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Abstract

Starting with the seminal paper of Haario, Saksman and Tammnen (Haario
et al. (2001)), a substantial amount of work has been done to alidate adaptive
Markov chain Monte Carlo algorithms. In this paper we focus am two practi-
cal aspects of adaptive Metropolis samplers. First, we drawattention to the
de cient performance of standard adaptation when the targd distribution is
multi-modal. We propose a parallel chain adaptation strategy that incorpo-

rates multiple Markov chains which are run in parallel. Secad, we note that
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the current adaptive MCMC paradigm implicitly assumes that the adaptation is
uniformly e cient on all regions of the state space. However, in many practical
instances, di erent \optimal" kernels are needed in di ere nt regions of the state
space. We propose here a regional adaptation algorithm in wibh we account
for possible errors made in de ning the adaptation regions.This corresponds to
the more realistic case in which one does not know exactly theptimal regions
for adaptation. The methods focus on the random walk Metropdis sampling
algorithm but their scope is much wider. We provide theoretical justi cation
for the two adaptive approaches using the existent theory bild for adaptive
Markov chain Monte Carlo. We illustrate the performance of the methods us-
ing simulations and analyze a mixture model for real data usig an algorithm

that combines the two approaches.

Keywords: Adaptive Markov chain Monte Carlo, Metropolis sampling, radom

walk Metropolis sampling , parallel chains, regional adaption.

1 Introduction

Markov chain Monte Carlo (MCMC) techniques have become an jportant tool in
the statistician's arsenal for solving complex analyses. @ of the most widely used
algorithms is the Metropolis (Metropolis et al., 1953) andts generalization, the
Metropolis-Hastings (MH) (Hastings, 1970) sampler. If theggoal is to sample from a
distribution  with support S, the MH sampler is started with a random valuex o
and, at each iterationt, a proposalY is drawn from a proposal distributionQ(yjX¢)
with density q(yrj‘Xt) and is re})ained as the next state of the chain with probabily

(Xi;Y) =min 1, G200 If g(yjx) is the density ofy = x+ where has a
symmetric distribution, we obtain the random walk Metropolisalgorithm.

In order to design an e cient Metropolis algorithm it is necessary to carefully

adapt the parameters of the proposal distributionQ so that the performance of the
algorithm is optimal (note that there are multiple de nitio ns of \optimal" available).

On one hand one can argue that many modern MCMC algorithms ingporate a cer-
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tain notion of local adaptation in their design, e.g. Gilks eal. (1998), Liu et al.
(2000) and Craiu and Lemieux (2007), Green and Mira (2001),idsvik and Tjelme-
land (2006). In this paper, we refer to a more global versionf adaptation which
is based on learning the geography of \on the y" from all the samples available
up to the current time t. Such an approach violates the Markovian property as the
subsequent realizations of the chain depend not only on tharcent state but also on
all past realizations. This implies that one can validate thoretically this approach
only if one is able to prove from rst principles that the adapive algorithm is in-
deed sampling from . In Haario et al. (2001) the authors provide such a theoretat
justi cation for adapting the covariance matrix of the Gau ssian proposal density
used in a random walk Metropolis. They continually adapt usng the empirical
distribution of the available samples. Their choice of addgtion is motivated by the
optimal results proved by Roberts et al. (1997) and Robertsnal Rosenthal (2001).
Subsequently, the convergence results of adaptive algtmts have been made more
general in Andrieu and Robert (2001), Andrieu et al. (2005)Andrieu and Moulines
(2006), Atchade and Rosenthal (2005), and Roberts and Roseal (2007). An adap-
tive algorithm for the independent Metropolis sampler was npposed by Gasemyr
(2003) and Haario et al. (2005) extended their previous woro Metropolis-within-
Gibbs sampling. A class of quasi-perfect adaptive MCMC algthms is introduced
by Andrieu and Atchade (2006) and a nice tutorial on adaptivenethods is given by
Andrieu and Thoms (2008). Alternative approaches to adapten within MCMC
can be found in Brockwell and Kadane (2005), Nott and Kohn (ZIb), Giordani and
Kohn (2006). We quote from Giordani and Kohn (2006):

Although more theoretical work can be expected, the existinbody of
results provides su cient justi cation and guidelines to build adaptive
MH samplers for challenging problems. The main theoreticalbstacles
having been solved, research is now needed to design e ciatd reliable

adaptive samplers for broad classes of problems.
In the present paper we try to close some of the gap between ¢img and practice by
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focusing on the practical aspects of adaptive MCMC (AMCMC)More precisely, we
discuss complications arising when using AMCMC, especiathdaptive random walk
Metropolis, for sampling from multi-modal targets and alsevhen the optimal proposal
distribution is regional, i.e. the optimal proposal shouldchange across regions of the
state space. In the next section we discuss the inter-chaimagptation. In Section
3 we discuss the regional adaptation. The theoretical chatlige is to show that the
algorithms proposed here fall within the scope of general@ébrems that are used to
validate adaptive MCMC. These results are presented in Séah 4 while simulation
examples and a real data analysis are shown in Section 5. Wesd with discussion

of further research.

2 Inter-chain Adaptation (INCA)

To begin, consider a simulation setting where the target disbution is a mixture of
two ten-dimensional Gaussian distributions. More precige the target distribution
is
(XJ 15 20 15 2)=0:5n10(X; 15 1) +0:5n10(X; 2, 2);

with ng(x; ; ) denoting the density of a d-dimensional Gaussian random variable
with mean and covariance matrix and where ; =(0:03 0:06, 0:24; 1:39 0:52
0:61;1:26, 0:71, 1:38 1.53)", 5 =6;81 i 10, 1=1Ilpand 5, =4l4.
In Figure 1 we present the results of a simulation in which wepplied the adaptive
Metropolis sampler of Haario et al. (2001) with an initialiation period of 10,000
samples. The chain is started in one of the target's modes @tone corresponding to

1). Although the nal sample size isN = 250; 000, we can see that the chain does
not visit the second mode. In this case, the adaptation can homprove much on the
unadapted version of the Metropolis sampler as the second d®"is invisible" in the
initialization period and it will likely take a long time for a chain incorrectly adapted
to a unimodal distribution to discover the second high proHaility region.

In the classic MCMC literature di culties related to sampli ng from a multi-modal



Single chain adaptation
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Figure 1. Boxplots of N=250,000 samples obtained using a single-ahadaptive
Metropolis; each boxplot correspond to one component of th@-dimensional random
vector. The red lines represent the entries of the target'sean vector. The chain does

not visit the second mode of the target.



distribution are tackled using multiple parallel chains asn Gelman and Rubin (1992)
and tempering as in Neal (1994) and Geyer and Thompson (19948oth ideas in u-
ence our approach.

The parallel chains implementation has been proven helpftdr a more systematic
exploration of the sample space as in Craiu and Meng (2005 the present setting
we use it to detect the di erent regions of signi cant mass uder the posterior distri-
bution and our starting example shows that such detection isxtremely important for
adaptive MCMC. We thus propose running in parallel a numbersay K, of Markov
chains. We can further robustify the performance of the algithm if the chains are
started from a distribution that is overdispersedwith respect to . It should be
noted that nding can be quite challenging. The problem of nding good startig
points for parallel chains is also discussed by Jennison 8B, Applegate et al. (1990),
Gelman and Rubin (1992) and Brooks and Gelman (1998). We walulike to add a
word of caution following Gill (2008) which states that a badchoice for can be
deleterious and may dramatically alter the simulation redts.

A question of interest in adaptive MCMC is whether one shouldvait a short or
a long time before starting the adaptation. In Gasemyr (2003 the burn-in time
is random but bounded below, while Giordani and Kohn (2006)rppose a di erent
strategy in which adaption starts early and is performed figuently in what they
call intensive adaptation However, they also warn that one should make sure that
enough distinct samples are obtained in order to avoid sinfguity problems. In the
multi-modal situation considered here we adopt a longer boyin, partly because
the multi-modality of  makes it di cult to have a good idea about its geography
when only a few draws are available. A longer burn-in increas the stability of the
inferences obtained and reduces the risk of missing one imgant mode.

We thus propose a new strategynter-chain adaptive MCMC (INCA), as follows.
We run K dierent chains in parallel, each started independently fom the same
overdispersed starting distribution. After the burn-in peiod the K kernels are si-

multaneously adapted usingall the samplegrovided by the K chains so far. In the



case of a random walk Metropolis with Gaussian proposals we this by setting the
proposal covariance to the sample covariance matrix of alh¢ available samples. De-
note ,, the adaptation parameter, e.g. the variance of the random WaMetropolis
proposal distribution, used at stepm in each marginal transition kernel. We run the
chains independently conditional on thé g, so the joint transition kernel, T is
obtained as the product ofK identical copies of the marginal transition kernell

such that
T, 6A) =T, (Xi;A1) T, (X;A2) o0 T, Xk Ak);

whereA= A; 0 Ax and x=(Xg;:::;Xk).

The motivation for using multiple chains lies in our attemptto discover as early
as possible all the modal regions of (or at least all the important ones). After
the chains have explored the regions of interest and the sifation parameters are
updated one may wish to return to a single chain. A question ahterest is then
how to decide when the exchange of information between chaihas stopped. The
criterion we use is the well-known Brooks-Gelman-Rubin (BB) diagnostic, R, as
developed in Gelman and Rubin (1992) and Brooks and Gelman9d8). Given a
number, sayK, of parallel chains, thepotential scale reductionR is a normalized
ratio of the between-chain and within-chain variances conyped from the available
samples (Gelman and Rubin (1992), page 465). WhiRe was originally designed as
a convergence indicator, here it is used to determine wheththe chains contribute
di erent information about

In Figure 2 we show for the mixture of Gaussian distributionshe evolution of the
R statistics. One can see that the exchange of information lve¢en chains is gradually
decreasing along with the adaptation. An astute reader may amder whether the
learning process can be accelerated using tempering st@iés in order to learn the

geography of more quickly.



Evolution of BGR statistics

Figure 2: The evolution of BGR'sR statistic. It takes approximately 18,000 iterations

to reach below 1.1.

2.1 Tempered INCA (TINCA)

Tempering in MCMC relies on a series of \canonical" distribtions, 1, each of which

that , = and while  is not too dierent from . , there is a substantial
di erence between and ., inthatthe latter has less isolated modes (oris " atter")
so that it is considerably easier to sample using MCMC algdhms. One generic
procedure (although not the only one) denes+ = YT for T 1. In Figure 3 we
illustrate the e ect of tempering on a bivariate mixture of Gaussian distributions.
One expects that for large values of (or hot temperatures), adaptive algorithms
designed for 1 will be more e cient. For instance, if INCA is implemented we
expect the running time needed to stabilizdR 1 to be much shorter than at the
"cool" temperature T = 1. One could possibly envision a gradual temperature-dran
adaptation following Meng (2007). Start with T = t,»x and at each temperature

perform the following steps:

Step | ForT = t; perform INCA for target density 1 until R is below a pre-speci ed



Contour plot with T=1 Contour plot with T=2

Contour plot with T=8

Figure 3. Tempered distributions withT = 1 (original target), T =2, T = 4 and
T=8.

threshold 1 + .

Step Il Keep the simulation parameters obtained and perform Step lith the next

colder temperatureT = t; 1. Stop after T = 1.

The implementation assumes that the kernel learned/adapteat temperature t;
is a reasonable starting choice for the kernel used at tempéure t; ;. In addition
to speeding up the adaptation process, thisempered INCA (TINCA) is aimed at
solving the di cult task of producing a reasonable startingproposal in a high dimen-
sional problem. We implemented TINCA with T 2 f 1;2;4;8; 16g for the example
discussed in this section and the total number of iterationsncluding those produced
at temperaturesT > 1, required to reachR 1.1 at T = 1 was 10,000, compared
to the 18,000 reported without tempering. Additional simuhtions using TINCA are
discussed in Section 5.

It should be noted that INCA and/or TINCA can be implemented dong many
other adaptive MCMC strategies. As mentioned by many authar working in the

eld, the performance of the algorithm during the initialization (or burn-in) period,



when no adaption is taking place, is crucial. We believe thdNCA is most useful in
the initial stage of the simulation since it accelerates th&data gathering” about the

geography of and improves the overall performance of the adaptive proces

3 Regional Adaptation (RAPT)

In the previous section, we considered a simple example inialinthe target distribu-
tion had its mass equally divided between the two modes. Howex, examples abound
where the modes of the distribution have di erent relative mss and in these situa-
tions a simple remedy such as INCA may be ine ective. One caragly see that in
such cases there is no \universal" good proposal, i.e. theateing must be adapted
to di erent regions of the state space. Regional adaptatiohas been suggested in a
di erent form by Andrieu and Robert (2001) and Roberts and Rgenthal (2009). For
our discussion assume that there is a partition of the spac® made of two regions
So1; Soz such that adaptation should be carried over independentlyithe two regions.
In other words, in the case of a Metropolis algorithm, in regh So; we would use pro-
posals from distribution Q; while only samples from this region will be used to adapt
Qi. Such an algorithm is valid as long as one carefully computesceptance ratios
for proposed moves that switch regions, as was also noted bglerts and Rosenthal

(2009). In the case of two regions the acceptance ratio is the

8
% (X(n;(e;v ); if X; Xnew 2 Soi
I’(X;Xnew)= § %; if X 2 So2;Xnew 2 So1

%; ifXZSOI;Xnew2802:

where g is the density ofQ;.

While there exist sophisticated methods to detect the modesf a multimodal
distribution (see Sminchisescu and Triggs, 2001, 2002; $wchisescu et al., 2003; Neal,
2001), it is not always clear how to use such techniques sirdening a good partition
of the sample space may need more than just the location of theodes. In Craiu and

Di Narzo (2009) we follow the methods of Andrieu and Mouline@006) and Cappe
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Exact boundary

' Approximate boundary

Figure 4: lllustration of the regional adaptive MCMC sampler. The ddmed black line
represents the exact boundary (unknown), between regidg and Sp,. The dashed

red line delimitates the regionsS; and S, used for the regional adaptation.

and Moulines (2009) to propose a mixture-based approach fadaptively determining
the boundary between high probability regions. Suppose weg@aroximate the target

distribution using the mixture of Gaussians
QX)= n(x; 1; )*+@ (X 25 2): 1)

Then Craiu and Di Narzo (2009) de ne the regionsSy as the set in which thek-th

component of the mixture densityQ dominates the other one., i.e.
Sy =fx: arg rrﬂ(zglxn(x; ko, ko) = Kg: (2)

Regardless of the method used, in most cases we do not haveugimoknowledge
to choose the partition made exactly of region§q; and Sp,. Instead, suppose we
de ne a partition made of regionsS; and S,. An illustration of this idea is shown
in Figure 4. The solid black line represents the exact bounda(unknown), between

regionsSy; and Sp,. The dashed red line delimitates the regionS; and S, used for
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the regional adaptation. If we were to apply the simple regi@l adaptive algorithm
described above, when the chain is in one of the states sitedt between the two
dashed lines the wrong proposal would be used. Therefore,drder to account for
the error made when specifying the boundary between regiong propose to sample
our proposals from a mixture that includes bothQ; and Q,. However, the mixture
proportions are di erent in each regionS; and are adaptively modi ed. The resulting

Regional Adaptive (RAPT) algorithm has proposal distribuion

S (i) (i)
Q (x;dy) = | 1, ([ 1°Qu(x;dy) + 5" Qa(X; dy)l; (3)

i=1

where {"+ {) =1. In this case, we use the index on Q to emphasize the fact that

the proposal is adapted with the adaption parameter = ( (11); (12)) 2Y =[0;1P.
j(i); 1 i;j 2 are chosen to re ect which of the two
proposals is more \appropriate" to use in the given region. \Bdently, one has some

The mixture proportions

freedom over what can be considered a good proposal in thituge For instance, one

could choose 0
M- o M

O}
where n{(t) is the number of accepted moves up to timé computed when the
accepted proposals are distributed wittQ); and the current state of the chain lies in
Si: However, this choice would favor small steps of the chain smthese have higher

acceptance rates. To counterbalance, we take into accouthet average squared jump

distance so that 8 _
< 40 oy P s
= i e - (4)
i : '
: 1=2; otherwise

where dj(i)(t) is the average squared jump distance up to time computed when the
proposals were sampled fror®; and the current state of the chain lies inS;: More
precisely, supposd X; g}zo are the samples obtained until timet and N;(t) is the
number of elements in the setx} gj'{” which contains all the samples generated up

to time t that are lying in S;. We also de ne the set of time points at which the
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proposal is generated fron®; and the current state is inS;, W ()= f0 s t:

Xs 2 S; and proposal at times is generated fromQ;g. Then
P - -2
s2w (1) KXs+1  Xs]

W, (0]

d(t) =

Wherejo(i)(t)j denotes the number of elements in the swj(i)(t). If Wj(i)(t) = ; then
dj(i)(t) = 0. If we implement RAPT within INCA/TINCA with K parallel chains then
in the calculation of dj(i)(t) we need to consideall the samples obtained up to time
by all the K chains.

Better performance can be achieved using the algorithm (3d1f which both the
mixture weights and the proposalsQ;; Q,, are adapted, which is calledual RAPT.
We suggest here to adapt the covariance matrix of each prombslistribution in the
same vein as Haario et al. (2001).

When the current state X ; lies in S;, the components of the mixture (3) are the
Gaussian distributions with densitiesq(t) and with mean at the current point X;

and covarianceC;(t), where Ci(t) is de ned below.

8
cm—zc"” bl i=1:2 (5)
i - ) - ) &y

->sd Cov(X{; X{,; ;X{Nim)+ sqg lg; t>to

where sy = (2:4)?>=d. This form of adaption follows (separately within each regi)
the Adaptive Metropolis algorithm of Haario et al. (2001), ad is based on the results
of Gelman et al. (1996), Roberts et al. (1997), and Roberts driRosenthal (2001) who
showed that this choice optimizes the mixing of random walk Btropolis at least in
the case of Gaussian targets and Gaussian proposals. The licippremise is that in
each region the Gaussian approximation of the target is reasable. The addition of
sq¢ lq4, Wwhere > 0 is a small constant, guarantees that the matrice€;(t) are all in
M(cy; o) for some xed constants O<c; ¢ < 1, whereM(c;;c,) is the set of all
k k positive de nite matrices M such thatc;ly, M Glk, i.e. such that both

M clg andcly M are non-negative de nite.
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The adaption parameter is then
= (1)- (2)-C-C 2Y= 0.1 0.1 M . M . .
(175 1:CC) [0;1] [0;1] (C1;C) (C1; ):

An observant reader may notice that while the algorithm may prform well in
each region, there is no guarantee that there will be a goodwobetween regions.
For this reason, in practice we consider thilixed RAPT algorithm in which we add

a third adaptive component to the mixture (3). In this variar,

X2 . .
Qxdy)=(1 ) 1gM Pudy)+ P dYI+ Qwnaie(x;dy); (6)

i=1
where Qunole IS adapted using all the samples ir§ and is constant throughout
the simulation. Once more we adapt the ideas in Haario et al2001) and use the
covariance of all the simulations available at time to adapt the covariance of the

Gaussian proposal densitgynoe in (6). We shall use
8
2 Co, t 1o
C(t) = S : (7)
© Sq Cov(Xg; X1, Xy +sg lg; t>tgand Tr(C(t)) M
Given that all the distributions and parameters (except ) in (6) are evolving, the

adaption parameter is

=( P, Picycu0)2y =[0;1] [01] M(ciic) M(cic) M(c;c):

3.1 INCA/TINCA Versions of RAPT

The descriptions so far of the various RAPT, Dual RAPT, and Mxed RAPT algo-
rithms have all been for a single chain. However, it is also gsible to combine these
algorithms with the INCA approach of Section 2.

Indeed, for RAPT, all that is required is to compute the quanities dj(i)(t) in
equation (4) usingall of the proposals fromall of the K parallel chains.

For Dual RAPT, it is required in addition that the covariance matrix adaptions

of equation (5) use the appropriate sampleX from all of the K parallel chains.
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And, for Mixed RAPT, it is required in addition that the covariance matrix adap-
tions of equation (7) also use the appropriate samples from all of the K parallel
chains.

Similarly, it is possible to combine all of this with the tempered (TINCA) ap-
proach of Section 2.1. Indeed, all that is required is to runagh of the chains on the
distribution 1 = T untl R< 1+ , and then to replacej by j 1 and continue,

until such time as we reachl; =1 corresponding to 1, =

4 Theoretical Results

In this section, we prove that each of our previously-de necgdaptive algorithms is

\ergodic to ", i.e. that
lim supjP (X, 2 A) (A)j = 0;
n't A s

assuming the following compactness condition:

(A1) There is a compact subseS R¥ such that the target density is continuous
on S, positive on the interior of S, and zero outside ofS.

We believe that it is possible to remove the assumption tha® is compact, but the

resulting arguments are more technical, so we will pursue¢m elsewhere (Yang et al.

2009). Of course, even compact sets can be arbitrarily larg® in practice (Al) does
not impose any signi cant limitation.

We shall rst prove ergodicity of the RAPT algorithm, where aly the weights
0

j
we also need to assume that they are continuous and positivieroughout S.

are adapted, as in (4). In this case, since the proposal deres g are arbitrary,

Theorem 4.1. Assuming (Al), and that the proposal densitieg are continuous and

positive throughoutS S , the RAPT algorithm is ergodic to .

We shall then prove ergodicity of the Dual RAPT algorithm. Inthis case, since
the proposal distributions are assumed to be Gaussian, nortiier assumptions are

necessary.
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Theorem 4.2. Assuming (Al), the Dual RAPT algorithm is ergodic to .

Finally, we shall prove ergodicity of the full Mixed RAPT algorithm, again with

no further assumptions required since the proposals are Gzsian.
Theorem 4.3. Assuming (Al), the Mixed RAPT algorithm is ergodic to .

Note that Theorems 4.1, 4.2, and 4.3 apply both to the singlehain versions
of RAPT / Dual RAPT / Mixed RAPT as described in Section 3, and to the
INCA/TINCA modi cations as described in Section 3.1.

4.1 Theorem Proofs

For notational simplicity, we prove the theorems for the caes of a single adaptive
chain, but the proofs go through virtually without change fo the INCA versions of
these algorithms as described in Section 3.1, and also (berating) for the TINCA
versions as described in Sections 2.1 and 3.1.

To facilitate our proofs, we introduce some notation. Let be shorthand for all

of the parameters being adapted, e.g.

_ W0, 0.
=( 15 15 27 2)

for the RAPT algorithm, while
=(9 29 Picicy
for the Dual RAPT algorithm, etc. Let , be the actual (random) adaptive param-
eters in use at timen, so that P , is the (random) Markov chain kernel used to
update the state at timen. Write P for the Markov chain kernel corresponding to a
particular xed choice , so that
P(XA) = PXnst 2A X=X o= )

A basic assumption of adaptive MCMC is that eachndividual kernel P preserves

the stationarity of , i.e. that
Z

P(GA) (dx) = (A); A 'S (8)

16



for xed , which is certainly true for the adaptive algorithms introduced here. How-
ever, when the parameter$ ,gare modi ed during the run, then stationarity of no
longer holds, and the resulting ergodicity is much more sulet For a simple graphical
illustration of this, see Rosenthal (2004).

Our proofs shall make use of Theorem 5 of Roberts and Roserit{2007), which
implies that an adaptive algorithm is ergodic to if it satis es (a) the diminishing
adaption property that

lim supsupjP .., (x;A) P . (x;A)j =0 (9)
n'l x2SA S

in probability, i.e. that the amount of adaptive change fromtime n to time n+1 goes

to zeroasn!1 , and (b) the simultaneous uniform ergodicityproperty that there

is < 1 with
P "(x;A) (A)j " n2N; 2Y;x2S;A S : (10)

So, to prove Theorem 4.1, it su ces to establish (9) and (10)which we do in the

following two lemmas.

Lemma 4.1. Under the conditions of the Theorem 4.1, the simultaneous iform

ergodicity property (10) holds.

Proof. SinceS is compact, by positivity and continuity we haved  sup,,g (X) < 1
and minfinfx;yzs q(X;y); infx;yzs ®(X;y)g > 0. From (3), it follows that
x (1) (1)
q (x;y) Is, O T'a(y)+ (@1 )X y)] , Xy 2S:

i=1

Forx2S andB S , denote

_alyix) _

R (B)= ¥ 2B =5a ay)

17



and Ay. (B) = B nRy. (B). Then we have

. 2 . : (Y)a (y;X) Leb
P(GB) abey)min s Bl )
z
. , ()a (y;X) Leb(g
* A (B)q (x;y) min (X)q (;;y)’ ()
DB gy g ay) ay)

Re (B) (x) A (B)
_ Leb B Leb - _ .
i OG0 = G (B):

Thus S is small since
P (x;B) (B); x2S; 2Y;B S;

where (B)= 5 (B) is a non-trivial measure onS. Condition (10) then follows from

Theorem 16.0.2 of Meyn and Tweedie (1993), with=1 (S)=1 5. O

Lemma 4.2. Under the conditions of the Theorem 4.1, the diminishing ag@&on

condition (9) holds.

Proof. Let f (x;y)= qi(x;y)+(1 )p(X;y). SinceS is compact, we have that

M maxf SUp.,»S (X; Y)iSpr;yzs ®(x;y)g< 1. Foranyx 2 S; and A 2 B(S),

we have:
Z

PLOGA) = Tag0ay) mn L% dy
( )
L5 woyymin 1 0 EwY)
y (G y)min 1
A\ Sy (1) (k) y (X)f 51) (k) (X1 y)
Z
+ x(A) fa,,(y) 1 min 1;M dy
5 M (X)
n #
7 C ot gy
+ ! dy:

A f X; 1 min 1,
x(A) . 0 (19 ) IR CSY)

Denote the rst term 1 (x; A), the second termll (x;A), the third term 111 (x; A)
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and the fourth term IV (x; A). Then we have:

P (GA) PLOGA) e OGA)Y L OGA)+ I OGA) T (G A)

k+1

L 0GA) I (GA)H IV (GA) IV (G A)j:
Let )
s L PRay @ k) a(y: )]
@ OGy)=min - L, ) . @ .
' Gl 7 (Katsy)+ (@ 7 (K)e(Xy)]
Then
Z
JII k+1 (X1A) I k(X!A)J Jf gl) (k+1) (X!y) (k+1) (12) (X!y) f gl) (k)(x1y) k:(LZ) (X1y)de
A\ S,
ALS, Jf gl) (k+1) (X!y) (k+1) (12) (X,y) f gl) (k+1) (X!y) k§2) (X1y)
+ fZ 0 gy GY) @ CY) T (5Y) e (Xy)idy
s D0t VI gy (6Y) -y Oy )Didy
+ ALS) k:(Ll) (X! y))Jf (11) (k+1) (X,y) f (11) (k)(X! y)de
Z
M R S21‘ ey ® OGY) o (Xy))jdy
+ N 52jf O (1) (xy) f o o (G Y)idy:
Now,
Z
M I e (YY) (Xy))idy
A\ S, 1 1
Z

) Fo, &y fay)

= M d
ms, ) Fo (6y) Faty)

md © oY) falky) .
0) s Fo 6y Fubcy)

and jf o 4,0, 6Y)  F o (oY) 2M] Wk+1) (k). We shall prove that

lime: j Vk+1)  D(k)j=0; it will then follow that lim y, jf @ f o j=0,
k+1 k+1

and hence (again by compactness) thatl (x;A) I (AL 0.

k+1
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d® (k) . .
7d(i)(kj)+ rortilis 1;2;j =1;2. Therefore,
1 2

To that end, recall that j(i)(k) =
P Pk+) P

AP+ S
d?(k+1)+ & (k+1)  d? () + dF (k)

dP (k+1)d (k) dP (k)d (k + 1)
[0 (k + 1)+ d (k + 1)) d” (k) + d” (k)]

(k+1) HkdP (k) +(xr  xi)Fds (k) dP (KK (k) + (xe1  X«)?1g
[0 (k + 1)+ o (k + 1)][d” (k) + d” (k)]

(k+1) HkdP (k) + (X1 xi)3ds? (k) + dP (k)[kdS” (k) + (X1 xk)%g

[0 (k + 1) + d3 (k + 1)][d” (k) + o (k)]
R? _ R?

k+1)(dPk+1)+ dP(k+1) e xi 1?2

Now, sinceS is compact, there are; > 0suchthatP (x; X; 1)2> j i 1 for
all x; 1 and ; ;. It follows that lim 1 P :‘:11 (xi Xi 1)?= 1 with probability 1,
hence thatj P(k+1)  {’(k)j! 0, and hence thatjll .. (x;A) 1l (xA)j! O.
(xA) I (A 0O, (GA) HE L (X A))!
o (XGA) IV (XA)j 0. Therefore, diminishing adaptation holds. O

Similarly we can prove thatjl
0, andjlVv

k+1 k+1

Proof of Theorem 4.1. In light of Lemmas 4.1 and 4.2, the result follows immediatel
from Theorem 5 of Roberts and Rosenthal (2007). O

Proof of Theorem 4.2. Recall that M(c;; ¢;) is the set of all thek  k positive de nite
matricesM such thatcly M Colk. It follows from the proof of Theorem 1 in
Haario et al. (2001) that there arec;;c, > 0 such that all the covariance<C = Ci(t)
are in M(cy; ).

SinceS is compact, inf. 5.\ owcyicpy M (X Y) > 0 (Whereqy denotes the den-
sity function of Gaussian distribution with covariance matix M). Hence, we have
infx;yzs; v 4 (x;y) > 0. Then following a similar proof to that of Lemma 4.1, one

can show that the simultaneous uniform ergodicity conditio (10) holds. Similarly to
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the proof of Lemma 4.2, we can prove that the diminishing ad&gation condition (9)

holds for Dual RAPT. The result then follows as in the proof ofTheorem 4.1. O

Proof of Theorem 4.3. It follows as in the previous proof that infsz: n d(Xy) >
0. Then, similar to Lemma 4.1, it follows that the simultaneas uniform ergodicity
condition (10) holds. Diminishing adaptation (9) follows Bnilarly to Lemma 4.2. The

result then follows as in the proof of Theorem 4.1. O

5 Examples

5.1 Simulated Examples

We study the performance of the methods proposed using a bidal target distribu-
tion which is a mixture of two Gaussians. By varying the meanand variances of the

mixture components we try to cover a wider variety of situatns. Let us consider the

target distribution

(X)=0:5 N( 1; 1)+0:5 N( 25 2);

i)+ il 1 =1;2; wherely

isthed d matrix of 1's. The considered scenarios are:

where ; are ten-dimensional vectors and ; = (|

Scenario A ;=0:2, ,=0:3, 1= 3, 4=3;, 5= 31 j 10
Scenario B: 1=0:2, ,=0:3, - = % =05 4= 051 j 10.
Scenario C: ;= 01, ,=0:1, 2= 3 43=3;, = 31 j 10
Scenario D: 1=0:1, = 01,-1= 3 3=3 = 31 j 10
Scenario E: 1= 01, ,=0:1, 1= 3, 4y=1;, 4= 1,1 j 10
Scenario F: 1=0:1, ,= 01, - = % =15 4= 151 j 10.
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It should be noted that scenarios C and D and E and F are di erdrdue to the di erent
standard deviations. In our study we chose to implement the $IT algorithm (Haario
et al., 2001), the Dual RAPT and the Mixed RAPT either for only one chain or,
within the paradigm of INCA or TINCA, for ve chains in parall el.

The starting value for thei th chainisxio=(3 i;3 i;:::;3 i)Tforl i 5

and in the case we implement any of the above algorithms usirgsingle chain, the

1= 2= lgpand ynoe =25l10. The HST algorithm has initial value = [,9. The

used in (5) and (7) is set to @M1. The initialization period contains a total of 10,000
samples which means that in the case of ve parallel chains@&ahas an initialization
period of 2000 simulations. Throughout the simulation, inlie case of Mixed RAPT,
we set = 0:2. Under all scenarios the partition is de ned usings; = P |1:ol X; O
and S, = P llfl X; > 0. This choice produces a partition that is, in all examples,
relatively far from the optimal one.

In order to assess the performance of the algorithm we showethistograms of the
rst two and last two coordinates, i.e. X1; X»; Xg; X10. INn @ unimodal setting one could
compare the covariance of the proposal with the optimal cokance. Unfortunately,
when the target is a mixture of unimodal distributions the opimal proposal is not
known. One can still compare the number of inter-mode trarsbns (switches) which
is roughly the same as the number of times the chain has craddeom S; to S, and
vice-versa.

Under Scenario A, after 100,000 iterations the mixture paraeters of the proposal
6) are " =0:681 and ¥ =0:353.

The histograms show that a single mixed RAPT chain does a mudbetter job
at nding both modes, see Figure 6, compared to a single chagonstructed using
the simpler dual RAPT algorithm, Figure 5, or the HST algorithm, Figure 7. These
results reinforce the intuitive idea that when the modes arfar apart neither the HST
nor the dual RAPT are e ciently exploring the space. We had smilar ndings in all

scenarios in which the distance between the modes was large, Scenarios A, C and
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Figure 5. Scenario A: Histograms of 100,000 samples obtained f&r; X5; Xg; X 10

using the dual RAPT algorithm.

It is important for the initial variances of Qunoe t0 be large enough so that during
the initialization period, both modes are visited. For insance, under scenario D
running a single mixed RAPT algorithm with starting valuexo = (0;:::;0)", =0:3
and wnhoe = diag(10;:::;10) the algorithm does not detect both modes even after an
initialization period of 10,000 samples. If we use the indl noe = diag(25;:::;25)
then the performance of mixed RAPT is quite good. In real appations, one does not
always have this information and in that case we recommending INCA or TINCA
to reduce the risk of missing regions with high probability nder

For the same scenario D, we ran ve parallel chains, each ofdm for 20,000
iterations. To test the robustness of INCA we used whoe = l10. The histograms of
the samples corresponding to the rst two coordinates and thlast two coordinates
are as shown in Figure 9.

The results con rm that, although the initial variances are small, the process is
mixing well after the initialization period. We also used TNCA with four temperature

levelsT = f1;2;4;8g and once again the algorithm yields the correct samples asnca
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Figure 6: Scenario A: Histograms of 100,000 samples obtained f&r; X5; Xg; X 10
with mixed RAPT.
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Figure 7: Scenario A: Histograms of 100,000 samples obtained f&r; X,; Xg; X 19
with the HST algorithm.
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Figure 8: Scenario D: Histogram of 100,000 samples obtained f&r;; X5; Xg; X 10
using TINCA with temperaturesT = f1;2;4;8g for ve mixed RAPT chains.

be seen from Figure 8. In the case in which the modes are cloas, speci ed in
Scenario B the performance of the HST algorithm is similar tthat of mixed RAPT.

Our simulations also show that the number of mode switches ercomparable for
both algorithms. Not surprisingly, the pattern changes whe the distance between

the modes is increased, as illustrated by Figure 10.

5.2 Real Data Example: Genetic Instability of Esophageal

Cancers

Cancer cells undergo a number of genetic changes during naspc progression, in-
cluding loss of entire chromosome sections. We call the lafsa chromosome section
containing one allele by abnormal cells by the term \Loss of éterozygosity” (LOH).

When an individual patient has two dierent alleles, LOH canbe detected using
laboratory assays. Chromosome regions with high rates of HOare hypothesized
to contain genes which regulate cell behavior so that loss tifese regions disables

important cellular controls.
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Figure 9: Scenario D: Histogram of 100,000 samples obtained f&r;; X5; Xg; X 10

using ve parallel mixed RAPT chains.

Figure 10: Scenario E: Number of switches for the HST algorithm (dottdihe) and
for the mixed RAPT (solid line).
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To locate \Tumor Suppressor Genes"(TSGs), the Seattle Bagtt's Esophagus re-
search project (Barrett et al., 1996) has collected LOH ragefrom esophageal cancers
for 40 regions, each on a distinct chromosome arm. A hierarcl mixture model has
been constructed by Warnes (2001) in order to determine thegbability of LOH for
both the \background" and TSG groups. The labeling of the twagroups is unknown
so we model the LOH frequency using a mixture model, as dedeil by Desai (2000).

We obtain the hierarchical Binomial-BetaBinomial mixture model

Xi Binomial(N;; 1)+ (1 )Beta-Binomial(N;; 2; );

with priors
Unif{0; 1];
1 Unif0; 1];
> Unif[0; 1];
Unif[  30; 30}

where is the probability of a location being a member of the binomiegroup, ; is
the probability of LOH in the binomial group, » is the probability of LOH in the
beta-binomial group, and controls the variability of the beta-binomial group. Here
we parameterize the Beta-Binomial so that is a variance parameter de ned on the
range 1 1 .As !'1 the beta-binomial becomes a binomial and as
'l the beta-binomial becomes a uniform distribution on [A]. This results in

the unnormalized posterior density
(GIRETRPSEN 9 AP OCH T PR PY

on the prior range, where

0 1
foxnj; 1, 21 = @" A @ )" x+
XO 1
N )@nA (3) (x+ %)

x (DI (n x+ L2 (n+ L)
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Mean in | Region 1| Region 2| Whole space

0.897 0.079 0.838
1 0.229 0.863 0.275
2 0.714 0.237 0.679

15.661 | -14.796 13.435

Table 1: Simulation results for the LOH data.

and! , = ﬁ In order to use the random walk Metropolis we have used thedistic
transformation on all the parameters with range [01]. However, all our conclusions
are presented on the original scale for an easier interprétan.

Using the optimization procedures used by Warnes (2001) weetdrmine that
the two modes of are reasonably well separated by the partition made &, =
f(; 1 20 ) 21001 [61] [0;1] [ 3G30] 2 19andS; = f(; 15 25 )2

[0:1] [0;1] [6;1] [ 3G30f = .9

5.2.1 Simulation results

We have run ve parallel mixed RAPT algorithms to simulate fom  using the
partition S;[ S,. The initialization period contained 5,000 iterations foreach chain.
The covariance matrices were initialized as; = ,=0:1l4 and ynoe = 201,4. After
50,000 iterations from each chain, we obtain " = 0:923 and ® = 0:412. The
estimates for the parameters of interest are shown in TableZ1.

Figure 11 gives a two dimensional scatterplot of the ¢; ,) samples. This is
similar to the ndings of Warnes (2001) (Figure 8). To illusrate the exchange of
information between the parallel the chains, we use the BGRiafnostic statistic,
R. When the BGR R statistics is close to to 1, we can assume all chains have the
same information regarding . For this example, after 20,000 iterations the BGR's R
statistics stabilizes below 1.1 as one can see in Figure 12.

To compare the performance of the mixed RAPT with and withoutiNCA we
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Figure 11: Scatterplot of the 250,000 samples fdr 1; »).

10

0 10000 20000 30000 40000 50000

iteration

Figure 12: LOH Data Example: The evolution of BGR's R statistics for 5 nxied
RAPT chain; the dotted line represents the threshold 1.1.
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Figure 13: The total number of switches times for the ve parallel MixeBRAPT chains
(run for 60,000 iterations each) vs the number of switch tingeof a single Mixed RAPT

(run for 300,000 iterations).

monitor the number of switches betweers; and S,. We run a single Mixed RAPT
algorithm for 300,000 iterations, and independently ve peallel Mixed RAPT algo-
rithms for 60,000 iterations each. In Figure 13 we plot the tal number of switches
for the ve parallel processes up to tima and the switch time for the single run up
to time 5t for a fair comparison. One can see that the Mixed RAPT performbetter

together with INCA than by itself.

6 Conclusions and Further Work

This work is concerned with the practical aspects of adap&vMCMC, particularly

related to sampling from multimodal distributions. The aim for most of our the-
oretical results is the adaptive random walk Metropolis sice it is one of the most
used algorithms in practice. The inter-chain adaptation sategy is widely applicable

and could be used for a large number of adaptive MCMC algoriths with signi cant
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potential gains. The regional adaptation algorithm proposd here has been discussed
in the context of two separate regions. Evidently, the conaiiction can be generalized
but one has to keep in mind that besides good sampling propes within each region
the sampler should be also required to visit all regions ofteenough. In the case of

many regions this could present complications.
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