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Abstract

Starting with the seminal paper of Haario, Saksman and Tamminen (Haario

et al. (2001)), a substantial amount of work has been done to validate adaptive

Markov chain Monte Carlo algorithms. In this paper we focus on two practi-

cal aspects of adaptive Metropolis samplers. First, we drawattention to the

de�cient performance of standard adaptation when the target distribution is

multi-modal. We propose a parallel chain adaptation strategy that incorpo-

rates multiple Markov chains which are run in parallel. Second, we note that
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the current adaptive MCMC paradigm implicitly assumes that the adaptation is

uniformly e�cient on all regions of the state space. However, in many practical

instances, di�erent \optimal" kernels are needed in di�ere nt regions of the state

space. We propose here a regional adaptation algorithm in which we account

for possible errors made in de�ning the adaptation regions.This corresponds to

the more realistic case in which one does not know exactly theoptimal regions

for adaptation. The methods focus on the random walk Metropolis sampling

algorithm but their scope is much wider. We provide theoretical justi�cation

for the two adaptive approaches using the existent theory build for adaptive

Markov chain Monte Carlo. We illustrate the performance of the methods us-

ing simulations and analyze a mixture model for real data using an algorithm

that combines the two approaches.

Keywords: Adaptive Markov chain Monte Carlo, Metropolis sampling, random

walk Metropolis sampling , parallel chains, regional adaptation.

1 Introduction

Markov chain Monte Carlo (MCMC) techniques have become an important tool in

the statistician's arsenal for solving complex analyses. One of the most widely used

algorithms is the Metropolis (Metropolis et al., 1953) and its generalization, the

Metropolis-Hastings (MH) (Hastings, 1970) sampler. If thegoal is to sample from a

distribution � with support S, the MH sampler is started with a random valueX 0 � �

and, at each iterationt, a proposalY is drawn from a proposal distributionQ(yjX t )

with density q(yjX t) and is retained as the next state of the chain with probability

� (X t ; Y) = min
n

1; � (Y )q(X t jY )
� (X t )q(Y jX t )

o
. If q(yjx) is the density of y = x + � where � has a

symmetric distribution, we obtain the random walk Metropolisalgorithm.

In order to design an e�cient Metropolis algorithm it is necessary to carefully

adapt the parameters of the proposal distributionQ so that the performance of the

algorithm is optimal (note that there are multiple de�nitio ns of \optimal" available).

On one hand one can argue that many modern MCMC algorithms incorporate a cer-
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tain notion of local adaptation in their design, e.g. Gilks et al. (1998), Liu et al.

(2000) and Craiu and Lemieux (2007), Green and Mira (2001), Eidsvik and Tjelme-

land (2006). In this paper, we refer to a more global version of adaptation which

is based on learning the geography of� \on the y" from all the samples available

up to the current time t. Such an approach violates the Markovian property as the

subsequent realizations of the chain depend not only on the current state but also on

all past realizations. This implies that one can validate theoretically this approach

only if one is able to prove from �rst principles that the adaptive algorithm is in-

deed sampling from� . In Haario et al. (2001) the authors provide such a theoretical

justi�cation for adapting the covariance matrix � of the Gau ssian proposal density

used in a random walk Metropolis. They continually adapt � using the empirical

distribution of the available samples. Their choice of adaptation is motivated by the

optimal results proved by Roberts et al. (1997) and Roberts and Rosenthal (2001).

Subsequently, the convergence results of adaptive algorithms have been made more

general in Andrieu and Robert (2001), Andrieu et al. (2005),Andrieu and Moulines

(2006), Atchade and Rosenthal (2005), and Roberts and Rosenthal (2007). An adap-

tive algorithm for the independent Metropolis sampler was proposed by Gasemyr

(2003) and Haario et al. (2005) extended their previous workto Metropolis-within-

Gibbs sampling. A class of quasi-perfect adaptive MCMC algorithms is introduced

by Andrieu and Atchade (2006) and a nice tutorial on adaptivemethods is given by

Andrieu and Thoms (2008). Alternative approaches to adaptation within MCMC

can be found in Brockwell and Kadane (2005), Nott and Kohn (2005), Giordani and

Kohn (2006). We quote from Giordani and Kohn (2006):

Although more theoretical work can be expected, the existing body of

results provides su�cient justi�cation and guidelines to build adaptive

MH samplers for challenging problems. The main theoreticalobstacles

having been solved, research is now needed to design e�cientand reliable

adaptive samplers for broad classes of problems.

In the present paper we try to close some of the gap between theory and practice by
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focusing on the practical aspects of adaptive MCMC (AMCMC).More precisely, we

discuss complications arising when using AMCMC, especially adaptive random walk

Metropolis, for sampling from multi-modal targets and alsowhen the optimal proposal

distribution is regional, i.e. the optimal proposal shouldchange across regions of the

state space. In the next section we discuss the inter-chain adaptation. In Section

3 we discuss the regional adaptation. The theoretical challenge is to show that the

algorithms proposed here fall within the scope of general theorems that are used to

validate adaptive MCMC. These results are presented in Section 4 while simulation

examples and a real data analysis are shown in Section 5. We close with discussion

of further research.

2 Inter-chain Adaptation (INCA)

To begin, consider a simulation setting where the target distribution is a mixture of

two ten-dimensional Gaussian distributions. More precisely, the target distribution

is

� (xj� 1; � 2; � 1; � 2) = 0 :5n10(x; � 1; � 1) + 0 :5n10(x; � 2; � 2);

with nd(x; �; �) denoting the density of a d-dimensional Gaussian random variable

with mean � and covariance matrix � and where� 1 = (0 :03; � 0:06; � 0:24; � 1:39; 0:52;

0:61; 1:26; � 0:71; � 1:38; � 1:53)T , � 1i � � 2i = 6; 81 � i � 10, � 1 = I 10 and � 2 = 4I 10.

In Figure 1 we present the results of a simulation in which we applied the adaptive

Metropolis sampler of Haario et al. (2001) with an initialisation period of 10,000

samples. The chain is started in one of the target's modes (the one corresponding to

� 1). Although the �nal sample size isN = 250; 000, we can see that the chain does

not visit the second mode. In this case, the adaptation can not improve much on the

unadapted version of the Metropolis sampler as the second mode "is invisible" in the

initialization period and it will likely take a long time for a chain incorrectly adapted

to a unimodal distribution to discover the second high probability region.

In the classic MCMC literature di�culties related to sampli ng from a multi-modal
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Figure 1: Boxplots of N=250,000 samples obtained using a single-chain adaptive

Metropolis; each boxplot correspond to one component of the10-dimensional random

vector. The red lines represent the entries of the target's mean vector. The chain does

not visit the second mode of the target.
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distribution are tackled using multiple parallel chains asin Gelman and Rubin (1992)

and tempering as in Neal (1994) and Geyer and Thompson (1994). Both ideas inu-

ence our approach.

The parallel chains implementation has been proven helpfulfor a more systematic

exploration of the sample space as in Craiu and Meng (2005). In the present setting

we use it to detect the di�erent regions of signi�cant mass under the posterior distri-

bution and our starting example shows that such detection isextremely important for

adaptive MCMC. We thus propose running in parallel a number,say K , of Markov

chains. We can further robustify the performance of the algorithm if the chains are

started from a distribution � that is overdispersedwith respect to � . It should be

noted that �nding � can be quite challenging. The problem of �nding good starting

points for parallel chains is also discussed by Jennison (1993), Applegate et al. (1990),

Gelman and Rubin (1992) and Brooks and Gelman (1998). We would like to add a

word of caution following Gill (2008) which states that a badchoice for � can be

deleterious and may dramatically alter the simulation results.

A question of interest in adaptive MCMC is whether one shouldwait a short or

a long time before starting the adaptation. In Gasemyr (2003), the burn-in time

is random but bounded below, while Giordani and Kohn (2006) propose a di�erent

strategy in which adaption starts early and is performed frequently in what they

call intensive adaptation. However, they also warn that one should make sure that

enough distinct samples are obtained in order to avoid singularity problems. In the

multi-modal situation considered here we adopt a longer burn-in, partly because

the multi-modality of � makes it di�cult to have a good idea about its geography

when only a few draws are available. A longer burn-in increases the stability of the

inferences obtained and reduces the risk of missing one important mode.

We thus propose a new strategy,inter-chain adaptive MCMC (INCA), as follows.

We run K di�erent chains in parallel, each started independently from the same

overdispersed starting distribution. After the burn-in period the K kernels are si-

multaneously adapted usingall the samplesprovided by the K chains so far. In the
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case of a random walk Metropolis with Gaussian proposals we do this by setting the

proposal covariance to the sample covariance matrix of all the available samples. De-

note  m the adaptation parameter, e.g. the variance of the random walk Metropolis

proposal distribution, used at stepm in each marginal transition kernel. We run the

chains independently conditional on thef  mg, so the joint transition kernel, ~T m is

obtained as the product ofK identical copies of the marginal transition kernelT m

such that

~T m (~x; ~A) = T m (x1; A1) 
 T m (x2; A2) 
 : : : 
 T m (xK ; AK );

where ~A = A1 � : : : � AK and ~x = ( x1; : : : ; xK ).

The motivation for using multiple chains lies in our attemptto discover as early

as possible all the modal regions of� (or at least all the important ones). After

the chains have explored the regions of interest and the simulation parameters are

updated one may wish to return to a single chain. A question ofinterest is then

how to decide when the exchange of information between chains has stopped. The

criterion we use is the well-known Brooks-Gelman-Rubin (BGR) diagnostic, R, as

developed in Gelman and Rubin (1992) and Brooks and Gelman (1998). Given a

number, say K , of parallel chains, thepotential scale reductionR is a normalized

ratio of the between-chain and within-chain variances computed from the available

samples (Gelman and Rubin (1992), page 465). WhileR was originally designed as

a convergence indicator, here it is used to determine whether the chains contribute

di�erent information about � .

In Figure 2 we show for the mixture of Gaussian distributionsthe evolution of the

R statistics. One can see that the exchange of information between chains is gradually

decreasing along with the adaptation. An astute reader may wonder whether the

learning process can be accelerated using tempering strategies in order to learn the

geography of� more quickly.
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Figure 2: The evolution of BGR'sR statistic. It takes approximately 18,000 iterations

to reach below 1.1.

2.1 Tempered INCA (TINCA)

Tempering in MCMC relies on a series of \canonical" distributions, � T , each of which

are obtained by varying a \temperature" parameterT in a set f t1; t2; : : : ; tmax g such

that � t1 = � and while � t j is not too di�erent from � t j +1 , there is a substantial

di�erence between� and � tmax in that the latter has less isolated modes (or is "atter")

so that it is considerably easier to sample using MCMC algorithms. One generic

procedure (although not the only one) de�nes� T = � 1=T for T � 1. In Figure 3 we

illustrate the e�ect of tempering on a bivariate mixture of Gaussian distributions.

One expects that for large values ofT (or hot temperatures), adaptive algorithms

designed for� T will be more e�cient. For instance, if INCA is implemented we

expect the running time needed to stabilizeR � 1 to be much shorter than at the

"cool" temperature T = 1. One could possibly envision a gradual temperature-driven

adaptation following Meng (2007). Start with T = tmax and at each temperature

perform the following steps:

Step I For T = t j perform INCA for target density � T until R is below a pre-speci�ed
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Figure 3: Tempered distributions withT = 1 (original target), T = 2, T = 4 and

T = 8.

threshold 1 + � .

Step II Keep the simulation parameters obtained and perform Step I with the next

colder temperatureT = t j � 1. Stop after T = 1.

The implementation assumes that the kernel learned/adapted at temperature t j

is a reasonable starting choice for the kernel used at temperature t j � 1. In addition

to speeding up the adaptation process, thistempered INCA (TINCA) is aimed at

solving the di�cult task of producing a reasonable startingproposal in a high dimen-

sional problem. We implemented TINCA with T 2 f 1; 2; 4; 8; 16g for the example

discussed in this section and the total number of iterations, including those produced

at temperatures T > 1, required to reachR � 1:1 at T = 1 was 10,000, compared

to the 18,000 reported without tempering. Additional simulations using TINCA are

discussed in Section 5.

It should be noted that INCA and/or TINCA can be implemented along many

other adaptive MCMC strategies. As mentioned by many authors working in the

�eld, the performance of the algorithm during the initialization (or burn-in) period,
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when no adaption is taking place, is crucial. We believe thatINCA is most useful in

the initial stage of the simulation since it accelerates the"data gathering" about the

geography of� and improves the overall performance of the adaptive process.

3 Regional Adaptation (RAPT)

In the previous section, we considered a simple example in which the target distribu-

tion had its mass equally divided between the two modes. However, examples abound

where the modes of the distribution have di�erent relative mass and in these situa-

tions a simple remedy such as INCA may be ine�ective. One can easily see that in

such cases there is no \universal" good proposal, i.e. the learning must be adapted

to di�erent regions of the state space. Regional adaptationhas been suggested in a

di�erent form by Andrieu and Robert (2001) and Roberts and Rosenthal (2009). For

our discussion assume that there is a partition of the spaceS made of two regions

S01; S02 such that adaptation should be carried over independently in the two regions.

In other words, in the case of a Metropolis algorithm, in region S0i we would use pro-

posals from distributionQi while only samples from this region will be used to adapt

Qi . Such an algorithm is valid as long as one carefully computesacceptance ratios

for proposed moves that switch regions, as was also noted by Roberts and Rosenthal

(2009). In the case of two regions the acceptance ratio is then

r (x; xnew) =

8
>>><

>>>:

� (xnew )
� (x) ; if x; xnew 2 S 0i

� (xnew )q1(x jxnew )
� (x)q2(xnew jx) ; if x 2 S 02; xnew 2 S 01

� (xnew )q2(x jxnew )
� (x)q1(xnew jx) ; if x 2 S 01; xnew 2 S 02:

;

whereqi is the density ofQi .

While there exist sophisticated methods to detect the modesof a multimodal

distribution (see Sminchisescu and Triggs, 2001, 2002; Sminchisescu et al., 2003; Neal,

2001), it is not always clear how to use such techniques sincede�ning a good partition

of the sample space may need more than just the location of themodes. In Craiu and

Di Narzo (2009) we follow the methods of Andrieu and Moulines(2006) and Capp�e
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Figure 4: Illustration of the regional adaptive MCMC sampler. The dashed black line

represents the exact boundary (unknown), between regionsS01 and S02. The dashed

red line delimitates the regionsS1 and S2 used for the regional adaptation.

and Moulines (2009) to propose a mixture-based approach foradaptively determining

the boundary between high probability regions. Suppose we approximate the target

distribution using the mixture of Gaussians

~Q(x) = �n (x; � 1; � 1) + (1 � � )n(x; � 2; � 2): (1)

Then Craiu and Di Narzo (2009) de�ne the regionsSk as the set in which thek-th

component of the mixture density ~Q dominates the other one., i.e.

Sk = f x : arg max
k0

n(x; � k0; � k0) = kg: (2)

Regardless of the method used, in most cases we do not have enough knowledge

to choose the partition made exactly of regionsS01 and S02. Instead, suppose we

de�ne a partition made of regionsS1 and S2. An illustration of this idea is shown

in Figure 4. The solid black line represents the exact boundary (unknown), between

regionsS01 and S02. The dashed red line delimitates the regionsS1 and S2 used for
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the regional adaptation. If we were to apply the simple regional adaptive algorithm

described above, when the chain is in one of the states situated between the two

dashed lines the wrong proposal would be used. Therefore, inorder to account for

the error made when specifying the boundary between regionswe propose to sample

our proposals from a mixture that includes bothQ1 and Q2. However, the mixture

proportions are di�erent in each regionSi and are adaptively modi�ed. The resulting

Regional Adaptive (RAPT) algorithm has proposal distribution

Q (x; dy) =
2X

i =1

1Si
(x)[� (i )

1 Q1(x; dy) + � (i )
2 Q2(x; dy)]; (3)

where� (i )
1 + � (i )

2 = 1. In this case, we use the index on Q to emphasize the fact that

the proposal is adapted with the adaption parameter = ( � (1)
1 ; � (2)

1 ) 2 Y = [0; 1]2.

The mixture proportions � (i )
j ; 1 � i; j � 2 are chosen to reect which of the two

proposals is more \appropriate" to use in the given region. Evidently, one has some

freedom over what can be considered a good proposal in this setup. For instance, one

could choose

� (i )
j =

n(i )
j (t)

P 2
h=1 n(i )

h (t)
;

where n(i )
j (t) is the number of accepted moves up to timet computed when the

accepted proposals are distributed withQj and the current state of the chain lies in

Si : However, this choice would favor small steps of the chain since these have higher

acceptance rates. To counterbalance, we take into account the average squared jump

distance so that

� (i )
j =

8
<

:

d( i )
j (t )

P 2
h =1 d( i )

h (t )
; if

P 2
h=1 d(i )

h (t) > 0

1=2; otherwise
; (4)

where d(i )
j (t) is the average squared jump distance up to timet computed when the

proposals were sampled fromQj and the current state of the chain lies inSi : More

precisely, supposef x j gt
j =0 are the samples obtained until timet and N i (t) is the

number of elements in the setf x i
tg

gN i (t )
g=1 which contains all the samples generated up

to time t that are lying in Si . We also de�ne the set of time points at which the
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proposal is generated fromQj and the current state is inSi , W (i )
j (t) = f 0 � s � t :

xs 2 S i and proposal at times is generated fromQj g. Then

d(i )
j (t) =

P
s2 W ( i )

j (t ) jxs+1 � xsj2

jW (i )
j (t)j

;

wherejW (i )
j (t)j denotes the number of elements in the setW (i )

j (t). If W (i )
j (t) = ; then

d(i )
j (t) = 0. If we implement RAPT within INCA/TINCA with K parallel chains then

in the calculation of d(i )
j (t) we need to considerall the samples obtained up to timet

by all the K chains.

Better performance can be achieved using the algorithm (3) for which both the

mixture weights and the proposals,Q1; Q2, are adapted, which is calledDual RAPT.

We suggest here to adapt the covariance matrix of each proposal distribution in the

same vein as Haario et al. (2001).

When the current stateX t � 1 lies in Si , the components of the mixture (3) are the

Gaussian distributions with densitiesq(t )
i and with mean at the current point X t � 1

and covarianceCi (t), where Ci (t) is de�ned below.

Ci (t) =

8
><

>:

C0i ; t � t0

sd Cov(X i
t1

; X i
t2

; � � � ; X i
tN i ( t )

) + sd� I d; t > t 0

; i = 1; 2; (5)

where sd = (2 :4)2=d. This form of adaption follows (separately within each region)

the Adaptive Metropolis algorithm of Haario et al. (2001), and is based on the results

of Gelman et al. (1996), Roberts et al. (1997), and Roberts and Rosenthal (2001) who

showed that this choice optimizes the mixing of random walk Metropolis at least in

the case of Gaussian targets and Gaussian proposals. The implicit premise is that in

each region the Gaussian approximation of the target is reasonable. The addition of

sd� I d, where � > 0 is a small constant, guarantees that the matricesCi (t) are all in

M(c1; c2) for some �xed constants 0< c1 � c2 < 1 , whereM(c1; c2) is the set of all

k � k positive de�nite matrices M such that c1I k � M � c2I k , i.e. such that both

M � c1I k and c2I k � M are non-negative de�nite.
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The adaption parameter is then

 = ( � (1)
1 ; � (2)

1 ; C1; C2) 2 Y = [0; 1] � [0; 1] � M(c1; c2) � M(c1; c2):

An observant reader may notice that while the algorithm may perform well in

each region, there is no guarantee that there will be a good ow between regions.

For this reason, in practice we consider theMixed RAPT algorithm in which we add

a third adaptive component to the mixture (3). In this variant,

Q (x; dy) = (1 � � )
2X

i =1

1Si
(x)[� (i )

1 Q1(x; dy) + � (i )
2 Q2(x; dy)] + �Q whole(x; dy); (6)

where Qwhole is adapted using all the samples inS and � is constant throughout

the simulation. Once more we adapt the ideas in Haario et al. (2001) and use the

covariance of all the simulations available at timet to adapt the covariance of the

Gaussian proposal densityqwhole in (6). We shall use

C(t) =

8
><

>:

C0; t � t0

sd Cov(X 0; X 1; � � � ; X t ) + sd� I d; t > t 0 and Tr(C(t)) � M
: (7)

Given that all the distributions and parameters (except� ) in (6) are evolving, the

adaption parameter is

 = ( � (1)
1 ; � (2)

1 ; C1; C2; C) 2 Y = [0; 1] � [0; 1] � M(c1; c2) � M(c1; c2) � M(c1; c2):

3.1 INCA/TINCA Versions of RAPT

The descriptions so far of the various RAPT, Dual RAPT, and Mixed RAPT algo-

rithms have all been for a single chain. However, it is also possible to combine these

algorithms with the INCA approach of Section 2.

Indeed, for RAPT, all that is required is to compute the quantities d(i )
j (t) in

equation (4) usingall of the proposals fromall of the K parallel chains.

For Dual RAPT, it is required in addition that the covariance matrix adaptions

of equation (5) use the appropriate samplesX from all of the K parallel chains.

14



And, for Mixed RAPT, it is required in addition that the covar iance matrix adap-

tions of equation (7) also use the appropriate samplesX from all of the K parallel

chains.

Similarly, it is possible to combine all of this with the tempered (TINCA) ap-

proach of Section 2.1. Indeed, all that is required is to run each of the chains on the

distribution � Tj = � 1=Tj until R < 1 + � , and then to replacej by j � 1 and continue,

until such time as we reachTj = 1 corresponding to� Tj = � .

4 Theoretical Results

In this section, we prove that each of our previously-de�nedadaptive algorithms is

\ergodic to � ", i.e. that

lim
n!1

sup
A� S

jP(X n 2 A) � � (A)j = 0 ;

assuming the following compactness condition:

(A1) There is a compact subsetS � R k such that the target density� is continuous

on S, positive on the interior of S, and zero outside ofS.

We believe that it is possible to remove the assumption thatS is compact, but the

resulting arguments are more technical, so we will pursue them elsewhere (Yang et al.,

2009). Of course, even compact sets can be arbitrarily large, so in practice (A1) does

not impose any signi�cant limitation.

We shall �rst prove ergodicity of the RAPT algorithm, where only the weights

� (i )
j are adapted, as in (4). In this case, since the proposal densities qi are arbitrary,

we also need to assume that they are continuous and positive throughout S.

Theorem 4.1. Assuming (A1), and that the proposal densitiesqi are continuous and

positive throughoutS � S , the RAPT algorithm is ergodic to� .

We shall then prove ergodicity of the Dual RAPT algorithm. In this case, since

the proposal distributions are assumed to be Gaussian, no further assumptions are

necessary.
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Theorem 4.2. Assuming (A1), the Dual RAPT algorithm is ergodic to� .

Finally, we shall prove ergodicity of the full Mixed RAPT algorithm, again with

no further assumptions required since the proposals are Gaussian.

Theorem 4.3. Assuming (A1), the Mixed RAPT algorithm is ergodic to� .

Note that Theorems 4.1, 4.2, and 4.3 apply both to the single-chain versions

of RAPT / Dual RAPT / Mixed RAPT as described in Section 3, and to the

INCA/TINCA modi�cations as described in Section 3.1.

4.1 Theorem Proofs

For notational simplicity, we prove the theorems for the case of a single adaptive

chain, but the proofs go through virtually without change for the INCA versions of

these algorithms as described in Section 3.1, and also (by iterating) for the TINCA

versions as described in Sections 2.1 and 3.1.

To facilitate our proofs, we introduce some notation. Let be shorthand for all

of the parameters being adapted, e.g.

 = ( � (1)
1 ; � (2)

1 ; � (1)
2 ; � (2)

2 )

for the RAPT algorithm, while

 = ( � (1)
1 ; � (2)

1 ; � (1)
2 ; � (2)

2 ; C1; C2)

for the Dual RAPT algorithm, etc. Let � n be the actual (random) adaptive param-

eters in use at timen, so that P� n is the (random) Markov chain kernel used to

update the state at timen. Write P for the Markov chain kernel corresponding to a

particular �xed choice  , so that

P (x; A) = P(X n+1 2 A j X n = x; � n =  ) :

A basic assumption of adaptive MCMC is that eachindividual kernel P preserves

the stationarity of � , i.e. that
Z

P (x; A) � (dx) = � (A) ; A � S (8)
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for �xed  , which is certainly true for the adaptive algorithms introduced here. How-

ever, when the parametersf  ng are modi�ed during the run, then stationarity of � no

longer holds, and the resulting ergodicity is much more subtle. For a simple graphical

illustration of this, see Rosenthal (2004).

Our proofs shall make use of Theorem 5 of Roberts and Rosenthal (2007), which

implies that an adaptive algorithm is ergodic to� if it satis�es (a) the diminishing

adaption property that

lim
n!1

sup
x2S

sup
A� S

jP� n +1 (x; A) � P� n (x; A)j = 0 (9)

in probability, i.e. that the amount of adaptive change fromtime n to time n + 1 goes

to zero asn ! 1 , and (b) the simultaneous uniform ergodicityproperty that there

is � < 1 with

jPn
 (x; A) � � (A)j � � n ; n 2 N ;  2 Y ; x 2 S; A � S : (10)

So, to prove Theorem 4.1, it su�ces to establish (9) and (10),which we do in the

following two lemmas.

Lemma 4.1. Under the conditions of the Theorem 4.1, the simultaneous uniform

ergodicity property (10) holds.

Proof. SinceS is compact, by positivity and continuity we haved � supx2S � (x) < 1

and � � minf inf x;y 2S q1(x; y); inf x;y 2S q2(x; y)g > 0. From (3), it follows that

q (x; y) �
2X

i =1

1Si
(x)[� (i )

1 q1(x; y) + (1 � � (i )
1 )q2(x; y)] � � ; x; y 2 S :

For x 2 S and B � S , denote

Rx; (B ) =
�

y 2 B :
� (y)q (y; x)
� (x)q (x; y)

< 1
�
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and Ax; (B ) = B n Rx; (B ). Then we have

P (x; B ) �
Z

Rx; (B )
q (x; y) min

�
� (y)q (y; x)
� (x)q (x; y)

; 1
�

� Leb(dy)

+
Z

A x; (B )
q (x; y) min

�
� (y)q (y; x)
� (x)q (x; y)

; 1
�

� Leb(dy)

=
Z

Rx; (B )

� (y)q (y; x)
� (x)

� Leb(dy) +
Z

A x; (B )
q (x; y)� Leb(dy)

�
�
d

Z

Rx; (B )
� (y)� Leb(dy) +

�
d

Z

A x; (B )
� (y)� Leb(dy) =

�
d

� (B ):

Thus S is small since

P (x; B ) � � (B ) ; x 2 S;  2 Y ; B � S ;

where� (B) = �
d � (B ) is a non-trivial measure onS. Condition (10) then follows from

Theorem 16.0.2 of Meyn and Tweedie (1993), with� = 1 � � (S) = 1 � �
d .

Lemma 4.2. Under the conditions of the Theorem 4.1, the diminishing adaption

condition (9) holds.

Proof. Let f � (x; y) = �q 1(x; y) + (1 � � )q2(x; y). SinceS is compact, we have that

M � maxf supx;y 2S q1(x; y); supx;y 2S q2(x; y)g < 1 . For any x 2 S1 and A 2 B(S),

we have:

P k (x; A) =
Z

A\ S1

f � (1)
1 (k)(x; y) � min

�
1;

� (y)
� (x)

�
dy

+
Z

A\ S2

f
� (1)

1 (k)
(x; y) min

(

1;
� (y)f � (2)

1 (k)(x; y)

� (x)f � (1)
1 (k)(x; y)

)

dy

+ � x (A)
Z

S1

f � ( i )
1 (k)(x; y) �

�
1 � min

�
1;

� (y)
� (x)

��
dy

+ � x (A)
Z

S2

f � (1)
1 (k)(x; y)

"

1 � min

(

1;
� (y)f

� (2)
1 (k)

(x; y)

� (x)f � (1)
1 (k)(x; y)

)#

dy:

Denote the �rst term I k(x; A), the second termII k(x; A), the third term III k(x; A)
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and the fourth term IVk(x; A). Then we have:

jP k +1 (x; A) � P k (x; A)j � j I  k +1 (x; A) � I  k (x; A)j + jII  k +1 (x; A) � II  k (x; A)j

+ jIII  k +1 (x; A) � III  k (x; A)j + jIV  k +1 (x; A) � IV  k (x; A)j:

Let

�
k ( i )

1
(x; y) = min

(

1;
� (y)[� (i )

1 (k)q1(y; x) + (1 � � (i )
1 (k))q2(y; x)]

� (x)[� (1)
1 (k)q1(x; y) + (1 � � (1)

1 (k))q2(x; y)]

)

:

Then

jII  k +1 (x; A) � II  k (x; A)j �
Z

A\ S2

jf � (1)
1 (k+1) (x; y)� (k+1) (2)

1
(x; y) � f � (1)

1 (k)(x; y)� k (2)
1

(x; y)jdy

�
Z

A\ S2

jf � (1)
1 (k+1) (x; y)� (k+1) (2)

1
(x; y) � f � (1)

1 (k+1) (x; y)� k (2)
1

(x; y)

+ f � (1)
1 (k+1) (x; y)� k (2)

1
(x; y) � f � (1)

1 (k)(x; y)� k (2)
1

(x; y)jdy

�
Z

A\ S2

f
� (1)

1 (k+1)
(x; y)j�

(k+1) (1)
1

(x; y) � �
k (1)

1
(x; y)) jdy

+
Z

A\ S2

�
k (1)

1
(x; y)) jf

� (1)
1 (k+1)

(x; y) � f
� (1)

1 (k)
(x; y)jdy

� M
Z

A\ S2

j�
(k+1) (1)

1
(x; y) � �

k (1)
1

(x; y)) jdy

+
Z

A\ S2

jf
� (1)

1 (k+1)
(x; y) � f

� (1)
1 (k)

(x; y)jdy :

Now,

M
Z

A\ S2

j� (k+1) (1)
1

(x; y) � � k (1)
1

(x; y)) jdy

= M
Z

A\ S2

� (y)
� (x)

�
�
�
�
�

f � (2)
k +1

(x; y)

f
� (1)

k +1
(x; y)

�
f � (2)

k
(x; y)

f
� (1)

k
(x; y)

�
�
�
�
�
dy

�
Md
� (x)

Z

A\ S2

�
�
�
�
�

f � (2)
k +1

(x; y)

f
� (1)

k +1
(x; y)

�
f � (2)

k
(x; y)

f
� (1)

k
(x; y)

�
�
�
�
�
dy ;

and jf � (1)
1 (k+1) (x; y) � f � (1)

1 (k)(x; y)j � 2M j� (1)
1 (k + 1) � � (1)

1 (k)j. We shall prove that

limk!1 j� (i )
1 (k + 1) � � (i )

1 (k)j = 0; it will then follow that lim k!1 jf � (2)
k +1

� f � (1)
k +1

j = 0,

and hence (again by compactness) thatjII  k +1 (x; A) � II  k (x; A)j ! 0.
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To that end, recall that � (i )
j (k) =

d( i )
j (k)

d( i )
1 (k)+ d( i )

2 (k)
; i = 1; 2; j = 1; 2. Therefore,

j� (1)
1 (k + 1) � � (1)

1 (k)j

= j
d(1)

1 (k + 1)

d(1)
1 (k + 1) + d(1)

2 (k + 1)
�

d(1)
1 (k)

d(1)
1 (k) + d(1)

2 (k)
j

=

�
�
�
�
�

d(1)
1 (k + 1) d(1)

2 (k) � d(1)
1 (k)d(1)

2 (k + 1)

[d(1)
1 (k + 1) + d(1)

2 (k + 1)][ d(1)
1 (k) + d(1)

2 (k)]

�
�
�
�
�

�

�
�
�
�
�
(k + 1) � 1f [kd(1)

1 (k) + ( xk+1 � xk)2]d(1)
2 (k) � d(1)

1 (k)[kd(1)
2 (k) + ( xk+1 � xk)2]g

[d(1)
1 (k + 1) + d(1)

2 (k + 1)][ d(1)
1 (k) + d(1)

2 (k)]

�
�
�
�
�

�

�
�
�
�
�
(k + 1) � 1f [kd(1)

1 (k) + ( xk+1 � xk)2]d(1)
2 (k) + d(1)

1 (k)[kd(1)
2 (k) + ( xk+1 � xk)2]g

[d(1)
1 (k + 1) + d(1)

2 (k + 1)][ d(1)
1 (k) + d(1)

2 (k)]

�
�
�
�
�

�
R2

(k + 1)( d(1)
1 (k + 1) + d(1)

2 (k + 1))
=

R2

P k+1
i =1 (x i � x i � 1)2

:

Now, sinceS is compact, there are�; � > 0 such that P
�
(x i � x i � 1)2 > � j  i � 1

�
� � for

all x i � 1 and  i � 1. It follows that lim k!1
P k+1

i =1 (x i � x i � 1)2 = 1 with probability 1,

hence that j� (1)
1 (k + 1) � � (1)

1 (k)j ! 0, and hence thatjII  k +1 (x; A) � II  k (x; A)j ! 0.

Similarly we can prove thatjI  k +1 (x; A)� I  k (x; A)j ! 0, jIII  k +1 (x; A)� III  k (x; A)j !

0, and jIV  k +1 (x; A) � IV  k (x; A)j ! 0. Therefore, diminishing adaptation holds.

Proof of Theorem 4.1. In light of Lemmas 4.1 and 4.2, the result follows immediately

from Theorem 5 of Roberts and Rosenthal (2007).

Proof of Theorem 4.2. Recall that M(c1; c2) is the set of all thek � k positive de�nite

matrices M such that c1I k � M � c2I k . It follows from the proof of Theorem 1 in

Haario et al. (2001) that there arec1; c2 > 0 such that all the covariancesC = C(t )
i

are in M(c1; c2).

SinceS is compact, infx;y 2S; M 2 M(c1 ;c2) qM (x; y) > 0 (whereqM denotes the den-

sity function of Gaussian distribution with covariance matrix M ). Hence, we have

inf x;y 2S; 2Y q (x; y) > 0. Then following a similar proof to that of Lemma 4.1, one

can show that the simultaneous uniform ergodicity condition (10) holds. Similarly to
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the proof of Lemma 4.2, we can prove that the diminishing adaptation condition (9)

holds for Dual RAPT. The result then follows as in the proof ofTheorem 4.1.

Proof of Theorem 4.3. It follows as in the previous proof that infx;y 2S; 2Y q (x; y) >

0. Then, similar to Lemma 4.1, it follows that the simultaneous uniform ergodicity

condition (10) holds. Diminishing adaptation (9) follows similarly to Lemma 4.2. The

result then follows as in the proof of Theorem 4.1.

5 Examples

5.1 Simulated Examples

We study the performance of the methods proposed using a bimodal target distribu-

tion which is a mixture of two Gaussians. By varying the meansand variances of the

mixture components we try to cover a wider variety of situations. Let us consider the

target distribution

� (x) = 0 :5 � N (� 1; � 1) + 0 :5 � N (� 2; � 2);

where� i are ten-dimensional vectors and �i = ( � i � � i )I 10 + � i 110; i = 1; 2; where1d

is the d � d matrix of 1's. The considered scenarios are:

Scenario A: � 1 = 0:2, � 2 = 0:3, � 1
� 2

= 1
3 , � 1j = 3; � 2j = � 3, 1 � j � 10.

Scenario B: � 1 = 0:2, � 2 = 0:3, � 1
� 2

= 1
3 , � 1j = 0:5; � 2j = � 0:5, 1 � j � 10.

Scenario C: � 1 = � 0:1, � 2 = 0:1, � 1
� 2

= 1
3, � 1j = 3; � 2j = � 3, 1 � j � 10.

Scenario D: � 1 = 0:1, � 2 = � 0:1, � 1
� 2

= 1
3, � 1j = 3; � 2j = � 3, 1 � j � 10.

Scenario E: � 1 = � 0:1, � 2 = 0:1, � 1
� 2

= 1
3, � 1j = 1; � 2j = � 1, 1 � j � 10.

Scenario F: � 1 = 0:1, � 2 = � 0:1, � 1
� 2

= 1
3, � 1j = 1:5; � 2j = � 1:5, 1 � j � 10.
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It should be noted that scenarios C and D and E and F are di�erent due to the di�erent

standard deviations. In our study we chose to implement the HST algorithm (Haario

et al., 2001), the Dual RAPT and the Mixed RAPT either for only one chain or,

within the paradigm of INCA or TINCA, for �ve chains in parall el.

The starting value for the i � th chain isx i; 0 = (3 � i; 3� i; : : : ; 3� i )T for 1 � i � 5

and in the case we implement any of the above algorithms usinga single chain, the

starting value is x0 = (0 ; : : : ; 0). The initial values for the covariance matrices are

� 1 = � 2 = I 10 and � whole = 25I 10. The HST algorithm has initial value � = I 10. The

� used in (5) and (7) is set to 0:01. The initialization period contains a total of 10,000

samples which means that in the case of �ve parallel chains each has an initialization

period of 2000 simulations. Throughout the simulation, in the case of Mixed RAPT,

we set � = 0:2. Under all scenarios the partition is de�ned usingS1 =
P 10

i =1 x i � 0

and S2 =
P 10

i =1 x i > 0. This choice produces a partition that is, in all examples,

relatively far from the optimal one.

In order to assess the performance of the algorithm we show the histograms of the

�rst two and last two coordinates, i.e. x1; x2; x9; x10. In a unimodal setting one could

compare the covariance of the proposal with the optimal covariance. Unfortunately,

when the target is a mixture of unimodal distributions the optimal proposal is not

known. One can still compare the number of inter-mode transitions (switches) which

is roughly the same as the number of times the chain has crossed from S1 to S2 and

vice-versa.

Under Scenario A, after 100,000 iterations the mixture parameters of the proposal

(6) are � (1)
1 = 0:681 and� (2)

1 = 0:353.

The histograms show that a single mixed RAPT chain does a muchbetter job

at �nding both modes, see Figure 6, compared to a single chainconstructed using

the simpler dual RAPT algorithm, Figure 5, or the HST algorithm, Figure 7. These

results reinforce the intuitive idea that when the modes arefar apart neither the HST

nor the dual RAPT are e�ciently exploring the space. We had similar �ndings in all

scenarios in which the distance between the modes was large,i.e. Scenarios A, C and
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Figure 5: Scenario A: Histograms of 100,000 samples obtained forX 1; X 2; X 9; X 10

using the dual RAPT algorithm.

D.

It is important for the initial variances of Qwhole to be large enough so that during

the initialization period, both modes are visited. For instance, under scenario D

running a single mixed RAPT algorithm with starting valuex0 = (0 ; : : : ; 0)T , � = 0:3

and � whole = diag(10; : : : ; 10) the algorithm does not detect both modes even after an

initialization period of 10,000 samples. If we use the initial � whole = diag(25; : : : ; 25)

then the performance of mixed RAPT is quite good. In real applications, one does not

always have this information and in that case we recommend using INCA or TINCA

to reduce the risk of missing regions with high probability under � .

For the same scenario D, we ran �ve parallel chains, each of them for 20,000

iterations. To test the robustness of INCA we used �whole = I 10. The histograms of

the samples corresponding to the �rst two coordinates and the last two coordinates

are as shown in Figure 9.

The results con�rm that, although the initial variances aresmall, the process is

mixing well after the initialization period. We also used TINCA with four temperature

levelsT = f 1; 2; 4; 8g and once again the algorithm yields the correct samples as can
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Figure 8: Scenario D: Histogram of 100,000 samples obtained forX 1; X 2; X 9; X 10

using TINCA with temperaturesT = f 1; 2; 4; 8g for �ve mixed RAPT chains.

be seen from Figure 8. In the case in which the modes are close,as speci�ed in

Scenario B the performance of the HST algorithm is similar tothat of mixed RAPT.

Our simulations also show that the number of mode switches are comparable for

both algorithms. Not surprisingly, the pattern changes when the distance between

the modes is increased, as illustrated by Figure 10.

5.2 Real Data Example: Genetic Instability of Esophageal

Cancers

Cancer cells undergo a number of genetic changes during neoplastic progression, in-

cluding loss of entire chromosome sections. We call the lossof a chromosome section

containing one allele by abnormal cells by the term \Loss of Heterozygosity" (LOH).

When an individual patient has two di�erent alleles, LOH can be detected using

laboratory assays. Chromosome regions with high rates of LOH are hypothesized

to contain genes which regulate cell behavior so that loss ofthese regions disables

important cellular controls.
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Figure 9: Scenario D: Histogram of 100,000 samples obtained forX 1; X 2; X 9; X 10

using �ve parallel mixed RAPT chains.
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Figure 10: Scenario E: Number of switches for the HST algorithm (dottedline) and

for the mixed RAPT (solid line).
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To locate \Tumor Suppressor Genes"(TSGs), the Seattle Barrett's Esophagus re-

search project (Barrett et al., 1996) has collected LOH rates from esophageal cancers

for 40 regions, each on a distinct chromosome arm. A hierarchical mixture model has

been constructed by Warnes (2001) in order to determine the probability of LOH for

both the \background" and TSG groups. The labeling of the twogroups is unknown

so we model the LOH frequency using a mixture model, as described by Desai (2000).

We obtain the hierarchical Binomial-BetaBinomial mixturemodel

X i � � Binomial(N i ; � 1) + (1 � � )Beta-Binomial(N i ; � 2;  );

with priors

� � Unif[0; 1];

� 1 � Unif[0; 1];

� 2 � Unif[0; 1];

 � Unif[� 30; 30];

where � is the probability of a location being a member of the binomial group, � 1 is

the probability of LOH in the binomial group, � 2 is the probability of LOH in the

beta-binomial group, and controls the variability of the beta-binomial group. Here

we parameterize the Beta-Binomial so that is a variance parameter de�ned on the

range �1 �  � 1 . As  ! �1 the beta-binomial becomes a binomial and as

 ! 1 the beta-binomial becomes a uniform distribution on [0; 1]. This results in

the unnormalized posterior density

� (�; � 1; � 2;  jx) / � N
i =1 f (x i ; ni j�; � 1; � 2; ! 2)

on the prior range, where

f (x; nj�; � 1; � 2; ! 2) = �

0

@
n

x

1

A � x
1 (1 � � 1)n� x +

+ (1 � � )

0

@
n

x

1

A
�( 1

! 2
)
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Mean in Region 1 Region 2 Whole space

� 0.897 0.079 0.838

� 1 0.229 0.863 0.275

� 2 0.714 0.237 0.679

 15.661 -14.796 13.435

Table 1: Simulation results for the LOH data.

and ! 2 = e

2(1+ e ) . In order to use the random walk Metropolis we have used the logistic

transformation on all the parameters with range [0; 1]. However, all our conclusions

are presented on the original scale for an easier interpretation.

Using the optimization procedures used by Warnes (2001) we determine that

the two modes of� are reasonably well separated by the partition made ofS1 =

f (�; � 1; � 2;  ) 2 [0; 1] � [0; 1] � [0; 1] � [� 30; 30]j� 2 � � 1g and S2 = f (�; � 1; � 2;  ) 2

[0; 1] � [0; 1] � [0; 1] � [� 30; 30]j� 2 � � 1g.

5.2.1 Simulation results

We have run �ve parallel mixed RAPT algorithms to simulate from � using the

partition S1 [ S2. The initialization period contained 5,000 iterations foreach chain.

The covariance matrices were initialized as �1 = � 2 = 0:1I 4 and � whole = 20I 4. After

50; 000 iterations from each chain, we obtain� (1)
1 = 0:923 and � (2)

1 = 0:412. The

estimates for the parameters of interest are shown in Table 5.2.1.

Figure 11 gives a two dimensional scatterplot of the (� 1; � 2) samples. This is

similar to the �ndings of Warnes (2001) (Figure 8). To illustrate the exchange of

information between the parallel the chains, we use the BGR diagnostic statistic,

R. When the BGR R statistics is close to to 1, we can assume all chains have the

same information regarding� . For this example, after 20,000 iterations the BGR's R

statistics stabilizes below 1.1 as one can see in Figure 12.

To compare the performance of the mixed RAPT with and withoutINCA we
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Figure 11: Scatterplot of the 250,000 samples for(� 1; � 2).

0 10000 20000 30000 40000 50000

0
2

4
6

8
1

0

iteration

R

Figure 12: LOH Data Example: The evolution of BGR's R statistics for 5 mixed

RAPT chain; the dotted line represents the threshold 1.1.
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Figure 13: The total number of switches times for the �ve parallel MixedRAPT chains

(run for 60,000 iterations each) vs the number of switch times of a single Mixed RAPT

(run for 300,000 iterations).

monitor the number of switches betweenS1 and S2. We run a single Mixed RAPT

algorithm for 300,000 iterations, and independently �ve parallel Mixed RAPT algo-

rithms for 60,000 iterations each. In Figure 13 we plot the total number of switches

for the �ve parallel processes up to timet and the switch time for the single run up

to time 5t for a fair comparison. One can see that the Mixed RAPT performs better

together with INCA than by itself.

6 Conclusions and Further Work

This work is concerned with the practical aspects of adaptive MCMC, particularly

related to sampling from multimodal distributions. The aim for most of our the-

oretical results is the adaptive random walk Metropolis since it is one of the most

used algorithms in practice. The inter-chain adaptation strategy is widely applicable

and could be used for a large number of adaptive MCMC algorithms with signi�cant
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potential gains. The regional adaptation algorithm proposed here has been discussed

in the context of two separate regions. Evidently, the construction can be generalized

but one has to keep in mind that besides good sampling properties within each region

the sampler should be also required to visit all regions often enough. In the case of

many regions this could present complications.
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