand MCMC algorithms are

themselves complicated, difficult to understand completely, and potentially problematic.

It is thus important for applied users of MCMC algorithms to understand, as far as

possible, the relevant theoretical results available. Unfortunately, theoretical results at

present offer only a partial understanding of these algorithms. Nevertheless, a substantial

amount of available theory can be of use in guiding the practical use of MCMC.

Of perhaps greatest value are those results related to convergence issues. It is of

fundamental importance to verify stationarity of the target distribution (Section 2), and

asymptotic convergence of the chain (Section 3); otherwise the algorithm is simply not

valid. Even if asymptotic convergence is verified, it is highly desirable to understand the

qualitative (Section 4) and quantitative (Section 5) rate of this convergence; theoretical

convergence-rate results (when available) are far more convincing than are traditional

convergence diagnostics.

In addition to convergence issues, a number of other issues have been investigated

through theoretical analysis. These include choice of optimal scaling parameters (Section

6), and sensitivity of the algorithms to certain computer limitations (Section 7).

It is by no means the case that these theoretical results will answer every question

about how to implement MCMC. Every applied use of MCMC requires instinct and under-

standing both about the underlying model and about the Markov chain being used, and

theory will never replace that. However, we do feel that theory has a lot of good advice

to offer, and it would be a mistake to apply MCMC algorithms without taking this advice

into account.
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