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Markov chain Monte Carlo algorithms (MCMC) and Adaptive Markov chain Monte

Carlo algorithms (AMCMC) are most important methods of approximately sampling

from complicated probability distributions and are widely used in statistics, computer

science, chemistry, physics, etc. The core problem to use these algorithms is to build up

asymptotic theories for them.

In this thesis, we show the Central Limit Theorem (CLT) for the uniformly ergodic

Markov chain using the regeneration method. We exploit the weakest uniform drift con-

ditions to ensure the ergodicity and WLLN of AMCMC. Further we answer the open

problem 21 in Roberts and Rosenthal [48] through constructing a counter example and

finding out some stronger condition which indicates the ergodic property of AMCMC.

We find that the conditions (a) and (b) in [48] are not sufficient for WLLN holds when

the functional is unbounded. We also prove the WLLN for unbounded functions with

some stronger conditions.

Finally we consider the practical aspects of adaptive MCMC (AMCMC). We try some

toy examples to explain that the general adaptive random walk Metropolis is not efficient

for sampling from multi-model targets. Therefore we discuss the mixed regional adapta-

tion (MRAPT) on the compact state space and the modified mixed regional adaptation

on the general state space in which the regional proposal distributions are optimal and

the switches between different models are very efficient. The theoretical proof is to show
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that the algorithms proposed here fall within the scope of general theorems that are used

to validate AMCMC. As an application of our theoretical results, we analyze the real

data about the “Loss of Heterozygosity” (LOH) using MRAPT.
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Chapter 1

Introduction

1.1 Introduction to the Problems and the Conclu-

sions of Thesis

MCMC algorithms are extremely widely used in statistical inference to sample from

complicated high-dimensional distributions. The algorithms were first used in statistical

physics and later in spatial statistics. For more history, one can see [30]. However it

is very difficult to find the most efficient MCMC algorithm with respect to any target

distribution. Adaptive MCMC algorithm is one direction developed recently to deal with

this problem by tuning the associated parameters such as proposal variances through

automatically “learning” from the history simulations. The most important issue before

using both the MCMC algorithms and the adaptive MCMC algorithms is to prove the

asymptotic theory of them. Another critical issue is to design efficient and reliable

adaptive samplers for broad classes of problems.

This thesis consists of four results. We present the first main result (which is pub-

lished as A. Jasra and C. Yang [33]) in chapter 3, which is to prove the open problem

3 in Roberts and Rosenthal [46]. In [46], the authors have proved that a central limit

theorem (CLT) holds for h whenever π(|h|2+δ) < ∞ and δ > 0 if the Markov chain is

1



Chapter 1. Introduction 2

geometrically ergodic using the regeneration methods. And they also proposed an open

problem: to provide a regeneration proof of the CLT for h whenever π(|h|2) < ∞. In

Chapter 3, we deal with this open problem.

The second main result (see C. Yang [57]) is about the ergodicity of adaptive MCMC

and presented in chapter 5. We study the relationship between the recurrence concept

and the ergodicity of AMCMC. Through constructing counter examples and applying

the splitting chain technique to the kernel family, we show the ergodic property of AM-

CMC under the uniform minimal drift conditions. Actually we partially tackle the open

problem 20 in Roberts and Rosenthal [48]. The problem is stated as below:

Open Problem 20: Consider an adaptive MCMC algorithm with Diminishing Adap-

tion, such that there is C ∈ F , V : X → [1,∞),δ > 0, and b < ∞, with supC V = ν < ∞,

and:

(i) for each γ ∈ Y , there exists a probability measure νγ(·) on C with Pγ(x, ·) ≥ δνγ(·)
for all x ∈ C; and

(ii)PγV ≤ V − 1 + bIC for each γ;

Suppose further that the sequence {V (Xn)}∞n=0 is bounded in probability, given X0 = x∗

and Γ0 = γ∗. Does the adaptive MCMC algorithm converge to the target distribution?

So far we can only prove the above conclusion with some additional conditions besides

conditions (i) and (ii). Furthermore, we construct another counterexample to show that

{Mε(Xn, Γn)}∞n=0 being bounded in probability given X0 = x∗ and Γ0 = γ∗ is not a nec-

essary condition of ergodicity under the diminishing adaption assumption although it is

sufficient. Following this conclusion, it seems that we should have a positive answer to

the open problem 21 stated as below in Roberts and Rosenthal [48].

Open Problem 21: Consider an adaptive MCMC algorithm with Diminishing Adap-

tation such that for all ε > 0, there is m ∈ N such that P [Mε(Xn, Γn) < m i.o.|X0 =

x∗, Γ0 = γ∗] = 1 where Mε(x, γ) = inf{n ≥ 1 : ‖P n
γ (x, ·) − π(·)‖ ≤ ε}. Let x∗ ∈ X and

γ∗ ∈ Y .Does the adaptive MCMC algorithm converge to the target distribution?
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However a negative answer to this problem is given by constructing a complicated

counterexample. We also explore some stronger conditions than those in the open prob-

lem 21 which can ensure the ergodicity of AMCMC.

The third main result is on the WLLN of adaptive MCMC (see C. Yang [56]) and

presented in chapter 6. We construct a counter example to show that Simultaneous

Uniform Ergodicity Conditions and Diminishing Adaption Conditions are not enough

to have WLLN hold for unbounded functions. However we can prove the WLLN for

unbounded functions under the conditions of corollary 11 in Roberts and Rosenthal [48].

Further we extend the WLLN for HST algorithm from bounded functions to unbounded

functions as an application.

The fourth result (see R.V. Craiu, J.S.Rosenthal and C. Yang [14] and [58]) is con-

cerned with the practical aspects of adaptive MCMC, particularly related to sampling

from multi-model distributions. Since the random walk Metropolis is one of the mostly

used algorithms in practice it is the aim for most of our theoretical results. The regional

adaptation algorithms proposed in chapter 7 and chapter 8 are discussed in the context

of two separate regions. We conduct some real data analysis using our mixed regional

adaptive MCMC algorithm and compare the efficiency of different adaptive MCMC al-

gorithms by simulating some toy examples.

Chapter 9 concludes the thesis and summarizes some future work directions.

In chapter 2 we introduce the MCMC algorithm and some relevant Markov Chain

theories.

In chapter 4 we outline the constructions, notations and ergodicity theories of adaptive

MCMC algorithms.



Chapter 2

Markov Chain and MCMC

Algorithms

2.1 Why we need MCMC

Most applications of MCMC ([36], [29])are applied to the Bayesian Statistics Computa-

tions. From a Bayesian point of view, observables and parameters of a statistical model

are all considered random quantities. Suppose D denotes the observations, and θ denotes

model parameters and missing data. The joint distribution P (D, θ) consists of a prior

distribution P (θ) and a likelihood P (D|θ) as

P (D, θ) = P (D|θ)P (θ).

Having observed D, we have

P (θ|D) =
P (θ)P (D|θ)∫
P (θ)P (D|θ)dθ

as the distribution of θ conditional on D, which is the posterior distribution of θ and

is the object of all Bayesian inference. Any features of the posterior distribution are

legitimate for Bayesian inference: moments, quantiles, highest posterior density regions,

etc. All these quantities can be expressed in terms of posterior expectations of functions

4



Chapter 2. Markov Chain and MCMC Algorithms 5

of θ. The posterior expectation of a function f(θ) is

E[f(θ)|D] =

∫
f(θ)P (θ)P (D|θ)dθ∫

P (θ)P (D|θ)dθ
.

The integrations in this expression have brought difficulties in the applications of Bayesian

inference, especially in high dimensional cases. Analytic method to do direct integration

E[f(θ)|D] is infeasible. Numerical evaluation of E[f(θ)|D] as an alternative method is

difficult and inaccurate when the dimension is greater than about twenty. Therefore

good estimates of expectations allow Bayesian inference to be used to estimate a variety

of parameters, probabilities, means, etc. Monte Carlo integration evalutes E[f(X)] by

simulating i.i.d random variables {Xi, i = 1, · · ·, n} from π(·), then

E[f(X)] ≈ 1

n

n∑
i=1

f(Xi).

So we use the sample mean to esitimate the mean of f(X). When the samples {Xi}
are independent, if we increase the sample size n, the approximation will tend to be

more accurate according to the laws of large numbers. However, drawing samples {Xi}
independently from π(·) is not feasible generally. Since {Xi} do not necessarily need to be

independent, one method of generating the samples is through a Markov chain having π(·)
as its stationary distribution. This method is called Markov chain Monte Carlo(MCMC).

MCMC has been proven to be an extremely helpful method of approximately sampling

from distribution π(·) on the state space X , especially when π(·) is very high-dimensional

or too complicated to do the direct sampling. Actually the existence of MCMC algorithms

has transformed Bayesian inference by allowing practitioners to sample from some simple

distributions of complicated statistical models (see [53], [51],[55],[43]).

Suppose we want to sample from some complicated distribution π. The main idea of

general MCMC algorithm is to construct a Makov chain {Xi}n
i=1 using some simple

proposal distribution Q such that L(Xn) ≈ π(·) when n is large enough. In fact it is very

straightforward to realize such an idea. For more precise descriptions, see section 2.7.

Then we can estimate the integral
∫

f(x)π(dx) using 1
n

∑n
i=1 f(Xi). We note that when
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we use the MCMC algorithm, we only need to generate samples from the much simpler

distribution Q, rather than from the complicated distribution π. This idea makes the

numerical computation of E[f(θ)|D] much easier and more efficient. Such good estimates

make Bayesian inference much more widely applicable.

Furthermore, a wide variety of the Markov Chain’s asymptotic theories are developed to

prove the validity of the MCMC algorithms and to estimate the errors of them. We will

introduce these theories in later sections.

In practice, to remove the impact of starting values, we usually use 1
n−N

∑n
i=N+1 f(Xi)

as the estimate of
∫

f(x)π(dx) for some 0 < N < n and N being large enough.

2.2 Definition of Markov Chain

The application of MCMC algorithms raise numerous questions related to the mathe-

matical theory of Markov chain. Now let us recall the definition of Transition Probability

Kernels(see [37]), B(X ) will be taken as the Borel σ−field.

Definition 2.1. If P = {P (x,A), x ∈ X , A ∈ B(X )} is such that:

(i) for each A ∈ B(X ), P (·, A) is a non-negative function on X ;

(ii) for each x ∈ X , P (x, ·) is a probability measure on B(X ),

then we call P a Transition Probability Kernels or Markov transition function.

Definition 2.2. A Markov chain X = {X0, X1, · · ·} is a particular type of stochastic

process taking, at times n ∈ Z+, initial distribution µ and transition probability P (x,A)

such that X0 ∼ µ(·) and

Pµ(Xn+1 ∈ A|Xn = x,Xn−1 = xn−1, · · ·, X0 = x0) = P (Xn+1 ∈ A|Xn = x) = P (x,A).

We will use P n(x,A) represents the probability of jumping from x to somewhere in

A after n iterations. Obviously we have:

P n(x,A) =

∫

X
P (y, A)P n−1(x, dy).
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In this chapter we will summarize some basis definitions and related theoretical results

of Markov chain which we will use in the next chapters. And in the last section we will

introduce the Metopolis-Hasting algorithms. All the results in this chapter can be found

in Meyn and Tweedie [37], Roberts and Rosenthal [46].

2.3 Irreducible, Atom, Minorization Condition and

Small Set

Much general Markov chain theory can be developed in complete analogy with the sit-

uation when X contains an atom for the ϕ−irreducible chain X(see [37]). Let us recall

the definition of Return time to A first, for any A ∈ B+(X ) ,

τA := min{n ≥ 1 : Xn ∈ A}.

Then we can give the definition of ϕ−irreducible chain.

Definition 2.3. We call X = {Xn} ϕ−irreducible if there exists a measure ϕ on B(X )

such that, whenever ϕ(A) > 0, we have P (τA < ∞|X0 = x) > 0 for all x ∈ X .

Next we introduce the definition of atom:

Definition 2.4. A set α ∈ B(X ) is called an atom for X if there exists a measure µ on

B(X ) such that:

P (x,A) = µ(A), x ∈ α.

If X is φ−irreducible and φ(α) > 0, then α is called an accessible atom.

Obviously each point in X is an atom. However we also to find some conditions under

which we can construct an artificial atom. Actually we need the Minorization Condition

as below:

Minorization Condition For some δ > 0, some C ∈ B(X ) and some probability
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measure ν with ν(Cc) = 0 and ν(C) = 1, P (x,A) ≥ δIC(x)ν(A).

Then we can split any Markov chain with the Minorization Condition. We first split the

space X itself by writing X̌ = X × {0, 1}, where X0 = X × {0} and X1 = X × {1} are

thought of as copies X equipped with copies B(X0), B(X1) of the σ− field B(X ). We also

let B(X̌ ) be the σ−field of X̌ generated by B(X0), B(X1): that is B(X̌ ) is the smallest

σ−field containing sets of the form A0 := A× {0}, A1 := A× {1}, A ∈ B(X ).

We will write xi, i = 0, 1 for elements of X̌ , with x0 denoting members of the upper level

X0 and x1 denoting members of the lower level X1.

If λ is any measure on B(X ), then the next step in the construction is to split the measure

λ into two measures on each of X0 and X1 by defining the measure λ∗ on B(X̌ ) through

λ∗(A0) = λ(A ∩ C)[1− δ] + λ(A ∩ Cc),

λ∗(A1) = λ(A ∩ C)δ,

where C, δ and ν are the set, the constant and the measure in the Minorization Condition.

Note that the splitting is dependent on the choice of the set C, and although in general

the set chosen is not relevant. We can observe the λ is the marginal measure induced by

λ∗, in the sense that for any A in B(X ) we have:

λ∗(A0 ∪ A1) = λ(A).

Now we can step in the construction to the split the chain {Xn} to the form a chain {X̌n}
which lives on (X̌ ,B(X̌). Define the split kernel P̌ (xi, A) for xi ∈ X̌ and A ∈ B(X̌) by:

P̌ (x0, ·) = P (x, ·)∗, x0 ∈ X0 − C0;

P̌ (x0, ·) = [1− δ]−1[P (x, ·)∗ − δν∗(·)], x0 ∈ C0;

P̌ (x1, ·) = ν∗(·), x1 ∈ X1.

We can see that outside C the chain {X̌n} behaves like {Xn}, moving on the “top” half

X0 of the split space. Each time it arrives in C, it is “split”; with probability 1 − δ it
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remains in C0, with probability δ it drops to C1.

It is critical to note that the bottom level X1 is an atom with ψ∗(X1) == δψ(C) > 0

whenever the original chain is ψ−irreducible. We also have P̌ n(xi,X∞ − C1) = 0 for all

n ≥ 1 and all xi ∈ X̌ , so that the atom C1 ⊆ X1 is the only part of the bottom level

which is reached with positive probability. We will use the notation α̌ := C1 when we

wish to emphasize the fact that all transitions out of C1 are identical, so that C1 is an

atom in X̌ . Following Meyn and Tweedie [37] we have the following theorem:

Theorem 2.1. (i) The chain X is the marginal chain of {X̌}: that is, for any initial

distribution λ on B(X ) and any A ∈ B(X ),

∫

X
λ(dx)P k(x,A) =

∫

X̌
λ∗(dyi)P̌

k(yi, A0 ∪ A1)

(ii) The chain X is ϕ−irreducible if {X̌} is ϕ̌−irreducible; and if X is is ϕ−irreducible

and ϕ(C) > 0 then {X̌} is ν∗−irreducible, and α̌ is an accessible atom for the split chain.

Finally we will introduce the definition of Small Sets

Definition 2.5. A set C ∈ B(X ) is called a Small Sets if there exists an m > 0, and a

non-trivial measure νm on B(X ), such that for all x ∈ C, B ∈ B(X ),

Pm(x,B) ≥ νm(B).

Then we say that C is νm−small.

In fact, for a ψ−irreducible chain, every set A ∈ B+(X ) contains a small set in

B+(X ). As a consequence, every ψ−irreducible chain admits some m−skeleton which

can be split, and for which the atomic structure of the split chain can be exploited. We

will use this idea to a family of Markov chain in the chapter 4, so that we can use the

common atomic structure to prove the ergodicity of Adaptive Monte Carlo Markov chain

algorithms(AMCMC).

Finally we introduce a generalization of small sets, petite sets. Let a = {a(n)} be a
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distribution, or probability measure, on Z+, and consider the Markov chain Xa with

probability transition kernel

Ka(x,A) :=
∞∑

n=0

P n(x,A)a(n), x ∈ A, A ∈ B(X ).

Definition 2.6. We call a set C ∈ B(X ) νa−petite if the sampled chain satisfies the

bound

Ka(x,B) ≥ νa(B),

for all x ∈ C, B ∈ B(X), where νa is non-trivial measure on B(X).

2.4 Recurrence, Transience and Drift Conditions

In this section we will introduce the definition of recurrence and transience which are

used to describe type of weak forms of stability. What we concern is actually the behavior

of the occupation time random variable

ηA :=
∞∑

n=1

I{Xn ∈ A},

which counts the number of visits to a set A. In terms of ηA we can study a chain through

the transience and recurrence of its sets.

Definition 2.7. The set A is called uniformly transient if for there exists M < ∞ such

that Ex[ηA] ≤ M for all x ∈ A.

The set A is called recurrent if Ex[ηA] = ∞ for all x ∈ A.

Using the definition of uniformly transient and recurrent of the sets we can define

recurrent chain and transient chain and have the following theorem (see [37]):

Theorem 2.2. Suppose that X is ψ−irreducible Markov chain. Then either

(i) every set in B+(X ) is recurrent, in which case we call X recurrent; or

(ii) there is a countable cover of X with uniformly transient sets, in which case we call

X transient; and every petite set is uniformly transient.
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We can check the transience and recurrence through computing the expected drift

defined by the one-step transition function P . The Drift Markov Chains is defined as:

Definition 2.8. The drift operator ∆ is defined for any non-negative measurable function

V by

∆V (x) :=

∫
P (x, dy)V (y)− V (x), x ∈ X .

Based on the drift function, we can develop the criteria for both transience and

recurrence (see [37]).

Theorem 2.3. Suppose X is a ψ−irreducible chain.

(i) The chain X is transient if and only if there exists a bounded non-negative function

V and a set C ∈ B+(X ) such that for any x ∈ Cc,

∆V (x) ≥ 0

and

D = {V (x) > sup
y∈C

V (y)} ∈ B+(X ).

(ii) The chain is recurrent if there exists a petite set C ⊂ X , and a function V which is

unbounded off petite sets in the sense that CV (n) := {y : V (y) ≤ n} is petite for all n,

such that

∆V (x) ≤ 0, x ∈ Cc.

2.5 Invariant Measure and Ergodicity

For many purposes, we might require that the distribution of Xn does not change as

n takes on different values. Based on the Markov property it follows that the finite

dimensional distributions of X are invariant under translation in time. Therefore we will

consider the definition of Invariant Measure.
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Definition 2.9. A σ−finite measure π(·) on B(X ) with the property

π(A) =

∫

X
π(dx)P (x,A), A ∈ B(X ),

will be called invariant.

Regarding the construction of invariant measure, we have the following theorem (see

[37]):

Theorem 2.4. If the chain X is recurrent then it admits a unique (up to constant

multiples) invariant measure π, and the measure π has the representation, for any A ∈
B+(X )

π(B) =

∫

A

π(dω)Eω[

τA∑
n=1

I{Xn ∈ B}], B ∈ B(X ).

The invariant measure π is finite if there exists a petite set C such that

sup
x∈C

Ex[τC ] < ∞.

Following these results above we have the definition of Positive and Null Chains

Definition 2.10. Suppose that X is ψ−irreducible, and admits an invariant probability

measure π. Then X is called a positive chain.

If X does not admit such a measure, then we call X null.

Before we introduce the main theorem, we need to define some notations:

Definition 2.11. Given Markov chain transition probabilities P on a state space X , and

a measurable function f : X → R, define the function Pf : X → R such that (Pf)(x) is

the conditional expected value of f(Xn+1), given that Xn = x. In symbols,

(Pf)(x) =

∫

y∈X
f(y)P (x, dy).

Now we can introduce the Aperiodic Ergodic Theorem(see [37]):
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Theorem 2.5. Suppose that X is an aperiodic Harris recurrent chain, with invariant

measure π. The following are equivalent:

(i) The chain is positive Harris: that is, the unique invariant measure π is finite.

(ii) There exists some ν−small set C ∈ B+(X ) and some P∞(C) > 0 such that as

n →∞, for all x ∈ C,

P n(x,C) → P∞(C).

(iii) There exists some regular set in B+(X ): equivalently, there is a petite set C ∈ B(X )

such that

sup
x∈C

Ex[τC ] < ∞.

(iv) There exist some petite set C, some b < ∞ and a non-negative function V finite at

some one x0 ∈ X , satisfying

∆V (x) := PV (x)− V (x) ≤ −1 + bIC(x), x ∈ X .

Any of these conditions is equivalent to the existence of a unique invariant probability

measure π such that for every initial condition x ∈ X ,

sup
A∈B(X )

|P n(x,A)− π(A)| → 0

as n →∞, and moreover for any regular initial distribution λ, µ,

∞∑
n=1

∫ ∫
λ(dx)µ(dx) sup

A∈B(X )

|P n(x,A)− π(A)| < ∞.

We also describe the above convergence in terms of the total variation norm between

two probability measures (see [46]).

Definition 2.12. The total variation norm between two probability measures ν1(·) and

ν2(·) is

‖ν1(·)− ν2(·)‖ = sup
A∈B(X )

|ν1(A)− ν2(A)|.

Next we will list some simple properties of total variation distance (see [46], [52]) we

will use in the further chapters.
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Proposition 2.1. (a) If π(·) is stationary for a Markov chain kernel P , then ‖P n(x, ·)−
π(·)‖ is non-increasing in n, i.e. ‖P n(x, ·)− π(·)‖ ≤ ‖P n−1(x, ·)− π(·)‖ for n ∈ N.

(b) More generally, letting (νiP )(A) =
∫

νi(dx)P (x,A), we always have ‖(ν1P )(·) −
(ν2P )(·)‖ ≤ ‖ν1(·)− ν2(·)‖.
(c) If µ(·) and ν(·) have densities g and h, respectively, with respect to some σ−finite

measure ρ(·), and M = max(g, h) and m = min(g, h), then

‖µ(·)− ν(·)‖ =
1

2

∫

X
(M −m)dρ = 1−

∫

X
mdρ.

(d) Given probability measure µ(·) and ν(·), there are jointly defined random variable X

and Y such that X ∼ µ(·), Y ∼ ν(·), and P [X = Y ] = 1− ‖µ(·)− ν(·)‖.

2.6 Geometrically Ergordic And Uniformly Ergodic

In lots of situations, what we concern is the convergence speed of P n as n → ∞. One

typical convergence rate property is geometrically ergodic.

Definition 2.13. A Markov chain with stationary distribution π(·) is geometrically er-

godic if

‖P n(x, ·)− π(·)‖ ≤ M(x)ρn,

for some ρ < 1, where M(x) < ∞ for π−a.e. x ∈ X .

Next we discuss conditions which ensure geometric ergodicity, first let us consider

another drift condition

Definition 2.14. A Markov chain satisfies a drift condition II if there are constants

0 < λ < 1 and b < ∞, and a function V : X → [1,∞) such that

(PV )(x) ≤ λV (x) + bIC(x),

for all x ∈ X .
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We have the following Geometric Ergodic Theorem(see [37])

Theorem 2.6. Geometric Ergodic Theorem Suppose that the chain X is ψ−irreducible

and aperiodic Markov chain with stationary distribution π(·). Suppose C ⊂ X is (n0, ε, ν)−small

set. Suppose further that the drift condition II is satisfied for some constants 0 < λ < 1

and b < ∞, and a function V : X → [1,∞) with V (x) < ∞ for π− a.e x ∈ X . Then the

chain is geometrically ergodic.

Another “qualitative” convergence rate property is uniform ergodicity :

Definition 2.15. A Markov chain having stationary distribution π(·) is uniformly ergodic

if

‖P n(x, ·)− π(·)‖ ≤ Mρn, n = 1, 2, 3, · · ·

for some ρ < 1 and M < ∞.

The equivalences of uniform ergodicity are as the following theorem:

Theorem 2.7. For any Markov chain X the following are equivalent:

(i) X is uniformly ergodic.

(ii) For some n ∈ Z+,

sup
x∈X

‖P n(x, ·)− π(·)‖ < 1.

(iii) The chain is aperiodic and Doeblin’s Condition holds: that is, there is a probability

measure φ on B(X ) and ε < 1, δ > 0, m ∈ Z+ such that whenever φ(A) > ε,

inf
x∈X

Pm(x,A) > δ.

(iv) The state space X is µm−small for some m.

(v) The chain is aperiodic and there is a petite set C with

sup
x∈X

Ex[τC ] < ∞,
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in which case every A ∈ B+(X ),

sup
x∈X

Ex[τA] < ∞.

(vi) The chain is aperiodic and there is a petite set C and a κ > 1 with

sup
x∈X

Ex[κ
τC ] < ∞,

in which case for every A ∈ B+(X ) we have for some κA > 1,

sup
x∈X

Ex[κ
τA
A ] < ∞.

(vii) The chain is aperiodic and there is a bounded solution V ≥ 1 to

∆V (x) ≤ −βV (x) + bIC(x), x ∈ X ,

for some β > 0, b < ∞, and some petite set C.

Under (iv), we have in particular that for any x,

‖P n(x, ·)− π(·)‖ ≤ ρn/m,

where ρ = 1− νm(X ).

2.7 Metropolis-Hasting Algorithm

The Metropolis-Hastings algorithm([36], [29]) is an extremely important MCMC algo-

rithm to sample from complicated probability distribution. Before we introduce how to

construct the Markov chain using this algorithm, let us learn the definition of reversible

first.

Definition 2.16. A Markov chain on a state space X is reversible with respect to a

probability distribution π(·) on X if

π(dx)P (x, dy) = π(dy)P (y, dx), x, y ∈ X .
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It is easy to prove the following proposition of reversibility (see [46]).

Proposition 2.2. If Markov chain is reversible with respect to π(·), then π(·) is station-

ary for the chain.

From the above proposition, we only need to create a Markov chain which is easily

run, and which is reversible with respect to π(·). The simplest way to do this is to use

the Metropolis-Hastings algorithm. Suppose that π(·) has a density πλ, and Q(x, dy) is

any transition kernel of some Markov chain such that Q(x, dy) ∝ q(x, y)dy. Then the

Metropolis-Hastings algorithm proceeds as below:

(i) Choose some initial value X0;

(ii) Given Xn = xn, generate a proposal Yn+1 following the distribution Q(xn, ·). That

is Yn+1 ∼ Q(xn, ·);
(iii) Compute the acceptance rate α(Xn, Yn+1) as

α(x, y) = min[1,
πλ(y)q(y, x)

πλ(x)q(x, y)
].

(iv) We will accept the proposal by setting Xn+1 = Yn+1 with probability α(Xn, Yn+1);

otherwise reject the proposal by setting Xn+1 = Xn with probability 1− α(Xn, Yn+1).

Proposition 2.3. The Metropolis-Hastings algorithm (as described above) produces a

Markov chain {Xn} which is reversible with respect to π(·).



Chapter 3

Central Limit Theorems for Markov

Chains

3.1 Introduction

Let {Xn} be a Markov chain on measurable space (X , E) with unique stationary dis-

tribution π. Let h : X → R be a measurable function with finite stationary mean

π(h) :=
∫
X h(x)π(dx). Ibragimov and Linnik [1](1971) proved that if {Xn} is geometri-

cally ergodic, then a central limit theorem (CLT) holds for h whenever π(|h|2+δ) < ∞,

δ > 0. Cogburn [12](1972) proved that if a Markov chain is uniformly ergodic, with

π(h2) < ∞ then a CLT holds for h. The first result was re-proved in Roberts and Rosen-

thal [46](2004) using a regeneration approach; thus removing many of the technicalities

of the original proof. This raised an open problem: to provide a proof of the second

result using a regeneration approach. In this chapter we will provide a solution to this

problem after we discuss the some results on CLT for Markov Chains.

18
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3.2 Some Discussions

Let {Xn} be a Markov chain with transition kernel P : X × E → [0, 1] and a unique

stationary distribution π. Let h : X → R be a real-valued measurable function. We

say that h satisfies a Central Limit Theorem (or
√

n−CLT) if there is some σ2 < ∞
such that the normalized sum n−

1
2

∑n
i=1[h(Xi) − π(h)] converges weakly to a N(0, σ2)

distribution, where N(0, σ2) is a Gaussian distribution with zero mean and variance σ2

(we allow that σ2 = 0), and (e.g. Chan and Geyer [11](1994), see also Bradley [9](1985)

and Chen [11](1999))

σ2 = π(h2) + 2

∫

E

∞∑
n=1

h(x)P n(h)(x)π(dx).

When the Markov chain is uniformly ergodic, we have the following theorem:

Theorem 3.1 (Cogburn [12], 1972). If a Markov chain with stationary distribution π is

uniformly ergodic, then a
√

n−CLT holds for h whenever π(h2) < ∞.

Ibragimov and Linnik [1](1971) proved a CLT for h when the chain is geometrically

ergodic and, for some δ > 0, π(|h|2+δ) < ∞. Roberts and Rosenthal [46] (2004) pro-

vided a simpler proof using regeneration arguments. In addition, Roberts and Rosenthal

[46](2004) left an open problem: To provide a proof of Theorem 3.1 (originally proved

by Cogburn [12](1972)) using regeneration.

Many of the recent developments of CLTs for Markov chains are related to the evo-

lution of stochastic simulation algorithms such as Markov chain Monte Carlo (MCMC).

For example, Roberts and Rosenthal (2004) posed many open problems, including that

considered here, for CLTs; see Häggström [28](2005) for a solution to another open prob-

lem. Additionally, Jones (2004) discusses the link between mixing processes and CLTs,

with MCMC algorithms a particular consideration. For an up-to-date review of CLTs

for Markov chains see: Bradley [9](1985), Chen [11](1999) and Jones [34](2004).

The proof of Theorem 3.1, using regeneration theory, provides an elegant framework

for the proof of CLTs for Markov chains. The approach may also be useful for alternative
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proofs of CLTs for chains with different ergodicity properties; e.g. polynomial ergodicity

(see Jarner and Roberts [31] (2002)).

Remark: Actually the CLT may hold for some Markov chain without ergodic prop-

erty with respect to its stationary distribution. We can consider an example such that

the state space X = {1, 2, 3, 4} with the stationary distribution π(1) = π(2) = π(3) =

π(4) = 1
4

and the transition matrix P =




0 0 1
2

1
2

0 0 1
2

1
2

1
2

1
2

0 0

1
2

1
2

0 0




Then we can prove that P

stated above is reversible and π stated above is the unique stationary distribution to P .

And for every h : X → R with π(h2) < ∞ satisfies a CLT for the P as stated above. On

the other hand, since the eigenvalue of P is 1,−1, 0, 0, we have limn→∞ P n does NOT

exist. Therefore P is NOT ergodic.

The structure of this chapter is as below. In Section 3.3 we provide some background

knowledge the regeneration construction, we also detail some technical results. In Section

3.4 we use the results of the previous Section to provide a proof of Theorem 3.1 using

regenerations.

3.3 Regeneration Construction and Some related Tech-

nical Results

Now we consider the regeneration construction for the proof. Since X is small we use

the split chain construction (Nummelin, 1984), for any x ∈ X , A ∈ E

Pm(x,A) = (1− ε)R(x,A) + εν(A),

where R(x,A) = (1 − ε)−1[Pm(x,A) − εν(A)]. That is, for a single chain (Xn), with

probability ε we choose Xn+m ∼ ν, while with probability 1 − ε we choose Xn+m ∼
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R(Xn, ·), if m > 1, we fill in the missing values as Xn+1 using the appropriate Markov

kernel and conditionals.

We let T1, T2, . . . be the regeneration times, i.e. the times such that XTi
∼ ν, clearly

Ti = im. Let T0 = 0 and r(n) = sup{i ≥ 0 : Ti ≤ n}, using the regeneration time, we

can break up the sum
∑n

i=0[h(Xi)− π(h)] into sums over tours as follows:

n∑
i=0

[h(Xi)− π(h)] =

r(n)∑
j=1

Tj+1−1∑
i=Tj

[h(Xi)− π(h)] + Q(n),

where

Q(n) =

T1−1∑
j=0

[h(Xj)− π(h)] +
n∑

Tr(n)+1

[h(Xj)− π(h)].

We begin our construction, by noting the following result.

Lemma 3.1. Under the formulation above, we have that:

Q(n)

n1/2
−→p 0. (3.1)

Proof. Let

Q+
1 (n) =

T1−1∑
j=0

[h(Xj)− π(h)]+,

Q−
1 (n) =

T1−1∑
j=0

[h(Xj)− π(h)]−

and

Q+
2 (n) =

n∑
Tr(n)+1

[h(Xj)− π(h)]+,

Q−
2 (n) =

n∑
Tr(n)+1

[h(Xj)− π(h)]−,

where [h(Xj)− π(h)]+ = max{h(Xj)− π(h), 0} and [h(Xj)− π(h)]− = max{−[h(Xj)−
π(h)], 0}.
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The strategy of the proof is to show that Q±
i (n)/n1/2 →p 0 as n → ∞. Consider

Q+
1 (n),

Q+
1 (n) =

sm−1∑
j=0

[h(Xj)− π(h)]+ w.p ε(1− ε)(s−1), (3.2)

where s ∈ N. If Q+
1 (n)/n1/2 →p 0, i.e. P(∃ε,Q+

1 (n) > εn1/2, i.o.) = 1 for all n, which

means that P(Q+
1 (n) = ∞, i.o.) = 1, which is impossible from (3.2). So Q+

i (n)/n1/2 →p 0

as n →∞. Similarly Q−
i (n)/n1/2 →p 0 as n →∞.

For Q2 we have Q+
2 (n) ≤ ∑ln

j=rn+1[h(Xj)−π(h)]+ = Q̃+
2 (n), where l(n) = inf {i ≥ 0 : Ti ≥ n}.

We know that Q̃+
2 (n) has the same distribution with Q+

2 (n), so Q̃+
i (n)/n1/2 →p 0 as

n → ∞ and therefore, Q+
2 (n)/n1/2 →p 0 as n → ∞. Similarly Q−

2 (n)/n1/2 →p 0 as

n →∞. From the above discussion, we conclude that Q(n)/n1/2 →p 0.

The above lemma indicates that our objective is to find the asymptotic distribution

of
∑r(n)

j=1

∑Tj+1−1
i=Tj

[h(Xi) − π(h)]. Given the definition of Ti, each random variable sj =

∑Tj+1−1
i=Tj

[h(Xi) − π(h)] has same distribution. However, we know that Tj depends on

XTj−1+1, · · ·, XTj−1−1, but does not depend on the value of XTj−1
. That is, we have the

following lemma:

Lemma 3.2. For any 0 ≤ i < ∞, si and si+1 are not independent, but the two collections

of random variables: {si : 0 ≤ i ≤ m − 2} and {si : i ≥ m} are independent for any

m ≥ 2.Therefore the random variable sequence {si}∞i=0 is a one-dependent stationary

stochastic processes.

Proof. Clearly si+1 depends on the distribution Ti+1, thus:

P
(

XTi+1 ∈ dx1, · · ·, XTi+m ∈ dy|XTi
x, Ti+1 − Ti > m

)

=
(1− ε)R(x, dy)

Pm(x, dy)
P (x, dx1) · · · P (xm−1, dy)

and

P
(

XTi+1 ∈ dx1, · · ·, XTi+m ∈ dy|XTi
= x, Ti+1 − Ti = m

)
=

εν(dy)

Pm(x, dy)
P (x, dx1) · · · P (xm−1, dy).
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Note si depends on Ti+1. Therefore si and si+1 are not independent. However, for any

0 ≤ i ≤ m− 2 < m ≤ j < ∞, since XTi
∼ ν(·) and XTj

depends XTj−1+1, · · ·, XTj−1, but

is independent of all the {Xk : k ≤ Tj}. Thus, we have the result.

3.4 Proof of Theorem 3.1

To prove the Theorem 3.1 we follow the strategy:

Step 1: Prove that I = Eν

( ∑T1−1
i=0 [h(Xi)− π(h)]

)
= 0.

Step 2: Prove that J =
∫
X ν(dx)E

[( ∑T1−1
i=0 [h(Xi)− π(h)]

)2∣∣∣∣X0 = x

]
< ∞.

Step 3: Prove that a
√

n−CLT holds for a stationary, one-step dependent stochastic

processes.

Lemma 3.3. I = Eν

( ∑T1−1
i=0 [h(Xi)− π(h)]

)
= 0.

Proof. Denote T1 = τm and Hk =
∑(k+1)m−1)

i=km [h(Xi)− π(h)], then we have:

I = Eν [
∞∑

k=0

HkI(k < τ)].

Consider the splitting m−skeleton chain {X̌nm} as in section 5.1.1 of Meyn and Tweedie

[37](2003), we know that α̌ = X1 is an accessible atom. Then we can apply theorem

10.0.1 of Meyn and Tweedie [37] (2003) to this splitting chain. That is:

π(B) = π̌(B0 ∪B1) =

∫

α̌

π̌(dw)Ew[
τ̌α̌∑

k=1

I{X̌km ∈ B̌}]

= ε

∫

X1

π(dw)Ew[
τ̌α̌∑

k=1

I{X̌km ∈ B̌}].

We can define τ̌α̌ = min{n ≥ 1 : X̌nm ∈ α̌}. Since for any w ∈ α̌, P̌m(w, ·) ∼ ν(·), we

have τ̌α̌ = τ . Following the Theorem 5.1.3 in Meyn and Tweedie [37] (2003), we also

have P km(x,B) = P̌ km(x, B̌) for any B ∈ B(X ). Therefore we have:

π(B) = εEν [

τ1∑

k=1

I{Xkm ∈ B}] = εEν [
∞∑

k=1

I{Xkm ∈ B}I{τ > k}].
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So we have:

I = Eν [E

( ∞∑

k=0

HkI(k < τ)|Xkm

)
]

=
∞∑

k=0

Eν [E

(
HkI(k < τ)|Xkm

)
]

=
∞∑

k=0

Eν [E

(
Hk|Xkm

)
I(k < τ)].

The last equation comes from the fact that random variables I{τ > k} and Xkm are

independent. And we know that given τ1 > k and Xkm, the distribution of Hk is equal

to H0 given X0. Therefore we have:

I =
∞∑

k=0

Eν [E

(
H0|X0

)
I(k < τ)]

= EπE

(
H0|X0

)

= Eπ(H0)

= 0 .

Lemma 3.4. We have:

J = Eν

[( T1−1∑
i=0

[h(Xi)− π(h)]

)2]
< ∞. (3.3)



Chapter 3. Central Limit Theorems for Markov Chains 25

Proof.

J = Eν

[( τ−1∑

k=0

(k+1)m−1)∑

i=km

[h(Xi)− π(h)]

)2]

≤ Eν

[( ∞∑

k=0

I{k < τ}|Hk|
)2]

= Eν

[ ∞∑

k=0

|Hk|2I{k < τ}+ 2
∞∑

k=0

(
|Hk|

∞∑

j=k+1

|Hj|I{j < τ}
)
{k < τ}

]

= Eν

[ ∞∑

k=0

(
|Hk|2 + 2Hk

∞∑
j=i+1

|Hj|I{j < τ}
)
I{k < τ}

]

= Eν

[ ∞∑

k=0

E

(
|Hk|2 + 2|Hk|

∞∑

j=k+1

|Hj|I{j < τ}]I{k < τ}|Xkm, I{k < τ}
)]

= Eν

[ ∞∑

k=0

E

(
|Hk|2 + 2|Hk|

∞∑

j=k+1

|Hj|I{j < τ}|Xkm

)
I{k < τ}

]
.

In the last equation, we have used the fact that random variables I{τ > k} and Xkm are

independent. Since

E
(
|Hi|2 + 2|Hi|

∞∑
j=1

|Hj|{j < τ}|Xim = x

)
= E

(
|H0|2 + 2|H0|

∞∑
j=1

|Hj|{j < τ}|X0 = x

)
,

if we denoet f(x) = E
(
|H0|2 + 2|H0|

∑∞
j=1 |Hj|I{j < τ}|X0 = x

)
, then we have:

J ≤ Eν

[ ∞∑

k=0

f(X0)I{k < τ}
]

= Eν

[
f(X0)I{0 < τ}

]
+ Eν

[ ∞∑

k=1

f(X0)I{k < τ}
]

≤ Eν

[
f(X0)

]
+ Eν

[
f(X0)

] ∞∑

k=1

Eν

[
I{k < τ}

]
.

The last inequality is follows since:

1. f(X0)I{k < τ} ≤ f(X0);

2. When k ≥ 1, I{τ > k} is independent with X0.

Note

Eν

[
I{k < τ

]
= Pν(k < τ) ≤ (1− ε)k
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and

π(dy) =

∫

E

Pm(x, dy)π(dx)

≥ εν(dy),

therefore we have J ≤ 1
ε
Eν [f(X0)] ≤ 1

ε2
Eπ[f(X0) and

Eπ[f(X0)] ≤ Eπ[
m−1∑
i=0

|h(Xi)− π(h)|2]

≤ m(π(h2)− π(h)2) < ∞.

From the above arguments we conclude that J < ∞.

Finally, we prove the Theorem 3.1:

Proof of Theorem 3.1. Following the Lemma 3.1, we can obtain:

lim
n→∞

∑n
i=0[h(Xi)− π(h)]

n1/2
= lim

n→∞

∑r(n)
j=1

∑Tj+1−1
i=Tj

[h(Xi)− π(h)]

n1/2
. (3.4)

Define hi = h(Xi) − π(h), sj =
∑Tj+1

i=Tj+1 hi and ηj = sjm+1 + · · · + s(j+1)m−1 for

an integer m ≥ 2. Following the Lemma 3.2 we know that two collections of random

variables: {si : 0 ≤ j ≤ m− 2} and {si : i ≥ m} are independent for any m ≥ 2; thus

1√
n

n∑
j=1

sj =
1√
n

[n/m]−1∑
j=0

ηj +
1√
n

[n/m]−1∑
j=0

smj +
1√
n

n∑

m[n/m]

sj.

It should be noted that if j− i > m, then Xi and Xj are independent, ηj are i.i.d random

variables and smj are i.i.d. so we have:

1√
n

[n/m]−1∑
j=0

ηj →d N(0,
σ2

m

m
),

1√
n

[n/m]∑
j=0

smj →d N(0,
σ2

s

m
),

where σ2
m = (m − 1)E(s2

1) + 2(m − 2)E(s1s2) and σ2
s = E[s2

1], letting m → ∞, we have

σ2
m

m
→ E(s2

1) + 2E(s1s2) and m−1σ2
s → 0, so the CLT holds.
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Let

σ2 = lim
n→∞

1

n
E

[( n∑
i=1

[h(Xi)− π(h)]

)2]
,

then

σ2 = lim
n→∞

1

n
E

[( n∑
i=1

[h(Xi)− π(h)]

)2]

= lim
n→∞

1

n
E

[
(

r(n)∑
j=1

sj)
2

]

= lim
n→∞

1

n
E

[
r(n)s2

1 + 2(r(n)− 2)s1s2

]
.

By the elementary renewal theorem (e.g. Feller [17](1968)), limn→∞ rn

n
= E(T2 − T1).

Since P[T2 − T1 = n0s] = ε(1− ε)(s−1), E(T2 − T1) =
∑∞

s=1 [n0sε(1− ε)(s−1)] = n0

ε
< ∞.

Therefore if we denote σ̃2 = E[s2
1 + 2s1s2], then

σ2 =
n0

ε
E[s2

1 + 2s1s2] =
n0

ε
σ̃2. (3.5)

As a result, we conclude that

lim
n→∞

∑r(n)
j=1

∑Tj+1−1
i=Tj

[h(Xi)− π(h)]

n1/2
= lim

n→∞

∑r(n)
j=1

∑Tj+1−1
i=Tj

[h(Xi)− π(h)]

r
1/2
n

· r
1/2
n

n1/2

−→d

(
n0

ε

)1/2

N(0, σ̃2)

= N(0, σ2)

as n →∞.



Chapter 4

Adaptive MCMC Algorithm

4.1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are widely used to generate samples from

any probability distribution π on the state space X . However it is generally acknowledged

that the choice of an effective transition kernel is essential to obtain reasonable results

by simulation in a limited amount of time. In practice, we can choose the transition

probabiliy P from the family where {Pγ}γ∈Y is a collection of Markov chain kernels with

stationary distribution π(·) on χ. Then the question is how to optimize the choice of the

Markov chain’s kernel. The initial idea is to choose a “best” Pγ, but it has been proved

by Gilks et al[20](1998) that the optimal choice depends on the property of the target

distribution π. So such “good” kernels are often very difficult to be well chosen (see

also Gelman et al. [19]1996; Gilks et al [55] 1996 ; Haario et al [24] 1991; Roberts et al

[40]1997). A possible solution so-called adaptive MCMC (AMCMC) has been proposed

recently. The adaptive MCMC algorithm will tune the transition kernel at each step using

the past simulations and try to “learn” the best parameter values while the chain runs.

Adaptive MCMC methods using regeneration times and other complicate constructions

have been propose by Gilks et al [20](1998), Brockwell and Kadane [10](2002). After

28
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a significant step in this direction made by Haario et al. [26](1999), lots of adaptive

algorithms were proposed, see [25](2001), [27] 2005, [23] 2006, Andrieu and Moulines

[3](2005) , Andrieu and Robert [5](2001), Roberts and Rosenthal [48], [47](2005), Atchade

and Rosenthal [6](2005), and Andieu and Achade [2](2007) for example.

4.2 Haario, Saksman and Tamminen’s Adaptive MCMC

Algorithm

A substantial amount of work has been done to validate adaptive Markov chain Monte

Carlo algorithms in the seminal paper of Haario, Saksman and Tamminen [26]. We now

explain how the algorithm works. Suppose, that at n−step we have sampled the states

X0, X1, · · ·, Xn−1, where X0 is the initial state. Then a candidate point Y is sampled

from the (asymptotically symmetric) proposal distribution qn(·|X0, X1, · · ·, Xn−1), which

now may depend on the whole history (X0, X1, · · ·, Xn−1). The candidate point Y is

accepted with probability

α(Xn−1, Y ) = min{1, π(Y )

π(Xn−1)
},

in which case we set Xn = Y , and otherwise Xn = Xn−1. Observe that the chosen proba-

bility for the acceptance resembles the familiar acceptance probability of the Metropolis

algorithm. However, here the choice for the acceptance probability is not based on

symmetry (reversibility) conditions since these cannot be satisfied in our case-the corre-

sponding stochastic chain is no longer Markovian.

The proposal distribution qn(·|X0, X1, · · ·, Xn−1) here is the Gaussian distribution qn

with mean at the current point Xn−1 and covariance Cn = Cn(X0, X1, · · ·, Xn−1).

The crucial thing regarding the adaption is how the covariance of the proposal distri-

bution depends on the history of the chain. In the algorithm this is solved by setting

Cn = sdcov(X0, · · ·, Xn−1)+sdεId after an initial period, where sd is a parameter that de-
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pends only on dimension d , ε > 0 is a constant that we may choose very small compared

to the size of S, Id denotes the d-dimensional identity matrix and the initial covariance

C0 is an arbitrary strictly positive definite matrix according to our best prior knowledge.

We select an index n0 > 0 for the length of an initial period and define:

Cn =





C0, n ≤ n0;

sdcov(X0, · · ·, Xn−1) + sdεId, n > n0.

The definition of the empirical covariance matrix determined by points x0, · · ·, xx ∈ Rd:

cov(x0, · · ·, xk) =
1

k
(

k∑
i=0

xix
T
i − (k + 1)x̄kx̄

T
k ).

where x̄k = 1
k+1

∑k
i=0 xi and the elements xi ∈ Rd are considered as column vectors. So

one obtains that for n ≥ n0 + 1 the covariance Cn satisfies the recursion formula:

Cn+1 =
n− 1

n
Cn +

sd

n
(nX̄n−1X̄

T
n−1 − (n + 1)X̄nX̄

T
n + XnX

T
n ).

This allows one to calculate Cn without too much computational cost since the mean X̄n

also satisfies an obvious recursion formula.

The choice for the length of the initial segment n0 > 0 is free, but the bigger it is chosen

the more slowly the effect of the adaption is felt. In a sense the size of n0 reflects our trust

in the initial covariance C0. The role of the parameter ε is just to ensure that Cn will not

become singular. As a basic choice for the scaling parameter we have adopted the value

sd = (2.4)2

d
from Gelman et al.(1996), where it was shown that in a certain sense this

choice optimizes the mixing properties of the Metropolis search in the case of Gaussian

targets and Gaussian proposals, and further optimal results proved by [42] and [44]. We

can observe that the algorithm continually adapt Σ using the empirical distribution of

the available samples which makes the adaption tend to zero in some sense. Actually they

provide a theoretical justification for adapting the covariance matrix Σ of the Gaussian

proposal density used in a random walk Metropolis and proved the ergodicity of the

above adaptive MCMC algorithm.
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Theorem 4.1. Let π be the density of a target distribution supported on a bounded

measurable subset X ⊂ Rd, and assume that π is bounded. Let ε > 0 and let ν0 be any

initial distribution on X . Then the above adaptive MCMC simulates properly the target

distribution π: for any bounded and measurable function f : X → R, the equality

lim
n→∞

1

n + 1

n∑
i=0

f(Xi) =

∫

X
f(x)π(dx)

holds almost surely.

These convergence results of adaptive algorithms have been made more general in

[4], [3], [6], and [48]. An adaptive algorithm for the independent Metropolis sampler

was proposed by [18] and [27] extended their previous work to Metropolis-within-Gibbs

sampling. A class of quasi-perfect adaptive MCMC algorithms is introduced by [2].

Alternative approaches to adaptation within MCMC can be found in [10], [38], [21].

4.3 Ergodicity of General Adaptive MCMC (AM-

CMC) Algorithms

An important paper about the ergodicity of AMCMC was written by Roberts and Rosen-

thal [48] (2007). They present some simpler conditions, which still ensure the ergodicity

of the specified target distribution. Before describing the procedure under study, it is

necessary to introduce some notation and definitions.

4.3.1 General AMCMC

Here we will formalize the AMCMC as what Roberts and Roenthal [48](2007) did.

We let {Pγ}γ∈Y be a collection of Markov chain kernels on X , each of which is φ−irreducible

and aperiodic(which it usually will be) and has π(·) as a stationary distribution: (πPγ)(x, ·) =

π(·), and we call the set Y parameter space. Let Γn be Y−valued random variables which
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are updated according to specific rules. Consider a discrete time series {Xn} on χ as

below:

P [Xn+1 ∈ A|Xn = x, Γn = γ,Gn] = Pγ(x,A), (4.1)

where Gn = σ(X0, · · ·, Xn, Γ0, · · ·, Γn). Then we call {Xn} an adaptive MCMC with

adaptive scheme Γn. Let

A(n)((x, γ), B) = P [Xn ∈ B|X0 = x, Γ0 = γ], B ∈ F ;

and

T (x, γ, n) = ‖A(n)((x, γ), ·)− π(·)‖.

We call an AMCMC algorithm an independent adaptation if for all n, Γn is independent

of Xn. Obviously we have the following proposition:

Proposition 4.1. Consider an independent adaptation algorithm A(n)((x, γ), ·), where

π(·) is stationary for each Pγ(x, ·). Then π(·) is also stationary for A(n)((x, γ), ·).

When the AMCMC is to introduce some stopping time τ , such that no adaptations

are done after time τ , i.e. such that Γn = Γτ whenever n ≥ τ . This scheme, which we

refer to as finite adaptation, has been proposed by e.g. Pasarica and Gelman [39](2003).

The finite sampling schemes always have the ergordic property:

Proposition 4.2. Consider a finite AMCMC algorithm, in which each individual Pγ is

ergodic for π(·). Then the finite AMCMC algorithm is also ergodic for π(·).

4.3.2 The Ergodicity of AMCMC

In Roberts and Rosenthal [48](2007), they proved the following ergodic theorem in the

uniformly convergence case:
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Theorem 4.2. Consider an adaptive MCMC algorithm on a state space χ, with adap-

tation index Y and the adaptive scheme is Γn. π(·) is stationary for each kernel Pγ for

γ ∈ Y. Suppose also that:

Condition (a)[Simultaneous Uniform Ergodicity] For all ε, there is N = N(ε) ∈
N such that ‖PN

γ (x, ·)− π(·)‖ ≤ ε for all x ∈ X and γ ∈ Y; and

Condition (b)[Diminishing Adaption] limn→∞Dn = 0 in probability, where Dn =

supx∈X ‖PΓn+1 − PΓn‖ is a Gn+1-measurable random variable.

Then limn→∞T (x, γ, n) = 0 for all x ∈ X and γ ∈ Y.

They showed the Weak Law of Large Numbers (WLLN) under the same conditions.

Theorem 4.3. Consider an adaptive MCMC algorithm. Suppose that conditions (a) and

(b) hold. Let g : X → R be a bounded measurable function. Then for any starting values

x ∈ X and γ ∈ Γ, conditional on X0 = x and Γ0 = γ we have:

Σn
i=1g(Xi)

n
→ π(g)

in probability as n →∞.

Regarding the non-uniformly case, they also proved the ergodicity using the similar

proof. Before we introduce the results, let us recall some definitions. According to the

definition in Roberts, Rosenthal, and Schwartz [49] (1998), we say a family {Pγ}γ∈Y of

Markov chain kernels is simultaneously strongly aperiodically geometrically ergodic (we

denote it by condition (c)) if there is C ∈ F , V : X → [1,∞), δ > 0, λ < 1, and b < ∞,

such that supC V = v < ∞, and

(i) for each γ ∈ Y , there exists a probability measure νγ(·) on C with Pγ(x, ·) ≥ δνγ(·)
for all x ∈ C; and

(ii) (PγV )(x) ≤ λV (x) + bIC(x).

In Roberts and Rosenthal [48] (2007), they proved the following ergodic theorems:
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Theorem 4.4. Consider an adaptive MCMC algorithm on a state space χ, with adap-

tation index Y and the adaptive scheme is Γn. π(·) is stationary for each kernel Pγ for

γ ∈ Y. Suppose also that {Pγ}γ∈Y is simultaneously strongly aperiodically geometrically

ergodic and the Adaptive scheme satisfies the following condition:

[Diminishing Adaption] limn→∞Dn = 0 in probability, where Dn = supx∈X ‖PΓn+1 −
PΓn‖ is a Gn+1-measurable random variable.

Then limn→∞T (x, γ, n) = 0 for all x ∈ X and γ ∈ Y.

Furthermore, they also tried to relax the uniform convergence condition (a) of Theo-

rem 4.2. Actually the proof of the Theorem 4.2 shows that condition (a) was used only to

ensure PN
ΓK−N

(XK−N , ·) was close to π(·). Therefore for any ε > 0, define “ε convergence

time function” Mε : X × Y → N such that

Mε(x, γ) = inf{n ≥ 1 : ‖P n
γ (x, ·)− π(·)‖ ≤ ε}.

Obviously if each individual Pγ is ergodic, then Mε(x, γ) < ∞. We denote that for

all ε > 0, the sequence {Mε(Xn, Γn)}∞n=0 is bounded in probability given X0 = x∗ and

Γ0 = γ∗ by condition (d). That is:

Condition (d): for all δ > 0, there is N ∈ N such that P [Mε(Xn, Γn) ≤ N |X0 =

x∗, Γ0 = γ∗] ≤ 1− δ for all n ∈ N.

Theorem 4.5. Consider an adaptive MCMC algorithm with Diminishing Adaption (i.e.,

limn→∞ supx∈X ‖PΓn+1(x, ·)−PΓn(x, ·)‖ = 0 in probability). Let x∗ ∈ X and γ∗ ∈ Y. Then

limn→∞ T (x∗, γ∗, n) = 0 provided condition (d) holds.



Chapter 5

Recurrent And Ergodic Properties

of AMCMC

5.1 Introduction

In Roberts and Rosenthal [48] 2007, they not only present some ergodicity results under

more general conditions but also mentioned some research directions. We will continue

to study the ergodicity of AMCMC along these directions, try to find some weaker

conditions to ensure the ergodicity and discuss the relationship between the recurrence

on the product space (of the state space and the parameter space) and the ergodicity.

The chapter is organized as follows. Section 5.2 we will present our main results: the

ergodic theorem of AMCMC under the weakest drift conditions such that each kernel

is positive recurrence. Further we will discuss the uniformly recurrent conditions in the

same section after constructing some simple examples to show that usually AMCMC

does not have good recurrence property. In section 5.3 we will give the proof of the

ergodic theorem. In section 5.4, we consider the recurrent property on the product space

of the state space and the parameter one. We will give the negative answer to the Open

Problem 21 in Roberts and Rosenthal [48](2005) using a counter example, and present

35
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some positive results under stronger conditions. Finally we will construct two examples

to discuss the convergence rate of AMCMC.

5.2 The Ergodicity Under Minimal Uniformly Re-

current Conditions

Consider Theorem 4.2, Roberts and Rosenthal proved the ergodicity with simultaneously

geometrically ergodic condition. However we note that Theorem 2.5 part (iv) indicates

that to merely prove convergence (as opposed to geometric convergence), it suffices to

have an even weaker drift condition of the form

PV (x) ≤ V (x)− 1 + bIC .

So perhaps it suffices for the validity of adaptive MCMC algorithms that such drift

conditions hold uniformly for all Pγ. Unfortunately, the available results appears not

to provide any explicit quantitative bounds on convergence. However if the parameter

space is compact in some sense, we can prove the ergodicity with the minimal uniformly

recurrent conditions.

First let us think about how to measure the difference between two elements γ1 and γ2

in the parameter space Y . Actually what we need to describe is the difference between

the respective kernels Pγ1 and Pγ2 , i.e. supx∈X ‖Pγ1(x, ·) − Pγ2(x, ·)‖. Therefore we will

define the metric d(γ1, γ2) on Y ⊂ Rq as:

d(γ1, γ2) = sup
x∈X

‖Pγ1(x, ·)− Pγ2(x, ·)‖.

We suppose there exists a transition kernel Pγ corresponding to each γ ∈ Rq, and consider

the following set:

∆ = {γ ∈ Rq| PγV ≤ V − 1 + b1C}.

Now we can state our main result.
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Theorem 5.1. (Ergodicity Theorem) Consider an adaptive MCMC algorithm with

Diminishing Adaption, such that there is C ∈ F , V : X → [1,∞) such that π(V ) < ∞,

δ > 0, and b < ∞, with supC V = ν < ∞, and:

Condition (e):

(i) for each γ ∈ Y, there exists a probability measure νγ(·) on C with Pγ(x, ·) ≥ δνγ(·)
for all x ∈ C; and

(ii)PγV ≤ V − 1 + bIC for each γ;

Condition (f):

(iii) the set ∆ is compact w.r.t the metric d.

Suppose further that the sequence {V (Xn)}∞n=0 is bounded in probability, given X0 = x∗

and Γ0 = γ∗. Then limn→∞ T (x∗, γ∗, n) = 0.

5.2.1 The Uniform Minimal Drift Condition

Intuitively, we hope the AMCMC is recurrent whenever each kernel is positive recur-

rent with respect to the target distribution π. However following the example be-

low, we get the negative conclusion. Consider the following adaptive MCMC: suppose

the state space X = {1, 2}, the parameter space Y = N × {1, 2} with each kernel

Pn,1 =




1− 1
2n

1
2n

1
2n 1− 1

2n


 and Pn,2 =




1
2n 1− 1

2n

1− 1
2n

1
2n


, and the stationary dis-

tribution π(1) = π(2) = 1
2
. We design an adaptive algorithm as:

Γn =





(n, 1) , if Xn = 1;

(n, 2) , if Xn = 2.

Lemma 5.1. The above adaptive MCMC is NOT recurrent, although each kernel is

positive recurrent with respect to the distribution π(·). Actually we have E2[η2] < ∞,

which means that the chain will NOT come back to {2} after a long run when it starts

from {2}. Therefore limn→∞ P (Xn = 2|X0 = i) = 0 for i = 1, 2, which is not equal to

π(2).
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Proof. Suppose η2 =
∑∞

n=1 I{Xn = 2}. Then according to the adaptive algorithm, we

have:

P2(η2 = n) =
∑

1≤i1<i2···<in<∞

Π∞
i=1(1− 1

2i )

Πn
j=1(1− 1

2ij
)
Πn

j=1

1

2ij

≤
∑

1≤i1<i2···<in<∞
Πn

j=1

1

2ij

=
∑

1≤i1<i2···<in<∞

1

2
Pn

j=1 ij

≤
∞∑

m=
n(n+1)

2

Cn
m

1

2m

=
1

n!

∞∑

m=
n(n+1)

2

m(m− 1) · · · (m− n + 1)
1

2m
.

Consider the functional series Sn(x) =
∑∞

m=
n(n+1)

2

m(m−1)···(m−n+1)xm for 0 < x < 1,

then we have:

Sn(x) = xn[
∞∑

m=
n(n+1)

2

xm](n)

= xn[
x

n(n+1)
2

1− x
](n)

= xn

n∑
i=0

Ci
n

(n(n+1)
2

)!

(n(n+1)
2

− i)!
x

n(n+1)
2

−ii!(1− x)−i

≤ x
n(n+1)

2 ×
n∑

i=0

Ci
nx

n−i(x− 1)−i (n(n+1)
2

)!

(n(n+1)
2

− n)!
n!

≤ x
n(n+1)

2 × (x +
1

1− x
)n(

n(n + 1)

2
)n(n!) .

Therefore we have:

P2(η2 = n) ≤ (
1

2
)

n(n+1)
2 × (

5

2
)n × (

n(n + 1)

2
)n

=

[
(
1

2
)

(n+1)
2 × (

5

2
)× (

n(n + 1)

2
)

]n

.

We know that limn→∞(1
2
)

(n+1)
2 × (5

2
)× (n(n+1)

2
) = 0, i.e. there exists N > 0 such that for
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any n > N we have (1
2
)

(n+1)
2 × (5

2
)× (n(n+1)

2
) < 1

2
. So

E2[η2] =
∞∑

n=1

P2(η2 = n)n

<

N∑
i=1

i +
∞∑

i=N+1

i× [
1

2
]i

< ∞.

Therefore the set {2} is a transient set. Furthermore following that
∑∞

n=1 P2(η2 = n)n <

∞, we know that limn→∞ P (η2 = n) = 0, which is NOT equal to π(2).

In the above example, we can ascribe the transience of the AMCMC to increasing of

probability to {2} as n →∞. Therefore we need the “uniform” recurrence property with

respect to the parameter γ. Following the theorem 11.0.1 in Meyn and Tweedie [37], we

know that an irreducible Markov chain is positive recurrent if and only if there exists

some petite set C and some extend valued, non-negative test function V , which is finite

for at least one state in the state space X , satisfying:

PV (x) ≤ V (x)− 1 + bIC(x), x ∈ X .

Therefore we will suppose all the γ ∈ Y satisfy:

PγV (x) ≤ V (x)− 1 + bIC(x), x ∈ X .

5.3 The Proof of Ergodicity Theorem

Before we prove the theorem 5.1, let us think about the following lemma:

Lemma 5.2. Consider an adaptive MCMC algorithm with Diminishing Adaptation, with

a regular stationary measure π and an accessible atom α ∈ F such that Pγ(x,B) = νγ(B)

for any x ∈ α and B ∈ B(X ), where νγ(·) is a regular probability measure, let measurable

function W : X → [0,∞) , 0 < K < ∞,

(i) Eα,γ[τα] ≤ K and Ex,γ[τα] ≤ W (x) for any x ∈ αc and γ ∈ Y.
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(ii) The parameter space Y is a closed complete subset w.r.t the metric d of the set ∆.

Suppose further that the sequence {W (Xn)}∞n=0 is bounded in probability, given X0 = x∗

and Γ0 = γ∗. Then we have:

lim
n→∞

T (x∗, y∗, n) = 0.

5.3.1 The Proof Of Theorem 5.1

Suppose we have the lemma 5.2 hold. Let us recall what the splitting chain is. Actually

outside C the chain {X̌γ
n} behaves just like {Xγ

n}, moving on the “top” half X0 of the

split space. Each time it arrives in C, it is “split”; with probability 1− δ it remain in C0,

with probability δ it drops to C1, and C1 is the atom of the splitting chain, set C1 = α.

We can prove Theorem 5.1 as below.

Proof. Consider the splitting chain {X̌γ
n}, we know that the subset α = C1 ∈ X̌ is an

accessible atom of any chain {Xγ
n}.

Step 1: Prove that there exists K > 0 such that

Eα,γ(τα) ≤ K;

Step 2: Prove that there exists a measurable function W : X̌ → [0,∞) such that:

Ex,γ(τα) ≤ W (x);

Step 3: Check the regularity of νγ and π.

Suppose τ̌
(m)
A,γ (B) is the m−th hitting time of B from A and with the kernel P̌γ. Consider

the random variable τ̌α,γ(α), then τ̌α,γ(α) = τ̌α,γ(Č) + τ̌
(k−1)

Č,γ
(Č)with probability (1 −

δ)k−1δ. If we denote the random variable T = the number of {n ≤ τ̌α,γ(α)|X̌n ∈ Č},
where Č = C0 ∪ C1, we have:

Eα,γ(τα) = E[E(τ̌α,γ(α)|T )]

=
∞∑

k=1

(
E(τ̌α,γ(Č)) + (k − 1)EČ,γ(τČ)

)
(1− δ)k−1δ

= E(τ̌α,γ(Č)) +
1− δ

δ
EČ,γ(τČ)
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and we also know that for any x ∈ Č,γ ∈ Y E[τ̌x,γ(Č)] = Ex,γ(τC) ≤ V (x)+b ≤ v+b = K.

Therefore Eα,γ(τα) ≤ K + 1−δ
δ

K = K
δ
.

Similarly for any x /∈ α, we know that τ̌x,γ(α) = τ̌x(Č) + τ̌
(k−1)

Č,γ
(Č)with probability (1−

δ)k−1δ. Therefore we have:

Ex,γ(τα) = E[E(τ̌x,γ(α)|T )]

=
∞∑

k=1

(
E(τ̌x,γ(Č)) + (k − 1)EČ,γ(τČ)

)
(1− δ)k−1δ

= E(τ̌x,γ(Č)) +
1− δ

δ
EČ,γ(τČ)

and we also have for any x,γ ∈ Y , E[τ̌x,γ(Č)] = Ex,γ(τC) ≤ V (x) + b = W (x). Since

V (Xn) is bounded in probability, W (Xn) is also bounded in probability.

Finally since
∫
X V (y)νγ(dy) < v and π(V ) < ∞,the probability measures νγ and π are

both regular. Then we can prove the theorem 5.1 following the lemma 5.2.

5.3.2 The Proof Of Lemma 5.2

Following the last section, it suffices to prove the lemma 5.2. For any initial value x ∈ X
and measurable function |f | ≤ 1, denote: ax,γ(n) = Px,γ(τα = n), that is the first

hitting time of α is n when the kernel is Pγ and the start value is x; similarly denote

uγ(n) = (Pγ)α(Φn ∈ α) and define:

tf,γ(n) =

∫

α

P n
γ (α, dy)f(y) = (Eγ)α[f(Φn)1{τα≥n}].

Then following the first-entrance last-exit decomposition we have:

P n
γ (x,B) =α P n

γ (x,B) +
n−1∑
j=1

[

j∑

k=1

αP k
γ (x, α)P j−k(α, α)]αP n−j

γ (α, B),

where αP n−j
γ (α,B) is the taboo probability given by

αP n−j
γ (α, B) = Pγ(Xn−i ∈ B, τα ≥ n− j|X0 ∈ α)
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Therefore for any x ∈ X and f , we have:

∫
P n

γ (x, dω)f(ω) =

∫
αP n

γ (x, dω)f(ω) + ax,γ ∗ uγ ∗ tf,γ(n),

then we will get:

|Ex,γ[f(Φn)]− Eπ[f(Φn)]| ≤ Ex,γ[f(Φn)I{τα≥n}]

+ |ax,γ ∗ uγ − π(α)| ∗ tf,γ(n)

+ π(α)
∞∑

j=n+1

tf,γ(j)

≤ Ex,γ[f(Φn)I{τα≥n}] +
n∑

j=1

|
j∑

i=1

ax(j)u(j − i)− π(α)|t1(n− j)

+ π(α)
∞∑

j=n+1

tf,γ(j)

≤ Ex,γ[f(Φn)I{τα≥n}] +
n∑

j=1

j∑
i=1

ax|(j)u(j − i)− π(α)|t1(n− j)

+ π(α)
∞∑

j=n+1

tf,γ(j)

≤ Ex,γ[f(Φn)I{τα≥n}] +
n∑

j=1

j∑
i=1

ax(i)|u(j − i)− π(α)|t1(n− j)

+ π(α)
n∑

j=1

∞∑
i=j+1

ax(i)t1(n− j) + π(α)
∞∑

j=n+1

t1,γ(j).

Now we can denote the first term as I, the second as II, the third as III and the fourth

term as IV . And we have the following estimations.

The Estimation Of I and III

Lemma 5.3. I ≤ W (x)
n

.
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Proof.

I ≤ Ex,γ[1τα≥n]

= Px,γ(τα ≥ n)

≤ Ex,γ(τα)

n

≤ W (x)

n
.

Lemma 5.4. Let an = 1
n

∑n
i=1

1
i
, then III ≤ 2anKW (x) for any x ∈ X .

Proof.

III ≤
n∑

j=1

Px(τα ≥ j)Pα(τα ≥ n− j)

≤
n∑

j=1

W (x)

j
× K

n− j

= KW (x)
2

n

n∑
i=1

1

i

= 2KanW (x).

And we know that limn→∞ an = 0.

The Estimation Of Term IV

Following the structure of stationary distribution π, we know that

∞∑
j=1

Pα,γ(τα > j) =
1

π(α)
= M,

so for any ε > o, there exists Nγ, such that for any nγ > Nγ:

nγ∑
j=1

Pα,γ(τα) > M − ε

We define nε(γ) = inf{n :
∑n

j=1 Pα,γ(τα > j) > M − ε}, and prove that:
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Lemma 5.5. For any fixed γ0, there exists δ > 0 such that for any d(γ, γ0) < δ, we have

nε(γ) = nε(γ0).

Proof. Denote η1 =
∑nγ0

j=1 Pα,γ0(τα > j)−(M−ε) and η2 = M−ε−∑nγ0−1

j=1 Pα,γ0(τα > j).

Set δ = 2 min{η1,η2}
nε(γ0)(nε(γ0)+1)

, then consider two Markov chain {Xi} with kernel Pγ0 and {X ′
i}

with kernel Pγ1 such that d(γ0, γ1) < δ. Then

Px(Xi 6= X
′
i |Xi−1 = X

′
i−1) = E(Px(Xi 6= X

′
i |Xi−1 = X

′
i−1, Xi−1 = y))

≤ E(P (Xi 6= X
′
i |Xi−1 = X

′
i−1 = y))

= E(‖Pγ0(y, ·)− Pγ1(y, ·)‖)

≤ E(d(γ0, γ1))

< δ.

The third equation P (Xi 6= X
′
i |Xi−1 = X

′
i−1 = y) = ‖Pγ0(y, ·)−Pγ1(y, ·)‖ is following the

Proposition 3(g) in [46]. Then we have

Px(Xi 6= X
′
i , Xi−1 = X

′
i−1) = Px(Xi 6= X

′
i |Xi−1 = X

′
i−1)Px(Xi−1 = X

′
i−1) ≤ δ

With the same start value x ∈ α, then we have:

P(Xi 6= X
′
i |X0 = X

′
0 = x) = Px(Xi 6= X

′
i , Xi−1 6= X

′
i−1) + Px(Xi 6= X

′
i , Xi−1 = X

′
i−1)

≤ Px(Xi−1 6= X
′
i−1) + δ

≤ Px(Xi−1 6= X
′
i−1, Xi−2 6= X

′
i−2) + Px(Xi−1 6= X

′
i−1, Xi−2 = X

′
i−2) + δ

≤ Px(Xi−2 6= X
′
i−2) + 2δ

≤ · · ·

≤ iδ.

Therefore:

nγ0 (ε)∑
i=1

Px(Xi 6= X
′
i) ≤

nγ0 (ε)∑
i=1

iδ ≤ min{η1, η2}.

So we still have nε(γ) = nε(γ0).
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Lemma 5.6. For any ε > 0, there exits N > 0 which is independent with γ, such that

for any n > N , we have:
∑∞

j=n+1 Pα,γ(τα > j) < ε.

Proof. Suppose there exists ε > 0 and a sequence {γk} such that nε(γk) →∞. Following

the compactness of the parameter space Y , there exists {γki
} → γ0, i.e. |γki

− γ0| → 0,

and γ0 ∈ ∆. Now let ki → ∞, we will get
∑∞

i=1 Pα,γ0(τα > j) ≤ M − ε which is

conflicting with that: for any γ ∈ ∆, we have
∑∞

i=1 Pα,γ0(τα > j) = M . So for any

ε > 0, there exits N > 0 which is independent with γ, such that for any n > N , we have:

∑∞
j=n+1 Pα,γ(τα > j) < ε

Lemma 5.7. For any ε > 0, there exits N > 0 which is independent with γ, such that

for any n > N , we have: IV < ε.

Proof. Since

IV ≤ π(α)
∞∑

j=n+1

t1,γ(j)

= π(α)
∞∑

j=n+1

Eα,γ [1τα≥j]

= π(α)
∞∑

j=n+1

Pα,γ(τα > j),

following lemma 5.6, we know that for any ε > 0, there exits N > 0 which is independent

with γ, such that for any n > N , we have:
∑∞

j=n+1 Pα,γ(τα > j) < ε
π(α)

. That is IV ≤ ε

for any n > N .

The Estimation On Term II

Lemma 5.8. For any ε > 0, there exists N > 0 which is independent with γ such that

II ≤ εW (x).
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II ≤
n∑

j=1

t1,γ(n− j)

j∑
i=1

ax,γ(i)i
|uγ(j − i)− π(α)|

i

≤
n∑

j=1

t1,γ(n− j)[
∞∑
i=1

ax,γ(i)i]

j∑
i=1

|u(j − i)− π(α)|
i

≤
n∑

j=1

t1,γ(n− j)Ex,γ(τα)

j∑
i=1

|u(j − i)− π(α)|
i

≤ W (x)
n∑

j=1

t1,γ(n− j)

j∑
i=1

|uγ(j − i)− π(α)|
i

.

Lemma 5.9.
∑∞

i=1 |uγ(i)− π(α)| < ∞ for each γ.

Proof. Since supČ V (x) = v and νγ is probability measure on α,
∫
X V (x)νγ(dx) < ∞ and

π(V ) < ∞, following Theorem 11.3.12 of Meyn and Tweedie [37], we know that νγ and

π(·) are both regular measure. Then following Theorem 13.4.5 in Meyn and Tweedie’s

book, we know that:

∞∑
n=1

‖νγP
n
γ − π‖ < ∞.

Therefore we have
∑∞

n=1 ‖P n
γ (α, α)− π(α)‖ < ∞.

Lemma 5.10. limn→∞
∑n

j=1 t1,γ(n− j)
∑j

i=1
|uγ(j−i)−π(α)|

i
= 0 for any γ ∈ Y.

Proof. Let sj(γ) =
∑j

i=1
|uγ(j−i)−π(α)|

i
, following bounded convergence theorem and lemma

5.9, we have sj(γ) →j→∞ 0. Similarly following
∑∞

j=1 t1,γ(j) = Eγ,α(τα) ≤ v < ∞, we

have limn→∞
∑n

j=1 t1,γ(n− j)
∑j

i=1
|uγ(j−i)−π(α)|

i
= 0.

Lemma 5.11. For any ε > 0 there exists N which is independent with γ, such that for

any n > N , we have
∑n

j=1 t1,γ(n− j)
∑j

i=1
|uγ(j−i)−π(α)|

i
< ε.

Proof. Suppose there exist ε > 0, and strictly increasing {ni}∞i=1 and γni
∈ Y such that

∑ni

j=1 t1,γni
(n − j)

∑j
i=1

|uγni
(j−i)−π(α)|

i
> ε. Then there exists γ0 such that γni

→ γ0.

Therefore we have:

∞∑
j=1

t1,γ0(n− j)

j∑
i=1

|uγ0(j − i)− π(α)|
i

> ε.
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Contradiction. So limn→∞
∑n

j=1 t1,γ(n− j)
∑j

i=1
|uγ(j−i)−π(α)|

i
= 0.

From all above estimations of I, II, III and IV, we have the following lemma:

Lemma 5.12. For any ε > 0, there exists N > 0 which is independent with the choice

of γ, such that for any n > N , we have:

‖P n
γ (x, ·)− π(·)‖ ≤ W (x)

n
+ εW (x) + ε.

The Proof Of Lemma 5.2

Proof. Let Mε(x, γ) = inf{n ≥ 1 : ‖P n
γ (x, ·) − π(·)‖ ≤ ε}. Then following the theorem

13 in Roberts and Rosenthal [48] (2007), it suffices to prove that {Mε(Xn, Γn)}∞n=0 is

bounded in probability given X0 = x∗ and Γ0 = γ∗, i.e. for all δ > 0, there is N ∈ N
such that:

P [Mε(Xn, Γn) ≤ N |X0 = x∗, Γ0 = γ∗] ≥ 1− δ.

Since for any ε > 0, there exists N > 0 which is independent with the choice of γ, such

that for any n > N , we have:

‖P n
γ (x, ·)− π(·)‖ ≤ εW (x) + ε,

and W (Xn) is bounded in probability, we have the conclusion hold.

5.4 Recurrence On The Product Space X × Y
The adaptive MCMC induces sample paths on the product space X ×Y . We will study

the recurrent property on the product space in this section. When each kernel Pγ has

good ergodic property and the random variable sequence (Xn, Γn) is also recurrent on

the X ×Y , we hope to get the ergodicity of AMCMC. But following the computation in

section 5.4.1, we get the negative answer. Fortunately Roberts and Rosenthal’s paper [14]
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(2007) offered us a proper condition–“Diminishing Adaptation conditions” and showed

some positive results, however they mentioned an open problem as well. We will state

the open problem in section 5.4.3 and give a counter-example to the open problem 21

in Roberts and Rosenthal’s paper [14] (2007) in section 5.4.3. Finally we present some

positive results about the relationship between ergoidicity and recurrence on the space

X × Y .

5.4.1 Recurrence On The Product Space Is NOT Sufficient For

Ergodicity

Even we take finite kernels with good ergodic property(uniformly ergodic) so that we

can make the adaptive MCMC recurrent, we still can not guarantee the AMCMC is

ergodic with respect to the target distribution π. A good counter example is one-two

version running example which was presented in Roberts and Rosenthal(2005) [14] and

simulated in the related Java applet. The example was also discussed in Atchade and

Rosenthal (2005) [17]. Here we will consider the AMCMC algorithm as a general Markov

chain on the product space X ×Y . We will give the explicit form of the transition matrix

on the product space, and analysis the recurrent and ergodic property of such a Markov

chain on the product space X × Y .

Let X = {1, 2, 3, 4}, π(2) = b > 0 be very small, and π(1) = a and π(2) = π(3) =

1−a−b
2

> 0. Let Y = {1, 2}. For γ ∈ Y , let Pγ be the kernel corresponding to a random-

walk Metropolis algorithm for π(·), with proposal distribution:

Qγ(x, ·) = Uniform{x− γ, x− γ + 1, · · ·, x− 1, x + 1, x + 2, · · ·, x + γ}

i.e.uniform on all the integers within γ of x, aside from x itself. The kernel Pγ then

proceeds, given Xn and Γn, by first choosing a proposal state Yn+1 ∼ QΓn(Xn, ·). With

probability min[1, π(Yn+1)
π(Xn)

] it then accepts this proposal by setting Xn+1 = Yn+1. Other-

wise, with probability 1−min[1, π(Yn+1)
π(Xn)

], it rejects this proposal by setting Xn+1 = Xn.
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(If Yn+1 /∈ X , then the proposal is always rejected; this corresponds to setting π(y) = 0

for y /∈ X .). We define the adaptive scheme such that Γn = 2 if the previous proposal

was accepted, otherwise Γn = 1 if the previous proposal was rejected.

We can compute the kernels induced by the proposals Qi, i = 1, 2:

P1 =




2a−b
2a

b
2a

0 0

1
2

0 1
2

0

0 b
1−a−b

1
2
− b

1−a−b
1
2

0 0 1
2

1
2




P2 =




3
4
− b

4a
b
4a

1
4

0

1
4

1
4

1
4

1
4

a
2(1−a−b)

b
2(1−a−b)

3
4
− a+b

2(1−a−b)
1
4

0 b
2(1−a−b)

1
4

3
4
− b

2(1−a−b)




.

In the above AMCMC, we can observe that the distribution of Γn given X0 and Γ0

does NOT depend on the value of {Xi|0 ≤ i ≤ n − 1}, therefore we call this kind of

Markovian AMCMC. The n−th transition kernel Q(n) induced by Markovian adaptive

algorithm is as below:

Q(n)((x, γ), A×B) =

∫

A

∫

B

Γn(dγ1|x, y, γ)Pγ(x, dy).

Then in the one-two running example, if given the value of Xn−1 = x,Xn = y and

Γn−1 = γ, then Γn is a measurable function of x, y and γ. We have:

Γn(x, y, γ) = δ(x = y) + 2δ(x 6= y).

So we can compute the n− th transition kernel on (X × Y):

Q((x, γ), y × γ1) =

∫

A

∫

B

Γn(dγ1|x, y, γ)Pγ(x, dy)

= Pγ(x, y)δ(x = y)δ(γ1 = 1) + Pγ(x, y)δ(x 6= y)δ(γ1 = 2).
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Since the transition kernel is independent of n, the one-two version running example

presents a general Markov Chain with transition kernle Q as:

Q =




2a−b
2a

0 0 b
2a

0 0 0 0

3
4
− b

4a
0 0 b

4a
0 1

4
0 0

0 1
2

0 0 0 1
2

0 0

0 1
4

1
4

0 0 1
4

0 1
4

0 0 0 b
1−a−b

1
2
− b

1−a−b
0 0 1

2

0 a
2(1−a−b)

0 b
2(1−a−b)

3
4
− a+b

2(1−a−b)
0 0 1

4

0 0 0 0 0 1
2

1
2

0

0 0 0 b
2(1−a−b)

0 1
4

3
4
− b

2(1−a−b)
0




.

Now we take the value a = 0.1 and b = 0.01, then π(1) = 0.1; π(2) = 0.01; π(3) = π(4) =

0.445.

And we have the following lemma:

Lemma 5.13. The above one-two version running example is recurrent, but for any

starting value (x∗, γ∗), and A ∈ B{X}, we have:

lim
n→∞

P(x∗,γ∗)(Xn ∈ A) 6= π(A).

Proof. Let us calculate the eigenvalues of the above transition matrix, we have: λ1 =

1; λ2 = 0.95445494; λ3 = 0.12887658 + 0.4670861i; λ4 = 0.12887658 − 0.4670861i;

λ5 = −0.25615654; λ6 = 0.03778642 + 0.1057364i; λ7 = 0.03778642 − 0.1057364i; λ8 =

−0.09286036. Then compute the eigenvector of QT with respect to the eigenvalue λ0 = 1,

it is

(−0.48637045,−0.03354279,−0.00867102,−0.03468408,

−0.49208038,−0.36554543,−0.51525761,−0.34609757)

i.e the stationary distribution π̃ is: π̃(1, 1) = 0.213110130, π̃(1, 2) = 0.014697250,

π̃(2, 1)0.003799331, π̃(2, 2) = 0.015197323, π̃(3, 1) = 0.215612017, π̃(3, 2) = 0.160168927,
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π̃(4, 1) = 0.225767451, π̃(4, 2) = 0.151647571. Therefore for any start value (x∗, γ∗), we

have:

lim
n→∞

P(x∗,γ∗)(Xn = 1) = lim
n→∞

P(x∗,γ∗)(Xn = 1, Γn = 1) + P(x∗,γ∗)(Xn = 1, Γn = 1)

= 0.21311 + 0.014697 = 0.227807.

similarly

lim
n→∞

P(x∗,γ∗)(Xn = 2) = 0.003799 + 0.015197 = 0.018996,

lim
n→∞

P(x∗,γ∗)(Xn = 3) = 0.215612 + 0.160168 = 0.37578,

lim
n→∞

P(x∗,γ∗)(Xn = 4) = 0.225767 + 0.151647 = 0.377414.

Therefore for any 1 ≤ i, j ≤ 4, we have:

Ei[ηj] = ∞

because Pi(ηj = ∞) = 1. But we can observe that P(x∗,γ∗)(Xn ∈ A) →n→∞ π
′
(A) which

is the marginal distribution of π̃, however π
′
(·) 6= π(·).

5.4.2 {Mε(Xn, Γn)}∞n=0 is bounded in probability is NOT Neces-

sary For Ergodicity

Consider theorem 4.5, we are wondering whether {Mε(Xn, Γn)}∞n=0 is bounded in probabil-

ity is necessary and sufficient under diminishing adaption condition or not. Unfortunately

it is not a necessary condition of the ergodicity. That is:

Theorem 5.2. Under Diminishing Adaption condition, {Mε(Xn, Γn)}∞n=0 is bounded in

probability is NOT a necessary condition of the ergodicity, although it is sufficient.
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Proof. Consider the state space X = [0, 1], π(·) = Unif [0, 1] ,the parameter space Y =

{k ∈ Z|k ≥ 2} and proposal distribution Qk(x, ·) ∼ Uniform[x− k
2
, x + k

2
]. Denote Pk is

the transition kernel induced by Metropolis-Hasting algorithm with proposal distribution

Qk. Obviously Pk is uniformly ergodic. Note that if the proposal is not in [0, 1], then the

proposal is always rejected. Since for any fixed ε > 0, we can prove that:

inf{n ≥ 1 : ‖P n
k (x, ·)− π(·)‖ ≤ ε}

≥ inf{n ≥ 1 : ‖P n
k (x, {x})− π({x})‖ ≤ ε}

≥ inf{n ≥ 1 : P n
k (x, {x}) ≤ ε}

= inf{n ≥ 1 : [

∫

R−[0,1]

(1−min{1, π(y)qk(y, x)

π(x)qk(x, y)
})qk(x, y)dy]n ≤ ε}

= inf{n ≥ 1 : [1− 1

k
]n ≤ ε}

Suppose ak = inf{n ≥ 1 : [1− 1
k
]n ≤ ε}, then we have:

lim
k→∞

Mε(x,
1

k
) = lim

k→∞
inf{n ≥ 1 : ‖P n

k (x, ·)− π(·)‖ ≤ ε}

≥ lim
k→∞

ak

= ∞.

Next we can construct the adaptive scheme, let

rk = inf{r : ‖P r
k (x, ·)− π(·)‖ ≤ 1

k
},

and sk =
∑k

i=1 ri. Then consider the independent adaptive scheme, we will use the kernel

Pk from the sk−1−step to (sk−1)−step. Obviously, as k →∞, such an adaptive MCMC

satisfies the Diminishing Adaption property. Following that

lim
k→∞

‖P rk
k (x, ·)− π(·)‖ ≤ lim

k→∞
1

k
= 0,

we can prove the ergodicity. However for any x ∈ X , we have

lim
k→∞

Mε(x, k) = ∞,

which is NOT bounded in probability.
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5.4.3 The Open Problem 21 In Roberts And Rosenthal [48]

Following theorem 6.2, it is possible to find out weaker conditions to ensure the ergodic-

ity. We can observe that in the theorem 4.5 the adaptive chain pair (Xn, Γn) has good

“fast convergence” property in probability. If we denote:

Condition (d1): for all ε > 0, there is m ∈ N such that P [Mε(Xn, Γn) < m i.o.|X0 =

x∗, Γ0 = γ∗] = 1.

Then we can state the following open problem.

Open Problem 21. Consider an adaptive MCMC algorithm with Diminishing Adap-

tation. Let x∗ ∈ X and γ∗ ∈ Y . Does condition (d1) imply that limn→∞ T (x∗, γ∗, n) = 0?

The problem seems reasonable, however the following example gives us the negative an-

swer.

Consider X = R mod Z i.e. the state space is the real number mod the integers. De-

fine Y = N ∪ X , and suppose Zk,x are random variable with distribution Uniform[x −
1

2k+1 , x + 1
2k+1 ] for any (x, γ) ∈ X × Y . When k ∈ N , we define:

Pk(x,A) =
1

2k
P (Zk,x ∈ A) + (1− 1

2k
)δx(A).

When y ∈ X , suppose π(·) is the Lebesgue measure on X .

we define:

Py(x,A) =





2
3
π(A) + 1

3
δx(A) , if x 6= y;

2
3
Uniform[0, 3

4
] + 1

3
δ0(A) , if x = y.

Lemma 5.14. For each k ∈ N, Pk is stationary with respect to π.

Proof. It is suffice to prove that for any interval A = [a, b] ⊂ [0, 1] we have:

∫

X
Pk(x,A)π(dx) = π(A).

Case 1:|b− a| ≥ 1
2k
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∫

X
Pk(x,A)π(dx) =

1

2k
×

∫ 1

0

P (Zx,k ∈ A)dx + (1− 1

2k
)π(A)

=
1

2k
× [2k

∫ a+ 1

2k+1

a− 1

2k+1

[x +
1

2k+1
− a]dx + 2k

∫ b+ 1

2k+1

b− 1

2k+1

[−x +
1

2k+1
+ b]dx

+ (b− a− 1

2k
)] + (1− 1

2k
)π(A)

=
1

2k
× [2k+1

∫ 1

2k

0

tdt + (b− a− 1

2k
)] + (1− 1

2k
)π(A)

= b− a.

Similarly we can prove Case 2:|b− a| < 1
2k .

Lemma 5.15. For each y ∈ X , Py is stationary with respect to π.

Proof.

∫

X
Py(x,A)π(dx) =

∫

x 6=y

[
2

3
π(A) +

1

3
δx(A)]π(dx)

=
2

3
π(A) +

1

3
π(A)

= π(A).

Define the independent random variable In as below:

In =





1 w.p.
√

n−1√
n

;

0 w.p. 1√
n
.
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And independent random variable Yn as below: Y0 = Y1 = 1 and

Yn =





n + 1 with probability 1
n
,

n + 2 with probability 1
n
,

·

·

·

2n with probability 1
n
.

Define the adaptive scheme as:

Γn =





Yn , if In = 1;

Xn , if In = 0.

Lemma 5.16. Such an adaptive scheme satisfies the diminishing condition.

Proof. Actually PYn(x,A) = 1
n

∑2n
i=n+1 Pi(x,A), so

|PΓn+1(x,A)− PΓn(x,A)|

≤ |PYn+1(x,A)− PYn(x,A)|+ P (In = 0 or In+1 = 0)

≤ | 1

n + 1

2n+2∑
i=n+2

Pi(x,A)− 1

n

2n∑
i=n+1

Pi(x,A)|+ 1√
n

+
1√

n + 1

≤ 1

n(n + 1)

2n∑
i=n+2

Pi(x,A) + | 1

n + 1
P2n+1(x,A) +

1

n + 1
P2n+2(x,A)− 1

n
Pn+1(x,A)|

+
1√
n

+
1√

n + 1

≤ 1

n
+

3

n
+

1√
n

+
1√

n + 1

→ 0 as n →∞.

Lemma 5.17. Given x∗ = 0 and γ∗ = 0. Then for any ε > 0, there is m ∈ N such that:

P [(Xn, Γn) ∈ Zm,ε i.o. |X∗ = 0, Γ0 = 0] = 1.
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Proof. We know P0 is uniformly ergordic with respect to π(·), so for any ε > 0 there

exists m such that:

‖Pm
0 (0, ·)− π(·)‖ < ε. (5.1)

If we suppose

J =





1 w.p.2
3
;

0 w.p.1
3
.

Then we can consider Px(x,A) as the following: if J = 0, the chain will move to 0,

otherwise select one point on the interval [0, 3
4
] with uniform distribution.

And we have:

P [Xn+1 = 0, Γn+1 = 0 i.o.] ≥ P [In = 0, In+1 = 0 andJ = 0 i.o].

Since
∑∞

i=1 P (I2i = 0, I2i+1 = 0, J = 0) =
∑∞

i=1
1
3

1√
2i(2i+1)

= ∞. Following The Borel-

Cantelli Lemma in [50] we have:

P [I2n = 0, I2n+1 = 0 andJ = 0 i.o] = 1.

Therefore P [(Xn, Γn) = (0, 0) i.o.] = 1. Following (5.1) we know that

1 ≥ P [(Xn, Γn) ∈ Zm,ε i.o. |X∗ = 0, Γ∗ = 0] (5.2)

≥ P [(Xn, Γn) = (0, 0) i.o. |X∗ = 0, Γ∗ = 0] = 1. (5.3)

Lemma 5.18. Suppose {ai}∞i=1 is a decreasing positive sequence such that 0 < ai < 1,

and if
∑∞

i=1 ai < ∞, then

lim
N→∞

∞∏
i=N

(1− ai) = 1. (5.4)



Chapter 5. Recurrent And Ergodic Properties of AMCMC 57

Proof. When 0 < ai < 1, we have:

ln(1− ai) ≤ −ai.

Therefore

1 ≥ lim
N→∞

∞∏
i=N

(1− ai)

≥ lim
N→∞

e
P∞

i=N (−ai)

= 1.

Lemma 5.19. Given X∗ = 0 and Γ∗ = 0, we do NOT have limn→∞ T (x∗, γ∗, n) = 0.

Proof. Suppose limn→∞ T (x∗, γ∗, n) = 0, that is for any ε > 0, there exists N1 such that

for any n > N and A ∈ B(X ),

|P [Xn ∈ A|X∗ = 0, Γ∗ = 0]− π(A)| < ε. (5.5)

According to the above adaptive scheme, if Γn ∈ [0, 1], then Γn must be equal to Xn,

in other words the case of kernel Py(x, ·) but y 6= x will NOT happen in this adaptive

Markov Chain. So if Xn ∈ [0, 3
4
], there are four cases maybe happen at Xn+1

Case 1: Xn+1 = Xn;

Case 2: Xn+1 = 0;

Case 3: Xn+1 = Zxn,n;

Case 4: Xn+1 ∼ Uniform[0, 3
4
].

Only in the case 3, Xn+1 maybe jump out of [0, 3
4
], so P (Xn+1 ∈ [0, 3

4
]|Xn ∈ [0, 3

4
]) >

1− 1
2n . Since this is a Markovian adaptive MCMC,

P (Xn+2 ∈ [0,
3

4
]|Xn ∈ [0,

3

4
])

≥ P (Xn+2 ∈ [0,
3

4
]|Xn+1 ∈ [0,

3

4
])P (Xn+1 ∈ [0,

3

4
]|Xn ∈ [0,

3

4
])

≥ (1− 1

2n
)(1− 1

2n+1
).
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Similarly for any m > 0, we have:

P (Xn+m ∈ [0,
3

4
]|Xn ∈ [0,

3

4
]) ≥

n+m−1∏
i=n

(1− 1

2i
). (5.6)

Following lemma 5.18 we select N2 > 0 such that
∏∞

i=N2
(1 − 1

2i ) > 1 − ε
2

Let N =

max{N1, N2}, then following (5.3) there exist K large enough such that:

P [∃N ≤ n < NK such that (Xn, Γn) = (0, 0)] >
3
4

+ 2ε

1− ε
2

, (5.7)

whenever (Xn, Γn) = (0, 0), then Xn+1 must be in [0, 3
4
], so following (5.6) we have:

P (XNK+1 ∈ [0,
3

4
])

= P (XNK+1 ∈ [0,
3

4
]|∃N < n ≤ NK s.t. Xn ∈ [0,

3

4
]) · P (∃N < n ≤ NK s.t. Xn ∈ [0,

3

4
])

≥
∞∏

i=N

(1− 1

2i
) · P [∃N < n ≤ NK s.t. (Xn−1, Γn−1) = (0, 0)]

≥ (1− ε

2
)×

3
4

+ 2ε

1− ε
2

=
3

4
+ 2ε.

Which is conflicting with (5.5).

5.4.4 Strengthen The Diminishing Adaption Condition

Following the counterexample in the section 5.4.3, we know that the Diminishing Adap-

tion condition and the recurrence property to the “good convergence” set are not suffi-

cient to get the ergodicity of the AMCMC. Therefore we can strengthen the Diminishing

Adaption condition such that it can match with the recurrence condition, so that we can

use the coupling methods to prove the ergodicity.

For any m ∈ N and ε > 0, we can define the i−th hitting time τ
(i)
x,γ(m, ε) as below:

τ (i)
x,γ(m, ε) = min{n > τ (i−1)

x,γ (m, ε)|Mε(Xn, Γn) ≤ m given X0 = x, Γ0 = γ},



Chapter 5. Recurrent And Ergodic Properties of AMCMC 59

and the hitting number within n step

cm,ε
x,γ (n) = the number of {0 ≤ j ≤ n|Mε(Xj, Γj) ≤ m given X0 = x, Γ0 = γ}.

Furthermore we can define:

s(i)
x,γ(m, ε) =

τ
(i+1)
x,γ (m,ε)∑

j=τ
(i)
x,γ(m,ε)+1

Dj,

and denote

Condition (d2): Suppose that for all ε > 0, there is m ∈ N such that P [Mε(Xn, Γn) <

m i.o.|X0 = x∗, Γ0 = γ∗] = 1 and s
(i)
x,γ(m, ε) →i→∞ 0 in probability.

Then we have the following theorem:

Theorem 5.3. Consider an adaptive MCMC algorithm , let x∗ ∈ X and γ∗ ∈ Y. Then

conditon (d2) implies limn→∞ T (x∗, γ∗, n) = 0.

Proof. For any ε > 0, there is m ∈ N such that

P [Mε(Xn, Γn) < m i.o.|X0 = x∗, Γ0 = γ∗] = 1,

and there exists N1 > 0 such that for any n > N1 we have:

P

[ n+m∑
j=n

s(i)
x,γ(m, ε) > ε

]
≤ ε.

Following P [Mε(Xn, Γn) < m i.o.|X0 = x∗, Γ0 = γ∗] = 1, we know that there is N > 0

such that

P [cm,ε
x,γ (N) > N1 + m] > 1− ε. (5.8)

Consider any n > N , the above formula indicates that:

P [∃k > N1 + m such that τ (k)
x,γ (m, ε) ≤ n < τ (k+1)

x,γ (m, ε)] > 1− ε.

We set l = τ
(k−m)
x,γ (m, ε). we can construct a second chain {X ′

i}n
i=l such that X

′
l = Xl and

X
′
i ∼ PΓl

(Xi−1, ·) for l ≤ i ≤ n. If we denote the event E = {∑n
i=l P (X

′
i 6= Xi) < ε},

then from (5.8) we have:

P [E] > 1− ε.
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On the other hand we have:

‖P n−l
Γl

(Xl, ·)− π(·)‖ ≤ ‖P l+m
Γl

(Xl, ·)− π(·) ≤ ε.

We can construct Z ∼ π(·), then

‖P (Xn ∈ ·|X0 = x, Γ0 = γ)− π(·)‖

≤ P (Xn 6= Z|X0 = x, Γ0 = γ)

≤ P (Xn 6= X
′
n, E|X0 = x, Γ0 = γ) + P (X

′
n 6= Z, E|X0 = x, Γ0 = γ) + P (Ec|X0 = x, Γ0 = γ)

≤ 3ε

i.e. T (x, γ, n) < 3ε.

Following the Theorem 5.3, we can get the following corollary easily.

Corollary 5.1. Consider an adaptive MCMC algorithm such that
∑∞

i=1 Di < ∞ in

probability. Let x∗ ∈ X and γ∗ ∈ Y. Suppose that for all ε > 0, there is m ∈ N such that

P [Mε(Xn, Γn) < m i.o.|X0 = x∗, Γ0 = γ∗] = 1. Then limn→∞ T (x∗, γ∗, n) = 0.

Proof. Since
∑∞

i=1 Di < ∞ in probability, we know that s
(i)
x,γ(m, ε) →i→∞ 0 in probability.

Therefore following the Theorem 5.3, we have the conclusion.

5.5 The Convergence Rate Of AMCMC

5.5.1 Discussion On The Convergence Rate Of Finite AMCMC

Let us start our discussion with some special adaptive scheme- finite AMCMC algorithm.

Following proposition 4.2, we know that the finite AMCMC algorithm is ergodic for the

target distribution π(·). Intuitively if each kernel Pγ is geometrically ergodic, we hope

the finite AMCMC is also geometrically ergodic, i.e. there is ρ < 1 and K(x, γ) < ∞
such that T (x, γ, n) ≤ K(x, γ)ρn for all n ∈ N. However we have the following negative

theorem:
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Theorem 5.4. There exists a finite adaptive scheme where each Pγ is geometrically

ergodic with respect to π(·), but where the finite adaptive scheme fails to be geometrically

ergodic.

Proof. Let χ = R with π(·) = N(0, 1). Let Y = (0,∞), and for γ ∈ Y let Pγ be a

Metropolis algorithm with proposal distribution Q(x, ·) = N(x, γ2). Then each such Pγ

is geometrically ergodic (See e.g. Roberts and Tweedie [41],1996). On the other hand,

consider an adaptive scheme such that Γ0 = 1 and τ is the first time a proposal is

accepted, and Γn+1 = 2Γn for n < τ , with Γn+1 = Γτ for n > τ . Now we suppose that

there exist M(x, γ) < ∞ and γ ∈ (0, 1) such that:

|P (Xn ∈ A|X0 = x, Γ0 = γ)− π(A)| 6 M(x, γ)ρn, (5.9)

for each A ∈ B(χ) and n ∈ N. Consider X0 = 0, Γ0 = 1 and A = R \ {0}. Then we

have:

|1− P (Xn ∈ A|X0 = 0, Γ0 = 1)| 6 M(0, 0)ρn. (5.10)

Now we denote P0,1(Xn ∈ A) = P (Xn ∈ A|X0 = 0, Γ0 = 1), and we can write it in

following form:

P0,1(Xn ∈ A) =
∞∑

j=1

P0,1(Xn ∈ A, τ = j) (5.11)

=
∑
j≤n

P0,1(Xn ∈ A, τ = j) (5.12)

=
∑
j≤n

P0,1(τ = j). (5.13)

Equation (5.12) follows that if τ > n, which means Xn is still zero, Xn is not in A; and

equation (5.13) follows that if τ 6 n, Xn ∈ A with probability 1. So (5.10) can be written

as:

P0,1(τ > n + 1) 6 M(0, 1)ρn. (5.14)



Chapter 5. Recurrent And Ergodic Properties of AMCMC 62

Suppose Yi denote the random variable generated by the n-th proposal distribution, and

we find that when τ > n + 1, the first n Yi are independent, so we have:

P0,1(τ > n + 1) = E(P0,1(τ > n + 1|Y1, · · ·, Yn))

= Πn
i=0

∫

X
(1− exp{−y2

i

2
})dL{Yi}

= Πn
i=0(1−

1√
2π2i

∫

X
exp{−y2

2
} exp{− y2

2 · 22i
}dy)

= Πn
i=0(1−

1√
2π2i

·
√

2π
2i

√
22i + 1

· 1√
2π 2i√

22i+1

∫

X
exp{− y2

2 · 22i

22i+1

}dy)

= Πn
i=0(1−

1√
22i + 1

)

≥ Πn
i=1(1−

1

2i
)

≥ Πn
i=1(1−

1

i
)

=
1

n
.

So following (5.10), we have:

M(0, 0)ρn ≥ |1− P0,1(Xn ∈ A)|

= |1−
∑
j≤n

P0,1(τ = j)|

= P0,1(τ ≥ n + 1)

≥ 1

n
.

That is we have ρ ≥ [ 1
n·M(0,0)

]
1
n , and we know that limn→∞[ 1

n·M(0,0)
]
1
n = 1, so we have

ρ ≥ 1 which is contradicting with assumption!

5.5.2 Discussion On The Convergence Rate Of Uniformly Con-

verging AMCMC

Following the Theorem 4.2, we know that if the kernel family {Pγ} is simultaneous

uniform ergordicity, we can prove that the AMCMC is ergodic under the Diminishing
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Adaptation. We also hope that the AMCMC keep the uniformly ergordicity with respect

to the target distribution as each kernel does. However the following example shows that

it may not be true.

Consider X = (0, 1], Y = (0, 1]×N, π(·) is the Lebesgue measure on X , and

g(x) = x−
1
2 ,

therefore π(g) = 2. Furthermore, for (γ, k) ∈ Y define the kernel P(γ,k) by:

P(γ,k)(x,A) =





2
3
π(A) + 1

3
δx(A) if x 6= γ

2
3
π(A) + 1

3
δ 1

4k
(A) if x = γ.

We construct the adaptive scheme as below:

first we define {In}∞n=1 to be an independent random variable sequence such that:

In =





1 with probability 1
n

0 with probabilityn−1
n

;

secondly we let Γn+1 = Γn × (1− In) + (Xn+1, n + 1)× In.

Theorem 5.5. For the above adaptive MCMC which satisfies conditions (a) and (b), for

any x ∈ X , there exits a measurable set B such that
∑∞

n=1 A(n)(x,B) = ∞.

Proof. Consider the set B = { 1
4k |k = 1, 2, · · ·, }, suppose for any start valuve X0 = x and

Γ0 = γ, we have:

∞∑
i=1

Ai((x, γ), B) < ∞,

then for any 0 < ε < 1, there exists Nx,γ > 0 such that

∞∑
i=N+1

Ai((x, γ), B) ≤ ε.

Because

P (Xn+1 =
1

4n
|Γn = (Xn, n)) ≥ 1

3
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and

P (Γn = (Xn, n)) ≥ P (In = 1),

we can get

P (Xn+1 =
1

4n
) ≥ P (Xn+1 =

1

4n
, Γn = (Xn, n))

≥ 1

3
P (Γn = (Xn, n))

≥ 1

3
P (In = 1)

=
1

3n
.

Then following the Borel-Cantelli lemma see Jeffrey S. Rosenthal [50] (2000), we have:

1 = P (∃ m > Nx,γ s.t. Im = 1)

≤
∞∑

i=N+1

P i((Xi =
1

4i
|X0 = x, Γ0 = γ)

≤
∞∑

i=N+1

Ai((x, γ), B)

≤ ε,

Contradiction!! So we have
∑∞

i=1 Ai((x, γ), B) = ∞. Since π(B) = 0, we can get:

∞∑
i=1

T i((x, γ), B) < ∞.

Therefore Ai((x, γ), ·) is neither uniformly nor geometrically ergodic.



Chapter 6

Weak Law of Large Numbers for

AMCMC

6.1 Introduction

Usually we also want to estimate the integral π(g) =
∫
X g(x)π(dx) of various functions

g : X → R using the laws of large numbers for ergodic averages of the form:

1

n

n∑
i=1

g(Xi) →n→∞ π(g) in probability or almost surely

There are many references e.g Tierney [53](1994), Meyn and Tweedie [37](1993) which

give the proof and applications of the LLN of general Markov Chains. Regarding the

LLN of AMCMC, there are also many papers e.g. Andieu and Achade [2] (2007), Andrieu

and Moulines [3](2005), Andrieu and Robert [5](2001), Atchade and Rosenthal [6](2005)

giving the proof under various conditions. Based on theorem 4.3, we know that the

simultaneous uniform ergodicity and diminishing adaptation are sufficient to ensure the

WLLLN for bounded function. This also leads another questions: Does the WLLN

hold for all unbounded g ∈ L(π) under the same conditions? We will present counter-

examples to demonstrate that when g is unbounded the conditions in the Theorem 4.3 are

not enough to guarantee that the the weak law of large numbers (WLLN) holds. Then

65
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we show various theoretical results of the WLLN for the adaptive Metropolis-Hasting

algorithm and unbounded measurable function g, then we will apply our results to the

Adaptive Metropolis algorithm proposed by Haario et al.[26] (2001). Finally we will

prove the WLLN under the conditions of Theorem 5.1.

6.2 The Counter Example

Consider the example constructed in section 5.5.2 and we have the following theorem:

Theorem 6.1. There exists adaptive MCMC algorithm satisfies conditions (a) and (b)

and π(|g|) < ∞ , but the WLLN does NOT hold.

According to the construction of the example, we can show that

Lemma 6.1. The adaptive MCMC algorithm in section 5.5.2 satisfies conditions (a) and

(b).

Proof. Obviously each P(γ,k) is stationary with respect to π, and ‖P(γ,k)(x, ·)−π(·)‖var ≤ 1
3

for any (γ, k), so such a family of kernels satisfy the condition (a) following the Proposition

7 in Roberts and Rosenthal (2004);

And following the definition of Γn, we have:

Dn = sup
x∈X

‖PΓn+1(x, ·)− PΓn(x, ·)‖

≤ P (Γn+1 6= Γn)

= P (In = 1)

=
1

n
.

Therefore we have the conditions (a) and (b) holds.

To prove the Theorem 6.1, we show the following lemmas first:
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Lemma 6.2. For any ε > 0 and any sequence {xi}∞i=0, if n and k are two positive integers

such that n < k < 2n−(1+ε)n−1
1+ε

and we also have g(xn) = 2n then:

∑k
i=1 g(xi)

k
− 2 > ε. (6.1)

Proof. Since k+2n−1
k

strictly decreases with respect to k and g(x) ≥ 1, we have:

∑k
i=1 g(xi)

k
− 2− ε ≥ k − 1 + 2n

k
− 2− ε

≥
2n−(1+ε)n−1

1+ε
− 1 + 2n

2n−(1+ε)n−1
1+ε

− 2− ε

≥ 1 +
2n − 1

2n−(1+ε)n−1
1+ε

− 2− ε

≥ 1 +
2n − 1

2n − (1 + ε)n− 1
× [1 + ε]− 2− ε

> 1 + 1 + ε− 2− ε

= 0.

Lemma 6.3. For any ε > 0, there exists Mε such that for any m > Mε we have:

2m+1 − (m + 1)(1 + ε)− 1

1 + ε
> m2.

Proof. Denote hm = 2m+1−(m+1)(1+ε)−1
1+ε

−m2, then we have limm→∞ hm = ∞. Therefore

there exists Mε such that for any m > Mε we have hm > 0, i.e. 2m+1−(m+1)(1+ε)−1
1+ε

>

m2.

For any 0 < ε < 1
6
, we define Nε = max{Mε,

1
1−6ε

}, then we can prove that:

Lemma 6.4. For any X0 = x, Γ0 = γ and 0 < ε < 1
6
, then we have:

P (|
∑n

i=1 g(Xi)

n
− π(g)| > ε|X0 = x, Γ0 = γ) > 2ε for any n > N2

ε .
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Proof. For any n > N2
ε , we have

P (Im = 0, for any m satisfiesb√nc+ 1 ≤ m ≤ n)

=
n∏

i=b√nc+1

i

i + 1

=
b√nc

n

≤ 1√
n

≤ 1

Nε

,

then

P (∃m, b√nc+ 1 < m < n, Im = 1) ≥ Nε − 1

Nε

.

Whenever Γn+1 = (Xn+1, n + 1), we have g(Xn+1) = 2n+1 w.p. 1
3
. Since Nε > 1

1−6ε
, we

have Nε−1
3Nε

> 2ε. Therefore:

P (∃m, b√nc+ 1 < m < n, g(Xm) = 2m)) >
Nε − 1

3Nε

> 2ε. (6.2)

Also since m > Nε, lemma 6.3 indicates that for any b√nc+ 1 < m < n we have:

2m − (1 + ε)m− 1

1 + ε
> m2 + 1 > (b√nc+ 1)2 + 1 > n + 1.

Following lemma 6.4 and m < n < 2m−(1+ε)m−1
1+ε

, we know that

∑n
i=1 g(xi)

n
− 2 ≥ ε.

Therefore:

P (|
∑n

i=1 g(Xi)

n
− 2| > ε)

≥ P (

∑n
i=1 g(Xi)

n
− 2 ≥ ε)

≥ P (∃m, b√nc < m < n, g(Xm) = 2m))

> 2ε,

the last inequality is from (6.2).
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Based on all above technical results, we start to prove the Theorem 6.1.

Proof. Consider the above example, following all the lemmas above we know that for any

ε > 0, we have:

lim sup
n→∞

P (|
∑n

i=1 g(Xi)

n
− π(g)| > ε) > 2ε.

In other words, we do NOT have:

lim
n→∞

P (|
∑n

i=1 g(Xi)

n
− π(g)| > ε) = 0.

So the WLLN does NOT hold in this example.

6.3 Summable Adaptive Conditions

From the above counter-example, we know that conditions (a) and (b) are not sufficient

conditions to the WLLN of unbounded functions, so we need to strengthen them. Intu-

itively if n is large enough, for any k, l > n, Γk and Γl are “almost” the same, then the

WLLN may hold for any g ∈ L(π). Let us consider the following condition:

(b
′
)[Summable Adaption]

∑∞
i=1 supx∈X ‖PΓi+1

(x, ·)−PΓi
(x, ·)‖ < ∞. Actually we can prove

the following theorem:

Theorem 6.2. Consider an adaptive MCMC algorithm. Suppose that conditions (a) and

(b
′
) hold. Let g : X → R be a measurable function such that π(|g|) < ∞. Then for any

starting values x ∈ X and γ ∈ Γ, conditional on X0 = x and Γ0 = γ we have:

∑n
i=1 g(Xi)

n
→ π(g)

in probability as n →∞.

Proof. Denote

Sn =
∞∑

i=n

sup
x∈X

‖PΓi+1
(x, ·)− PΓi

(x, ·)‖.
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For any ε > 0, following condition (b
′
), there exists N1 such that

P (SN1 > ε) <
ε

4
.

We can denote E = {SN1 < ε}. Since |g| < ∞, there exists N2, such that for any n > N2

P (|
∑N1

i=1 g(Xi)

n
| > ε

2
) <

ε

4
.

Define N = max{N1, N2}, and we can construct a second chain {X ′
n}∞n=N on E such that

X
′
N = XN and X

′
n ∼ PΓN

(X
′
n−1, ·) for n > N , and such that:

∞∑
n=N

P (Xn 6= X
′
n, E) <

ε

4
.

Define the events: Bn(ε) = {|
Pn

i=N+1 g(X
′
i )

n
| > ε

2
}, then following the Law of Large Numbers

of Markov chain (See Theorem 17.3.2 in [37]), we can get

lim
n→∞

P (Bn(ε)|XN , ΓN) = 0.

Then

lim
n→∞

P (Bn(ε)) = lim
n→∞

E(P (Bn(ε)|XN , ΓN))

= E( lim
n→∞

P (Bn(ε)|XN , ΓN))

= 0

That is when n is large enough we have P (Bn(ε)) < ε
4
. Therefore we have

P (|
∑n

i=1 g(Xi)

n
| > ε)

≤ P (|
∑N

i=1 g(Xi)

n
| > ε

2
) + P (|

∑n
i=N+1 g(Xi)

n
| > ε

2
)

≤ P (|
∑N

i=1 g(Xi)

n
| > ε

2
) + P (|

∑n
i=N+1 g(Xi)

n
| > ε

2
, E) + P (|

∑n
i=N+1 g(Xi)

n
| > ε

2
, Ec)

≤ P (|
∑N

i=1 g(Xi)

n
| > ε

2
) + P (|

∑n
i=N+1 g(Xi)

n
| > ε

2
, Ec)

+ P (|
∑n

i=N+1 g(X
′
i)

n
| > ε

2
, E) +

n∑
i=N+1

P (Xi 6= X
′
i , E)

≤ ε.
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Remark:According to the conditions in the above proposition, we know that when

N is large enough, the sequence {Xn}∞n=N is almost equal to {X ′
n}∞n=N which is a Markov

chain with transition kernel PΓn . At the first sight, adaptive algorithms that satisfy the

conditions (a) and (b
′
) cannot show the adaptive MCMC’s advantages sufficiently. But

following Roberts and Rosenthal [47] (2005), we know that in lots of cases, the adaptive

MCMC will tune the parameter to an “optimal” one after “learning” the information

from the historical samples. So we can adjust the convergence speed of Sn such that the

adaptive chain can learn enough to find the optimal parameter, that is we can make N

very large, such that ΓN is almost a “good” parameter.

6.4 The WLLN For Adaptive Metropolis-Hastings

Algorithm

Usually we construct the transition kernel using Metropolis-Hastings algorithms. If we

tune the proposal distribution at each step as Harrio eg did in [26], we hope to prove the

WLLN for unbounded function with respect to adaptive Metropolis-Hasting algorithm.

Furthermore, when the proposal kernels have uniformly bounded densities, Roberts and

Rosenthal [48] (2005) have proved the following ergodicity corollary with respect to adap-

tive Metropolis-Hastings algorithm.

Corollary 6.1. Suppose an adaptive MCMC algorithm satisfies the Diminishing Adap-

tation property, and also that each Pγ is ergordic for π(·). Suppose further that for each

γ ∈ Y, Pγ represents a Metropolis-Hastings algorithm with proposal kernel Qγ(x, dy) =

fγ(x, y)λ(dy) having a density fγ(x, y) with respect to some finite reference measure

λ(·) on X , with corresponding density w for π(·) so that π(dy) = w(y)λ(dy). Finally,

suppose fγ(x, y) are uniformly bounded, and that for each fixed y ∈ X , the mapping

(x, γ) 7→ fγ(x, y) is continuous with respect to some product metric space topology, with
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respect to which X ×Y is compact. Then limn→∞ T (x, γ, n) = 0 for all x ∈ X and γ ∈ Y.

If we denote the conditions in corollary 6.1 by condition (j), then we have the following

theorem:

Theorem 6.3. Consider an adaptive MCMC that satisfies the condition (j). Then for

any measurable function g such that λ(|g|) < ∞ and π(|g|) < ∞ we have:
∑n

i=1 g(Xi)

n
→ π(g)

in probability as n →∞, conditional on X0 = x∗ and Γ0 = γ∗.

Remark: If there exist M > m > 0 such that m < w(x) < M , where π(dy) =

w(y)λ(dy), then we know that λ(|g|) < ∞ if and only if π(|g|) < ∞. A typical case is

that the state space X is compact set in Rd, w(y) is continuous function on X and λ is

Lebesgue measure. Then we have M > w(x) > m > 0, and the WLLN of the adaptive

MCMC satisfying the conditions in corollary 6.1 will hold for any measurable function g

such that π(|g|) < ∞.

We will prove the theorem following the steps below:

Step 1: For all M > 0, denote EM = {x ∈ X ||g(x)| ≤ M} and for all ε define:

Mε = inf{M > 0|λ(EM) ≥ 1− ε,

∫

EM

|g(x)|λ(dx) ≥ s− ε}

= inf{M > 0|λ(Ec
M) ≤ ε,

∫

Ec
M

|g(x)|λ(dx) ≤ ε}.

If λ(|g|) < ∞, we will prove that ε ·Mε → 0 as ε → 0;

Step 2: Suppose Pγ(x,A) =
∫

A
f̃γ(x, y)λ(dx) + rγ(x)δx(A) then Under the conditions of

the Theorem 6.3 we have 0 < rγ(x) < η;

Step 3: Suppose An
γ(x,A) = P (Xn ∈ A|X0 = 0, Γ0 = γ), then there exist L > 0 and

0 < η < 1, then under the conditions of the theorem, we have

An
γ(x,B) =

∫

B

h(n)
γ (x, y)λ(dy) + w(n)

γ (x)δx(B),

such that h
(n)
γ (x, y) < L and w

(n)
γ (x) < ηn;

Step 4: Prove the WLLN using coupling methods.
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6.4.1 Some Technical Results

Suppose the probability of accepting a proposal y generated from x according to Qγ is

given by αγ(x, y) = min{1, g(y)fγ(y,x)

g(x)fγ(x,y)
}, so we have:

Pγ(x,B) =

∫

B

fγ(x, y)αγ(x, y)λ(dy) + (1−
∫

X
αγ(x, y)λ(dy))δx(B).

We can denote f̃γ(x, y) = fγ(x, y)αγ(x, y), rγ(x) = (1 − ∫
X αγ(x, y)λ(dy)) and suppose

fγ(x, y) < F . Obviously we have f̃γ(x, y) < F since αγ(x, y) ≤ 1. We also need to prove

the following lemmas before we prove the theorem.

Lemma 6.5. Suppose (χ, F, λ) is a probability space, and g : χ → R is a measurable

function such that λ(|g|) = s < ∞. Then for ∀ε > 0, there exists M > 0, such that:

λ(EM) ≥ 1− ε and
∫

EM
|g(x)|λ(dx) ≥ s− ε

Proof. Suppose there exits ε0 > 0, for each M , we have

λ(Ec
M) ≥ ε0 (6.3)

or

∫

EM

|g(x)|λ(dx) ≤ s− ε0 (6.4)

If (6.3) holds, we have
∫

Ec
M
|g(x)|π(dx) ≥ Mε0 for all M , contradiction!

If (6.4) holds, we have
∫

χ
|g(x)|1En(x)π(dx) ≤ s− ε0 for all n ∈ N. Suppose

Yn = |g(X)|1En(x).

Obviously Yn ↑ |g(X)|, then by the monotone convergence theorem

Eλ(|g(x)|) = limn→∞E(Yn) ≤ s− ε0,

which is contradicting with Eλ(|g(x)|) = s.
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Lemma 6.6. Suppose g : χ → R is a measurable function such that λ(|g|) = s <

∞. Then for each sequence {εn} → 0, there exists a subsequence εnk
↘ 0 such that

εnk
Mεnk

→ 0 as n → 0.

Proof. Following lemma 6.5 we know that 0 ≤ λ(Ec
Mεn

)

εn
≤ 1, there is a subsequence

εnk
↘ 0 such that {

λ(Ec
Mεnk

)

εnk
} is convergent to some a. Then we can think about the

problem in the following two cases:

(1). 0 < a ≤ 1; then there exists N > 0 such that for each k > N , |
λ(Ec

Mεnk
)

εnk
− a| < a

2
,

i.e. λ(Ec
Mεnk

) > a
2
εnk

, so

0 = limk→∞

∫

EMc
εnk

|g(x)|π(dx)

≥ limk→∞λ(Ec
Mεn

)Mεnk

≥ limk→∞
a

2
εnk

Mεnk

≥ 0.

So limk→∞εnk
Mεnk

= 0.

(2). a = 0; then there exists N , k > N , such that

λ(Ec
Mεnk

) <
1

2
εnk

. (6.5)

And following (6.3) for each δ > 0,

λ(|g(x)| ≥ Mεnk
− δ) > εnk

. (6.6)

Following (6.5) and (6.6), let δ → 0, we can get:

λ(|g(x)| = Mεnk
) ≥ εnk

− 1

2
εnk

=
1

2
εnk

.
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Since εnk+1
< εnk

, Mεnk
≤ Mεnk+1

,

0 = limk→∞

∫

Ec
Mεnk

|g(x)|λ(dx)

≥ limk→∞

∫

{|g(x)|=Mεn+1}
|g(x)|λ(dx)

= limk→∞Mεnk+1
· λ(|g(x)| = Mεnk+1

)

≥ limk→∞
1

2
Mεkn+1

· εnk+1

≥ 0.

So limk→∞Mεnk+1
· εnk+1

= 0.

Lemma 6.7. Suppose g : χ → R is a measurable function such that λ(|g|) = s < ∞.

Then ε ·Mε → 0 as ε → 0.

Proof. Suppose there exists c > 0 such that for each n ∈ N , there exists εn < 1
n

and

εn ·Mεn ≥ c for all n, then every subsequence {εnk
} of {εn} satisfies that εnk

·Mεnk
≥ c,

which is contradicting with the lemma 6.6. So ε ·Mε → 0 as ε → 0.

Lemma 6.8. Under the conditions of corollary 6.1, we have that condition (a) holds.

Proof. Following the proof of Corollary 12 in Roberts and Rosenthal [48](2005), we can

get the lemma directly.

Lemma 6.9. Condition (a) is equivalent to: There exist M > 0 and 0 < ρ < 1 such that

for any x, γ we have:

‖P n
γ (x, ·)− π(·)‖ ≤ Mρn.

Proof. Suppose tγ(n) = 2 supx∈X ‖P n
γ (x, ·)− π(·)‖, following Roberts and Rosenthal [46]

(2004) Proposition 3(c), we know that tγ(m + n) ≤ tγ(m)tγ(n). Under condition (a),

there exists n which is independent of γ such that tγ(n) ≡ β < 1, so for all j ∈ N,
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tγ(jn) ≤ (tγ(n))j = βj. Therefore, we have:

‖Pm
γ (x, ·)− π(·)‖ ≤ ‖P bm/ncn

γ (x, ·)− π(·)‖ ≤ 1

2
tγ(bm/ncn) ≤ βbm/nc ≤ β−1(β1/n)m.

So all the kernels are uniformly ergodic with M = β−1 and ρ = β1/n.

Lemma 6.10. Suppose Pγ(x,A) =
∫

A
f̃γ(x, y)λ(dx) + rγ(x)δx(A), then there exist mea-

surable functions f̃
(n)
γ (x, y) on χ2 such that P n

γ (x,A) =
∫

A
f̃

(n)
γ (x, y)λ(dx) + rn

γ (x)δx(A).

Proof. We will prove it by induction, and obviously the conclusion holds when n = 1.

We suppose it also holds when n = k, then let’s consider the case when n = k + 1:

P k+1
γ (x,A) =

∫

χ

P k
γ (y, A)Pγ(x, dy)

=

∫

χ

[

∫

A

f̃ (k)
γ (y, z)λ(dz) + rk

γ(y)δy(A)][f̃γ(x, y)π(dy) + rγ(x)δx(dy)]

=

∫

χ

∫

A

f̃ (k)
γ (y, z)π(dz)fγ(x, y)λ(dy) + f̃ (k)

γ (y, z)π(dz)rγ(x)δx(dy)

+ rk
γ(y)δy(A)f̃γ(x, y)λ(dy) + rk

γ(y)δy(A)rγ(x)δx(dy)

=

∫

A

[

∫

χ

f̃ (k)
γ (y, z)fγ(x, y)λ(dy)]π(dz) +

∫

A

rγ(x)f̃k
γ (x, z)π(dz)

+

∫

A

rk
γ(y)f̃γ(x, y)λ(dy) + rk+1

γ (x)δx(A)

=

∫

A

f̃ (k+1)
γ (x, z)λ(dz) + rk+1

γ (x)δx(A),

where

f̃ (k+1)
γ (x, z) =

∫

χ

f̃ (k)
γ (y, z)f̃γ(x, y)π(dy) + rγ(x)f̃k

γ (x, z) + rk
γ(x)f̃γ(x, z). (6.7)

Lemma 6.11. Suppose Pγ(x,A) =
∫

A
f̃γ(x, y)λ(dx) + rγ(x)δx(A) where λ(·) is a finite

reference measure on X such that λ({x}) = 0 for any x, with corresponding density w

for π(·) so that π(dy) = w(y)λ(dy). Then under condition (a),we have 0 < rγ(x) < η,

where the η is the same as in Lemma 6.9.
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Proof. Because Pγ(x, {x}c) =
∫

χ−x
f̃γ(x, y)π(dx), Pγ(x, x) = rγ(x) and π(x) = 0, and fol-

lowing that P k+1
γ (x,A) =

∫
A

f̃
(k+1)
γ (x, z)λ(dz)+rk+1

γ (x)δx(A), we know that |P n
γ (x, {x})−

π({x})| = rn
γ (x) for each x ∈ χ. Then following condition (a), we know for ∀ε > 0, there

exists N such that rN
γ (x) < ε, that is rγ(x) < ε

1
N for each γ and x. Then we take ε < 1,

and we can get η = ε
1
N < 1.

Lemma 6.12. Suppose An
γ(x,A) = P (Xn ∈ A|X0 = 0, Γ0 = γ), then under the condi-

tions of corollary 6.1, there exist L > 0 and 0 < η < 1, such that

An
γ(x,B) =

∫

B

h(n)
γ (x, y)λ(dy) + w(n)

γ (x)δx(B),

where h
(n)
γ (x, y) < L and w

(n)
γ (x) < ηn.

Proof. Suppose the joint distribution of (X1, X2, · · ·, Xn, Γ1, Γ2, · · ·, Γn−1) given X0 = x

and Γ0 = γ is µ
(n)
(x,γ), obviously the marginal distribution of Xn is A(n)((x, γ), ·). Since γn

is a measurable function of (x1, x2, · · ·, xn, γ1, γ2, · · ·, γn−1), we have:

A(n+1)((x, γ), B) =

∫

Xn×Yn−1

PΓn(xn, B)µ
(n)
(x,γ)(dx1 · · · dxndγ1 · · · dγn−1)

=

∫

Xn×Yn−1

[

∫

B

f̃γn(xn, y)λ(dy) + rγn(xn)(δxn(B))]µ
(n)
(x,γ)(dx1 · ·dxndγ1 · ·dγn−1)

=

∫

B

∫

Xn×Yn−1

f̃γn(xn, y)µ
(n)
(x,γ)(dx1 · · · dxndγ1 · · · dγn−1)λ(dy)

+

∫

Xn×Yn−1

rγn(xn)δxn(B)µ
(n)
(x,γ)(dx1 · · · dxndγ1 · · · dγn−1).
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We can observe that the second term:

∫

Xn×Yn−1

rγn(xn)δxn(B)µ
(n)
(x,γ)(dx1 · · · dxndγ1 · · · dγn−1)

=

∫

Xn−1×Yn−1

∫

X
rγn(xn)δxn(B)Pγn−1(xn−1, dxn)µ

(n−1)
(x,γ) (dx1 · · · dxn−1dγ1 · · · dγn−1)

=

∫

Xn−1×Yn−1

∫

B

rγn(xn)Pγn−1(xn−1, dxn)µ
(n−1)
(x,γ) (dx1 · · · dxn−1dγ1 · · · dγn−2)

=

∫

Xn−1×Yn−1

∫

B

rγn(xn)f̃γn−1(xn−1, xn)λ(dxn)µ
(n−1)
(x,γ) (dx1 · · · dxn−1dγ1 · · · dγn−2)

+

∫

Xn−1×Yn−1

∫

B

rγn(xn)rγn−1(xn−1)δxn−1(dxn)µ
(n−1)
(x,γ) (dx1 · · · dxn−1dγ1 · · · dγn−2).

If γn = γn(x, x1, · · ·, xn, γ, γ1, · · ·, γn−1), then we can define:

γi
n = γn(x, x1, · · ·, xn−i−1, xn−i, xn−i, · · ·, xn−i, γ, γ1, · · ·, γ1

n−i+1, · · ·, γi−1
n−1).

Similarly we can compute the second term of the above inequality:

∫

Xn−1×Yn−1

∫

B

rγn(xn)rγn−1(xn−1)δxn−1(dxn)µ
(n−1)
(x,γ) (dx1 · · · dxn−1dγ1 · · · dγn−2)

=

∫

Xn−2×Yn−1

∫

B

rγ1
n
(xn−1)rγn−1(xn−1)Pγn−2(xn−2, dxn−1)µ

(n−2)
(x,γ) (dx1 · · · dxn−2dγ1 · · · dγn−3)

=

∫

Xn−2×Yn−1

∫

B

rγ1
n
(xn−1)rγn−1(xn−1)f̃γn−2(xn−2, xn−1)λ(dxn−1)µ

(n−2)
(x,γ) (dx1 · ·dxn−2dγ1 · ·dγn−3)

+

∫

Xn−2×Yn−1

∫

B

rγ1
n
(xn−1)rγn−1(xn−1)rγn−2(xn−2)δxn−2(dxn−1)µ

(n−2)
(x,γ) (dx1 · · · dxn−2dγ1 · · · dγn−3).
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Inductively we have:

h(n+1)
γ (x, y) =

∫

Xn×Yn−1

f̃γn(xn, y)µ
(n)
(x,γ)(dx1 · · · dxndγ1 · · · dγn−1)

+

∫

Xn−1×Yn−2

rγn(xn)f̃γn−1(xn−1, xn)µ
(n−1)
(x,γ) (dx1 · · · dxn−1dγ1 · · · dγn−2)

+

∫

Xn−2×Yn−3

∫

B

1∏
i=0

rγi
n−i

(xn−i)f̃γn−2(xn−2, xn−1)µ
(n−2)
(x,γ) (dx · ·dxn−2dγ1 · ·dγn−3)

+ · · ·

+

∫

B

n−1∏
i=0

rγi
n−i

(x1)f̃γ(x, x1)µ
1
(x,γ)(dx1)

≤ F
n−1∑
i=0

ηi

≤ F

1− η

and

w(n+1)
γ (x) =

n−1∏
i=0

rγn−i
n−i

(x)

≤ ηn.

6.4.2 The proof of Theorem 6.2

Now we state the proof using the above lemmas as below:

Proof. Suppose π(g) = 0,λ(|g|) = s,Dn = supx∈χ ‖PΓn+1(x, ·) − PΓn‖ and fγ(x, y) < F .

Lemma 4.2 implies that given ε > 0, there exits η1 > 0 such that Mη1η1 < ε; denote

η2 = ε
F
, then we have:

∫

Ec
Mη2

|g(x)|λ(dx) ≤ ε.

Following lemma 4.4, we can find η < min{η1, η2} such that Mηη < ε and

∫

Ec
Mη

|g(x)|λ(dx) ≤ ε.



Chapter 6. Weak Law of Large Numbers for AMCMC 80

Then we define gk(x) = g(x)δEk
(x), Since gMη(x) is a bounded measurable function, then

we can find an integer N such that:

Eγ,x[|
∑N

i=1 gMη(Xi)

N
|] < ε, x ∈ X γ ∈ Y .

Denote Hn = {Dn ≥ η
N2}, then Diminishing Adaptive condition implies that we can find

N1 ∈ N such that for each n > N1, P (Hn) ≤ η
N

and |g(x∗)|ηN1

N(1−η)
< ε. Define the event

E =
⋂n+N

i=n+1 Hc
i . Then when n > N1, we have P (Ec) < η.For all n ≥ N1, following the

triangle inequality and induction, on event E we have:

sup
x∈χ

‖PΓn+k
(x, ·)− PΓn(x, ·)‖ ≤ η/N, k ≤ N.

In particular, for all x ∈ χ and k −N ≤ m ≤ k

‖PΓk−N
(x, ·)− PΓm(x, ·)‖ ≤ η, on E.

So ‖PN
Γk−N

(x, ·) − P (Xk ∈ ·|Xk−N = x,Gk−N)‖ ≤ η on E for all x ∈ χ. Then we can

construct a second chain {X ′
n}k

n=k−N such that X
′
k−N = Xk−N and X

′
n ∼ PΓk−N

(X
′
n−1, ·)

for k − N + 1 ≤ n ≤ k such that P (X
′
k 6= Xk) ≤ η. So for any n > N1, we have the

following inequality (*):

E(
1

N
|

n+N∑
i=n+1

g(Xi)|X0 = x∗, Γ0 = γ∗)

≤ E(E(|
∑n+N

i=n+1 gMη(Xi)

N
||Gn)|X0 = x, Γ0 = γ) + E(

|∑n+N
i=n+1(g − gMη)(Xi)

N
||X0, Γ0)

≤ E(EΓn,Xn(|
∑N

i=1 gMη(Xi)

N
|)|X0, Γ0) + Mηη + MηP (Ec) +

∑n+N
i=n+1 E(|(g − gη)(Xi)||X0, Γ0)

N

≤ ε + ε + Mηη +

∑n+N
i=n+1

∫
Ec

Mη

|g|(y)||A(i)((x∗, γ∗), dy)

N

≤ ε + ε + ε +

∑n+N
i=n+1

∫
Ec

Mη

|g|(y)|h(i)
γ∗ (x∗, y)λ(dy) + w

(i)
γ∗ (x∗)|g(x∗)|

N

≤ 3ε +

∑n+N
i=n+1 L

∫
Ec

Mη

|g|(y)|λ(dy) + ηi|g(x∗)|
N

≤ (3 + L)ε +
|g(x∗)|ηn+1

N(1− η)
.

≤ (4 + L)ε (∗)
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Now consider any integer T sufficiently large such that:

max[
N1Fs + |g(x∗)|

1−η

T
,
NFs + |g(x∗)|

1−η

T
] ≤ ε. (6.8)

Then we have

E(|
∑T

i=1 g(Xi)

T
||X0 = x∗, Γ0 = γ∗)

≤ E(|
∑N1

i=1 g(Xi)

T
||X0 = x∗, Γ0 = γ∗)

+ E(
1

bT−N1

N
c

bT−N1
N

c∑
j=1

1

N

N∑

k=1

g(XN1+(j−1)N+k|X0 = x∗, Γ0 = γ∗))

+ E(|
∑T

N1+bT−N1
N

cN+1
g(Xi)

T
||X0 = x∗, Γ0 = γ∗).

For the first term we have:

E(|
∑N1

i=1 g(Xi)

T
||X0 = x∗, Γ0 = γ∗)

≤
∑N1

i=1 E(|g(Xi)||X0 = x∗, Γ0 = γ∗)
T

≤
∑N1

i=1

∫
X |g(y)|A(n)((x∗, γ∗), dy)

T

≤
∑N1

i=1

∫
X |g(y)|h(n)

γ (x∗, y)λ(dy) + |g(x∗)|ηi

T

≤
N1Fs + |g(x∗)|

1−η

T

≤ ε,

and for the third one we know that:

E(|
∑T

N1+bT−N∗
N

cN+1 g(Xi)

T
|)

≤
∑T

N∗+bT−N∗
N

cN+1 E(|g(Xi)|
T

≤
NFs + |g(x∗)|

1−η

T

≤ ε.
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Finally following the inequality (*), the second term ≤ (4 + L)ε, so we have

E(|
∑T

i=1 g(Xi)

T
|) ≤ (6 + L)ε.

Markov’s inequality then gives that

P (|T−1

T∑
i=1

g(Xi)| ≥ ε
1
2 ) ≤ (6 + L)ε

1
2 .

Since this holds for all sufficiently large T , and since ε > 0 is arbitrary, the result

follows.

Remark: Here we actually get the conclusion: for any ε > 0, x ∈ X and γ ∈ Y ,

there exists N such that for any n > N we have:

P (|
∑n

i=1 g(Xi)

n
| > ε) < ε.

But here the “N” is dependent on the choice of the starting value x, but independent

of the starting value γ. In fact, this kind of dependence of the starting value is reasonable

when g is unbounded. Let us consider the following example which is a general Markov

chain with the kernel being uniformly ergodic:

Consider X = (0, 1], and

P (x,A) =
2

3
µ(A) +

1

3
δx(A),

where µ is Lebesgue measure on (0, 1]. Since

∫

X
P (x,A)µ(dx) =

∫

X
[
2

3
µ(A) +

1

3
δx(A)]µ(dx)

=
2

3
µ(A) +

1

3
µ(A)

= µ(A),

π is stationary with respect to P (x, ·). And following that:

‖P (x, ·)− π(·)‖var = ‖ − 1

3
µ(A) +

1

3
δx(A)‖var ≤ 1

3
.

Therefore, P is uniformly ergodic with respect to µ. Now suppose g(x) = x−
1
2 , then

µ(g) = 2, and then P (X1 ∈ (0, 1
m2 ]|X0 = 1

m2 ) = 2
3m2 + 1

3
for each m ∈ N. Suppose for
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some 0 < ε < 1
3
, there exists N such that P (|

PN
i=1 g(Xi)

N
| > ε|X0 = x0) < ε for all x0 ∈ X .

If we take x0 = (3N)−2, since g(Xi) > 0, we have:

P (|
∑N

i=1 g(Xi)

N
− π(g)| > ε|X0 =

1

(3N)2
) ≥ P (

g(X1)

N
− 2 > ε|X0 =

1

(3N)2
)

≥ P (g(X1) ≥ 3N |X0 =
1

(3N)2
)

≥ P (X1 ≤ 1

(3N)2
|X0 =

1

(3N)2
)

>
1

3
.

Contradiction!

6.4.3 A Corollary

In Roberts and Rosenthal [48] (2007), they also studied the adaptive MCMC with

bounded densities and proved the following corollary:

Corollary 6.2. Suppose an adaptive MCMC algorithm satisfies the Diminishing Adap-

tation property, and also that each Pγ is ergordic for π(·). Suppose further that for

each γ ∈ Y, Pγ(x, dy) = fγ(x, y)λ(dy) has a density fγ(x, y) with respect to some fi-

nite reference measure λ(·) on X . Finally, suppose fγ(x, y) are uniformly bounded, and

that for each fixed y ∈ X , the mapping (x, γ) 7→ fγ(x, y) is continuous with respect

to some product metric space topology, with respect to which X × Y is compact. Then

limn→∞ T (x, γ, n) = 0 for all x ∈ X and γ ∈ Y.

We also have the WLLN for the unbounded measurable function g under the same

conditions in the corollary 6.2. Actually Pγ(x,A) =
∫

A
fγ(x, y)λ(dy) is a special case of

Pγ(x,A) =
∫

A
fγ(x, y)λ(dy) + rγ(x)δx(A) when rγ(x) ≡ 0. We just plug in η = 0 to the

proof of the Theorem 6.3, then we can prove the following corollary:

Corollary 6.3. Consider an adaptive MCMC that satisfies the conditions in Corollary

6.2, then for any measurable function g such that λ(|g|) < ∞ and π(g) < ∞ we have:
∑n

i=1 g(Xi)

n
→ π(g)
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in probability as n →∞, conditional on X0 = x and Γ0 = γ.

Remark:The Corollary 6.3 indicates that: for any ε > 0, x ∈ X and γ ∈ Y , there

exists N such that for any n > N we have:

P (|
∑n

i=1 g(Xi)

n
| > ε) < ε.

However it is not hard to find that such an “N” is independent of the choice of the

initial values x and γ.

6.4.4 Applications

As an application of the Theorem 6.3, we will think about the Adaptive Metropolis

algorithm of Haario et al. [25](2001) , in which the target distribution π is supported on

the subset S ⊆ Rd and it has the density π with a slight abuse of notation with respect

to the Lebesgue measure on S.

Haario et al. [25] (2001) have prove the following Strong Laws of Large Number(SLLN):

Theorem 6.4. Let π be the density of a target distribution supported on a bounded

measurable subset S ⊆ Rd, and assume that π is bounded from above. Let ε > 0 and

let µ0 be any initial distribution on S. Define the adaptive MCMC as above. Then the

AMCMC simulates properly the target distribution π: for any bounded and measurable

function f : S → R, the equality:

lim
n→∞

1

n + 1
(f(X0) + f(X1) + · · ·+ f(Xn)) =

∫

S

f(x)π(dx)

holds almost surely.

However following the Theorem 6.3, we actually can prove that the WLLN holds for

any unbounded measurable function g with λ(|g|) < ∞ where λ is Lesbesgue measure.

Corollary 6.4. The WLLN holds for the above adaptive MCMC and any measurable

function g satisfying λ(|g|) < ∞ and π(|g|) < ∞.
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Proof. In this adaptive algorithm, according to the formula (14) in Haario et al. [25]

(2001), the parameter space Y consists of all the d × d matrix γ satisfying that c1Id ≤
γ ≤ c2Id for some c1 > 0 and c2 > 0. If we consider Y as a d2 vector space and define

the metric on it as d(γ1, γ2) =

√
∑

1≤i≤j≤d

(
(γ1)ij − (γ2)ij

)2

. Obviously Y is compact

with respect this metric topology, hence X × Y is also compact. Furthermore since

the proposal distribution Qγ(x, ·) = MV N(x, γ), Pγ is ergodic for π(·) and the density

mapping (x, γ) → fγ(x, y) are continuous and bounded. Therefore following the Theorem

6.3 we have the conclusion.

6.5 WLLN Under Conditions of Theorem 6.5

Here we will prove the WLLN of AMCMC for bounded function under the conditions of

the Theorem 5.1.

Theorem 6.5. (WLLN) Consider an adaptive MCMC algorithm. Suppose that the

conditions of the Theorem 5.1 hold. Let g : X → R be a bounded measurable function.

Then for any starting values x ∈ X and γ ∈ Y, conditional on X0 = x and Γ0 = γ we

have
∑n

i=1 g(Xi)

n
→ π(g)

in probability as n →∞.

Similar to the proof of theorem 5.1, it suffices to prove the following lemma before we

prove the Theorem 6.5:

Lemma 6.13. Under the conditions of lemma 5.2. Let g : X → R be a bounded mea-

surable function. Then for any starting values x ∈ X and γ ∈ Y, conditional on X0 = x

and Γ0 = γ we have
∑n

i=1 g(Xi)

n
→ π(g)

in probability as n →∞.
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6.5.1 Some Technical Results

Following the usual laws of large numbers for Markov chain (see e.g. Meyn and Tweedie

[37]) imply that for each fixed x ∈ X and γ ∈ Y , limn→∞ 1
n

∑n
i=1 g(Xγ

i ) → π(g) in

probability, where {Xγ
n} is the usual Markow chain with kernel Pγ. Actually we will

prove that under the conditions in lemma 5.2 the above convergence is uniformly with

respect to the parameter γ. Before we start the proof, let us define some symbols, let

sγ
i (g) =

τα̌(i+1)∑

j=τα̌(i)+1

g(Xγ
j ),

and

lγn = max{i ≥ 0 : τα̌(i) ≤ n}.

Lemma 6.14. Under the conditions of lemma 5.2, for any ε > 0 and fixed start value

x, there exists N which is independent with the choice of γ such that for any n > N we

have:

Px(|
∑n

i=1 g(Xγ
i )

n
− π(g)| > ε) < εW (x) + ε.

Proof. Without losing generalities, we suppose π(g) = 0 and |g(x)| ≤ M then

Px(|
∑n

i=1 g(Xγ
i )

n
| > 3ε)

= Px(|
∑τα̌

i=1 g(Xγ
i )

n
+

∑ln
i=0 si(g)

n
+

∑n
i=τα̌(ln)+1 g(Xγ

i )

n
| > 3ε)

≤ Px(|
∑τα̌

i=1 g(Xγ
i )

n
| > ε) + Px(|

∑ln
i=0 sγ

i (g)

n
| > ε) + Px(|

∑n
i=τα̌(ln)+1 g(Xγ

i )

n
| > ε).

Regarding the first term we have:

Px(|
∑τα̌

i=1 g(Xγ
i )

n
| > ε) ≤ Ex[|

∑τα̌

i=1 g(Xγ
i )|]

nε

≤ Ex[τα̌]M

nε

≤ W (x)M

nε
.
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Regarding the third term we have:

Px(|
∑n

i=τα̌(ln)+1 g(Xγ
i )

n
| > ε) ≤ Eα̌[|∑n

i=τα̌(ln)+1 g(Xγ
i )|]

nε

≤ Eα̌[τα̌]M

nε

≤ KM

nε
.

Actually the second term is independent with the choice of start value x,i.e.

Px(|
∑ln

i=0 sγ
i (g)

n
| > ε) = Pα̌(|

∑ln
i=0 sγ

i (g)

n
| > ε).

Suppose for any n ∈ N, there exists γn such that Pα̌(|
Pln

i=0 sγn
i (g)

n
| > ε) > ε

2
, same as the

proof of lemma 5.6, we can find certain γ0 ∈ ∆ such that:

lim
n→∞

Pα̌(|
∑ln

i=0 sγn

i (g)

n
| > ε) >

ε

2
,

Which is conflicting with the fact that for any γ ∈ ∆ and ε > 0, we have:

lim
n→∞

Pα̌(|
∑ln

i=0 sγn

i (g)

n
| > ε) = π(g) = 0.

Therefore there exists N1, such that for any n > N1 and γ, we have:

Px(|
∑ln

i=0 sγ
i (g)

n
| > ε) <

ε

2
.

We also can find N2 such that for any n > N2 we have M
n

< ε2 and KM
n

< ε2

2
. Then let

N = max{N1, N2} we can get the conclusion.

Lemma 6.15. Given ε > 0, we can find N > 0 such that when n > N we have:

Eγ,x[|
∑N

i=1 g(Xi)

N
|] ≤ εW (x) + ε.

Proof. Following Lemma 6.14, we know that for any ε > 0, there exists N such that:

Px(|
∑n

i=1 g(Xγ
i )

n
| > ε) <

ε

M
W (x) +

ε

2M
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We also have |
Pn

i=1 g(Xγ
i )

n
| ≤ M . If we denote Λ = {ω ∈ Ω||

Pn
i=1 g(Xγ

i )

n
| > ε

2
given X0 = x}.

Then we have:

Eγ,x[|
∑N

i=1 g(Xi)

N
|] = Eγ,x[|

∑N
i=1 g(Xi)

N
| × Iω(Λ)] + Eγ,x[|

∑N
i=1 g(Xi)

N
| × Iω(Λc)]

≤ M [W (x)
ε

M
+

ε

2M
] +

ε

2

≤ εW (x) + ε.

6.5.2 The Proof Of Theorem 6.5

First we can prove the Lemma 6.13:

Proof. Given starting value X0 = x, Γ0 = γ and ε > 0, W (Xn) is bounded in probability,

i.e. for any ε > 0, there exists a > 0 such that:

P (W (Xn) > a) <
ε

4M
for all n ∈ N.

Following the Lemma 6.15, we know that there exists N = N(ε), such that for any x and

γ we have:

Eγ,x[|
∑N

i=1 g(Xi)

N
|] ≤ εW (x)

4a
+

ε

4
.

Then let Dn = supx∈X ‖PΓn+1(x, ·)− PΓn(x, ·)‖ and Hn = Dn ≥ ε
4MN2 . Using the Dimin-

ishing Adaptation condition to choose n∗ = n∗(ε) ∈ N large enough so that

P (Hn) ≤ ε

4NM
, n ≤ n∗.

To continue, fix a “target time” K ≥ n∗ + N . We shall construct a coupling which

depends on the target time K (cf. Roberts and Rosenthal [45], 2002), to prove that

L(Xk) ≈ π(·).
Define the event E = ∩n+N

i=n+1H
c
i , we have P (E) ≥ 1 − ε

4M
. Now, it follows from the

triangle inequality and induction that on the event E, we have:

sup
x∈X

‖PΓn+k
(x, ·)− PΓn(x, ·)‖ <

ε

4MN
, k ≤ N.
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In particular, on E we have ‖PΓL−N
(x, ·)− PΓm(x, ·)‖ < ε

4MN
for all x ∈ X and L−N ≤

m ≤ L, so by induction again,

‖PN
ΓL−N

(x, ·)− PΓn(Xk ∈ ·|XL−N = x,GL−N)‖ <
ε

4M
on E, for x ∈ X .

To construct the coupling, first construct the original adaptive chain {Xn} together with

its adaption sequence {Γn}, starting with X0 = x and Γ0 = γ.

We now claim that on E, we can construct a second chain {X ′
n}L

n=L−N such that X
′
L−N =

XL−N and X
′
n ∼ PΓL−N

(X
′
n−1, ·) for L−N +1 ≤ n ≤ L, and such that P (X

′
L 6= XL) < ε.

Indeed, conditional on GL−N , we have X
′
LP̃N

ΓL−N
(XL−N , ·). Then we have:

‖L(X
′
k)− L(Xk)‖ <

ε

4M
.

The claim then follows from e.g. Roberts and Rosenthal [46](2004, Proposition 3(g)).

Since |g| ≤ M , we have:

E

(
1

N
|

n+N∑
i=n+1

g(Xi)|Gn

)
≤ EΓn,Xn

(
1

N
|

N∑
i=1

g(Xi)|
)

+ M
ε

4M
+ MP (Ec)

≤ εW (Xn)

4a
+

ε

2
,

and we also have:

E

(
1

N
|

n+N∑
i=n+1

g(Xi)|Gn

)
≤ M.

Therefore,

E((
1

N
|

n+N∑
i=n+1

g(Xi))

= E

(
E(

1

N
|

n+N∑
i=n+1

g(Xi)|Gn)

)

= E

(
E(

1

N
|

n+N∑
i=n+1

g(Xi)|Gn,W (Xn) ≤ a)

)
+ E

(
E(

1

N
|

n+N∑
i=n+1

g(Xi)|Gn,W (Xn) > a)

)

≤ ε

2
+

ε

4
+ M

ε

4M

= ε.
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Now consider any integer T sufficiently large that:

max[
Mn∗

T
,
MN

T
] ≤ ε.

Then we have:

E(|
∑T

i=1 g(Xi)

T
||X0 = x, Γ0 = γ)

≤ E(|
∑n∗

i=1 g(Xi)

T
||X0 = x, Γ0 = γ)

+ E(
1

bT−n∗
N
c

bT−n∗
N

c∑
j=1

1

N

N∑

k=1

g(XN1+(j−1)N+k|X0 = x, Γ0 = γ))

+ E(|
∑T

n∗+bT−n∗
N

cN+1 g(Xi)

T
||X0 = x∗, Γ0 = γ)

≤ ε + ε + ε

= 3ε.

Markov’s inequality then gives that:

P (|
∑T

i=1 g(Xi)

T
| ≥ ε

1
2 |X0 = x, Γ0 = γ)) ≤ 3ε

1
2 .

Since this holds for all sufficiently large T and since ε > 0 was arbitrary, the results

follows.

Secondly we can prove the Theorem 6.5 easily using the lemma 6.13.

Proof. Similar to proof of theorem 5.1, the splitting chain of {Xγ
n} satisfies the conditions

of lemma 5.11 for any γ ∈ Y . Therefore we have the WLLN hold.



Chapter 7

Regional Adaption Algorithm

7.1 Introduction

We notice that the HST algorithm and many modern MCMC algorithms with certain

notions of local adaptation e.g. [20], [35] and [13], [22], [16] are not efficient when the

target distribution is multi-model. One obvious reason is that different “optimal” kernels

are needed in different regions of the state space in many practical problems, however

many current adaptive MCMC algorithms try to find the uniformly efficient transition

kernel on all regions of the state space through the adaptation. Another reason is that

the switches between different models are not continual enough, even in lots of cases the

algorithms cannot find the other models except the one that contains the initial value.

The last reason is that we do not know how to make the exact partition of the state

space.

Regarding the first reason above, we will propose the regional adaptive MCMC al-

gorithm in which the parameters of the proposal distribution with respect to different

regions are adapted carefully using the historical samples from the same region so that

the performance of the algorithm is “optimal”. Regarding the second reason, we will

design the mixed regional adaptive MCMC algorithm in which we add another Gaussian

91
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proposal to the regional adaptive MCMC and expect the new part in the proposal distri-

bution will switch the models fluently. Regarding the third reason, we propose a parallel

chain adaptation strategy that incorporates multiple Markov chains which are run in

parallel and tempered inter-chain adaptation to detect different models. One can find

more details about these two strategies in section 2 of R. Craiu, J. Rosenthal and C.

Yang [14]. Further we construct the coefficients of different proposal distributions with

respect to regions using jump distance under the assumption that the partitions are not

optimal, so that we can select the optimal proposal distribution at each rough partitions

with more possibilities.

We not only provide theoretical justification using the Theorem 5.4, but also show

the performance of the methods using simulations. In addition, we conduct analysis on

a mixture model for real data using an algorithm combining the two methods together.

Focusing on the practical aspects of AMCMC, we try to realize the above ideas in this

chapter. Section 7.2 is about the regional adaptation. Section 7.3 shows the ergodicity

of RAPT first, then using the same idea we prove that Dual RAPT algorithm and Mixed

RAPT algorithm are both ergodic too. Section 7.4 presents the real data analysis.

7.2 Regional Adaptation

Consider the target distribution

π(x|µ1, µ2, Σ1, Σ2) = 0.5N10(x; µ1, Σ1) + 0.5N10(x; µ2, Σ2),

with Nd(x; µ, Σ) denoting the density of a d-dimensional Gaussian random variable with

mean µ and covariance matrix Σ and where µ1 = (3, 3, 3, · · ·, 3)T , µ2 = (−3,−3,−3, · ·
·,−3)T , Σ1 = I10 and Σ2 = 5I10. The target distribution consists of two different models

with the same weight (see Figure 7.1). Obviously due to the different covariance matrix

of each model, the “optimal” proposals of each model should be different. For instance,

following Roberts and Rosenthal [44] the “optimal” covariance matrix of the Gaussian
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Figure 7.1: The marginal distribution for each coordinate.

proposal distribution of Metropolis-Hasting algorithm should be 2.382

10
I10 for the model

centered at µ1. Similarly the “optimal” one for the model centered at µ2 should be

5×2.382

10
I10. In one word, there does not exist a common “optimal” proposal distribution

for both regions, therefore we need to tune the empirical covariance matrices by learning

the “history” of different regions of the state space. We assume that there is a partition

consists of two regions S01,S02, that is S01∩S02 = and S01∪S02 = S. Then following the

above analysis we hope to use different proposal distributions Qi, i = 1, 2 with respect

to different regions S01,S02. Formally we will use the proposal as:

q(x, y) =
2∑

i=1

δS0i
(x)qi(x, y) (7.1)

where δS0i
(x) is the indicator function of region S0i, and qi(x, y), i = 1, 2 are Gaussian

distribution with covariance matrix collecting the information independently in region

S0i. For an adaptive Metropolis algorithm with two regions, the acceptance ratio is:

α(x, y) =





π(y)
π(x)

, if x, y ∈ S0i

π(y)q1(y,x)
π(x)q2(x,y)

, if x ∈ S02, y ∈ S01

π(y)q2(y,x)
π(x)q1(x,y)

, if x ∈ S01, y ∈ S02

,

where qi is the density of Qi.

However the critical problem is that we usually do not know exactly how to split the
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state space into two parts S01 and S02. Actually in most cases the true boundary should

be certain surface which depends on the target distribution and is hard to compute, so

our assumption in this chapter is that the partition is not good. To illustrate easily , let

us see Figure 7.2 in which S1 and S2 form the partition in practice, and S01 and S02 form

the perfect partition. The solid black line indicates the true boundary between S01 and

S02 which we do not known. The dashed red line denotes the boundary of the regions S1

and S2 used for the regional adaptation. Now we can find that there are still two models

in the region S1. If we still use the proposal distribution (7.1), the wrong proposal will

be used in the region between the true boundary and the estimated one. Intuitively we

can mix both Q1 and Q2 linearly with different weights for each region S i. So we suggest

the proposal as

q(t)(x, y) =
2∑

i=1

1S i
(x)[λ

(i)
1 q1(x, y) + λ

(i)
2 q2(x, y)], (7.2)

Obviously fixed coefficients λ
(i)
1 , i = 1, 2 are not reasonable. Therefore we hope to modify

the weights λ
(i)
1 , i = 1, 2 of q

(t)
i , i = 1, 2 regionally so that we can get some optimal values

finally. Then the problem arises: how to adapt the weights of q
(t)
i (x, y), i = 1, 2 using

the past simulations? We need to find out some statistics which can reflect how good

the proposal fits the given region. One possible option using the average square jump

distance up to time t is:

λ
(i)
j (t) =

d
(i)
j (t)

∑K
h=1 d

(i)
h (t)

,

where d
(i)
j (t) is the average square jump distance up to time t computed when the

accepted proposals are distributed with Q
(t)
j and the current state of the chain lies in S i.

So far using this Dual Regional Adaptive MCMC in which both q
(t)
i (x, y), i = 1, 2 and

their coefficients are adapted, we have already found more “optimal” proposals than the

RAPT algorithm. Formally we will use the proposal distribution at the t− th step as:

q(t)(x, y) =
2∑

i=1

1S i
(x)[λ

(i)
1 (t)q1(x, y) + λ

(i)
2 (t)q2(x, y)], (7.3)
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where λ
(i)
1 (t) + λ

(i)
2 (t) = 1. Then the adaptive Metropolis Hastings algorithm with the

above proposal distribution is called Regional Adaptive MCMC(RAPT).

We know that the “optimal” proposal distribution depends on the properties of target

distribution, even when we consider all the Gaussian proposals. Therefore we adapt the

qi(x, y) using the past simulations. That is we will use the proposal distribution at the

t− thstep as:

q(t)(x, y) =
2∑

i=1

1S i
(x)[λ

(i)
1 (t)q

(t)
1 (x, y) + λ

(i)
2 (t)q

(t)
2 (x, y)], (7.4)

where λ
(i)
1 (t) + λ

(i)
2 (t) = 1. We call this adaptive Metropolis MCMC algorithm as Dual

RAPT.

When we start the Dual Regional Adaptive MCMC at one of the regions, its perfor-

mance in this region will be better and better. However it is not very efficient to switch

the models. To switch the models continually, we need the proposals to have bigger log

than the locally “optimal” ones and have precise jump directions. Therefore we add a

third component to the proposal distribution in the Dual RAPT algorithm and hope this

part will make a good flow between different regions. From all analysis above, we set up

the proposal distribution at the t− th step as:

q(t)(x, y) = (1− β)
2∑

i=1

1S i
(x)[λ

(i)
1 (t)q

(t)
1 (x, y) + λ

(i)
2 (t)q

(t)
2 (x, y)] + βq

(t)
whole(x, y), (7.5)

where q
(t)
whole is adapted using all the samples till t in S, and β is always a constant.

7.3 Theoretical Results

In this section we will prove the ergodicity of the Mixed RAPT algorithm for random

walk Metropolis using the Theorem 5 in Roberts and Rosenthal [48] when the state

space is compact. We notice there are too many variables in the parameter space when

we consider the kernel family generated by the Mixed RAPT. Therefore to make the
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Figure 7.2: Illustration of the regional adaptive MCMC sampler. The dashed black line

indicates the true boundary between S01 and S02 which we do not know. The dashed red

line denotes the boundary of S1 and S2 used for the regional adaptation.

main idea more clearly and avoid tedious calculations, at first we will introduce the proof

from RAPT case, i.e. only the weights λ
(i)
j , 1 ≤ i, j ≤ 2 are adapted. Secondly we will

prove that the Dual RAPT algorithm is ergodic. Finally we show that the same idea can

be applied to prove the ergodicity of the Mixed RAPT.

Before we start the proof, we introduce some notations first. Let {xi}t
i=0 be the

samples obtained by time t and N
(t)
i be the total number of sample points {xi

tig
}Ni(t)

g=0

generated up to time t that are in S i. We also define the set of time points where the

proposal is generated from Qj and the current state is in S i, W
(i)
jt = {0 ≤ s ≤ t : xs ∈

S i and proposal at time s is generated from Qj}.

7.3.1 The Ergodicity of the RAPT Algorithm

Let M(S) denote the class of densities π with π(x) being continuous, π(x) > 0 for any

x ∈ S and π(x) = 0 for x 6∈ S, where S ⊂ Rk is a compact set. Now we will prove the
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ergodicity of the RAPT algorithm with the linear coefficients λ
(i)
j =

d
(i)
j (t)

P2
h=1 d

(i)
h (t)

, where

d
(i)
j (t) is the average jump distance until time t computed for proposals generated from

Qj. And recall that qi(x, y), i =, 2 are fixed at each step for the RAPT algorithm.

Since λ
(i)
2 = 1 − λ

(i)
1 , the adaption parameter space consists of (λ

(1)
1 , λ

(2)
1 )|(λ(1)

1 , λ
(2)
1 ) ∈

[0, 1]× [0, 1], that is: Y = {(λ(1)
1 , λ

(2)
1 )|(λ(1)

1 , λ
(2)
1 ) ∈ [0, 1]× [0, 1]}.

Theorem 7.1. Let S ⊂ Rk be compact, π ∈ M(S) and assume qi(x, y) is positive and

continuous for all x, y ∈ S. Then the RAPT algorithm is ergodic with respect to the

target distribution π.

Following the Theorem 5 in [48] it suffices to prove the following lemmas.

Lemma 7.1. Under the conditions of the theorem 4.4. There exists 0 < ρ < 1, for any

γ = (γ1, γ2) ∈ Y such that:

‖P n
γ (x, ·)− π(·)‖ ≤ ρn.

Proof. Since S is compact and non-empty; by positivity and continuity we have d =

sup
x∈S π(x) < ∞ and ε = min{inf

x,y∈S q1(x, y), inf
x,y∈S q2(x, y)} > 0. Following (7.4),

we have:

qγ(x, y) =
2∑

i=1

1S i
(x)[γiq1(x, y) + (1− γi)q2(x, y)] ≥ ε,

for any x, y ∈ S. Choose B ⊆ S. By construction, for fixed x, denote

Rx(B) =

{
y ∈ B :

π(y)qγ(y, x)

π(x)qγ(x, y)
< 1

}

and Ax(B) = B −Rx(B). We have

Pγ(x,B) ≥

≥
∫

Rx(B)

qγ(x, y) min

{
π(y)qγ(y, x)

π(x)qγ(x, y)
, 1

}
µLeb(dy) +

∫

Ax(B)

qγ(x, y) min

{
π(y)qγ(y, x)

π(x)qγ(x, y)
, 1

}
µLeb(dy)

=

∫

Rx(B)

π(y)qγ(y, x)

π(x)
µLeb(dy) +

∫

Ax(B)

qγ(x, y)µLeb(dy)

≥ ε

d

∫

Rx(B)

π(y)µLeb(dy) +
ε

d

∫

Ax(B)

π(y)µLeb(dy) =
ε

d
π(B).
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Thus S is small and we have

Pγ(x,B) ≥ ν(B),

where ν(B) = ε
d
π(B) is a non-trivial measure on S. Therefore the chain is automatically

aperiodic. Note that the measure ν(·) is independent of γ.

Following the Theorem 16.0.2 in [37]

‖Pγ(x, ·)− π(·)‖ ≤ ρn,

where ρ = 1− ν(S) = 1− ε
d
.

Lemma 7.2. Under the conditions of the theorem 7.1. The Diminishing Adaption con-

dition holds when λ
(i)
j (k) =

d
(i)
j (k)

d
(i)
1 (k)+d

(i)
2 (k)

, i = 1, 2; j = 1, 2.

Proof. Denote fλ(x, y) = λq1(x, y) + (1 − λ)q2(x, y). Since S is compact, we let M =

max{sup
x,y∈S q1(x, y), sup

x,y∈S q2(x, y)} > 0. For any x ∈ S1 and A ∈ B(S), we have:

Pγk
(x,A) =

∫

A∩S1

f
λ
(1)
1 (k)

(x, y) ·min

{
1,

π(y)

π(x)

}
dy

+

∫

A∩S2

f
λ
(1)
1 (k)

(x, y) min

{
1,

π(y)f
λ
(2)
1 (k)

(x, y)

π(x)f
λ
(1)
1 (k)

(x, y)

}
dy

+ δx(A)

∫

S1

f
λ
(i)
1 (k)

(x, y) ·
[
1−min

{
1,

π(y)

π(x)

}]
dy

+ δx(A)

∫

S2

f
λ
(1)
1 (k)

(x, y)

[
1−min

{
1,

π(y)f
λ
(2)
1 (k)

(x, y)

π(x)f
λ
(1)
1 (k)

(x, y)

}]
dy.

Denote the first term Ik(x,A), the second term IIk(x,A), the third term IIIk(x,A) and

the fourth term IVk(x,A). Then we have:

|Pγk+1
(x,A)− Pγk

(x,A)| ≤ |Iγk+1
(x,A)− Iγk

(x,A)|+ |IIγk+1
(x,A)− IIγk

(x,A)|

+ |IIIγk+1
(x,A)− IIIγk

(x,A)|+ |IVγk+1
(x,A)− IVγk

(x,A)|.

Let

α
k
(i)
1

(x, y) = min

{
1,

π(y)[λ
(i)
1 (k)q1(y, x) + (1− λ

(i)
1 (k))q2(y, x)]

π(x)[λ
(1)
1 (k)q1(x, y) + (1− λ

(1)
1 (k))q2(x, y)]

}
.
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Then

|IIγk+1
(x,A)− IIγk

(x,A)| ≤
∫

A∩S2

|f
λ
(1)
1 (k+1)

(x, y)α
(k+1)

(2)
1

(x, y)− f
λ
(1)
1 (k)

(x, y)α
k
(2)
1

(x, y)|dy

≤
∫

A∩S2

|f
λ
(1)
1 (k+1)

(x, y)α
(k+1)

(2)
1

(x, y)− f
λ
(1)
1 (k+1)

(x, y)α
k
(2)
1

(x, y)

+ f
λ
(1)
1 (k+1)

(x, y)α
k
(2)
1

(x, y)− f
λ
(1)
1 (k)

(x, y)α
k
(2)
1

(x, y)|dy

≤
∫

A∩S2

f
λ
(1)
1 (k+1)

(x, y)|α
(k+1)

(1)
1

(x, y)− α
k
(1)
1

(x, y))|dy

+

∫

A∩S2

α
k
(1)
1

(x, y))|f
λ
(1)
1 (k+1)

(x, y)− f
λ
(1)
1 (k)

(x, y)|dy

≤ M

∫

A∩S2

|α
(k+1)

(1)
1

(x, y)− α
k
(1)
1

(x, y))|dy

+

∫

A∩S2

|f
λ
(1)
1 (k+1)

(x, y)− f
λ
(1)
1 (k)

(x, y)|dy.

For the second term, following the fact that |f
λ
(1)
1 (k+1)

(x, y)−f
λ
(1)
1 (k)

(x, y)| ≤ 2M |λ(1)
1 (k+

1)− λ
(1)
1 (k)|, it suffices to prove limk→∞ |λ(1)

1 (k + 1)− λ
(1)
1 (k)| = 0. For the first term, we

have:

M

∫

A∩S2

|α
(k+1)

(1)
1

(x, y)− α
k
(1)
1

(x, y))|dy

= M

∫

A∩S2

π(y)

π(x)

∣∣∣∣∣
f

λ
(2)
k+1

(x, y)

f
λ
(1)
k+1

(x, y)
−

f
λ
(2)
k

(x, y)

f
λ
(1)
k

(x, y)

∣∣∣∣∣ dy

≤ Md

π(x)

∫

A∩S2

∣∣∣∣∣
f

λ
(2)
k+1

(x, y)

f
λ
(1)
k+1

(x, y)
−

f
λ
(2)
k

(x, y)

f
λ
(1)
k

(x, y)

∣∣∣∣∣ dy.

It is easy to check that when limk→∞ |λ(i)
1 (k + 1) − λ

(i)
1 (k)| = 0, i = 1, 2 the first term

tends to zero. We know that λ
(i)
j (k) =

d
(i)
j (k)

d
(i)
1 (k)+d

(i)
2 (k)

, i = 1, 2; j = 1, 2. Consider the

random variable dn = (Xn+1 − Xn)2. Since S is compact, we know that dn is bounded
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by some R > 0. Therefore

|λ(1)
1 (k + 1)− λ

(1)
1 (k)|

= | d
(1)
1 (k + 1)

d
(1)
1 (k + 1) + d

(1)
2 (k + 1)

− d
(1)
1 (k)

d
(1)
1 (k) + d

(1)
2 (k)

|

=

∣∣∣∣∣
d

(1)
1 (k + 1)d

(1)
2 (k)− d

(1)
1 (k)d

(1)
2 (k + 1)

[d
(1)
1 (k + 1) + d

(1)
2 (k + 1)][d

(1)
1 (k) + d

(1)
2 (k)]

∣∣∣∣∣

≤
∣∣∣∣∣
(k + 1)−1{[kd

(1)
1 (k) + (xk+1 − xk)

2]d
(1)
2 (k)− d

(1)
1 (k)[kd

(1)
2 (k) + (xk+1 − xk)

2]}
[d

(1)
1 (k + 1) + d

(1)
2 (k + 1)][d

(1)
1 (k) + d

(1)
2 (k)]

∣∣∣∣∣

≤
∣∣∣∣∣
(k + 1)−1{[kd

(1)
1 (k) + (xk+1 − xk)

2]d
(1)
2 (k) + d

(1)
1 (k)[kd

(1)
2 (k) + (xk+1 − xk)

2]}
[d

(1)
1 (k + 1) + d

(1)
2 (k + 1)][d

(1)
1 (k) + d

(1)
2 (k)]

∣∣∣∣∣

≤ R2

(k + 1)(d
(1)
1 (k + 1) + d

(1)
2 (k + 1))

=
R2

∑k+1
i=1 (xi − xi−1)2

→ 0 as k →∞.

So we have: |IIγk+1
(x,A) − IIγk

(x,A)| → 0. Similarly we can prove |Iγk+1
(x,A) −

Iγk
(x,A)| → 0, |IIIγk+1

(x,A)−IIIγk
(x,A)| → 0, |IVγk+1

(x,A)−IVγk
(x,A)| → 0. There-

fore, the Diminishing Adaptation holds.

7.3.2 The Ergodicity of the Dual RAPT Algorithm

Further we will prove the ergodicity of the Dual RAPT algorithm in this subsection. As

stated in section 7.2, the proposal distribution at the t− th step of the Dual RAPT is

q(t)(x, dy) =
2∑

i=1

1S i
(x)[λ

(i)
1 (t)q

(t)
1 (x, y) + λ

(i)
2 (t)q

(t)
2 (x, y)],

where the q
(t)
i , i = 1, 2 are Gaussian distribution with the covariance matrices adapted

using the same algorithm as [26] regionally. More precisely, q
(t)
i (x, y) i = 1, 2 are the

Gaussian distributions with mean at the current point Xt−1 and covariance C
(t)
i =

C
(t)
i (X i

t0
, X i

t1
, · · ·, X i

tNi(t)
), where C

(t)
i is defined as below:

C
(t)
i =





C0i, t ≤ t0

sdcov(X i
t0
, X i

t1
, · · ·, X i

tNi(t)
) + sdεId, t > t0

.
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Here sd is a parameter that depends only on the dimension d, ε > 0 is a constant that we

may choose very small compared to the size of S, Id denotes the d-dimensional identity

matrix and the initial covariance C0i is a strictly positive definite matrix chosen in line

with our prior knowledge of π.

We note that all the parameters adapted in the kernel of the Dual RAPT are made up

of four parts: λ
(i)
1 (t), i = 1, 2 and C

(t)
i , i = 1, 2. In the proof of Theorem 1 of [26], they

have proved the following inequality:

c1Ik ≤ C ≤ c2Ik,

for some c1, c2 > 0 (i.e., both C − c1Ik and c2Ik − C are non-negative-definite). If we

defineM(c1, c2) = {M ∈ Mk|c1Ik ≤ M ≤ c2Ik} where Mk is the set of all positive definite

matrices of dimension k, that is, M(c1, c2) consists of all the positive definite matrix M

such that both M − c1Ik and c2Ik −M are non-negative definite. Then the parameter

space can be expressed as:

Y = {(λ(1)
1 , λ

(2)
1 , C

(t)
1 , C

(t)
2 )|(λ(1)

1 , λ
(2)
1 , C

(t)
1 , C

(t)
2 ) ∈ [0, 1]× [0, 1]×M(c1, c2)×M(c1, c2)}.

Without loss of generality, we will consider the parameter space

Y = [0, 1]× [0, 1]×M(c1, c2)×M(c1, c2).

Then we can prove that the proposed algorithm is ergodic.

Theorem 7.2. Suppose the state space S is compact, π ∈ M(S) and qi(x, y) are

Gaussian distributions as described above. Then the Dual RAPT algorithm is ergodic

with respect to the target distribution π.

Proof. Using the fact that inf
x,y∈S , M∈M(c1,c2)

qM(x, y) > 0 (where qM denotes the density

function of Gaussian distribution with variance M), we have inf
x,y∈S ,γ∈Y qγ(x, y) > 0.

Then following a similar proof to that of the Lemma 7.1, one can show that there exists

0 < ρ < 1 so that for any γ ∈ Y

‖P n
γ (x, ·)− π(·)‖ ≤ ρn.
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Using the fact that dn = (Xn+1−Xn)2 is still bounded and the similar proof of the Lemma

7.2, we can prove that the Diminishing Adaptation condition holds for Dual RAPT.

7.3.3 The Ergodicity of the Mixed RAPT Algorithm

Finally we show the ergodicity of the Mixed RAPT algorithm which has one more compo-

nent q
(t)
whole than the Dual RAPT algorithm. We still tune the Gaussian proposal density

q
(t)
whole in (7.5) at the t−th step by adapting its covariance matrix as in [26]. First compute

the empirical covariance matrix C(t) of {Xi}t
i=1 as:

C(t) =





C0, t ≤ t0

sdcov(X0, X1, · · ·, Xt) + sdεId, t > t0

.

Then we will use the proposal of Mixed Dual RAPT algorithm at the t− th step as:

q(t)(x, y) = (1− β)
2∑

i=1

1S i
(x)[λi

1(t)q
(t)
1 (x, y) + λi

2(t)q
(t)
2 (x, y)] + βq

(t)
whole(x, y),

where q
(t)
i (x, y), λ

(t)
i , i = 1, 2 are the same as those in the dual adaptive kernel and

q
(t)
whole(x, y) is the Gaussian proposal distribution with covariance C(t). Similarly following

the proof of Theorem 1 in [26] and the construction of the covariances C(t), C
(t)
i , i = 1, 2,

we know that:

c1Ik ≤ C(t), C
(t)
i ≤ c2Ik.

for some c1, c2 > 0. Therefore we consider the adaption parameter space as:

Y = [0, 1]× [0, 1]×M(c1, c2)×M(c1, c2)×M(c1, c2).

Theorem 7.3. Suppose the state space S is compact, π ∈ M and the mixed proposal

distribution q(t)(x, y) is defined as above. Then the Mixed RAPT algorithm is ergodic

with respect to the target distribution π.
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Proof. Given that inf
x,y∈S , M∈M(c1,c2)

qM(x, y) > 0, then inf
x,y∈S ,γ∈Y qγ(x, y) > 0. Fol-

lowing the similar proof of lemma 7.1 there exists 0 < ρ < 1 so that for any γ ∈ Y

‖P n
γ (x, ·)− π(·)‖ ≤ ρn.

The proof for showing diminishing adaptation is similar to that of the Lemma 7.2 using

that dn = (Xn+1 − Xn)2 is bounded. Then, following the Theorem 5 in Roberts and

Rosenthal [[48]] (2007), we obtain the ergodicity of the Mixed RAPT.

7.4 Real Data Example: Genetic Instability of Esophageal

Cancers

Cancer cells undergo a number of genetic changes during neoplastic progression, including

loss of entire chromosome sections. We call the loss of a chromosome section containing

one allele by abnormal cells by the term “Loss of Heterozygosity” (LOH). When an

individual patient has two different alleles, LOH can be detected using laboratory assays.

Chromosome regions with high rates of LOH are hypothesized to contain genes which

regulate cell behavior so that loss of these regions disables important cellular controls.

To locate “Tumor Suppressor Genes”(TSGs), the Seattle Barrett’s Esophagus research

project [8] has collected LOH rates from esophageal cancers for 40 regions, each on a

distinct chromosome arm. A hierarchical mixture model has been constructed by [54] in

order to determine the probability of LOH for both the “background” and TSG groups.

The labeling of the two groups is unknown so we model the LOH frequency using a

mixture model, as described by [15]. We obtain the hierarchical Binomial-BetaBinomial

mixture model

Xi ∼ ηBinomial(Ni, π1) + (1− η)Beta-Binomial(Ni, π2, γ),

with priors

η ∼ Unif[0, 1],
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π1 ∼ Unif[0, 1],

π2 ∼ Unif[0, 1],

γ ∼ Unif[−30, 30],

where η is the probability of a location being a member of the binomial group, π1 is

the probability of LOH in the binomial group, π2 is the probability of LOH in the beta-

binomial group, and γ controls the variability of the beta-binomial group. Here we

parameterize the Beta-Binomial so that γ is a variance parameter defined on the range

−∞ ≤ γ ≤ ∞. As γ → −∞ the beta-binomial becomes a binomial and as γ → ∞ the

beta-binomial becomes a uniform distribution on [0, 1]. Similarly we also parameterized

η, π1 and π2. This results in the unnormalized posterior density

π(η, π1, π2, γ|x) ∝ ΠN
i=1f(xi, ni|η, π1, π2, ω2)

on the prior range, where

f(x, n|η, π1, π2, ω2) = η




n

x


 πx

1 (1− π1)
n−x +

+ (1− η)




n

x




Γ( 1
ω2

)

Γ(π2

ω2
)Γ(1−π2

ω2
)

Γ(x + π2

ω2
)

Γ(n− x + 1−π2

ω2
)Γ(n + 1

ω2
)

and ω2 = eγ

2(1+eγ)
. In order to use the random walk Metropolis we have used the logistic

transformation on all the parameters with range [0, 1]. However, all our conclusions are

presented on the original scale for an easier interpretation.

Using the optimization procedures used by [54] we determine that the two modes of π

are reasonably well separated by the partition made of S1 = {(η, π1, π2, γ) ∈ [0, 1]×[0, 1]×
[0, 1]× [−30, 30]|π2 ≥ π1} and S2 = {(η, π1, π2, γ) ∈ [0, 1]× [0, 1]× [0, 1]× [−30, 30]|π2 ≤
π1}.
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Mean in Region 1 Region 2 Whole space

η 0.897 0.079 0.838

π1 0.229 0.863 0.275

π2 0.714 0.237 0.679

γ 15.661 -14.796 13.435

Table 7.1: Simulation results for the LOH data.

Figure 7.3: Scatterplot of the 50,000 samples for (π1, π2).

Simulation results

We will combine the parallel chain strategy with the MRAPT algorithm together in

this part. For more details of the parallel chain strategy, readers can refer to R.Craiu,

J.Rosenthal, and C.Yang [14]. Here we run five parallel mixed RAPT algorithms to

simulate from π using the partition S1∪S2. After 50, 000 iterations, we obtain λ
(1)
1 = 0.923

and λ
(2)
1 = 0.412. Further results are shown in Table 7.4. A two dimensional scatter plot

of the (π1, π2) samples which is similar to the findings of [54] (Figure 8) is shown in Figure

7.3.
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Figure 7.4: The total number of switches times for the five parallel Mixed RAPT vs the

number of switch times of a single Mixed RAPT run for 300,000 iterations.

The most advantage to run five parallel MRAPT together is that all these parallel

chains can share all the past information so that they can learn the “geography” much

more quickly than a single chain, although the total iteration times are the same. To

see this fact more clearly, we run a single Mixed RAPT algorithm for 300,000 iterations,

and five parallel Mixed RAPT algorithms independently for 60,000 iterations each. To

be fair, we plot the total number of switches for the five parallel chains up to 60, 000

iterations versus the number of switches for the single chain up to 5× 60, 000 iterations

in Figure 7.4. One can see that the five parallel Mixed RAPT switch the models much

better than a single chain.

Finally we use the BGR diagnostic statistic as a criterion to describe how these

parallel chains learn from each other. More precisely, following the definition of the BGR

diagnostic statistic, we can assume all chains have the same information regarding π

when the BGR is close to 1. For this LOH data example, we can see that each chain has

learned almost all the information from the other chains after 40,000 iterations, because
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Figure 7.5: The evolution of BGR’s R statistics

the BGR statistic becomes below 1.1 at that time (see Figure 7.5). In the practical use

we only need to run a single chain to reduce the computation costs.



Chapter 8

The Ergodicity of Modified Mixed

RAPT on the State Space Rk

8.1 Introduction

In last chapter we designed the MRAPT algorithm to sample from a multi-model distri-

bution on compact state space(see also [14]). Here we will try to construct the modified

MRAPT algorithm when the state space is Rk and show the ergodicity of modified

MRAPT algorithm under additional conditions. Furthermore, we will simulate some toy

examples to discuss the complications arising when using AMCMC, especially adaptive

random walk Metropolis, for sampling from multi-model targets and also when the op-

timal proposal distribution is regional, i.e. the optimal proposal should change across

regions of the state space, and check our theoretical results.

We still suppose the state space X = S1∪S2. Given the initial value X0 = x0 and Γ0 = γ0,

at t− th step we will run the MH algorithm with the adaptive proposal distribution:

q(t)(x, y) =
2∑

i=1

Ix(S i){(1− β)[λ
(i)
1 (t)q

(t)
1 (x, y) + λ

(i)
2 (t)q

(t)
2 (x, y)] + βq

(t)
whole(x, y)}, (8.1)

where q
(t)
i , j = 1, 2 are Gaussian distributions with adaptive variance covariance

108
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matrixes C
(t)
i as in [26] (henceforth denoted HST), but here we need to do a little change

to ensure the ergodicity and avoid singular cases. Suppose {xi}t
i=0 are the samples

obtained until time t, let Ni(t) is the total number of sample points {xi
tg}Ni(t)

g=0 generated

up to time t that are lying in S i. We also define the set of time points at which the

proposal is generated from Qj and the current state is in S i, W
(i)
jt = {0 ≤ s ≤ t : xs ∈

S i and proposal at time s is generated from Qj}. For some large B > 0 and 0 < τ < 1
2
,

we let q
(t)
whole be a Gaussian distribution with variance covariance matrix C(t). Since it

is hard to estimate the bound of samples {xi}t
i=0 for any fixed t, we can not ensure the

ergodicity if we still tune the Ct as in [26]. We construct new samples {yi}t
i=0 using

{xi}t
i=0. Let yi = xi, i = 1, · · ·, n0, when t > n0, if |xt| ≤ B + tτ for some B > 0 large

enough and 0 < τ < 1
2
, we still set yt = xt, otherwise yt = xt−1. The we can adapt Ct as

below:

1. When t ≤ n0, we set Ct = C0, where C0 is some fixed positive definite matrix;

2. When t > n0, if Tr(skcov(y0, y1, · · ·, yt) + skεIk) ≤ L where L > 0 is large enough, we

will set

C(t) = skcov(y0, y1, · · ·, yt) + skεIk,

otherwise C(t) = C(t−1).

As a basic optimal choice for scaling parameter we have adopted the value sk = 2.42

d
from

[19]. Similarly we let q
(t)
i be Gaussian distributions with adaptive variance covariance

matrixes C
(t)
i . Let us construct new samples {yi

tg}Ni(t)
g=0 first, Let yi

tg = xi
tg , 1 ≤ tg ≤ n0,

when tg > n0, if |xi
tg | ≤ B + Ni(t)

τ for some B > 0 large enough and 0 < τ < 1
2
, we still

set yi
tg = xi

tg , otherwise yi
tg = xi

tg−1
. We can adapt C

(t)
i as below:

1. When t ≤ n0, we set Ct
i = Ci, i = 1, 2, where Ci, i = 1, 2 are fixed positive definite

matrices;

2. When t > n0, if Tr(cov(yi
t0
, yi

t1
, · · ·, yi

tNi(t)
) + skεIk) ≤ L, we will set

C(t) = skcov(yi
t0
, yi

t1
, · · ·, yi

tNi(t)
) + skεIk,
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else C(t) = C(t−1).

Since we do not know enough information to find the perfect partition S i, i = 1, 2 espe-

cially when both model affect each other too much, we will use the linear combination of

q
(t)
i , i = 1, 2 at each region. We will adapt the coefficients λ

(i)
j (t), i, j = 1, 2 of q

(t)
j (x, y)

when x ∈ S i respectively using the ratio of jump distance. That is

λ
(i)
j (t) =

d
(i)
j (t)

∑2
h=1 d

(i)
h (t)

,

where d
(i)
h (t) is the average square jump distance up to time n computed when the

accepted proposals are distributed with Qh and the current state of the chain lies in S i.

To avoid singular case, we suppose λ
(i)
j (t) = max{a,

d
(i)
j (t)

P2
h=1 d

(i)
h (t)

}, where a > 0 will take

very small value.

Recall that the average square jump distance:

d
(i)
j (t) =

∑
s∈W

(i)
jt
|xi

ts+1
− xi

ts |2

|W (i)
jt |

,

where |W (i)
jt | denotes the number of elements in the set W

(i)
jt . Since all the covariances

C(t), C
(t)
i , i = 1, 2 satisfy the matrix inequality :

εIk ≤ C(t), C
(t)
i ≤ LIk.

and λ
(i)
1 (t) = 1− λ

(i)
2 (t), we can see that the parameter space consists of

{(λ(1)
1 (t), λ

(2)
1 (t), C

(t)
1 , C

(t)
2 , C(t)) ∈ [a, 1]× [a, 1]×M(ε, L)×M(ε, L)×M(ε, L)},

where M(ε, L) = {M ∈ Mk|εIk ≤ M ≤ LIk}, Mk denotes the set of all positive definite

matrices of dimension k, that isM(ε, L) consists of all the positive definite matrix M such

that both M − εIk and LIk −M are non-negative-definite. Without losing generalities,

we let the parameter space

Y = [a, 1]× [a, 1]×M(ε, L)×M(ε, L)×M(ε, L).
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We hope the mixed RAPT proposal to use “better” proposals with high proportion in

each region, and expect the qwhole is more efficient to switch the models through learning

the “geography” of different regions separately than the general AMCMC algorithm.

To prove the ergodicity theorem of MRAPT algorithm when the state space is Rk, we

need the target distribution π to have smoothly decreasing properties in its tail. First we

suppose the target density π on Rk super-exponential that is it has exponential or lighter

tails. More precisely, π(x) is positive and has continuous first derivatives such that:

lim
|x|→∞

n(x) · ∇logπ(x) = −∞,

where n(x) denotes the unit vector x
|x| . The condition implies that for any H > 0 there

exists R > 0 such that:

π(x + an(x))

π(x)
≤ exp(−aH) (|x| ≥ R, a ≥ 0). (8.2)

That is, π(x) is at least exponentially decaying along any ray with rate H tending to

infinity as x goes to infinity. It also implies that for ε small enough the contour manifold

Cε defined by Cε = {x ∈ Rk|π(x) = ε} can be parameterized by the unit sphere Sk−1,

that is:

Cε = {r(ζ)ζ|ζ ∈ Sk−1},

where r is a positive continuous function on Sk−1, and the set enclosed by the contour

manifold Cπ(x) through a point x is the region A0(x) = {y ∈ Rk|π(x) ≤ π(y)}. Secondly

we assume target density π is decreasing along any direction when |x| is large enough.

That is:

lim sup
|x|→∞

n(x) ·m(x) < 0, (8.3)

where m(x) = ∇π(x)
|∇π(x)| . We suppose E = {all the positive density functions satisfy (8.2) and (8.3)}.

We also suppose ∂Si is a hyperplane. However, Theorem 8.1 holds also when ∂Si is any

surface with good smooth properties.
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Theorem 8.1. Suppose π(x) ∈ E. Let S1 ∪ S2 be a partition of Rk where ∂Si is a hy-

perplane in Rk. Then the above MRAPT algorithm is ergodic with respect to distribution

π(·).

8.2 Preliminary

In the MRAPT algorithm, we actually consider a family of kernels {Pγ}γ∈Y generated

by the adaptive MH algorithm. For any γ = (λ
(1)
1 (γ), λ

(2)
1 (γ), C

(γ)
1 , C

(γ)
2 , C(γ)) ∈ Y , Pγ is

the transition kernel corresponding to the proposal distribution

qγ(x, y) =
2∑

i=1

Ix(S i){(1− β)[λ
(i)
1 (γ)q

(γ)
1 (x, y) + (1− λ

(i)
1 (γ))q

(γ)
2 (x, y)] + βq

(γ)
whole(x, y)},

where q
(i)
γ and qw

γ are Gaussian distributions with variance matrix C
(i)
γ and Cγ respectively

and with mean x. We will apply the Theorem 4.4 to prove teh Theorem 8.1 . Before

starting the proof, we introduce some notations first. Define the acceptance region for

each x ∈ Rk and γ ∈ Y as

A(x; γ) = {y ∈ Rk|π(y)qγ(y, x) ≥ π(x)qγ(x, y)}.

Denote:

Ai(x; γ) = A(x; γ) ∩ S i i = 1, 2.

The acceptance rate αγ(x, y) = min{1, π(y)qγ(y,x)

π(x)qγ(x,y)
}, and the rejection region is

R(x; γ) = {y ∈ Rk|π(y)qγ(y, x) < π(x)qγ(x, y)}.

Denote:

Ri(x; γ) = R(x; γ) ∩ Si i = 1, 2.

We also denote:

A(x) = {y ∈ Rk|π(y) ≥ π(x)},
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R(x) = {y ∈ Rk|π(y) < π(x)}

and denote Ai(x) = A(x) ∩ Si, Ri(x) = R(x) ∩ Si, i = 1, 2.

8.3 Some Technical Results

Let us prove some lemmas first.

Lemma 8.1. For any γ ∈ Y, we have qγ(y,x)

qγ(x,y)
is uniformly bounded. That is there exist

M > m > 0 such that 0 < m < qγ(y,x)

qγ(x,y)
≤ M for any γ ∈ Y.

Proof. Without losing generalities, suppose x ∈ S1. Obviously when y ∈ S1, we have

qγ(y,x)

qγ(x,y)
= 1. It suffices to prove the result when y ∈ S2. In this case we know that

qγ(y, x)

qγ(x, y)
=

(1− β)[λ
(2)
1 (γ)q

(γ)
1 (x, y) + (1− λ

(2)
1 (γ))q

(γ)
2 (x, y)] + βq

(γ)
whole(x, y)

(1− β)[λ
(1)
1 (γ)q

(γ)
1 (x, y) + (1− λ

(1)
1 (γ))q

(γ)
2 (x, y)] + βq

(γ)
whole(x, y)

=

λ
(2)
1 (γ)q

(γ)
1 (x,y)+(1−λ

(2)
1 (γ))q

(γ)
2 (x,y)

λ
(1)
1 (γ)q

(γ)
1 (x,y)+(1−λ

(1)
1 (γ))q

(γ)
2 (x,y)

+ β
1−β

q
(γ)
whole(x,y)

λ
(1)
1 (γ)q

(γ)
1 (x,y)+(1−λ

(γ)
1 )q

(γ)
2 (x,y)

1 + β
1−β

q
(γ)
whole(x,y)

λ
(1)
1 (γ)q

(γ)
1 (x,y)+(1−λ

(1)
1 (γ))q

(γ)
2 (x,y)

.

We can denote W = β
1−β

q
(γ)
whole(x,y)

λ
(1)
1 (γ)q

(γ)
1 (x,y)+(1−λ

(1)
1 (γ))q

(γ)
2 (x,y)

> 0. If we know that there exist

M > 1 > m > 0 such that for any γ ∈ Y , m <
λ
(2)
1 (γ)q

(γ)
1 (x,y)+(1−λ

(2)
1 (γ))q

(γ)
2 (x,y)

λ
(1)
1 (γ)q

(γ)
1 (x,y)+(1−λ

(1)
1 (γ))q

(γ)
2 (x,y)

< M , then

we have qγ(y,x)

qγ(x,y)
≤ M+W

1+W
< M and qγ(y,x)

qγ(x,y)
≥ m+W

1+W
> m. We have

λ
(2)
1 (γ)q

(γ)
1 (x, y) + (1− λ

(2)
1 (γ))q

(γ)
2 (x, y)

λ
(1)
1 (γ)q

(γ)
1 (x, y) + (1− λ

(1)
1 (γ))q

(γ)
2 (x, y)

=
λ

(2)
1 (γ)

q
(γ)
1 (x,y)

q
(γ)
2 (x,y)

+ (1− λ
(2)
1 (γ))

λ
(1)
1 (γ)

q
(γ)
1 (x,y)

q
(γ)
2 (x,y)

+ (1− λ
(1)
1 (γ))

,

Let z =
q
(γ)
1 (x,y)

q
(γ)
2 (x,y)

, we know that 0 < z < ∞. Consider function gγ(z) =
λ
(2)
1 (γ)z+(1−λ

(2)
1 (γ))

λ
(1)
1 (γ)z+(1−λ

(1)
1 (γ))

,

we know that:

g
′
γ(z) =

λ
(2)
1 (γ)− λ

(1)
1 (γ)

[λ
(1)
1 (γ)z + (1− λ

(1)
1 (γ))]2
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If λ
(2)
1 (γ) ≥ λ

(1)
1 (γ), we have g

′
γ(z) > 0, then gγ(z) is increasing function. So we have:

gγ(0) ≤ gγ(z) ≤ gγ(∞)

⇒ 1− λ
(2)
1 (γ)

1− λ
(1)
1 (γ)

≤ gγ(z) ≤ λ
(1)
1 (γ)

λ
(2)
1 (γ)

⇒ 1 ≤ gγ(z) ≤ 1

a
.

If λ
(2)
1 (γ) < λ

(1)
1 (γ), we have g

′
γ(z) < 0, then g(z) is decreasing function. Similarly we

have

a ≤ gγ(z) ≤ 1.

From all above we know that: 1
a
≥ g(z) ≥ a, therefore we can let m = min{a, 1} and

M = max{ 1
a
, 1}.

Since π(x) is super-exponential, we know that for any γ ∈ Y there exists δ1 > 0 such

that for any y ∈ C+
π(x)(δ1) = {y + sn(y)|y ∈ Cπ(x) ∩ S2, s ≥ δ1}, following the Lemma 8.1

we have:

π(y)qγ(y, x)

π(x)qγ(x, y)
≤ M

π(y)

π(x)
≤ M exp{−aH} < 1

for x large enough. That is C+
π(x)(δ1) ⊂ R2(x). Similarly, we also can choose δ1 > 0 , then

consider any y ∈ C−
π(x)(δ1), where C−

π(x)(δ1) = {y − sn(y)|y ∈ Cπ(x) ∩ S2, s ≥ δ1}. Denote

yx is the intersection point of the radius with direction
−→
Oy and the contour Cπ(x).

π(y)qγ(y, x)

π(x)qγ(x, y)
≥ m

π(y)

π(yx)
≥ m exp{aH} ≥ 1

for x large enough. That is C−
π(x)(δ1) ⊂ A2(x). Then we denote:

δ1(x) = inf{δ1 > 0| for any y ∈ C−
π(x)(δ1),

π(y)qγ(y, x)

π(x)qγ(x, y)
≥ 1

and for any y ∈ C+
π(x)(δ1),

π(y)qγ(y, x)

π(x)qγ(x, y)
< 1 for any γ ∈ Y}

We know that δ1(x) → 0 as |x| → ∞.

Lemma 8.2. If π ∈ E, then there exists η > 0 such that Qγ(x,A(x; γ)) > η for any

γ ∈ Y.
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Figure 8.1: The contour manifold Cπ(x) (the curved solide line), the radius δi−zone

Cπ(x)(δi) i = 1, 2 (the areas between the four curved dotted lines) and the regions Ai(x)

and Ri(x).
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Figure 8.2: The δ2(x)−zone and the cone M(x).

Proof. Following (8.3), we know that there exists β > 0 such that for x sufficiently large

n(x) ·m(x) ≤ −β. With this β and with fixed K > 0, we consider the cones (see figure

8.2):

W (x) = {x− aξ|0 < a < K, ξ ∈ Sk−1, |ξ − n(x)| ≤ ε

2
}.

For x large enough that n(y) · m(y) ≤ −η and |n(x) − n(y)| < η
2

for all y ∈ W (x) we

have for y = x− aξ in W (x). Since that

ξ ·m(y) = (ξ − n(x) + n(x)− n(y) + n(y)) ·m(y) <
η

2
+

η

2
− η = 0,

and the Lemma 4.2 in [32], we know that W (x) ∈ A(x). Define

W1(x) = {x− aξ|K
2

< a < K, ξ ∈ Sk−1, |ξ − n(x)| ≤ ε

2
}.

Because δ2(x) tends to zero as |x| tends to infinity, for fixed K, W1(x)∩Cπ(x)(δ2(x)) = ∅.
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Therefore for any x ∈ S1 and |x| large enough we can get:

lim sup
γ∈Y

lim inf
|x|→∞

Qγ(x,A(x; γ)) ≥ lim sup
γ∈Y

lim inf
|x|→∞

Qγ(x,W1(x)) ≥

≥ min{Q(1)
0 (x,W1(x)), Q

(2)
0 (x,W1(x))} = c > 0.

The last equation is followed by the fact that Q
(2)
0 , i = 1, 2 are both symmetric. So the

Q
(i)
0 (x, ·)−measure of W1(x) does NOT depend on x.

Using the above lemma we can prove that:

Lemma 8.3. Consider the kernel family {Pγ}γ∈Y , there exists V : R→ [1,∞) such that

sup
γ∈Y

lim sup
|x|→∞

PγV (x)

V (x)
< 1.

Proof. Assume x ∈ S1, denote p
(i)
γ = (1 − β)[λ

(i)
1 (γ)q

(γ)
1 (x, y) + (1 − λ

(i)
1 (γ))q

(γ)
2 (x, y)] +

βq
(γ)
whole(x, y), i = 1, 2. Consider V (x) = cπ(x)−

1
2 , where c is a constant such that V (x) ≥

1. and Let us compute PγV (x)

V (x)
for any γ ∈ Y ,

PγV (x)

V (x)
=

∫
Rk qγ(x, y)αγ(x, y)π(y)−

1
2 dy + (1− ∫

Rk qγ(x, y)αγ(x, y)dy)cπ(x)−
1
2

cπ(x)−
1
2

=

∫

A(x;γ)

qγ(x, y)
π(x)

1
2

π(y)
1
2

dy +

∫

R(x;γ)

qγ(x, y)[1− π(y)qγ(y, x)

π(x)qγ(x, y)
+

π(y)
1
2 qγ(y, x)

π(x)
1
2 qγ(x, y)

]dy

=

∫

A1(x;γ)

p(1)
γ (x, y)

π(x)
1
2

π(y)
1
2

dy +

∫

A2(x;γ)

p(1)
γ (x, y)

π(x)
1
2 (p

(1)
γ (x, y))

1
2

π(y)
1
2 (p

(2)
γ (x, y))

1
2

× (p
(2)
γ (x, y))1/2

(p
(1)
γ (x, y))1/2

dy

+

∫

R(x;γ)

p(1)
γ dy −

∫

R1(x)

p(1)
γ (x, y)

π(y)

π(x)
dy −

∫

R2(x)

p(1)
γ

π(y)p
(2)
γ (x, y)

π(x)p
(1)
γ (x, y)

dy

+

∫

R1(x)

p(1)
γ (x, y)

π(y)
1
2

π(x)
1
2

dy +

∫

R2(x)

p(1)
γ (x, y)

π(y)
1
2 p

(2)
γ (x, y)

1
2

π(x)
1
2 p

(1)
γ (x, y)

1
2

× (p
(2)
γ (x, y))

1
2

(p
(1)
γ (x, y))

1
2

dy

=

∫

A1(x)

p(1)
γ (x, y) min

{
1,

π(x)
1
2

π(y)
1
2

}
dy +

∫

A2(x)

Π2
i=1(p

(i)
γ (x, y))

1
2 min

{
1, (

π(x)p
(1)
γ (x, y)

π(y)p
(2)
γ (x, y)

)
1
2

}
dy

−
∫

R1(x)

p(1)
γ (x, y) min

{
1,

π(y)

π(x)

}
dy −

∫

R2(x)

p(1)
γ (x, y) min

{
1,

π(y)p
(2)
γ (x, y)

π(x)p
(1)
γ (x, y)

}
dy

+

∫

R1(x)

p(1)
γ (x, y) min

{
1,

π(y)
1
2

π(x)
1
2

}
dy +

∫

R2(x)

(Π2
i=1p

(i)
γ ) min

{
1,

(
π(y)p

(2)
γ (x, y)

π(x)p
(1)
γ

) 1
2
}

dy

+

∫

R(x)

p(1)
γ (x, y)dy.
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Step 1: For any η > 0,there exists K > 0 which is independent with the choice of x such

that each of the first six integrals outside the ball B(x; K) are less than η
18

. For example,

for the sixth term

∫

R2(x)∩B(x;K)c

(Π2
i=1p

(i)
γ (x, y)

1
2 ) min

{
1,

(
π(y)p

(2)
γ (x, y)

π(x)p
(1)
γ (x, y)

) 1
2
}

dy ≤
∫

R2(x)∩B(x;K)c

Π2
i=1p

(i)
γ (x, y)

1
2 dy

≤
∫

B(0;K)c

max

{
q
(1)
0 (z), q

(2)
0 (z)

}
dz

≤ η

18
if K is large enough.

Step 2: Suppose qγ(x, y) ≤ E for i = 1, 2 for any y ∈ B(x; K) and γ ∈ Y . Then

for fixed η, when |x| is large enough, there exists δ2 > δ1(x) such that for any y ∈
C+

π(x)(δ2) ∩ R(x) we have
π(y)p

(2)
γ (y,x)

π(x)p
(1)
γ (x,y)

≤ min{ η
18E

, [ η
18E

]2} and for any y ∈ C−
π(x)(δ2) ∩

A(x) we have π(x)qγ(x,y)

π(y)qγ(y,x)
≤ min{ η

18E
,
[

η
18E

]2}. Then we can define:

δ2(x) = inf{δ2 ≥ δ1(x)|for any y ∈ C+
π(x)(δ2) ∩R(x) we have

π(y)qγ(y, x)

π(x)qγ(x, y)
≤ min

{
η

18E
,
[ η

18E

]2
}

for any y ∈ C−
π(x)(δ2) ∩ A(x) we have

π(x)qγ(x, y)

π(y)qγ(y, x)
≤ min

{
η

18L
,
[ η

18L

]2
}

for any γ ∈ Y}.

Then there exists N > 0, such that for any x with |x| > N the first six integrals which

are outside the ball of radius δ2(x) and inside in any ball B(x,K) will be less than ε
18

.

For example,

∫

R2(x;γ)∩B(x;K)∩C+
π(x)

(δ2(x))

Π2
i=1(p

(i)
γ )

1
2 ×min

{
1,

(
π(y)p

(2)
γ (x, y)

π(x)p
(1)
γ (x, y)

) 1
2
}

dy

≤
∫

R2(x)∩B(x;K)∩C+
π(x)

(δ2(x))

Π2
i=1(p

(i)
γ )

1
2

η

18E
dy

≤
∫

R2(x)∩B(x;K)∩C+
π(x)

(δ2(x))

E
η

18E
dy

≤ η

18
.

Step 3: Since δ2(x) → 0 as |x| → ∞, for the fixed K and η > 0 in step 1, there exists

N1 large enough such that for any |x| > N1 we have:

µLeb(Cπ(x)(δ2(x)) ∩B(x,K)) ≤ η

18E
.
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Then we have the first six integrations which are inside the radius δ2(x)−zone in any ball

B(x,K) will be less than η
18

too. Therefore following the above analysis, we know that:

lim sup
|x|→∞

PγV (x)

V (x)
≤ η + lim sup

|x|→∞
Qγ(x,R(x; γ)).

Since η is small enough, we only need to prove that:

lim sup
|x|→∞

Qγ(x,R(x; γ)) = 1− lim inf
|x|→∞

Qγ(x,A(x; γ)) < 1.

The last inequality is followed by the Lemma 8.3.

Lemma 8.4. Suppose q(z) is the k−dimension Gaussian distribution with variance ma-

trix Σ such that εI ≤ Σ ≤ LI < (L + ρ)I where ρ > 0. Then there exists R > 0 such

that for any |z| > R, we have q(z) < q0(z), where q0(z) is the k−dimensional Gaussian

distribution with variance matrix (L + ρ) · I.

Proof. We need to find z such that

q(z)

q0(z)
=

1

(2π)
k
2 |Σ| 12

e−
1
2
ztΣ−1z

1

(2π)
k
2 |(L+ρ)I| 12

e−
1
2
zt((L+ρ)I)−1z

=

=
|(L + ρ)I|1/2

|Σ| 12
e−

1
2
zt(Σ−1−((L+ρ)I)−1)z ≤ 1.

If we denote c = 2 |(L+ρ)I|1/2

|Σ| 12
, then we have zt(Σ−1− (LI)−1)z < c. Since (Σ−1− (LI)−1) is

positive definite, {z : zt(Σ−1− (LI)−1)z < c} is the interior of an ellipsoid and its longest

semi-axis is 1
λ0
√

c
where λ0 is the smallest eigenvalue of (Σ−1 − ((L + ρ)I)−1). We know

that λ0 > 1
L
− 1

L+ρ
= ρ

L(L+ρ)
, therefore the longest semi axis less than L(L+ρ)

ρ
√

c
. So we can

set R = L(L+ρ)
ρ
√

c
to satisfy the conclusion of the lemma.

Recall that the distance between two n × n matrices M1 and M2 can be defined as

‖M1 −M2‖ = max{|(M1)ij − (M2)ij||1 ≤ i, j ≤ n}. Then we have:

Lemma 8.5. ‖C(t+1) − C(t)‖ → 0 and ‖C(t+1)
i − C

(t)
i ‖ → 0 as t tends to infinity.
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Proof. To prove that ‖C(t+1) − C(t)‖ → 0 as t tends to infinity, obviously we only need

to check ‖cov(y0, y1, · · ·, yt) − cov(y0, y1, · · ·, yt−1)‖ → 0 as t → 0. We denote C̃(t) =

cov(y0, y1, · · ·, yt−1). Then we have the following the recursion formula:

C̃(t+1) =
t− 1

t
C̃(t) +

1

t
(tȳt−1ȳ

T
t−1 − (t + 1)ȳtȳ

T
t + yty

T
t ),

where ȳk =
Pk

i=0 yi

k+1
. So

‖C̃(t+1) − C̃(t)‖ =

= ‖1

t
C̃(t) − 1

t
(tȳt−1ȳ

T
t−1 − (t + 1)ȳtȳ

T
t + yty

T
t ‖ ≤

≤ ‖1

t
C̃(t)‖+ ‖ȳt−1ȳ

T
t−1 −

t + 1

t
ȳtȳ

T
t ‖+

1

t
‖yty

T
t ‖.

Recall that C̃(t) = 1
t
(
∑t−1

i=0 yiy
T
i −(t+1)ȳt−1ȳ

T
t−1), following the fact that |yi| ≤ B+nκ, 0 <

κ < 1
2
, we have ‖1

t
C̃(t)‖ → 0 as t →∞. Similarly 1

t
‖yty

T
t ‖ → 0 as t →∞.

Regarding the second term we have:

‖ȳt−1ȳ
T
t−1 −

t + 1

t
ȳtȳ

T
t ‖ =

= ‖ȳt−1ȳ
T
t−1 −

t + 1

t
(ȳt−1ȳ

T
t−1 +

ytȳ
T
t−1

t
+

ȳt−1y
T
t

t
+

yty
T
t

t2
‖ ≤

≤ 1

t
‖ȳt−1ȳ

T
t−1‖+

t + 1

t2
‖ytȳ

T
t−1‖+

t + 1

t2
‖ȳt−1y

T
t ‖+

t + 1

t3
‖yty

T
t ‖.

Using |yi| ≤ B + nκ, 0 < κ < 1
2
, we can check that each term in above formula tends

to zero as t tends infinity. Therefore we have ‖C(t+1) − C(t)‖ → 0 as t tends to infinity.

Similarly we have and ‖C(t+1)
i − C

(t)
i ‖ → 0 as t →∞.

Lemma 8.6. The Diminishing Adaptation condition holds for the MRAPT algorithm.

Proof. We denote rγ(x, y) =
(1−β)[λ

(2)
1 (γ)q

(γ)
1 (x,y)+(1−λ

(2)
1 (γ))q

(γ)
2 (x,y)]+βq

(γ)
whole(x,y)

(1−β)[λ
(2)
1 (γ)q

(γ)
1 (x,y)+(1−λ(γ)2)q

(γ)
2 (x,y)]+βq

(γ)
whole(x,y)

. For any x ∈
S1 and A ∈ B(X ), we have:

PΓk
(x,A) =

∫

A∩S1

p(1)
γk

(x, y) min

{
1,

π(y)

π(x)

}
dy +

∫

A∩S2

p(1)
γk

(x, y) min

{
1, rγk

(x, y)
π(y)

π(x)

}
dy

+ δx(A)[

∫

S1

p(1)
γk

(x, y)[1−min

{
1,

π(y)

π(x)

}
dy +

∫

S2

p(1)
γk

rγk
(x, y)[1− rγk

(x, y) min

{
1,

π(y)

π(x)

}
dy.
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Denote the first term Ik(x,A), the second term IIk(x,A), the third term IIIk(x,A) and

the fourth term IVk(x,A). Then we have:

|PΓk+1
(x,A)− PΓk

(x,A)| ≤ |IΓk+1
(x,A)− IΓk

(x,A)|+ |IIΓk+1
(x,A)− IIΓk

(x,A)|

+ |IIIΓk+1
(x,A)− IIIΓk

(x,A)|+ |IVΓk+1
(x,A)− IVΓk

(x,A)|.

Since for any n, we have εI ≤ C
(n)
1 , C

(n)
2 , C(n) ≤ LI, following the Lemma 8.2, for any η >

0, there exists R > 0 large enough such that
∫

B(x,R)c∩S2
p

(1)
γk (x, y) min{1, rγk

(x, y)π(y)
π(x)

}dy <

η, where B(x,R) is the ball centered at x with radius R, and q
(1)
γk is bounded inside

B(x,R). We denote α
(k)
2 = min{1, rγk

(x, y)π(y)
π(x)

}. Then we have

|IIΓk+1
(x,A)− IIΓk

(x,A)| ≤
∫

A∩S2∩B(x,R)

|p(1)
γk+1

(x, y)α
(k+1)
2 (x, y)− p(1)

γk
(x, y)α

(k)
2 (x, y)|dy

+

∫

A∩S2∩B(x,R)c

|p(1)
λk+1

(x, y)α
(k+1)
2 (x, y)− p

(1)
λk

(x, y)α
(k)
2 (x, y)|dy

≤
∫

A∩S2∩B(x,R)

|p(1)
γ(k+1)

(x, y)α
(k+1)
2 (x, y)− p(1)

γk+1
(x, y)α

(k)
2 (x, y)

+ p(1)
γk+1

(x, y)α
(k)
2 (x, y)− p1

γk
(x, y)α

(k)
2 (x, y)|dy + η

≤
∫

A∩S2∩B(x,R)

p1
γk+1

(x, y)|α(k+1)
2 (x, y)− α

(k)
2 (x, y)|dy

+

∫

A∩S2∩B(x,R)

α
(k)
2 (x, y)|p(1)

γk+1
(x, y)− p(1)

γk
(x, y)|dy + η

≤
∫

A∩S2∩B(x,R)

π(y)p
(1)
γk+1(x, y)

π(x)
|rγk+1

(x, y)− rγk
(x, y)|dy

+

∫

A∩S2∩B(x,R)

|p(1)
γk+1

(x, y)− p(1)
γk

(x, y)|dy.

For fixed x, we suppose
π(y)p

(1)
γk+1

(x,y)

π(x)
≤ Bx for any y ∈ B(x,R), then the first term less

than Bx

∫
A∩S2∩B(x,R)

|rγk+1
(x, y) − rγk

(x, y)|dy. It suffices to prove that |rγk+1
(x, y) −

rγk
(x, y)| tends to zero in probability as k tends infinity. Following the Lemma 8.5, we

have |q(γn+1)
i (x, y) − q

(γn)
i (x, y)| → 0, i = 1, 2 and |q(γn+1)

whole (x, y) − q
(γn)
whole(x, y)| → 0 as n

tends to infinity. Secondly consider the random variable dn = (Xn+1 − Xn)2, based on

the fact that εI ≤ C
(i)
(n), C(n) ≤ LI, we have for any η > 0, there exists M > 0 such that

P ((Xn+1 −Xn)2 > M) ≤ max

{ ∫

|z|>M

NεI(z)dz,

∫

|z|>M

NLI(z)dz

}
≤ η.
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Using the similar proof of the Lemma 4.2 in [14], |λ(i)
1 (n+1)−λ

(i)
1 (n)| → 0 in probability

as n tends to infinity. Therefore, it is easy to check that |rγk+1
(x, y)− rγk

(x, y)| tends to

zero in probability as k tends infinity. Similarly, we can prove
∫

A∩S2∩B(x,R)
|p(1)

γk+1(x, y)−
p

(1)
γk (x, y)|dy tends to zero too. So |IIΓk+1

(x,A)−IIΓk
(x,A)| → 0 in probability. Obviously

same conclusions hold for terms I, III and IV . So we have proved the Diminishing

Adaptation condition for the MRAPT algorithm.

8.4 The Proof Of Theorem 8.1

Now we can prove the theorem 8.1 using the Theorem 4.4.

Proof. Following theorem 4.4 and lemma 8.6, we only need to check the simultaneously

strongly aperiodically geometrically ergodic conditions for the kernel family {Pγ}γ∈Y .

Consider any compact set B(r) = {x ∈ Rk||x| ≤ r} and denote q01(x, y) is the Gaussian

distribution with variance matrix εIk and mean x and q02(x, y) is the Gaussian distribu-

tion with variance matrix LIk and mean x. Since π(x) is continuous and positive, we can

define dr = supx∈Br
π(x) < ∞ and εr = min{infx,y∈B(r) q01(x, y), infx,y∈B(r) q02(x, y)} > 0.

Obviously, we have qγ(x, y) ≥ ε for any x, y ∈ B(r) and γ ∈ Y . Then for any x ∈ B(r)

and E ⊆ Br, we have

Pγ(x,B) ≥
∫

R(x;γ)∩B(r)

π(y)qγ(y, x)

π(x)
µLeb(dy) +

∫

A(x;γ)∩B(r)

qγ(x, y)µLeb(dy) ≥

≥ ε

d

∫

R(x;γ)∩B(r)

π(y)µLeb(dy) +
ε

d

∫

A(x;γ)∩B(r)

π(y)µLeb(dy) =

=
ε

d
π(B(r)).

Thus B(r) is small and we have Pγ(x,E) ≥ δrνr(E), where δr = επ(B(r))
dr

and νr(·) =

π(·)
π(B(r))

is a probability measure on B(r). Lemma 8.3 indicates that there exists r0 and

0 < ρ < 1such that for any |x| > r0, we have supγ∈Y
PγV (x)

V (x)
< ρ, where V (x) = cπ(x)−

1
2 .

Now let C = Br0 , b = max{V (x)|x ∈ C}. We get kernel family {Pγ}γ∈Y is simultaneously

strongly aperiodically geometrically ergodic.
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Remark: Based on the above construction of empirical covariance matrices from all

the historical simulations and the proof of the Theorem 4.4, we actually extended the

HST adaptive algorithm from compact state space to general state space. We can observe

that our empirical covariance matrices up to time t do not come from all the history, but

from part of them which are bounded by B + tτ or B + Ni(t). It seems that we miss

some information from the samples which are out of B + tτ or B + Ni(t). However we

know that B + tτ or B + Ni(t) both tend to infinity as t tends to infinity, therefore the

loss will become less and less when t increases.

8.5 Examples

In this section we will simulate some toy examples to verify our analysis before and check

the main theoretical results. More precisely we will make comparisons on the following

three aspects:

1. The efficiency of the MRAPT, the Dual RAPT and the HST algorithms to detect

different models in the case of two models being far way;

2. The number of switches between differen models of the modified MRAPT and the

HST algorithms in the case of two models being close;

3. The difference between running a single modified MRAPT and several parallel modi-

fied MRAPT.

Now we consider a mixture of two Gaussian distributions with equal weights as our target

distribution and the state space is the whole space R10 which is not compact. We let

π(x) = 0.5×N(µ1, Σ1) + 0.5×N(µ2, Σ2),
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where µi are ten dimensional vectors and Σi = σi




1 ρi ρi · · · ρi

ρi 1 ρi · · · ρi

ρi ρi 1 · · · ρi

· · · · · · · · · · · · · · ·
ρi · · · · · · ρi 1




10×10

, i =

1, 2. Since any Gaussian distribution lies in E , following the Theorem 4.4 in Jarner and

Hansen [32],1998, we know that π ∈ E . Then using the Theorem 8.1 we know that the

Modified MRAPT should be ergodic. The HST algorithm is ergodic too based on the

main results of [32].

For fair comparison we will consider six cases of target distributions with different mean

and covariance matrices. Let us consider the following scenarios:

Scenario A: ρ1 = 0.2, ρ2 = 0.3, σ1

σ2
= 1

3
, µ1j = 3, µ2j = −3, 1 ≤ j ≤ 10.

Scenario B: ρ1 = 0.2, ρ2 = 0.3, σ1

σ2
= 1

3
, µ1j = 0.5, µ2j = −0.5, 1 ≤ j ≤ 10.

Scenario C: ρ1 = −0.1, ρ2 = 0.1, σ1

σ2
= 1

3
, µ1j = 3, µ2j = −3, 1 ≤ j ≤ 10.

Scenario D: ρ1 = 0.1, ρ2 = −0.1, σ1

σ2
= 1

3
, µ1j = 3, µ2j = −3, 1 ≤ j ≤ 10.

Scenario E: ρ1 = −0.1, ρ2 = 0.1, σ1

σ2
= 1

3
, µ1j = 1, µ2j = −1, 1 ≤ j ≤ 10.

Scenario F: ρ1 = 0.1, ρ2 = −0.1, σ1

σ2
= 1

3
, µ1j = 1.5, µ2j = −1.5, 1 ≤ j ≤ 10.

We adjust the difficulty of the inter-model transitions by changing the distance between

µ1 and µ2. Meanwhile we try to vary the shape of both models by using different covari-

ance matrices, like scenarios C&D and E&F. We let the partition be S1 =
∑10

i=1 xi ≤ 0

and S2 =
∑10

i=1 xi > 0.

We first consider the scenarios A, C and D in which the two models are far away.

We draw the histograms of the first two and the last two coordinates, i.e. x1, x2, x9, x10
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Figure 8.3: Scenario A: The simulations of the first two coordinates and the last two

coordinates with mixed RAPT after 50,000 iterations. The red curve is the true density

function.

with the true marginal density to observe the performance of the algorithms. Now let

us consider Scenario A. We try the HST algorithm for 50,000 iterations and show the

histograms in Figure 8.5. We notice that the performance in the second region is not

good even when we choose the initial values in this region. Similarly the dual RAPT is

not efficient to switch the models either, and the histograms of x1, x2, x9, x10 are showed

in Figure 8.4. However the mixed RAPT algorithm has a much better performance

in Scenario A. After 50,000 iterations, the parameters are λ
(1)
1 (50, 000) = 0.681 and

λ
(2)
1 (50, 000) = 0.353 and the histograms of the first two coordinations and the last two

coordinations are presented in Figure 8.3. Similarly neither HST algorithm nor Dual

RAPT algorithm can switch the models fluently in Scenario C and Scenario D. It seems

that HST algorithm is very easy to get stuck in the S1 and Dual RAPT algorithm

is hard to jump out of the region S2. Even though we vary the initial values of the

covariance matrices the results do not become much better. In Scenario C the Mixed

RAPT still has a very good performance as in Scenario A when we select initial values
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Figure 8.4: Scenario A: The simulations of the first two coordinates and the last two

coordinates using the dual RAPT algorithm after 50,000 iterations.The red curve is the

true density function.

randomly. However in scenario D running a single mixed RAPT algorithm with the

starting value x0 = (0, . . . , 0)T , β = 0.3 and Σwhole = diag(10, . . . , 10) the algorithm

does not detect both models. So we increase the “detection” log by using the initial

Σwhole = diag(25, . . . , 25), then the performance of Mixed RAPT is illustrated in Figure

8.10. We note that it is important for the initial variances of qwhole to be large enough

so that both modes are visited during the initialization period. Another strategy to

improve the detection efficiency is to run some parallel Mixed RAPT. For more details

see R.Craiu, J.Rosenthal, and C.Yang [14]. Here we run five parallel chains together with

10,000 iterations. The initial value for the i− th chain is xi,0 = (3− i, 3− i, . . . , 3− i)T for

1 ≤ i ≤ 5 and let β = 0.2. The initial values Σi for the Gaussian proposals qi, i = 1, 2 and

the covariance matrix Σwhole of qwhole are the identity matrices, i.e. Σ1 = Σ2 = Σwhole = I.

The histograms of the first two coordinates and the last two coordinates are shown in

Figure 8.9. We notice that there are much more freedom to choose the initial values of

the parallel MRAPT.
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Figure 8.5: Scenario A: The simulations of the first two coordinates and the last two

coordinates with the HST algorithm after 50,000 iterations.The red curve is the true

density function.

Secondly we consider the Scenarios B, E, and F. In these cases both modes are close,

therefore it is not hard to detect all the models even by the HST algorithm. Figure 8.7

shows the simulation results of Scenario B after 50,000 iterations. As anticipated the

mixed RAPT simulates the Scenario B very well, which can be seen in Figure 8.6. In

these cases we will compare the number of mode switches for both the modified MRAPT

and HST algorithm. We show the inter-model switch times of both algorithms in Figure

8.8 in the case of Scenario B. We observe that the modified MRAPT switches modes

more efficiently. Similar result also happens when we analyze the switch times (Figure

8.11) of both algorithms for Scenario E.
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Figure 8.6: Scenario B: Histograms of the first two coordinates and the last two co-

ordinates using mixed RAPT after 50,000 iterations.The red curve is the true density

function.
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Figure 8.7: Scenario B: Histograms of the first two coordinates and the last two coordi-

nates using the HST agorithm after 50,000 iterations.The red curve is the true density

function.
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Figure 8.8: Scenario B: Number of switches for the HST algorithm (dashed line) and for

the mixed RAPT (solid line).
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Figure 8.9: Scenario D: The simulations of the first two coordinates and the last two

coordinates with the five parallel MRAPT chain after 500,000 iterations. The red curve

is the true density function.
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Figure 8.10: Scenario D: The histograms of the first two coordinates and the last two

coordinates using Mixed RAPT after 500,000 iterations.The red curve is the true density

function.
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Figure 8.11: Scenario E: The switch times of MRAPT versus HST after 100,000 itera-

tions.



Chapter 9

Conclusions and Further Research

Our first result focuses on the proof of CLT for uniformly ergodic Markov chain using

regeneration methods. Actually under the condition of the Theorem 5.1, we can define

the regeneration time for the common small set of all the kernels {Pγ}γ∈Y . The future

research direction is how to extend the regeneration proof to explore the CLT of adaptive

MCMC under the same conditions as in Theorem 5.1.

There are quite a few conditions and conclusions in chapter 5 and chapter 6. To compare

all of these, please see Table 8.1. One possible future research is to find out the sufficient

and necessary condition of AMCMC’s ergodicity under condition (a)(see some related

reference Bai,Roberts and Rosenthal [7]).

Another possible direction is to explore some weaker conditions than those in the Theorem

5.1 to ensure the ergodiciy, or to prove the open problem 20 in in Roberts and Rosenthal

[48] directly. And since the condition: {V (Xn)}∞n=0 bounded in probability is hard to

check in practice, we should look for other equivalent conditions which are easy to verify

so that we can close some of the gaps between theory and practice.

Regarding the WLLN of AMCMC, we have also proved the WLLN for bound functions

under the conditions of the Theorem 5.1. The Theorem 6.3 could be extended to non-

compact state space with the super-exponential target distribution.

131
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condition 1 condition 2 condition 3 conclusion

condition (a) condition (b) ⇒ Ergodicity of AMCMC

WLLN for bounded function

condition (a) condition (b) ; WLLN for unbounded function

condition (a) condition (b
′
) ⇒ WLLN for unbounded function

condition (b) condition (d) ⇒ Ergodicity of AMCMC

condition (b) Ergodicity of AMCMC ; condition (d)

condition (b) condition (d1) ; Ergodicity of AMCMC

condition (b) condition (d2) ⇒ Ergodicity of AMCMC

condition (e) condition (b) condition (f) ⇒ Ergodicity of AMCMC

WLLN for bounded function

Table 9.1: Main results of Chapter 3,4 and 5.

Regarding the RAPT and MRAPT algorithms, intuitively we can generalize the regional

adaptive algorithms to the cases with more than two regions. However it is difficult to

make sure that the MRAPT algorithm visits each region often enough when there are

too many regions. More precisely, we hope to visit the different regions with differen

frequencies because the weight of each model may be different. How to design more

efficient regionally adaptive algorithm for more regions based on our current work is one

of the possible directions for our future research.
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