ErRcobpIcITY OF ADAPTIVE MCMC AND ITS APPLICATIONS

Chao Yang

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy
Graduate Department of Statistics
University of Toronto

Copyright (©) 2008 by Chao Yang



Abstract

Ergodicity of Adaptive MCMC and its Applications

Chao Yang
Doctor of Philosophy
Graduate Department of Statistics

University of Toronto

2008

Markov chain Monte Carlo algorithms (MCMC) and Adaptive Markov chain Monte
Carlo algorithms (AMCMC) are most important methods of approximately sampling
from complicated probability distributions and are widely used in statistics, computer
science, chemistry, physics, etc. The core problem to use these algorithms is to build up
asymptotic theories for them.

In this thesis, we show the Central Limit Theorem (CLT) for the uniformly ergodic
Markov chain using the regeneration method. We exploit the weakest uniform drift con-
ditions to ensure the ergodicity and WLLN of AMCMC. Further we answer the open
problem 21 in Roberts and Rosenthal [48] through constructing a counter example and
finding out some stronger condition which indicates the ergodic property of AMCMC.
We find that the conditions (a) and (b) in [48] are not sufficient for WLLN holds when
the functional is unbounded. We also prove the WLLN for unbounded functions with
some stronger conditions.

Finally we consider the practical aspects of adaptive MCMC (AMCMC). We try some
toy examples to explain that the general adaptive random walk Metropolis is not efficient
for sampling from multi-model targets. Therefore we discuss the mixed regional adapta-
tion (MRAPT) on the compact state space and the modified mixed regional adaptation
on the general state space in which the regional proposal distributions are optimal and

the switches between different models are very efficient. The theoretical proof is to show
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that the algorithms proposed here fall within the scope of general theorems that are used
to validate AMCMC. As an application of our theoretical results, we analyze the real

data about the “Loss of Heterozygosity” (LOH) using MRAPT.
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Chapter 1

Introduction

1.1 Introduction to the Problems and the Conclu-

sions of Thesis

MCMC algorithms are extremely widely used in statistical inference to sample from
complicated high-dimensional distributions. The algorithms were first used in statistical
physics and later in spatial statistics. For more history, one can see [30]. However it
is very difficult to find the most efficient MCMC algorithm with respect to any target
distribution. Adaptive MCMC algorithm is one direction developed recently to deal with
this problem by tuning the associated parameters such as proposal variances through
automatically “learning” from the history simulations. The most important issue before
using both the MCMC algorithms and the adaptive MCMC algorithms is to prove the
asymptotic theory of them. Another critical issue is to design efficient and reliable
adaptive samplers for broad classes of problems.

This thesis consists of four results. We present the first main result (which is pub-
lished as A. Jasra and C. Yang [33]) in chapter 3, which is to prove the open problem
3 in Roberts and Rosenthal [46]. In [46], the authors have proved that a central limit

theorem (CLT) holds for A whenever 7(|h|>*"?) < oo and § > 0 if the Markov chain is
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geometrically ergodic using the regeneration methods. And they also proposed an open
problem: to provide a regeneration proof of the CLT for h whenever m(|h|*) < co. In
Chapter 3, we deal with this open problem.

The second main result (see C. Yang [57]) is about the ergodicity of adaptive MCMC
and presented in chapter 5. We study the relationship between the recurrence concept
and the ergodicity of AMCMC. Through constructing counter examples and applying
the splitting chain technique to the kernel family, we show the ergodic property of AM-
CMC under the uniform minimal drift conditions. Actually we partially tackle the open
problem 20 in Roberts and Rosenthal [48]. The problem is stated as below:

Open Problem 20: Consider an adaptive MCMC algorithm with Diminishing Adap-
tion, such that thereisC' € F,V : X — [1,00),0 > 0, and b < oo, with sup, V = v < oo,
and:

(i) for each v € Y, there exists a probability measure v,(-) on C' with P,(z,-) > dv,(-)
for all z € C'; and

(i) P,V <V — 1+ bl for each v;

Suppose further that the sequence {V'(X,,)}>°, is bounded in probability, given Xy = .
and 'y = 7.. Does the adaptive MCMC algorithm converge to the target distribution?
So far we can only prove the above conclusion with some additional conditions besides
conditions (i) and (ii). Furthermore, we construct another counterexample to show that
{M(X,,T,)}>2, being bounded in probability given X, = z, and I'g = 7. is not a nec-
essary condition of ergodicity under the diminishing adaption assumption although it is
sufficient. Following this conclusion, it seems that we should have a positive answer to
the open problem 21 stated as below in Roberts and Rosenthal [48].

Open Problem 21: Consider an adaptive MCMC algorithm with Diminishing Adap-
tation such that for all € > 0, there is m € N such that P[M.(X,,T,) < m i.0.|X, =
7., Lo = 7] = 1 where M(v,v) = inf{n > 1: ||P}(z,-) — 7(:)|| < €}. Let z, € & and

v« € YV.Does the adaptive MCMC algorithm converge to the target distribution?
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However a negative answer to this problem is given by constructing a complicated
counterexample. We also explore some stronger conditions than those in the open prob-
lem 21 which can ensure the ergodicity of AMCMC.

The third main result is on the WLLN of adaptive MCMC (see C. Yang [56]) and
presented in chapter 6. We construct a counter example to show that Simultaneous
Uniform Ergodicity Conditions and Diminishing Adaption Conditions are not enough
to have WLLN hold for unbounded functions. However we can prove the WLLN for
unbounded functions under the conditions of corollary 11 in Roberts and Rosenthal [48].
Further we extend the WLLN for HST algorithm from bounded functions to unbounded
functions as an application.

The fourth result (see R.V. Craiu, J.S.Rosenthal and C. Yang [14] and [58]) is con-
cerned with the practical aspects of adaptive MCMC, particularly related to sampling
from multi-model distributions. Since the random walk Metropolis is one of the mostly
used algorithms in practice it is the aim for most of our theoretical results. The regional
adaptation algorithms proposed in chapter 7 and chapter 8 are discussed in the context
of two separate regions. We conduct some real data analysis using our mixed regional
adaptive MCMC algorithm and compare the efficiency of different adaptive MCMC al-
gorithms by simulating some toy examples.

Chapter 9 concludes the thesis and summarizes some future work directions.

In chapter 2 we introduce the MCMC algorithm and some relevant Markov Chain
theories.

In chapter 4 we outline the constructions, notations and ergodicity theories of adaptive

MCMC algorithms.



Chapter 2

Markov Chain and MCMC

Algorithms

2.1 Why we need MCMC

Most applications of MCMC ([36], [29])are applied to the Bayesian Statistics Computa-
tions. From a Bayesian point of view, observables and parameters of a statistical model
are all considered random quantities. Suppose D denotes the observations, and 6 denotes
model parameters and missing data. The joint distribution P(D,#) consists of a prior

distribution P(f) and a likelihood P(D|0) as
P(D,0) = P(DI|0)P(6).

Having observed D, we have

P(0)P(D|0)
T P(6)P(D]6)do

P(O|D) =

as the distribution of € conditional on D, which is the posterior distribution of # and
is the object of all Bayesian inference. Any features of the posterior distribution are
legitimate for Bayesian inference: moments, quantiles, highest posterior density regions,

etc. All these quantities can be expressed in terms of posterior expectations of functions



CHAPTER 2. MARKOV CHAIN AND MCMC ALGORITHMS 5

of 6. The posterior expectation of a function f(#) is

[ f(0)P(O)P(D|0)do
BN = =5 b pDio)as

The integrations in this expression have brought difficulties in the applications of Bayesian
inference, especially in high dimensional cases. Analytic method to do direct integration
E[f(0)|D] is infeasible. Numerical evaluation of E[f(#)|D] as an alternative method is
difficult and inaccurate when the dimension is greater than about twenty. Therefore
good estimates of expectations allow Bayesian inference to be used to estimate a variety
of parameters, probabilities, means, etc. Monte Carlo integration evalutes E[f(X)] by

simulating i.7.d random variables {X;, ¢ =1,-- -, n} from 7(-), then

So we use the sample mean to esitimate the mean of f(X). When the samples {X;}
are independent, if we increase the sample size n, the approximation will tend to be
more accurate according to the laws of large numbers. However, drawing samples {X;}
independently from 7(+) is not feasible generally. Since {X;} do not necessarily need to be
independent, one method of generating the samples is through a Markov chain having 7(-)
as its stationary distribution. This method is called Markov chain Monte Carlo(MCMC).
MCMC has been proven to be an extremely helpful method of approximately sampling
from distribution 7(-) on the state space X, especially when 7(-) is very high-dimensional
or too complicated to do the direct sampling. Actually the existence of MCMC algorithms
has transformed Bayesian inference by allowing practitioners to sample from some simple
distributions of complicated statistical models (see [53], [51],[55],[43]).

Suppose we want to sample from some complicated distribution 7. The main idea of
general MCMC algorithm is to construct a Makov chain {X;}! , using some simple
proposal distribution @ such that £(X,,) ~ m(-) when n is large enough. In fact it is very
straightforward to realize such an idea. For more precise descriptions, see section 2.7.

Then we can estimate the integral [ f(z)m(dz) using = >°7" ; f(X;). We note that when
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we use the MCMC algorithm, we only need to generate samples from the much simpler
distribution (), rather than from the complicated distribution 7. This idea makes the
numerical computation of E|[f(0)|D] much easier and more efficient. Such good estimates
make Bayesian inference much more widely applicable.

Furthermore, a wide variety of the Markov Chain’s asymptotic theories are developed to
prove the validity of the MCMC algorithms and to estimate the errors of them. We will
introduce these theories in later sections.

In practice, to remove the impact of starting values, we usually use n_LN Yo J(X5)

as the estimate of [ f(z)m(dx) for some 0 < N < n and N being large enough.

2.2 Definition of Markov Chain

The application of MCMC algorithms raise numerous questions related to the mathe-
matical theory of Markov chain. Now let us recall the definition of Transition Probability

Kernels(see [37]), B(X) will be taken as the Borel o—field.

Definition 2.1. If P = {P(x,A), v € X, A € B(X)} is such that:
(i) for each A € B(X), P(-,A) is a non-negative function on X;
(ii) for each x € X, P(x,-) is a probability measure on B(X),

then we call P a Transition Probability Kernels or Markov transition function.

Definition 2.2. A Markov chain X = {Xo, X1, - -} is a particular type of stochastic
process taking, at times n € Z., initial distribution p and transition probability P(x, A)

such that Xo ~ p(-) and
Pu(Xn-i—l - A|Xn = x,Xn_l =Tp—-1,"" ',XO = ZL‘Q) = P(Xn+1 € A|Xn = ZE) = P(J?,A)

We will use P"(x, A) represents the probability of jumping from x to somewhere in

A after n iterations. Obviously we have:

P"(:E,A):/XP(y,A)P"_l(x,dy).
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In this chapter we will summarize some basis definitions and related theoretical results
of Markov chain which we will use in the next chapters. And in the last section we will
introduce the Metopolis-Hasting algorithms. All the results in this chapter can be found
in Meyn and Tweedie [37], Roberts and Rosenthal [46].

2.3 Irreducible, Atom, Minorization Condition and

Small Set

Much general Markov chain theory can be developed in complete analogy with the sit-
uation when X’ contains an atom for the ¢—irreducible chain X (see [37]). Let us recall

the definition of Return time to A first, for any A € BT(X) ,
T4 :=min{n >1: X, € A}
Then we can give the definition of p—irreducible chain.

Definition 2.3. We call X = {X,,} p—irreducible if there exists a measure ¢ on B(X)

such that, whenever p(A) > 0, we have P(14 < 00|Xo=x) >0 for all z € X.
Next we introduce the definition of atom:

Definition 2.4. A set a € B(X) is called an atom for X if there exists a measure p on

B(X) such that:
P(z,A) = u(A), z € a.
If X is ¢—irreducible and ¢(«) > 0, then « is called an accessible atom.

Obviously each point in X is an atom. However we also to find some conditions under
which we can construct an artificial atom. Actually we need the Minorization Condition
as below:

Minorization Condition For some § > 0, some C' € B(X) and some probability
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measure v with v(C°) =0 and v(C) =1, P(z, A) > 6la(x)v(A).

Then we can split any Markov chain with the Minorization Condition. We first split the
space X itself by writing X = & x {0,1}, where Xy = X x {0} and X} = X x {1} are
thought of as copies X equipped with copies B(AXp), B(X7) of the o— field B(X). We also
let B(X) be the o—field of X generated by B(Ap), B(X)): that is B(X) is the smallest
o—field containing sets of the form Ay := A x {0}, A; := A x {1}, A € B(X).

We will write z;, i = 0, 1 for elements of X', with z denoting members of the upper level
Xy and z; denoting members of the lower level A.

If A is any measure on B(X'), then the next step in the construction is to split the measure

A into two measures on each of Xy and &; by defining the measure \* on B(X) through

N (A)) = MANO)L =8+ MANCO),

N(A) = MANO)S,

where C', 9 and v are the set, the constant and the measure in the Minorization Condition.
Note that the splitting is dependent on the choice of the set C'; and although in general
the set chosen is not relevant. We can observe the A is the marginal measure induced by

A*, in the sense that for any A in B(X) we have:
A (AgU Ay) = A(A).

Now we can step in the construction to the split the chain {X,} to the form a chain {X,}
which lives on (X, B(X). Define the split kernel P(x;, A) for 2; € X and A € B(X) by:

p(%,') = P(z,)", € Xy—Cy;

P(zg,-) = [1=0]'[P(z,))" =ov"()], o€ Cy;

P(Il,') = 7/*('), xr1 € Xl.

We can see that outside C' the chain {X,} behaves like {X,}, moving on the “top” half

Xy of the split space. Each time it arrives in C, it is “split”; with probability 1 — ¢ it
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remains in Cy, with probability ¢ it drops to C}.

It is critical to note that the bottom level &) is an atom with ¥*(X;) == §(C) > 0
whenever the original chain is ¢—irreducible. We also have P"(x;, X5 — Cy) = 0 for all
n>1and all z; € /'?, so that the atom C; C AXj is the only part of the bottom level
which is reached with positive probability. We will use the notation & := C; when we
wish to emphasize the fact that all transitions out of ' are identical, so that C; is an

atom in X. Following Meyn and Tweedie [37] we have the following theorem:

Theorem 2.1. (i) The chain X is the marginal chain of {X}: that is, for any initial
distribution A on B(X) and any A € B(X),
/ Mdz)P*(x, A) = / N (dy;) P* (i, Ag U A))
X x
(i) The chain X is p—irreducible if {X} is ¢p—irreducible; and if X is is p—irreducible

and p(C) > 0 then {X'} is v*—irreducible, and ¢ is an accessible atom for the split chain.
Finally we will introduce the definition of Small Sets

Definition 2.5. A set C' € B(X) is called a Small Sets if there exists an m > 0, and a

non-trivial measure v, on B(X), such that for all x € C, B € B(X),
P™(z, B) > vjn(B).
Then we say that C' is v, —small.

In fact, for a ¢—irreducible chain, every set A € BT (X) contains a small set in
B*(X). As a consequence, every t—irreducible chain admits some m—skeleton which
can be split, and for which the atomic structure of the split chain can be exploited. We
will use this idea to a family of Markov chain in the chapter 4, so that we can use the
common atomic structure to prove the ergodicity of Adaptive Monte Carlo Markov chain
algorithms(AMCMC).

Finally we introduce a generalization of small sets, petite sets. Let a = {a(n)} be a
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distribution, or probability measure, on Z,, and consider the Markov chain X, with

probability transition kernel
Ko(x,A) =Y P"(z,A)a(n), = € A, A€ B(X).
n=0

Definition 2.6. We call a set C' € B(X) v,—petite if the sampled chain satisfies the

bound
K,(z,B) > v.(B),

forallz € C, B € B(X), where v, is non-trivial measure on B(X).

2.4 Recurrence, Transience and Drift Conditions

In this section we will introduce the definition of recurrence and transience which are
used to describe type of weak forms of stability. What we concern is actually the behavior

of the occupation time random variable

o0

na=>» I{X, € A},

n=1

which counts the number of visits to a set A. In terms of 4 we can study a chain through

the transience and recurrence of its sets.

Definition 2.7. The set A is called uniformly transient if for there exists M < oo such
that E [nal < M for all x € A.

The set A is called recurrent if Ep[nal = oo for all x € A.

Using the definition of uniformly transient and recurrent of the sets we can define

recurrent chain and transient chain and have the following theorem (see [37]):

Theorem 2.2. Suppose that X is —irreducible Markov chain. Then either
(i) every set in BT(X) is recurrent, in which case we call X recurrent; or
(it) there is a countable cover of X with uniformly transient sets, in which case we call

X transient; and every petite set is uniformly transient.
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We can check the transience and recurrence through computing the expected drift

defined by the one-step transition function P. The Drift Markov Chains is defined as:

Definition 2.8. The drift operator A is defined for any non-negative measurable function

V by
AV (z) = /P(m,dy)V(y) —V(z), zeX.

Based on the drift function, we can develop the criteria for both transience and

recurrence (see [37]).

Theorem 2.3. Suppose X is a Y—irreducible chain.
(i) The chain X is transient if and only if there exists a bounded non-negative function

V and a set C € BY(X) such that for any x € C°,
AV(z) >0

and

D ={V(z)>supV(y)} € B (X).

yeC

(ii) The chain is recurrent if there exists a petite set C C X, and a function V which is
unbounded off petite sets in the sense that Cy(n) == {y : V(y) < n} is petite for all n,
such that

AV(z) <0, zeC"

2.5 Invariant Measure and Ergodicity

For many purposes, we might require that the distribution of X, does not change as
n takes on different values. Based on the Markov property it follows that the finite
dimensional distributions of X are invariant under translation in time. Therefore we will

consider the definition of Invariant Measure.
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Definition 2.9. A o—finite measure 7(-) on B(X) with the property

m(A) :/ mw(dx)P(z,A), AeB(X),
X
will be called invariant.

Regarding the construction of invariant measure, we have the following theorem (see

[37]):

Theorem 2.4. If the chain X is recurrent then it admits a unique (up to constant

multiples) invariant measure 7, and the measure w has the representation, for any A €

BT (X)

TA
~(B) = / r(dw) B[S I{X, € BY], BeBX).
A n=1
The invariant measure m is finite if there exists a petite set C' such that

sup E,[1¢] < 0.
zeC

Following these results above we have the definition of Positive and Null Chains

Definition 2.10. Suppose that X is Y—irreducible, and admits an invariant probability
measure w. Then X is called a positive chain.

If X does not admit such a measure, then we call X null.
Before we introduce the main theorem, we need to define some notations:

Definition 2.11. Given Markov chain transition probabilities P on a state space X, and
a measurable function f : X — R, define the function Pf : X — R such that (Pf)(z) is

the conditional expected value of f(X,+1), given that X,, = x. In symbols,

(Pf)(x) = / _TWPG.dy)

Now we can introduce the Aperiodic Ergodic Theorem(see [37]):
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Theorem 2.5. Suppose that X is an aperiodic Harris recurrent chain, with invariant
measure ™. The following are equivalent:

(i) The chain is positive Harris: that is, the unique invariant measure 7 is finite.

(i) There exists some v—small set C € BT (X) and some P>*(C) > 0 such that as
n — oo, for allxz € C,

P(z,C) — P=(C).

(iii) There exists some reqular set in BT (X): equivalently, there is a petite set C' € B(X)
such that

sup E,[tc] < 0.
zeC

(iv) There exist some petite set C', some b < 0o and a non-negative function V' finite at

some one xg € X, satisfying
AV (z) = PV(z) —V(z) < =1+ blp(z), ze€X.

Any of these conditions is equivalent to the existence of a unique invariant probability
measure © such that for every initial condition v € X,
sup |P"(z, A) —m(A)[ — 0
AeB(X)

as n — 00, and moreover for any reqular initial distribution X\, pu,

Z//)\(dx)u(dx) sup |P"(z,A) —m(A)| < oco.

AeB(X)
We also describe the above convergence in terms of the total variation norm between

two probability measures (see [46]).

Definition 2.12. The total variation norm between two probability measures vi(-) and
I/Q(') 18

[1(-) = ()| = sup [11(A) —1a(A)].
AeB(X)

Next we will list some simple properties of total variation distance (see [46], [52]) we

will use in the further chapters.
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Proposition 2.1. (a) If w(+) is stationary for a Markov chain kernel P, then ||P"(x,-)—
7(+)| is non-increasing in n, i.e. |P"(z,) —w(-)|| < ||P*  (x,-) — 7(-)| for n € N.

(b) More generally, letting (v;P)(A) = [v(dz)P(x, A), we always have ||(11P)(-) —
(2 P)C)I < [l () = w2 ()]

(c) If u(-) and v(-) have densities g and h, respectively, with respect to some o— finite

measure p(-), and M = max(g,h) and m = min(g, h), then

mm—wwzgfyw—mwzl—ﬁm@.

(d) Given probability measure u(-) and v(-), there are jointly defined random variable X
and Y such that X ~ u(-), Y ~v(:), and P[X =Y] =1—[|u(-) — v()].

2.6 Geometrically Ergordic And Uniformly Ergodic

In lots of situations, what we concern is the convergence speed of P" as n — oo. One

typical convergence rate property is geometrically ergodic.

Definition 2.13. A Markov chain with stationary distribution w(-) is geometrically er-

godic if
[P (z,-) —7()|| < M(z)p",
for some p < 1, where M(x) < oo for m—a.e. x € X.

Next we discuss conditions which ensure geometric ergodicity, first let us consider

another drift condition

Definition 2.14. A Markov chain satisfies a drift condition II if there are constants

0<A<1andb< oo, and a function V : X — [1,00) such that
(PV)(2) < AV(2) + Me(a),

forallz € X.
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We have the following Geometric Ergodic Theorem(see [37])

Theorem 2.6. Geometric Ergodic Theorem Suppose that the chain X is ¥ —irreducible

and aperiodic Markov chain with stationary distribution 7w(+). Suppose C' C X is (ng, €, v)—small
set. Suppose further that the drift condition II is satisfied for some constants 0 < X\ < 1

and b < 00, and a function V : X — [1,00) with V(x) < oo for m —a.e x € X. Then the

chain is geometrically ergodic.
Another “qualitative” convergence rate property is uniform ergodicity:

Definition 2.15. A Markov chain having stationary distribution 7(-) is uniformly ergodic
if

[Pz, ) —m()]| < Mp", n=1,23--
for some p <1 and M < .

The equivalences of uniform ergodicity are as the following theorem:

Theorem 2.7. For any Markov chain X the following are equivalent:
(i) X is uniformly ergodic.
(ii) For some n € Z,,

sup || P"(z,) —m()]| < 1.
reX

(#ii) The chain is aperiodic and Doeblin’s Condition holds: that is, there is a probability

measure ¢ on B(X) and e <1, § >0, m € Z, such that whenever ¢(A) > ¢,

inf P"(xz,A) > 6.

zeX

(iv) The state space X is pi,,—small for some m.

(v) The chain is aperiodic and there is a petite set C' with

sup E,[rc] < oo,
reX
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in which case every A € B (X),

sup F,[Ta] < o0.
reX

(vi) The chain is aperiodic and there is a petite set C and a k > 1 with
sup E,[k7¢] < o0,
reX

in which case for every A € BT (X) we have for some ka4 > 1,

sup B, [k{'] < oo.
reX

(vii) The chain is aperiodic and there is a bounded solution V' > 1 to
AV (z) < =pV(z) + blo(z), x € X,

for some 3 >0, b < oo, and some petite set C.

Under (iv), we have in particular that for any x,
1P (2, ) = m()]| < p"/™,

where p =1 — v, (X).

2.7 Metropolis-Hasting Algorithm

The Metropolis-Hastings algorithm([36], [29]) is an extremely important MCMC algo-
rithm to sample from complicated probability distribution. Before we introduce how to
construct the Markov chain using this algorithm, let us learn the definition of reversible

first.

Definition 2.16. A Markov chain on a state space X 1is reversible with respect to a

probability distribution 7(-) on X if

7(dx)P(z,dy) = n(dy)P(y,dx), x,y€ X.
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It is easy to prove the following proposition of reversibility (see [46]).

Proposition 2.2. If Markov chain is reversible with respect to w(-), then 7(-) is station-

ary for the chain.

From the above proposition, we only need to create a Markov chain which is easily
run, and which is reversible with respect to m(-). The simplest way to do this is to use
the Metropolis-Hastings algorithm. Suppose that 7(-) has a density ), and Q(z,dy) is
any transition kernel of some Markov chain such that Q(z,dy) « ¢(x,y)dy. Then the
Metropolis-Hastings algorithm proceeds as below:

(i) Choose some initial value Xo;
(ii) Given X,, = x,, generate a proposal Y, following the distribution Q(x,,-). That
is Y1 ~ Q(zp,-);

(iii) Compute the acceptance rate a(X,, Y1) as

m™(y)a(y, x)}

a(z,y) = min[l, @)

(iv) We will accept the proposal by setting X, 11 = Y41 with probability a/(X,,, Y,11);

otherwise reject the proposal by setting X,, 11 = X,, with probability 1 — a(X,,, Y,1+1).

Proposition 2.3. The Metropolis-Hastings algorithm (as described above) produces a

Markov chain {X,,} which is reversible with respect to 7(-).



Chapter 3

Central Limit Theorems for Markov

Chains

3.1 Introduction

Let {X,} be a Markov chain on measurable space (X,€) with unique stationary dis-
tribution 7. Let h : X — R be a measurable function with finite stationary mean
m(h) == [, h(z)m(dz). Ibragimov and Linnik [1](1971) proved that if {X,} is geometri-
cally ergodic, then a central limit theorem (CLT) holds for h whenever 7(|h|**?) < oo,
d > 0. Cogburn [12](1972) proved that if a Markov chain is uniformly ergodic, with
7(h?) < oo then a CLT holds for h. The first result was re-proved in Roberts and Rosen-
thal [46](2004) using a regeneration approach; thus removing many of the technicalities
of the original proof. This raised an open problem: to provide a proof of the second
result using a regeneration approach. In this chapter we will provide a solution to this

problem after we discuss the some results on CLT for Markov Chains.

18
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3.2 Some Discussions

Let {X,,} be a Markov chain with transition kernel P : & x & — [0,1] and a unique
stationary distribution 7. Let h : X — R be a real-valued measurable function. We
say that h satisfies a Central Limit Theorem (or /n—CLT) if there is some 0% < oo
such that the normalized sum n~2 S [h(X;) — m(h)] converges weakly to a N(0,0?)
distribution, where N(0,0?) is a Gaussian distribution with zero mean and variance o2
(we allow that 02 = 0), and (e.g. Chan and Geyer [11](1994), see also Bradley [9](1985)
and Chen [11](1999))

o> = m(h?) +2 / > h(z)P"(h)(z)m(dx).
E =1
When the Markov chain is uniformly ergodic, we have the following theorem:

Theorem 3.1 (Cogburn [12], 1972). If a Markov chain with stationary distribution 7 is

uniformly ergodic, then a /n—CLT holds for h whenever m(h?*) < oco.

Ibragimov and Linnik [1](1971) proved a CLT for A when the chain is geometrically
ergodic and, for some § > 0, m(|h|**?) < co. Roberts and Rosenthal [46] (2004) pro-
vided a simpler proof using regeneration arguments. In addition, Roberts and Rosenthal
[46](2004) left an open problem: To provide a proof of Theorem 3.1 (originally proved
by Cogburn [12](1972)) using regeneration.

Many of the recent developments of CLTs for Markov chains are related to the evo-
lution of stochastic simulation algorithms such as Markov chain Monte Carlo (MCMC).
For example, Roberts and Rosenthal (2004) posed many open problems, including that
considered here, for CLTs; see Haggstrom [28](2005) for a solution to another open prob-
lem. Additionally, Jones (2004) discusses the link between mixing processes and CLTs,
with MCMC algorithms a particular consideration. For an up-to-date review of CLTs
for Markov chains see: Bradley [9](1985), Chen [11](1999) and Jones [34](2004).

The proof of Theorem 3.1, using regeneration theory, provides an elegant framework

for the proof of CLTs for Markov chains. The approach may also be useful for alternative
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proofs of CLTs for chains with different ergodicity properties; e.g. polynomial ergodicity
(see Jarner and Roberts [31] (2002)).

Remark: Actually the CLT may hold for some Markov chain without ergodic prop-
erty with respect to its stationary distribution. We can consider an example such that

the state space X = {1,2,3,4} with the stationary distribution 7(1) = 7(2) = 7(3) =

00} 1
oo L 1L
7(4) = 1 and the transition matrix P = > 2 | Then we can prove that P
11
5 5 00
11
5 5 00

stated above is reversible and 7 stated above is the unique stationary distribution to P.
And for every h : X — R with m(h?) < oo satisfies a CLT for the P as stated above. On
the other hand, since the eigenvalue of P is 1,—1,0,0, we have lim,, ., P" does NOT
exist. Therefore P is NOT ergodic.

The structure of this chapter is as below. In Section 3.3 we provide some background
knowledge the regeneration construction, we also detail some technical results. In Section
3.4 we use the results of the previous Section to provide a proof of Theorem 3.1 using

regenerations.

3.3 Regeneration Construction and Some related Tech-
nical Results

Now we consider the regeneration construction for the proof. Since X is small we use

the split chain construction (Nummelin, 1984), for any z € X, A € £
P"™(x,A) = (1—¢)R(z,A)+ ev(A),

where R(z, A) = (1 — ¢)7'[P™(x, A) — ev(A)]. That is, for a single chain (X,,), with

probability € we choose X,,.,, ~ v, while with probability 1 — ¢ we choose X, ~
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R(X,,"), if m > 1, we fill in the missing values as X, ;1 using the appropriate Markov
kernel and conditionals.

We let T',T5, ... be the regeneration times, i.e. the times such that Xz, ~ v, clearly
T; = im. Let Ty = 0 and r(n) = sup{i > 0 : T; < n}, using the regeneration time, we

can break up the sum Y [h(X;) — w(h)] into sums over tours as follows:

n r(n) Tj41—1
SR W =Y. D [h(X) — ()] + Q)
where
Q) = S X)) —w(h)] + 3 [h(X;) — (b))
Jj=0 T (n)+1

We begin our construction, by noting the following result.

Lemma 3.1. Under the formulation above, we have that:

Q(n)

nl/2

—, 0. (3.1)

Proof. Let

and

where [h(X;) — 7(h)]T = max{h(X;) — 7(h),0} and [h(X;) — 7(h)]” = max{—[h(X;) —
m(h)], 0}.
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The strategy of the proof is to show that QF(n)/n'/? —, 0 as n — co. Consider
Q1 (n),

sm—1

Qf(n) = Y [(X;) —a(W)]* w.p e(l—e)tY, (3.2)

=0
where s € N. If Qf (n)/n'/? —, 0, i.e. P(3e,Qf (n) > en'/?,i.0.) = 1 for all n, which
means that P(Q] (n) = 00,i.0.) = 1, which is impossible from (3.2). So Q; (n)/n'/? —, 0
as n — oo. Similarly Q; (n)/n'/? —, 0 as n — oc.

For 5 we have Q5 (n) < Zglrn+l[h(Xj)—7T(h)]+ = QF (n), where I(n) = inf {i>0:T;, >n}.
We know that Q7 (n) has the same distribution with QF (n), so @;L(n)/nl/2 —, 0 as

n — oo and therefore, QF (n)/n'/? —, 0 as n — oco. Similarly Q; (n)/n*? —, 0 as

n — oo. From the above discussion, we conclude that Q(n)/n'/? —,, 0. [

The above lemma indicates that our objective is to find the asymptotic distribution
of Zg(:nl) Zﬁ}ifl[h(){z) — m(h)]. Given the definition of T}, each random variable s; =
Zfi};fl[h(){,) — m(h)] has same distribution. However, we know that 7; depends on
X1,_141,° » X7,_, -1, but does not depend on the value of X7, ,. That is, we have the

following lemma:

Lemma 3.2. For any 0 < i < 00, s; and s;11 are not independent, but the two collections
of random variables: {s; : 0 < i < m — 2} and {s; : i > m} are independent for any
m > 2.Therefore the random variable sequence {s;}5°, is a one-dependent stationary

stochastic processes.

Proof. Clearly s;.1 depends on the distribution 7}, thus:

P(XTZ-—H €dry,- -, Xryym € dy| Xpw, Tipy —T; > m)

(1 —e)R(z, dy)
TPy ) e

and

d
]:P)(XTi+1 edry, -, Xpym € dy| Xy, =2, T — T, = m) _ () P(z,dxy) -+ P(xy_1,dy).

— Pm(z, dy)
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Note s; depends on T;,;. Therefore s; and s;,; are not independent. However, for any
0<i<m-—2<m<j<oo,since Xy, ~ v(-) and X7, depends X7, 11, -+, X1,—1, but

is independent of all the {X}, : & <T}}. Thus, we have the result. O

3.4 Proof of Theorem 3.1

To prove the Theorem 3.1 we follow the strategy:
Step 1: Prove that I = EV<ZiT_101[h(X,~) - W(h)]) = 0.

Step 2: Prove that J = [, v(dz)E [<Zf101[h(Xi) — ﬂh)])2

Step 3: Prove that a y/n—CLT holds for a stationary, one-step dependent stochastic

onx} < 00.

processes.
Lemma 3.3. [ = E, ( SSECAX) — w(h)]) =

Proof. Denote Ty = 7m and Hy = 3" F U™ D1p(X,) — 7(h)], then we have:

i=km
I=E,[) Hlk <)
k=0

Consider the splitting m—skeleton chain {X,,,,} as in section 5.1.1 of Meyn and Tweedie
[37](2003), we know that & = A} is an accessible atom. Then we can apply theorem

10.0.1 of Meyn and Tweedie [37] (2003) to this splitting chain. That is:
7(B) = #(BoUBy) = /ﬁ(dw)Ew[Z { X € BY]
a k=1

= e/X W(dw)Ew[i]I{ka c BY}].

k=1
We can define 75 = min{n > 1: X,,, € @}. Since for any w € &, P™(w,-) ~ v(-), we
have 75 = 7. Following the Theorem 5.1.3 in Meyn and Tweedie [37] (2003), we also
have P*"(z, B) = P*"(x, B) for any B € B(X). Therefore we have:

T1 o0

7(B) = €B,[Y W Xim € BY] = €E,[Y W Xpm € BH{7 > k}].

k=1 k=1



CHAPTER 3. CENTRAL LIMIT THEOREMS FOR MARKOV CHAINS

So we have:

1= (3w <o)X )

k=0

E,[E (Hkﬂ(k < T)]ka)]

[
NE

k=0

[
WE

E,[E (Hk|ka) I(k < 7).

b
Il
o

24

The last equation comes from the fact that random variables I{T > k} and Xy, are

independent. And we know that given 71 > k and Xy,,, the distribution of Hj, is equal

to Hy given Xy. Therefore we have:

I = i_o:Eu[E(HolXo)ﬂ(k<T)]

= E.E <H0|X0>

= Eﬂ(HO)

Lemma 3.4. We have:

(3.3)
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Proof.
-, =1 (k+1)m—1) 2
7 = () = w0 |

- N k=0 i=km
o )

< 5|( X< |
- N k=0

= E | ) HSHk<7}+2) <|Hk| > H I < T}){k < T}}
- k=0 k=0 j=k+1

= B> (\Hk|2+2Hk > HI{ < T}>]I{k <7}
- k=0 j=i+1

- E, ZE(\Hk|2 +2[Hy| Y HG < THI{E < 7} Xpom, I{k < T})]
- k=0 Jj=k+1

- E, ZE(IHk|2+2|Hk| > H <T}|ka)ﬂ{k<r}].
- k=0 j=k+1

In the last equation, we have used the fact that random variables I{7 > k} and Xy, are

independent. Since

E(|Hz-|2 oS < 7} X = ) _ ]E(|H0|2 CoH| ST B < X0 = x)
j=1

j=1

if we denoet f(z) = ]E<|H0\2 +2[Ho| 372, [H|[I{j < 7} Xo = x), then we have:

r o0

7 < B[ Y sk <]

- k=0

- E, F(X)I{0 < T}] +E, {g} f(Xo)[{k < T}]

< B [700)] + 8. r00) iE <)

The last inequality is follows since:
L f(Xo)I{k < 7} < f(Xo);
2. When k£ > 1, I{7 > k} is independent with X,.

Note

E, = P(k<7)<(1—¢)F

k<7t
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and

[E P (s, dy)e(de)

> ev(dy),

therefore we have J < 1E,[f(X))] < $E.[f(Xo) and

EL(X0)] < B IH(X) — n(h)f]
< m(n(h?) —7(h)?) < .

From the above arguments we conclude that J < oo

Finally, we prove the Theorem 3.1:

Proof of Theorem 3.1. Following the Lemma 3.1, we can obtain

LS )] S Y B — ()]
ot i/ = lim

Jim i . (3.4)

h(X;) — mw(h), s; = ”Tlﬂh and 1, = Sjmp1 + -

Define h;

-+ S(j4+1)m—1 for

an integer m > 2. Following the Lemma 3.2 we know that two collections of random

variables: {s;:0<j <m —2} and {s; : ¢ > m} are independent for any m > 2; thus

1 n

[n/m]-1

[n/m]—

nj + Smj + Sj-
3 J‘Z »fg%

It should be noted that if j —¢ > m, then X; and X; are independent, n; are i.i.d random

variables and s,,; are i.i.d. so we have:

[n/m]—1

2
O-m
E nj —a N(O, E)’

1 [n/m] o2
- . N(0, 25),
vn ]Z:;S o ( m)

where 02, =

(m — 1DE(s?) + 2(m — 2)E(s152) and 02 = E[s?], letting m — oo, we have

I — R(s?) + 2E(s152) and m™'o? — 0, so the CLT holds
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Let
# = e[S - ) |
then
o = i B[00 x|

n—oo N,

= lim lE:( Sj)z]

= lim lIE -r(n)sf +2(r(n) — 2)5152] .

n—oo N

By the elementary renewal theorem (e.g. Feller [17](1968)), lim, .o ™ = E(T3 — T1).
Since P[Ty — T = nos] = e(1 — &)Y, E(To — T1) = >0 [nose(1 — )Y = 20 < o0.
Therefore if we denote 62 = E[s? + 2s;55], then

o’ = %E[sf +25189] = %52. (3.5)

As a result, we conclude that

r(n Tj11—-1 r(n Tjt1—1
i Sy X —w(h)] . S S X — w (k)]
nto nif? -t 17 i
n 1/2
—a (™) Vo
= N(0,07)

as n — oo. O



Chapter 4

Adaptive MCMC Algorithm

4.1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are widely used to generate samples from
any probability distribution 7 on the state space X'. However it is generally acknowledged
that the choice of an effective transition kernel is essential to obtain reasonable results
by simulation in a limited amount of time. In practice, we can choose the transition
probabiliy P from the family where {P,},cy is a collection of Markov chain kernels with
stationary distribution m(-) on x. Then the question is how to optimize the choice of the
Markov chain’s kernel. The initial idea is to choose a “best” P,, but it has been proved
by Gilks et al[20](1998) that the optimal choice depends on the property of the target
distribution 7. So such “good” kernels are often very difficult to be well chosen (see
also Gelman et al. [19]1996; Gilks et al [55] 1996 ; Haario et al [24] 1991; Roberts et al
[40]1997). A possible solution so-called adaptive MCMC (AMCMC) has been proposed
recently. The adaptive MCMC algorithm will tune the transition kernel at each step using
the past simulations and try to “learn” the best parameter values while the chain runs.
Adaptive MCMC methods using regeneration times and other complicate constructions

have been propose by Gilks et al [20](1998), Brockwell and Kadane [10](2002). After

28
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a significant step in this direction made by Haario et al. [26](1999), lots of adaptive
algorithms were proposed, see [25](2001), [27] 2005, [23] 2006, Andrieu and Moulines
[3](2005) , Andrieu and Robert [5](2001), Roberts and Rosenthal [48], [47](2005), Atchade
and Rosenthal [6](2005), and Andieu and Achade [2](2007) for example.

4.2 Haario, Saksman and Tamminen’s Adaptive MCMC

Algorithm

A substantial amount of work has been done to validate adaptive Markov chain Monte
Carlo algorithms in the seminal paper of Haario, Saksman and Tamminen [26]. We now
explain how the algorithm works. Suppose, that at n—step we have sampled the states
Xo, X1, -+, X, 1, where Xy is the initial state. Then a candidate point Y is sampled
from the (asymptotically symmetric) proposal distribution g, (:|Xo, Xi, -+, X,—1), which
now may depend on the whole history (Xo, Xi,- -, X,,—1). The candidate point Y is

accepted with probability
a(X, 1,Y) =min{l, ——
™

in which case we set X,, =Y, and otherwise X,, = X,,_1. Observe that the chosen proba-
bility for the acceptance resembles the familiar acceptance probability of the Metropolis
algorithm. However, here the choice for the acceptance probability is not based on
symmetry (reversibility) conditions since these cannot be satisfied in our case-the corre-
sponding stochastic chain is no longer Markovian.

The proposal distribution g,(-|Xo, X1, -+, X,_1) here is the Gaussian distribution g,
with mean at the current point X,,_; and covariance C,, = C,,(Xo, X1, - -, X5_1).

The crucial thing regarding the adaption is how the covariance of the proposal distri-
bution depends on the history of the chain. In the algorithm this is solved by setting

C, = sqcov(Xo, - -+, Xn_1) + sq€ly after an initial period, where s4 is a parameter that de-
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pends only on dimension d , € > 0 is a constant that we may choose very small compared
to the size of S, I; denotes the d-dimensional identity matrix and the initial covariance
() is an arbitrary strictly positive definite matrix according to our best prior knowledge.

We select an index ng > 0 for the length of an initial period and define:

Co, n < ny;
C, =

sqcov(Xo, + + +, Xpo1) + sq€ly, n > ng.

The definition of the empirical covariance matrix determined by points zg, - - -, 7, € R%:

k
1
cov(xg, -+, xp) = E(Z vz} — (k4 1)zz)).

i=0
_ k .
where Zj, = kLH > o ®; and the elements x; € R? are considered as column vectors. So

one obtains that for n > ng + 1 the covariance C,, satisfies the recursion formula:

n—1

Chi1 = Cp+ Xy X7 — (n+ DX XT + X, XT).

s

n n

This allows one to calculate C,, without too much computational cost since the mean X,
also satisfies an obvious recursion formula.

The choice for the length of the initial segment ny > 0 is free, but the bigger it is chosen
the more slowly the effect of the adaption is felt. In a sense the size of ng reflects our trust
in the initial covariance Cy. The role of the parameter € is just to ensure that C,, will not
become singular. As a basic choice for the scaling parameter we have adopted the value
Sq = % from Gelman et al.(1996), where it was shown that in a certain sense this
choice optimizes the mixing properties of the Metropolis search in the case of Gaussian
targets and Gaussian proposals, and further optimal results proved by [42] and [44]. We
can observe that the algorithm continually adapt ¥ using the empirical distribution of
the available samples which makes the adaption tend to zero in some sense. Actually they
provide a theoretical justification for adapting the covariance matrix 3 of the Gaussian

proposal density used in a random walk Metropolis and proved the ergodicity of the

above adaptive MCMC algorithm.
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Theorem 4.1. Let 7 be the density of a target distribution supported on a bounded
measurable subset X C R?, and assume that 7 is bounded. Let € > 0 and let vy be any
wnitial distribution on X. Then the above adaptive MCMC' simulates properly the target

distribution w: for any bounded and measurable function f : X — R, the equality

1 n
li X;) = d
Jim oy D10 = [ fwntan
holds almost surely.

These convergence results of adaptive algorithms have been made more general in
[4], [3], 6], and [48]. An adaptive algorithm for the independent Metropolis sampler
was proposed by [18] and [27] extended their previous work to Metropolis-within-Gibbs
sampling. A class of quasi-perfect adaptive MCMC algorithms is introduced by [2].

Alternative approaches to adaptation within MCMC can be found in [10], [38], [21].

4.3 Ergodicity of General Adaptive MCMC (AM-

CMC) Algorithms

An important paper about the ergodicity of AMCMC was written by Roberts and Rosen-
thal [48] (2007). They present some simpler conditions, which still ensure the ergodicity
of the specified target distribution. Before describing the procedure under study, it is

necessary to introduce some notation and definitions.

4.3.1 General AMCMC

Here we will formalize the AMCMC as what Roberts and Roenthal [48](2007) did.
We let { P, },cy be a collection of Markov chain kernels on X', each of which is ¢—irreducible
and aperiodic(which it usually will be) and has 7(-) as a stationary distribution: (7P,)(z,-) =

7(-), and we call the set Y parameter space. Let I',, be Y—valued random variables which
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are updated according to specific rules. Consider a discrete time series {X,} on x as

below:
P[Xn-i-l €A|Xn:xarn:’7agn] :Pv(va)a (41)

where G, = o(Xo,- -+, Xp, Lo, -+, ;). Then we call {X,} an adaptive MCMC with

adaptive scheme I',,. Let
A" ((z,7),B) = P[X, € B|Xo=2,To=1], BeF;
and

T(z,y,n) = [|A™ ((,7),-) =7 ()]l

We call an AMCMC algorithm an independent adaptation if for all n, I',, is independent

of X,,. Obviously we have the following proposition:

Proposition 4.1. Consider an independent adaptation algorithm A™((x,7),-), where

7(+) is stationary for each P,(z,-). Then () is also stationary for A™((z,7),").

When the AMCMC is to introduce some stopping time 7, such that no adaptations
are done after time 7, i.e. such that I, = I'; whenever n > 7. This scheme, which we
refer to as finite adaptation, has been proposed by e.g. Pasarica and Gelman [39](2003).

The finite sampling schemes always have the ergordic property:

Proposition 4.2. Consider a finite AMCMC algorithm, in which each individual P, is

ergodic for w(-). Then the finite AMCMC algorithm is also ergodic for 7(-).

4.3.2 The Ergodicity of AMCMC

In Roberts and Rosenthal [48](2007), they proved the following ergodic theorem in the

uniformly convergence case:
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Theorem 4.2. Consider an adaptive MCMC' algorithm on a state space x, with adap-
tation index Y and the adaptive scheme is I',,. m(-) is stationary for each kernel P, for
v € Y. Suppose also that:

Condition (a)[Simultaneous Uniform Ergodicity] For all €, there is N = N(e) €
N such that |P)Y (z,-) — n(-)|| < € for allz € X and v € Y; and

Condition (b)[Diminishing Adaption] lim, _...D, = 0 in probability, where D,, =
sUPgex || Proy: — P, || is a Gui1-measurable random variable.

Then lim, T (x,v,n) =0 for allx € X and vy € Y.
They showed the Weak Law of Large Numbers (WLLN) under the same conditions.

Theorem 4.3. Consider an adaptive MCMC algorithm. Suppose that conditions (a) and
(b) hold. Let g : X — R be a bounded measurable function. Then for any starting values
x € X and vy € I', conditional on Xg = x and 'y = v we have:

Z?:lQ(‘Xi)

" — 7(g)

in probability as n — oo.

Regarding the non-uniformly case, they also proved the ergodicity using the similar
proof. Before we introduce the results, let us recall some definitions. According to the
definition in Roberts, Rosenthal, and Schwartz [49] (1998), we say a family {P,},cy of
Markov chain kernels is simultaneously strongly aperiodically geometrically ergodic (we
denote it by condition (c)) if thereisC € F,V : X — [1,00),6 >0, A < 1, and b < oo,
such that sup- V = v < 0o, and
(i) for each v € Y, there exists a probability measure v,(-) on C with P,(z,-) > dv,(-)
for all z € C'; and
(i1) (PyV)(z) < AV(z) + ble(z).

In Roberts and Rosenthal [48] (2007), they proved the following ergodic theorems:
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Theorem 4.4. Consider an adaptive MCMC' algorithm on a state space x, with adap-
tation index Y and the adaptive scheme is I',,. m(-) is stationary for each kernel P, for
v € Y. Suppose also that {P,}.cy is simultaneously strongly aperiodically geometrically
ergodic and the Adaptive scheme satisfies the following condition:

[Diminishing Adaption] lim, .. D, = 0 in probability, where D,, = sup,ex || Pr,., —
Pr.|| is a Guy1-measurable random variable.

Then lim, T (x,v,n) =0 for allx € X and vy € Y.

Furthermore, they also tried to relax the uniform convergence condition (a) of Theo-
rem 4.2. Actually the proof of the Theorem 4.2 shows that condition (a) was used only to

ensure PY (X _n,-) was close to 7(-). Therefore for any € > 0, define “ec convergence

'k-nN

time function” M, : X x Y — N such that
M(z,v) =inf{n > 1:||P}(z,-) —7()|| < €}.

Obviously if each individual P, is ergodic, then M(x,7) < oo. We denote that for
all € > 0, the sequence {M.(X,,,T',)}5°, is bounded in probability given Xy = z, and
'y = 7« by condition (d). That is:

Condition (d): for all § > 0, there is N € N such that P[M.(X,,I',) < N|X, =

Ty, Lo =] <1—=4 for all n € N.

Theorem 4.5. Consider an adaptive MCMC' algorithm with Diminishing Adaption (i.e.,
limy, o0 SUPex || P,y (@, -) — Pr,, (2, )|l = 0 in probability). Letx, € X and~,. € Y. Then

limy, oo T(Z, ¥4, 1) = 0 provided condition (d) holds.



Chapter 5

Recurrent And Ergodic Properties
of AMCMC

5.1 Introduction

In Roberts and Rosenthal [48] 2007, they not only present some ergodicity results under
more general conditions but also mentioned some research directions. We will continue
to study the ergodicity of AMCMC along these directions, try to find some weaker
conditions to ensure the ergodicity and discuss the relationship between the recurrence
on the product space (of the state space and the parameter space) and the ergodicity.

The chapter is organized as follows. Section 5.2 we will present our main results: the
ergodic theorem of AMCMC under the weakest drift conditions such that each kernel
is positive recurrence. Further we will discuss the uniformly recurrent conditions in the
same section after constructing some simple examples to show that usually AMCMC
does not have good recurrence property. In section 5.3 we will give the proof of the
ergodic theorem. In section 5.4, we consider the recurrent property on the product space
of the state space and the parameter one. We will give the negative answer to the Open

Problem 21 in Roberts and Rosenthal [48](2005) using a counter example, and present

35
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some positive results under stronger conditions. Finally we will construct two examples

to discuss the convergence rate of AMCMC.

5.2 The Ergodicity Under Minimal Uniformly Re-
current Conditions

Consider Theorem 4.2, Roberts and Rosenthal proved the ergodicity with simultaneously
geometrically ergodic condition. However we note that Theorem 2.5 part (iv) indicates
that to merely prove convergence (as opposed to geometric convergence), it suffices to

have an even weaker drift condition of the form
PV(z) <V(x)—1+ ble.

So perhaps it suffices for the validity of adaptive MCMC algorithms that such drift
conditions hold uniformly for all P,. Unfortunately, the available results appears not
to provide any explicit quantitative bounds on convergence. However if the parameter
space is compact in some sense, we can prove the ergodicity with the minimal uniformly
recurrent conditions.

First let us think about how to measure the difference between two elements v; and s
in the parameter space ). Actually what we need to describe is the difference between
the respective kernels P,, and P,,, i.e. sup,cy || Py, (z,-) — Py,(x,-)||. Therefore we will

define the metric d(y1,72) on Y C R? as:

d(71772) = SUE Hp'n(xv ) - P’YQ(*Ta )H
FAS

We suppose there exists a transition kernel P, corresponding to each v € R?, and consider

the following set:
A={ye R PV <V -1+blc}.

Now we can state our main result.
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Theorem 5.1. (Ergodicity Theorem) Consider an adaptive MCMC' algorithm with
Diminishing Adaption, such that there is C € F, V : X — [1,00) such that 7(V) < oo,
0 >0, and b < oo, with sup-V =v < o0, and:

Condition (e):

(1) for each v € Y, there exists a probability measure v, (-) on C with Py(x,-) > v,(-)
for all x € C; and

(1))P,V <V — 1+ bl¢ for each vy;

Condition (f):

(7ii) the set A is compact w.r.t the metric d.

Suppose further that the sequence {V(X,)}5, is bounded in probability, given Xy = x,

and Ty = v4. Then lim, o, T(zy, V%, n) = 0.

5.2.1 The Uniform Minimal Drift Condition

Intuitively, we hope the AMCMC is recurrent whenever each kernel is positive recur-
rent with respect to the target distribution 7. However following the example be-
low, we get the negative conclusion. Consider the following adaptive MCMC: suppose

the state space X = {1,2}, the parameter space J = N x {1,2} with each kernel

11 11

P, = 2" 2" and P,o = 2 2" , and the stationary dis-

1 1
o o T

tribution 7(1) = 7(2) = 3. We design an adaptive algorithm as:

(n,1) ,if X,=1;
r, =

(n,2) ,if X, =2.
Lemma 5.1. The above adaptive MCMC is NOT recurrent, although each kernel is
positive recurrent with respect to the distribution 7(-). Actually we have Ea[ns] < oo,
which means that the chain will NOT come back to {2} after a long run when it starts
from {2}. Therefore lim, o, P(X, = 2|Xy =14) =0 fori =1, 2, which is not equal to

m(2).
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Proof. Suppose 7o = > 7,

have:

Consider the functional series Sy, () = Y™ _n@n m(m—1)---
- 2

then we have:

Therefore we have:

D

1< <t <ip <00

IN

>

1< <t <ip <00

2.

1<41 <ig+-<in <00

IN

38

I{X, = 2}. Then according to the adaptive algorithm, we

I (—5) 0 1
e, (1— .) i=19i;
L1

i=19i;

1

—pn—.
2 j=1Y%

(m—n+1)z™for0 < z < 1,

:L‘n[ Z Jim](n)
m:n(n+1)
2
xn(n2+l)
n (n)
" I —
. (M)l nntl) —
x ZC’ n(n+1) i)!x = 4l —x)
n(n+1)
n(n+1) ( )
5 Oz n— z —1)" !
P (:v+1_x)”( (n2+ >)”(n')
1 nnty 5 (n+1)
— < (= “yn
m < (0" Oy (D)
.oty 5 (n+1)
= [y ) L))
(n+1)
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any n > N we have (%)@ X (g) % (”(”;1)) < % S0
Exlp) = > P =n)n

n=1
N 0o 1

< ] —
Zz + Z 1 X [2]
=1 i=N+1

< Q.

Therefore the set {2} is a transient set. Furthermore following that "2 | Py(ns = n)n <

00, we know that lim,,_,., P(n2 = n) = 0, which is NOT equal to 7(2). O

In the above example, we can ascribe the transience of the AMCMC to increasing of
probability to {2} as n — oo. Therefore we need the “uniform” recurrence property with
respect to the parameter . Following the theorem 11.0.1 in Meyn and Tweedie [37], we
know that an irreducible Markov chain is positive recurrent if and only if there exists
some petite set C' and some extend valued, non-negative test function V', which is finite

for at least one state in the state space X, satisfying:
PV(z) <V(zx)—1+blc(z), z€X.
Therefore we will suppose all the v € ) satisty:

PV(z) <V(x)—1+4+0bc(x), ze€iX.

5.3 The Proof of Ergodicity Theorem

Before we prove the theorem 5.1, let us think about the following lemma:

Lemma 5.2. Consider an adaptive MCMC' algorithm with Diminishing Adaptation, with
a reqular stationary measure © and an accessible atom o € F such that P,(z, B) = v,(B)
for any x € a and B € B(X), where v,(-) is a regular probability measure, let measurable
function W : X — [0,00) , 0 < K < 00,

(1) EoylTo]l < K and E, [1,] < W(2) for any x € o and vy € ).



CHAPTER 5. RECURRENT AND ERGODIC PROPERTIES OF AMCMC 40

(ii) The parameter space Y is a closed complete subset w.r.t the metric d of the set A.
Suppose further that the sequence {W(X,,)}22, is bounded in probability, given Xy = x,

and 'y = ~,. Then we have:

lim T'(z.,ys,n) = 0.

n—oo

5.3.1 The Proof Of Theorem 5.1

Suppose we have the lemma 5.2 hold. Let us recall what the splitting chain is. Actually
outside C' the chain {X} behaves just like {X?}, moving on the “top” half X; of the
split space. Each time it arrives in C, it is “split”; with probability 1 —¢ it remain in C,
with probability ¢ it drops to Cy, and C is the atom of the splitting chain, set C; = a.

We can prove Theorem 5.1 as below.

Proof. Consider the splitting chain {XZ }, we know that the subset a = C; € X is an
accessible atom of any chain {X}.

Step 1: Prove that there exists K > 0 such that
Eoy(1a) < K
Step 2: Prove that there exists a measurable function W : X — [0, 00) such that:
By iy (Ta) < W(2);

Step 3: Check the regularity of v, and .

Suppose 7‘1&?(3) is the m—th hitting time of B from A and with the kernel P,. Consider
the random variable 7, (), then 7,,(a) = 7,,(C) + %g:l)(é)with probability (1 —
6)k=15. If we denote the random variable 7' = the number of {n < #,.(a)|X, € C},

where C' = Cy, U C, we have:

Ear(Ta) = E[E(Tay(a)|[T)]

= Blas(O) + 15 By (70)
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and we also know that for any x € C,y € Y E[#,,(C)] = E.,(7¢) < V(2)+b < v+b = K.
Therefore E, ., (7,) < K + 52K = £,
Similarly for any = ¢ «, we know that 7, (o) = 7,(C) + %ék;l)(cv')with probability (1 —

§)*¥=1§. Therefore we have:

Ery(7a) = ElE(Tey(a)[T)]

and we also have for any z,y € Y, E[7,,(C)] = E,~(7¢) < V(z) + b = W(z). Since
V(X,) is bounded in probability, W (X,) is also bounded in probability.
Finally since [, V(y)v,(dy) < v and 7(V) < oo,the probability measures v, and 7 are

both regular. Then we can prove the theorem 5.1 following the lemma 5.2. [

5.3.2 The Proof Of Lemma 5.2

Following the last section, it suffices to prove the lemma 5.2. For any initial value z € X
and measurable function |f| < 1, denote: a,.,(n) = P,,(7, = n), that is the first
hitting time of « is n when the kernel is P, and the start value is x; similarly denote

uy(n) = (Py)a(®, € o) and define:

o) = [ Pa.ds) () = (B)alf(@)1{rusn )]

Then following the first-entrance last-exit decomposition we have:

—

n—1 j
n n k n—j
P}(z,B) =4 P} (x,B) + o Pl (z,0) PP~ (a, )] P17 (v, B),

1 k:l

<.
Il

where aPﬁ_j (cv, B) is the taboo probability given by

OCP?_j(a, B)=P,(X,_; € B,7, >n—jl X, € a)
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Therefore for any z € X and f, we have:

/PW”(JB, dw) f(w) = /OCP;](QZ, dw) f(w) + gy * Uy * tpa(0),

then we will get:

| By [f(Pn)] = Ex[f(Pu)]] < Euy[f(Pn)[{Tazn}]
+ |agy *uy —m(a)| xtyq(n)
+ mlo) 3 110
<

2 (@n H{Ta>n}+2\zax u(g —1) = mw(a)ta(n = j)

+ () Z tyy(5)

j=n+1

n J

e[ (Pn){Tazn}] +ZZ%| u(g = 1) = m(a)ltr(n = j)

+ m(@) Y b))

j=n+1

IN

n J

Epo[f(®n){raza}] + DY au(@)u(j — i) = m(@)[ts(n = j)

=1 i=1

b @Y Y wlitm—i) @) Yt

7j=11i=35+1 Jj=n+1

IN

Now we can denote the first term as I, the second as I, the third as 11 and the fourth

term as I'V. And we have the following estimations.

The Estimation Of I and III

Lemma 5.3. [ < @
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Proof.

I < Eﬂﬁﬂ[lmzn]

= Px,v(Ta >n)
S EEC,W(TOé)
n
. W)
n

Lemma 5.4. Let a, = = >0 | 1, then I1T < 2a, KW (z) for any x € X.

Proof.
I < Po(Ta 2 §)Pa(Ta > 1 — )
j=1
~ j n—j
Ry |
= KW(x)— -
n i
= 2Ka,W(z)

And we know that lim,,_, a,, = 0.

The Estimation Of Term IV

Following the structure of stationary distribution 7, we know that

> 1

Py (1h>j) = — =M,
2 Foa(7a > ) (@)
7j=1

so for any € > o, there exists N,, such that for any n, > N,:

Tly
ZPaﬁ(Ta) > M —¢

Jj=1

We define n(y) = inf{n: 377 P.,(7a > j) > M — €}, and prove that:

43
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Lemma 5.5. For any fized vy, there exists § > 0 such that for any d(v,7) < 0, we have

ne(7y) = ne(0)-
. Ny —1 .
Proof. Denote 1y = ZJ V Poaro(Ta > j)—(M—€)and gy = M —e—=3".7%  Panro(ma > 7).

J=1

Set 0 = % then consider two Markov chain {X;} with kernel P,, and {X;}

with kernel P,, such that d(vo,71) < d. Then

/

Po(X; # X;| X1 = X, 1) = E(P(Xi # X[ Xis1 = X;_ 1, Xim1 =)

< E(P(X; # Xi|Xin = Xi =)
= E(Py(y:-) = Py, )l)
< E(d(0,m))
< 0
The third equation P(X; # X;|Xi-1 = X;_; = y) = | Py (y,*) — Py, (y, )| is following the

Proposition 3(g) in [46]. Then we have

!/

Px<XZ 7& X7f7 Xi—l = Xi—l

/ /

) = Po(X; # X;|Xim1 = X;_)P(Xiy = X;_) <6

With the same start value x € «, then we have:

’

P(X; # X;|Xo =Xy =12) = Pu(Xi# X, Xio1 £ X;_y) + Po(X, # X;, Xim = X))

IN

Po(Xin # X, 1) +0

!

Po(Xio1 # X£_1, Xio # X;_Q) + Po(Xio1 # Xé_l, Xio=X, ,)+6

IN

IN

Py(Xig # X, 5) +26

IN

IN

i0.

Therefore:

nyg (€) g (€)

Yo PAXi# X)) < Y6 < min{n, ).
=1

=1

So we still have n.(v) = n.(). O
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Lemma 5.6. For any € > 0, there exits N > 0 which is independent with v, such that

[e.9]

for any n > N, we have: 377

P, (14 >7) <e.

Proof. Suppose there exists € > 0 and a sequence {7} such that n.(y;) — oo. Following
the compactness of the parameter space ), there exists {7y, } — 7, i.e. |7, — Y| — 0,
and 79 € A. Now let k; — oo, we will get > Pyoo(7a > j) < M — ¢ which is
conflicting with that: for any v € A, we have > °, P, (7o > j) = M. So for any
€ > 0, there exits N > 0 which is independent with ~, such that for any n > N, we have:

2 jenit Pan(a > j) <€ 0

Lemma 5.7. For any € > 0, there exits N > 0 which is independent with -, such that

for any n > N, we have: IV < e.

Proof. Since

v

IA

(@) > t40)

j=n+1

= 71'(04) Z EOA,’Y[lTaZj]

j=n+1

= 7T<O‘) Z Pa,7(7a>j)7

Jj=n+1

following lemma 5.6, we know that for any € > 0, there exits N > 0 which is independent
with 7, such that for any n > N, we have: }>°° .| Py, (74 > j) < 7oy That is IV <€

for any n > N. O]

The Estimation On Term II

Lemma 5.8. For any € > 0, there exists N > 0 which is independent with v such that

IT < eW(x).
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I < Ztlvn ]Zam |UvJ—@? ()l

]

< Ztm(n - ])[Z . (1)i] Z u(j — i)i— m(a)|
< D tualn = DEanf) 3 1) = o)

|ur(§ — i) = 7(a)]
< Ztlfy n—j Z 7 . .
Lemma 5.9. > .7, |u, (i) — 7r(a)| < oo for each 7.

Proof. Since supg V(x) = v and v, is probability measure on o, [, V(2)v,(dz) < co and
(V) < o0, following Theorem 11.3.12 of Meyn and Tweedie [37], we know that v, and
7(+) are both regular measure. Then following Theorem 13.4.5 in Meyn and Tweedie’s

book, we know that:

> vy Py — 7| < oo
n=1
Therefore we have > > | || P (a, ) — m(a)|| < o0. O

Lemma 5.10. lim,, oo Y7 t14(n — j) I i G=0=m(] — 0 for any v € V.

7

Proof. Let s;(y) = f 1 Ww, following bounded convergence theorem and lemma

5.9, we have s;(7) —j o 0. Similarly following > ¢, ,(j) = E,a(7a) < v < 00, we

have limn_mz Lty (n—7) i . Ww —0. 0

Lemma 5.11. For any € > 0 there exists N which is independent with v, such that for

any n > N, we have Zj ) J |uw(j*ii)fﬂ'(a)| <.

Proof. Suppose there exist € > 0, and strictly increasing {n;}:2, and 7,, € Y such that

> iyt (= J) 7 [, UZD7T@L ¢ Then there exists Yo such that v, — 7.

(2

Therefore we have:

Sty 30 el =@l



CHAPTER 5. RECURRENT AND ERGODIC PROPERTIES OF AMCMC 47

Contradiction. So lim,, . Z?Zl t14(n—7) 5:1 M =0. ]

From all above estimations of I, I, IIT and IV, we have the following lemma:

Lemma 5.12. For any ¢ > 0, there exists N > 0 which is independent with the choice

of v, such that for any n > N, we have:

Wiz)

w :
T (x)+ €

127 () =) <

The Proof Of Lemma 5.2

Proof. Let Mc(z,v) = inf{n > 1 : ||P}(z,-) — 7(:)|| < €}. Then following the theorem
13 in Roberts and Rosenthal [48] (2007), it suffices to prove that {M.(X,,T,)}>2, is
bounded in probability given Xy = z, and Iy = 7, i.e. for all 6 > 0, there is N € N

such that:
PM(X,,T,) < N|Xo=2,,Tog=7]>1-0.

Since for any € > 0, there exists N > 0 which is independent with the choice of v, such

that for any n > N, we have:

1P} () =7 () < eW(x) +e

and W (X,,) is bounded in probability, we have the conclusion hold. ]

5.4 Recurrence On The Product Space A x )

The adaptive MCMC induces sample paths on the product space X x Y. We will study
the recurrent property on the product space in this section. When each kernel P, has
good ergodic property and the random variable sequence (X,,,I',) is also recurrent on
the X x Y, we hope to get the ergodicity of AMCMC. But following the computation in

section 5.4.1, we get the negative answer. Fortunately Roberts and Rosenthal’s paper [14]
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(2007) offered us a proper condition—“Diminishing Adaptation conditions” and showed
some positive results, however they mentioned an open problem as well. We will state
the open problem in section 5.4.3 and give a counter-example to the open problem 21
in Roberts and Rosenthal’s paper [14] (2007) in section 5.4.3. Finally we present some
positive results about the relationship between ergoidicity and recurrence on the space

X x ).

5.4.1 Recurrence On The Product Space Is NOT Sufficient For
Ergodicity

Even we take finite kernels with good ergodic property(uniformly ergodic) so that we
can make the adaptive MCMC recurrent, we still can not guarantee the AMCMC is
ergodic with respect to the target distribution 7. A good counter example is one-two
version running example which was presented in Roberts and Rosenthal(2005) [14] and
simulated in the related Java applet. The example was also discussed in Atchade and
Rosenthal (2005) [17]. Here we will consider the AMCMC algorithm as a general Markov
chain on the product space X x ). We will give the explicit form of the transition matrix
on the product space, and analysis the recurrent and ergodic property of such a Markov
chain on the product space X x V.

Let X = {1,2,3,4}, m(2) = b > 0 be very small, and (1) = a and 7(2) = 7(3) =
1%“’” > 0. Let Y = {1,2}. For v € Y, let P, be the kernel corresponding to a random-

walk Metropolis algorithm for 7(-), with proposal distribution:
Q+(z,) =Uniform{z —v,e —v+1,- -z —lLx+1l,x+2, -, x+7}

i.e.uniform on all the integers within « of z, aside from « itself. The kernel P, then

proceeds, given X,, and I',,, by first choosing a proposal state Y, 11 ~ Qr, (X,, ). With

T(Ynt1)
m(Xn)

probability min([1, ] it then accepts this proposal by setting X,, 11 = Y,,11. Other-

T(Ynt1)

s ) |, it rejects this proposal by setting X1 = X,.

wise, with probability 1 — min[1,
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(If Y41 ¢ X, then the proposal is always rejected; this corresponds to setting 7(y) = 0
for y ¢ X.). We define the adaptive scheme such that I',, = 2 if the previous proposal
was accepted, otherwise I',, = 1 if the previous proposal was rejected.

We can compute the kernels induced by the proposals Q;, i = 1,2:

2a—b b
2a 2a 0 0
1 1
3 0 3 0
P =
0 b 1 b 1
l—a—b 2 l—a—b 2
1 1
0 0 3 3
3 b b 1
4 4a 4a 4 0
1 1 1 1
4 4 4 4
P, =
a b 3 _ a+b 1
2(0—a—b) 2(1—a—b) 4  2(1—a—b) 4
0 b 1 3_ b
2(1—a—b) 4 17 2(1—a—b)

In the above AMCMC, we can observe that the distribution of I',, given X, and 'y
does NOT depend on the value of {X;|0 < i < n — 1}, therefore we call this kind of
Markovian AMCMC. The n—th transition kernel @,y induced by Markovian adaptive

algorithm is as below:

QU ((x,7), Ax B) = / /B P (dyle.y.7) P, (z, dy).

Then in the one-two running example, if given the value of X,,_; = z, X,, = y and

I'h,—1 =, then I, is a measurable function of x,y and . We have:

Co(z,y,7) = 6(z = y) +26(x # y).

So we can compute the n — th transition kernel on (X x )):

QU(z,7),y xm) = // n(dyilx, y,v) Py (x, dy)

= y)o(x =y)d(y = 1) + Py(z,y)o(x # y)o(n = 2).
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Since the transition kernel is independent of n, the one-two version running example

presents a general Markov Chain with transition kernle () as:

2a—b b

L o o 2 0 0 0 0

3 b b 1
1T o 0 0 1 0 1 0 0
0 0 0 0 : 0 0
0 3 : 0 0 3 0 3
“- 0 0 0 b i_ 0 0 0 1
1—a—b 2 l1—a—b 2
a b 3 a+b 1
0 2(1—a—b) 0 2(1—a—b) 4 2(1:;4)) 0 0 4
0 0 0 0 0 % % 0

b 1 3 b

0 0 0 2(1—a—b) 0 4 4 2(1—a-b) 0

0.445.

And we have the following lemma:

Lemma 5.13. The above one-two version running example is recurrent, but for any

starting value (T.,7.), and A € B{X'}, we have:

lim P(x*,,y*)(Xn € A) 7& 7T(A)

Proof. Let us calculate the eigenvalues of the above transition matrix, we have: A\; =
1; Ao = 0.95445494; A3 = 0.12887658 + 0.46708617¢; Ay = 0.12887658 — 0.46708611;
A5 = —0.25615654; \¢ = 0.03778642 + 0.1057364%; \; = 0.03778642 — 0.10573644; \g =
—0.09286036. Then compute the eigenvector of Q7 with respect to the eigenvalue \g = 1,
it is

(—0.48637045, —0.03354279, —0.00867102, —0.03468408,

—0.49208038, —0.36554543, —0.51525761, —0.34609757)

i.e the stationary distribution 7 is: 7(1,1) = 0.213110130, 7(1,2) = 0.014697250,

7(2,1)0.003799331, 7(2,2) = 0.015197323, 7(3,1) = 0.215612017, 7(3,2) = 0.160168927,
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7(4,1) = 0.225767451, 7(4,2) = 0.151647571. Therefore for any start value (x,,v.), we

have:
lim P(x*’%)(Xn = 1) = lim P(x*ﬁ*)(Xn =1I, = 1) + P(x*’,y*)(Xn =1,I, = 1)
= 0.21311 + 0.014697 = 0.227807.
similarly

lim Py, 1) (X, =2) = 0.003799 + 0.015197 = 0.018996,

n—oo

lim Py, .. (X, =3) = 0.215612 + 0.160168 = 0.37578,

n—oo

lim Py, .. (X, =4) = 0.225767 + 0.151647 = 0.377414.

n—oo

Therefore for any 1 < 14,7 < 4, we have:
Ei[n;] = oo

because P;(n; = oo) = 1. But we can observe that P, ,.)(X, € A) —,_ 7 (A) which

is the marginal distribution of %, however 7 (-) # m(-). O

5.4.2 {M.(X,,T,)}>, is bounded in probability is NOT Neces-
sary For Ergodicity
Consider theorem 4.5, we are wondering whether { M (X,,, ') }22, is bounded in probabil-

ity is necessary and sufficient under diminishing adaption condition or not. Unfortunately

it is not a necessary condition of the ergodicity. That is:

Theorem 5.2. Under Diminishing Adaption condition, {M.(X,,',)}5, is bounded in

probability is NOT a necessary condition of the ergodicity, although it is sufficient.
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Proof. Consider the state space X = [0,1], m(-) = Unif[0, 1] ,the parameter space Y =
{k € Z|k > 2} and proposal distribution Qy(z,-) ~ Uniform[z — £,z + £]. Denote P, is
the transition kernel induced by Metropolis-Hasting algorithm with proposal distribution
Qy. Obviously Py is uniformly ergodic. Note that if the proposal is not in [0, 1], then the

proposal is always rejected. Since for any fixed € > 0, we can prove that:

inf{n > 1: |Pp(a,) - 7()]| < e}

v

inf{n > 1:|[F(z,{z}) —7({z})]| <€}
> inf{n>1: P(z,{z}) <€}

= iz -ming T el < 0

1
= inf{nZl:[l—E]”ge}

Suppose ax = inf{n >1:[1 — 1]" < €}, then we have:

1
lim M(z, E) = klim inf{n >1:||P(z,:) —7(")|| < €}

k—o0

> lim a

k—o0

= 00.
Next we can construct the adaptive scheme, let
. , 1
re = inf{r: |[Pi(z, ) = 7()[ < 1

and s, = Zle r;. Then consider the independent adaptive scheme, we will use the kernel
Py, from the s;_1—step to (s — 1)—step. Obviously, as k — oo, such an adaptive MCMC

satisfies the Diminishing Adaption property. Following that

1
Qi [P (2, o) = w()]| < lim - =0,

k—o0

we can prove the ergodicity. However for any x € X', we have

lim M (z, k) = o0,

k—o0

which is NOT bounded in probability. O
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5.4.3 The Open Problem 21 In Roberts And Rosenthal [48]

Following theorem 6.2, it is possible to find out weaker conditions to ensure the ergodic-
ity. We can observe that in the theorem 4.5 the adaptive chain pair (X,,,T',) has good
“fast convergence” property in probability. If we denote:

Condition (d;): for all € > 0, there is m € N such that P[M.(X,,[',) < m i.0.|X, =
s, [p =] =1

Then we can state the following open problem.

Open Problem 21. Consider an adaptive MCMC algorithm with Diminishing Adap-
tation. Let z, € X and 7, € Y. Does condition (d;) imply that lim,, ., T'(x, v«,n) = 07
The problem seems reasonable, however the following example gives us the negative an-
swer.

Consider X = R mod Z i.e. the state space is the real number mod the integers. De-
fine Y = N U X, and suppose Zj . are random variable with distribution Uniform[z —

#,x + Qk%] for any (z,7) € X x Y. When k € N, we define:

Pz, A) = Q—ip(zk,x €A+ (1— Qik)ax(A).

When y € X, suppose 7(-) is the Lebesgue measure on X.

we define:

2m(A) + 30,(A) if £ y;
P,(z,A) =

2Uniform[0, 3] + 300(A) ,ifz =y.

Lemma 5.14. For each k € N, Py, s stationary with respect to 7.
Proof. 1t is suffice to prove that for any interval A = [a,b] C [0, 1] we have:
/ Py(z, A)r(dz) = n(A).
X

Case 1:[b—a| > 5
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1 ! 1
/Pk(x,A)w(dx) - o x/ P(Zes € Az + (1= J)m(4)
X 0
1 . at+oprT 1 3 b+ﬁ 1
= ?x[2/ 1 [m+ﬁ—a]dx+2/b 1 [—af—i-ﬁ—i—b]d:c
07 gk+T T okFT
1 1
+ (b—a-— Q_k)] +(1 ?)w(A)
1 o 1 1
= 5 [zkﬂ/ bt + (b a— o)) + (1 = 5o)m(A)
0
= b—-a
Similarly we can prove Case 2:|b — a| < 5. O

Lemma 5.15. For each y € X, P, is stationary with respect to .

Proof.

/X P,(z, A)r(dz) = / ) [%w(AH%MA)]”(d@

Define the independent random variable I,, as below:
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And independent random variable Y;, as below: Yy =Y; = 1 and

(

n+ 1 with probability %,

n+2 with probability 1,

2n with probability +.
\

Define the adaptive scheme as:

Y, ,ifl,=1;
r, =
X, ,if I, =0.

Lemma 5.16. Such an adaptive scheme satisfies the diminishing condition.

Proof. Actually Py, (z,A) = 137" Pz, A), so

n 1=n+1

‘PFTL+1 (.:U, A) - Prn <x7 A)‘

< |Py,,,(x,A) — Py, (x,A)|+ P(I,=0or I,4; =0)
1 2n+2 1 2n 1 1
< -Pz 7A__ -PZ JA =
- |n+1;Z (z,4) nz < )|+\/ﬁ+ n+1
i=n-+2 i=n-+1

S R P ) ¢ Py ) — P )

N i\ Ly n x, n xZ, - —In x,
- n(n+1)i:n+2 n+1 > n41 " n "
o

vn n+1
< 1+3+ 1 N 1
—n on Jn o Vn+l

— 0asn— oo.
O
Lemma 5.17. Given z, =0 and v, = 0. Then for any € > 0, there is m € N such that:

P[(Xn,Ty) € Zne ic0. | X, =0,Tg=0] =1.
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Proof. We know Py is uniformly ergordic with respect to m(-), so for any € > 0 there

exists m such that:

1750, ) =7 ()] <e. (5.1)
If we suppose
S 1 W.p.%,
0 w.p %

Then we can consider P,(z, A) as the following: if J = 0, the chain will move to 0,
otherwise select one point on the interval [0, 2] with uniform distribution.

And we have:
P[Xn+1 = O,Pn+1 =0 IO] 2 P[In = 07In+1 =0andJ =0 IO]

Since D oo P(Iy = 0,151 = 0,J =0) = > .2, %ﬁ = o0o. Following The Borel-

Cantelli Lemma in [50] we have:
P[[Zn = 07[2n+1 =0andJ =0 10] =1.

Therefore P[(X,,I',) = (0,0) i.o.] = 1. Following (5.1) we know that

1 > Pl(XpTh) € Zme i0. | X, =0,T, =0 (5.2)
> P[(X,,T,) = (0,0) i0. |X,=0,T,=0]=1. (5.3)
O

Lemma 5.18. Suppose {a;}2, is a decreasing positive sequence such that 0 < a; < 1,
and if Y .2, a; < 0o, then
lim (1—a;)=1. (5.4)

N—oo
i=N
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Proof. When 0 < a; < 1, we have:

Therefore
1 > lim (1—a;)
N—00 -
z:lgloo
> lim e ~=n~(7o)
N—oo
= 1.

Lemma 5.19. Given X, =0 and I', =0, we do NOT have lim,, ., T(x,,v:,n) = 0.

Proof. Suppose lim,, o, T(x4, 7., n) = 0, that is for any € > 0, there exists N; such that
for any n > N and A € B(X),

IP[X, € A|X. =0,T. = 0] — 7(A)| < . (5.5)

According to the above adaptive scheme, if I';, € [0, 1], then I';, must be equal to X,
in other words the case of kernel P,(z,-) but y # x will NOT happen in this adaptive
Markov Chain. So if X,, € [0, 2], there are four cases maybe happen at X,

Case 1: X, ;1 = X,;;

Case 2: X, ;1 =0;

Case 3: X, 11 = Z,, n;

Case 4: X,,11 ~ Uniform[0,3].

Only in the case 3, X,4+; maybe jump out of [0,3], so P(X,41 € [0,3]|X,, € [0,3]) >

1-— % Since this is a Markovian adaptive MCMC,

3 3
P(Xusa € 0. )1, € 0.5)
3 3 3 3
> P(Xasz € 0, 51Xom € 0. JDP(Xon € 0.511X0 € 0.5)

1 1

> (1- )01 - 5m)
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Similarly for any m > 0, we have:

n+m—1
3

P(Xum € 0,21Xe0.5) > [] (- 5). (56)

=n

Following lemma 5.18 we select Ny > 0 such that J[°y (1 —5) > 1 — § Let N =

max{Ny, N2}, then following (5.3) there exist K large enough such that:

3
Z+2€

P[AN < n < N*¥ such that (X,,T,) = (0,0)] > 1

—, (5.7)
2
whenever (X,,,I',) = (0,0), then X,,+1 must be in [0, 2], so following (5.6) we have:

3
=

3
= P(Xyxi €0, 1]|3N <n< NFEst X, €0

,ZD PN <n < N¥ st. X, € [0, 2])

H(1 - i) -P[AN <n < N¥ sit. (X1, T,-1) = (0,0)]

21
=N

Vv

v

Which is conflicting with (5.5). O

5.4.4 Strengthen The Diminishing Adaption Condition

Following the counterexample in the section 5.4.3, we know that the Diminishing Adap-
tion condition and the recurrence property to the “good convergence” set are not suffi-
cient to get the ergodicity of the AMCMC. Therefore we can strengthen the Diminishing
Adaption condition such that it can match with the recurrence condition, so that we can
use the coupling methods to prove the ergodicity.

For any m € N and € > 0, we can define the i—th hitting time ngf)y(m, €) as below:

70 (m, €) = min{n > ngf;l)(m, €)|M(X,,,T) <m given Xg =z, =7},
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and the hitting number within n step

cvf(n) = the number of {0 < j < n|M(X;,T;) <m given Xy =,y =~}

x7’y
Furthermore we can define:
et

5(1) (m7€) = Z Dj7

x"y

m7E)

=i (m.e)+1

and denote

Condition (dy): Suppose that for all € > 0, there is m € N such that P[M.(X,,,T},) <
m i.0.|Xg = 2., g =) =1 and sg(f)q,(m, €) —i—oo 0 in probability.

Then we have the following theorem:

Theorem 5.3. Consider an adaptive MCMC' algorithm | let x, € X and v, € Y. Then
conditon (dy) implies lim,_,oo T(Z+, V4, 1) = 0.

Proof. For any € > 0, there is m € N such that

PIM.(X,,T',) <mio|Xg=z.,To=7 = 1,

and there exists N; > 0 such that for any n > N; we have:

n+m
P[Z sg(;)v(m,e) > e} < e
j=n
Following P[M.(X,,T',) < m i.0.|Xo = x,,[y = 7] = 1, we know that there is N > 0

such that

PlcT(N) > N1+ m] > 1—ce. (5.8)

177

Consider any n > N, the above formula indicates that:

P[3k > N; +m such that 7'52 (m,e) <n < ngf“,y“)(m, €] >1—e

We set [ = ngfiy_m) (m, €). we can construct a second chain {X;}?_, such that X, = X; and
X; ~ Pr(X;_1,-) for I <i < mn. If we denote the event £ = {31, P(X; # X;) < €},

then from (5.8) we have:

PE]>1—e.
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On the other hand we have:

1P (X0 ) = 7Ol < 1P ™ (Xo, ) = 7() < e
We can construct Z ~ m(-), then

1P(Xn € [ Xo = 2,T0 =7) —7(-)]

< P(X,#Z|Xo=zTo=7)

< P(X,# X E|Xog=2Ty=7)+P(X, # Z E|Xy=12,Ty=7)+ P(E|X, = 2,Ty = 7)

< 3e

ie. T(z,v,n) < 3e. O
Following the Theorem 5.3, we can get the following corollary easily.

Corollary 5.1. Consider an adaptive MCMC' algorithm such that Y .o, D; < oo in
probability. Let x, € X and v, € Y. Suppose that for all € > 0, there is m € N such that
PM(X,,T,) <m i.0|Xo=x.To=] =1 Thenlim, .o T (2., v, n)=0.

Proof. Since Y ;° | D; < oo in probability, we know that sg’)v(m, €) =i 0 in probability.

Therefore following the Theorem 5.3, we have the conclusion. O

5.5 The Convergence Rate Of AMCMC

5.5.1 Discussion On The Convergence Rate Of Finite AMCMC

Let us start our discussion with some special adaptive scheme- finite AMCMC algorithm.
Following proposition 4.2, we know that the finite AMCMC algorithm is ergodic for the
target distribution (-). Intuitively if each kernel P, is geometrically ergodic, we hope
the finite AMCMC is also geometrically ergodic, i.e. there is p < 1 and K(z,7) < o0
such that T'(x,v,n) < K(x,v)p" for all n € N. However we have the following negative

theorem:
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Theorem 5.4. There exists a finite adaptive scheme where each P, is geometrically
ergodic with respect to 7(+), but where the finite adaptive scheme fails to be geometrically

ergodic.

Proof. Let x = R with n(-) = N(0,1). Let ) = (0,00), and for v € Y let P, be a
Metropolis algorithm with proposal distribution Q(z,) = N(z,7?). Then each such P,
is geometrically ergodic (See e.g. Roberts and Tweedie [41],1996). On the other hand,
consider an adaptive scheme such that I'y = 1 and 7 is the first time a proposal is
accepted, and I',,.; = 20", for n < 7, with I',,,; = I['; for n > 7. Now we suppose that

there exist M (z,v) < oo and v € (0,1) such that:
|P(X, € Al Xg=2,Tg=7)—n(A)|] < M(z,v)p", (5.9)

for each A € B(x) and n € N. Consider Xy =0, ' =1 and A = R\ {0}. Then we

have:
1—P(X, € AXy=0,Tg=1) < M(0,0)p". (5.10)

Now we denote P (X, € A) = P(X,, € A|X, = 0,I'y = 1), and we can write it in

following form:

Poi(X,€A) = Y Pu(X, €A =) (5.11)
j=1

= Y PuX,€AT=)) (5.12)
j<n

= ZPOJ(TZJ')' (513)
i<n

Equation (5.12) follows that if 7 > n, which means X, is still zero, X,, is not in A; and
equation (5.13) follows that if 7 < n, X,, € A with probability 1. So (5.10) can be written

as:

Poa(r=2n+1) < M(0,1)p". (5.14)
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Suppose Y; denote the random variable generated by the n-th proposal distribution, and

we find that when 7 > n + 1, the first n Y; are independent, so we have:

Poi(r=2n+1) = E(Py(r>n+1Yy,--,Y,))

— H?:D/X(l —exp{—%"2 JAL{Y:}

(1 -~ [ en(-5 ) e(—5 5
= _ — - ex ———  €X — -
=0 \/%21 ¥ p 9 p 2‘22Z Yy
1 2 1 Y2
= IILy(1— ——= V21— ; /exp{——i }dy)
0 \/27T2Z \/22Z+1 \/271'% X 22222—11
n 1
= IL,(1 - o )
22t + 1
1
> I (1 - =
— ’Lfl( 22)
1
> I (1—-)
1
B 1
a n

So following (5.10), we have:

M(0,0)p" > |1 — Poi(X, € A)

= 1= Rulr =)

Jj<n
= PO,1<T Z n+1)
1
> -
n
That is we have p > [#(O,O)ﬁ’ and we know that limnaw[m]% = 1, so we have
p > 1 which is contradicting with assumption! m

5.5.2 Discussion On The Convergence Rate Of Uniformly Con-

verging AMCMC

Following the Theorem 4.2, we know that if the kernel family {P,} is simultaneous

uniform ergordicity, we can prove that the AMCMC is ergodic under the Diminishing
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Adaptation. We also hope that the AMCMC keep the uniformly ergordicity with respect
to the target distribution as each kernel does. However the following example shows that

it may not be true.

Consider X = (0,1], ¥ = (0,1] x N, m(-) is the Lebesgue measure on X, and

2m(A) +36,(A)  ifa#y
Py, A) =

2m(A)+ 361 (A) ifz=1.

BN
4k
We construct the adaptive scheme as below:

first we define {I,,}°2, to be an independent random variable sequence such that:

1 with probability%
I, =
0 with probability”T_l;

secondly we let ',y =T, x (1 = 1,,) + (Xpq1,n+ 1) X I,.

Theorem 5.5. For the above adaptive MCMC which satisfies conditions (a) and (b), for

any x € X, there exits a measurable set B such that >~ AW (z, B) = c0.

Proof. Consider the set B = {4%|k: =1,2,---, }, suppose for any start valuve X, = = and

'y = 7, we have:

> (@), B) < oo,

then for any 0 < € < 1, there exists IV, , > 0 such that

S Ai((2,7),B) <

i=N+1

Because

1

Wl
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and
P(T, = (Xn,n)) > P(I, = 1),
we can get
1 1
P(Xn—H = 4_n) > P(Xn-H = 4_n7rn = (Xnvn))
1
> gP(Fn = (an))
1
> —P(I,=1
> 2P, =1)
B 1
 3n

64

Then following the Borel-Cantelli lemma see Jeffrey S. Rosenthal [50] (2000), we have:

1 = PE3m>N,,st I, =1)

d P((Xi= i Xo=2To=1)

i=N+1

< 3 Ai(@).B)

i=N+1
< ¢

IN

Contradiction!! So we have Y2, A*((z,7), B) = oo. Since n(B) = 0, we can get:

ZTi((q:,’y), B) < .

Therefore A*((z,7),-) is neither uniformly nor geometrically ergodic.



Chapter 6

Weak Law of Large Numbers for
AMCMC

6.1 Introduction

Usually we also want to estimate the integral (g) = [, g(z)m(dz) of various functions

g : X — R using the laws of large numbers for ergodic averages of the form:
I : s
— g 9(Xi) —n_oo m(g) in probability or almost surely
n
i=1

There are many references e.g Tierney [53](1994), Meyn and Tweedie [37](1993) which
give the proof and applications of the LLN of general Markov Chains. Regarding the
LLN of AMCMC, there are also many papers e.g. Andieu and Achade [2] (2007), Andrieu
and Moulines [3](2005), Andrieu and Robert [5](2001), Atchade and Rosenthal [6](2005)
giving the proof under various conditions. Based on theorem 4.3, we know that the
simultaneous uniform ergodicity and diminishing adaptation are sufficient to ensure the
WLLLN for bounded function. This also leads another questions: Does the WLLN
hold for all unbounded g € L(w) under the same conditions? We will present counter-
examples to demonstrate that when ¢ is unbounded the conditions in the Theorem 4.3 are

not enough to guarantee that the the weak law of large numbers (WLLN) holds. Then

65
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we show various theoretical results of the WLLN for the adaptive Metropolis-Hasting
algorithm and unbounded measurable function g, then we will apply our results to the
Adaptive Metropolis algorithm proposed by Haario et al.[26] (2001). Finally we will

prove the WLLN under the conditions of Theorem 5.1.

6.2 The Counter Example
Consider the example constructed in section 5.5.2 and we have the following theorem:

Theorem 6.1. There exists adaptive MCMC' algorithm satisfies conditions (a) and (b)
and 7(|g|) < oo , but the WLLN does NOT hold.

According to the construction of the example, we can show that

Lemma 6.1. The adaptive MCMC' algorithm in section 5.5.2 satisfies conditions (a) and

(b).

Proof. Obviously each P, ) is stationary with respect to 7, and || P x) (2, -) =7 (+)||var < %
for any (7, k), so such a family of kernels satisfy the condition (a) following the Proposition
7 in Roberts and Rosenthal (2004);
And following the definition of I';;, we have:

Dy = sup|Pr,,,(z,) = Pr,(z,)]

TeX

S P(Fn+1 7£ Fn)

Therefore we have the conditions (a) and (b) holds. O

To prove the Theorem 6.1, we show the following lemmas first:



CHAPTER 6. WEAK LAwW OF LARGE NUMBERS FOR AMCMC 67

Lemma 6.2. For any € > 0 and any sequence {x;}2,, if n and k are two positive integers

"—(14e)n—1

such that n < k < 2 e and we also have g(z,) = 2" then:

Zf:1 g(x;)

2> (6.1)

Proof. Since % strictly decreases with respect to k and g(x) > 1, we have:

Zl'g—l 9(zi) k—1+2"
’ e > ’ €
1+e€
= 2n—(I+eon—1 —2-¢
1+4€
2" —1
2 ¥ sigagnm 27
1+€
2" —1
> 1+ X[1+e—2—c¢

2n —(14+en—1
> 1+14+e—2—c¢

= 0.

Lemma 6.3. For any € > 0, there exists M, such that for any m > M, we have:

2m+1_ .
(m+1)(1+e) —1 > m2.
1+e€

Proof. Denote h,, = 2m+1_(mli16)(1+6)_1 — m?, then we have lim,,_ o hm = 00. Therefore

2m+l _(m41)(14-€)—1
1+e€

there exists M, such that for any m > M, we have h,, > 0, i.e.

m2.

1

For any 0 < e < %, we define N, = max{ M., =5

}, then we can prove that:

Lemma 6.4. For any Xg =2, g =7~ and 0 < e < %, then we have:

" og(X;
P(|M —7(9)] > €| Xo =2,Tg =) > 2¢ for any n > NZ2.
n
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Proof. For any n > N2, we have

€

P(I,, = 0, for any m satisfies|v/n] +1 <m <n)

n

1
- Hi—l—l

i=[v/n)+1
_ vl

n
< 1
p— \/ﬁ

1
< AT 0
S N

then
N.—1

P(Em, |Vn|+1<m<nl,=1)> ~

Whenever T, 1 = (X, 11,n + 1), we have g(X,41) = 2" w.p. % Since N, > 1+e*a we
Ne—1 )
have SN > 2¢. Therefore:

Ne—1

P@m, [Vn]+1<m<n,g(X,)=2") > SN

> 2e. (6.2)

Also since m > N, lemma 6.3 indicates that for any |/n] +1 < m < n we have:

2" — (14 ¢em—1

>m’+1> (Vo] +1)*+1>n+1.

1+€
Following lemma 6.4 and m < n < %, we know that
> izt 9(@i) 9 > .

n

Therefore:
> b X
P(’ z:lng( ) _2’ >€)

p(M_2>€)

> >
> P(Em, |Vn] <m <n,g(X,,) =2™))
> 2e,

the last inequality is from (6.2). O
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Based on all above technical results, we start to prove the Theorem 6.1.

Proof. Consider the above example, following all the lemmas above we know that for any

€ > 0, we have:

lim sup P(\M —m(g)| > €) > 2e.

n—o0 n

In other words, we do NOT have:

lim P(|M —7(g)] > €) = 0.

n—oo

So the WLLN does NOT hold in this example. m

6.3 Summable Adaptive Conditions

From the above counter-example, we know that conditions (a) and (b) are not sufficient
conditions to the WLLN of unbounded functions, so we need to strengthen them. Intu-
itively if n is large enough, for any k, [ > n, Iy and I'; are “almost” the same, then the
WLLN may hold for any g € L(w). Let us consider the following condition:

(b')[Summable Adaption] "% sup,c | Pr,,, (%, )= Pr,(z, )| < co. Actually we can prove

the following theorem:

Theorem 6.2. Consider an adaptive MCMC' algorithm. Suppose that conditions (a) and
(b') hold. Let g : X — R be a measurable function such that w(|g|) < co. Then for any

starting values x € X and v € I', conditional on Xg = x and I'g = v we have:

2?21 g<Xz)

" — m(g)

in probability as n — oo.

Proof. Denote
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For any ¢ > 0, following condition (b'), there exists N such that

P(Sy, > ¢€) < i

We can denote £ = {Sy, < €}. Since |g| < 00, there exists No, such that for any n > Ny

’Z”g() €€

> —) < —.
|2)4

P(

Define N = max{Ni, Ny}, and we can construct a second chain {X }2° \ on E such that

Xy =Xy and X, ~ Pp (X,

n—1

-) for n > N, and such that:

[e.9]

P(X, # X, E) <

n=N

€
1 .

Define the events: B™(e) = {‘ i= N+1 9(X})

> £}, then following the Law of Large Numbers

of Markov chain (See Theorem 17.3.2 in [37]), we can get

lim P( <>|XN,FN)—O

n—oo

Then

lim P(B"(¢)) = lim E(P(B"(¢)|Xn,Tx))

n—oo n—oo

= E(lim P(B"(¢)|Xy,Tx))

n—oo

= 0

That is when n is large enough we have P(B"(¢)) < §. Therefore we have

p( 2=t
¢ pTha) € p Sl o)
< pqZ=s) 1g< J) > &4 pmen I gy e I, € g
< P(|Zi_1n9(Xi)| > g) I P<|Z?=N+7-l1 g(Xi>| S ;Ec>
+ P(]Z?Nig(X’{)\ > 2 B)+ S P(X, £ X, E)
< e
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Remark:According to the conditions in the above proposition, we know that when
N is large enough, the sequence {X,,}2  is almost equal to { X, }°° \ which is a Markov
chain with transition kernel Pr, . At the first sight, adaptive algorithms that satisfy the
conditions (a) and (b') cannot show the adaptive MCMC’s advantages sufficiently. But
following Roberts and Rosenthal [47] (2005), we know that in lots of cases, the adaptive
MCMC will tune the parameter to an “optimal” one after “learning” the information
from the historical samples. So we can adjust the convergence speed of .S, such that the
adaptive chain can learn enough to find the optimal parameter, that is we can make N

very large, such that I'y is almost a “good” parameter.

6.4 The WLLN For Adaptive Metropolis-Hastings
Algorithm

Usually we construct the transition kernel using Metropolis-Hastings algorithms. If we
tune the proposal distribution at each step as Harrio eg did in [26], we hope to prove the
WLLN for unbounded function with respect to adaptive Metropolis-Hasting algorithm.
Furthermore, when the proposal kernels have uniformly bounded densities, Roberts and
Rosenthal [48] (2005) have proved the following ergodicity corollary with respect to adap-

tive Metropolis-Hastings algorithm.

Corollary 6.1. Suppose an adaptive MCMC' algorithm satisfies the Diminishing Adap-
tation property, and also that each P, is ergordic for m(-). Suppose further that for each
v €Y, P, represents a Metropolis-Hastings algorithm with proposal kernel Q. (x,dy) =
fy(z,y)A(dy) having a density f,(z,y) with respect to some finite reference measure
A(-) on X, with corresponding density w for w(-) so that w(dy) = w(y)\(dy). Finally,
suppose f(x,y) are uniformly bounded, and that for each fized y € X, the mapping

(x,7v) — fy(z,y) is continuous with respect to some product metric space topology, with
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respect to which X x Y is compact. Thenlim, .., T(xz,v,n) =0 for allx € X andy € Y.

If we denote the conditions in corollary 6.1 by condition (j), then we have the following

theorem:

Theorem 6.3. Consider an adaptive MCMC' that satisfies the condition (7). Then for

any measurable function g such that A(|g|) < co and 7(|g|) < oo we have:

Z?:l 9(X5)

n

— m(g)

i probability as n — oo, conditional on Xog = x, and I'yg = ..

Remark: If there exist M > m > 0 such that m < w(x) < M, where 7(dy) =
w(y)A(dy), then we know that A(|g|) < oo if and only if 7(]g|) < co. A typical case is
that the state space X is compact set in R, w(y) is continuous function on X and A is
Lebesgue measure. Then we have M > w(xz) > m > 0, and the WLLN of the adaptive
MCMC satisfying the conditions in corollary 6.1 will hold for any measurable function ¢
such that 7(]g|) < oc.

We will prove the theorem following the steps below:
Step 1: For all M > 0, denote Ey; = {x € X||g(z)| < M} and for all € define:

M. = inf{M > 0\(Ey) > 1 —g,/ (@) \dz) > 5 — )

En

— inf{M > OA(ES) <. / l9(2)|\(dz) < ).

Exr
If A(|g]) < oo, we will prove that e - M. — 0 as ¢ — 0;
Step 2: Suppose P, (z,A) = [, f (@, y)M(dz) + 7 (2)0,(A) then Under the conditions of
the Theorem 6.3 we have 0 < r,(z) < n;
Step 3: Suppose AY(z,A) = P(X, € A|X, = 0,['g = 7), then there exist L > 0 and

0 < n < 1, then under the conditions of the theorem, we have

A", B) = / B (2, ) Mdy) + 0 (2)5,(B),

B

such that h{"” (z,y) < L and w{"(z) < n";

Step 4: Prove the WLLN using coupling methods.
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6.4.1 Some Technical Results

Suppose the probability of accepting a proposal y generated from z according to @), is

g(y)fv(y x

D7 xy)} so we have:

given by a.(z,y) = mm{l

P\ (z, B) = /B £ 9 (2, g)Mdy) + (1 — / o (2, y)A(d))5.(B).

X

We can denote fv(x,y) = [z, y)oy(z,y), y(z) = (1 — [, ay(x,y)A(dy)) and suppose
fy(z,y) < F. Obviously we have fv(x, y) < F since a,(z,y) < 1. We also need to prove

the following lemmas before we prove the theorem.

Lemma 6.5. Suppose (x,T,\) is a probability space, and g : x — R is a measurable
function such that )\(|g|) = s < 0o. Then for Ve > 0, there exists M > 0, such that:

MEm) > 1—¢and [ [g(x)|Mdr) >s—¢
Proof. Suppose there exits g9 > 0, for each M, we have
AE5) = o (6.3)
or
[ o) < s - (6.4
En

If (6.3) holds, we have [,. |g(z)|m(dx) > Meg for all M, contradiction!
M
If (6.4) holds, we have fx lg(2)|1g, (z)m(dz) < s —eg for all n € N. Suppose

Obviously Y, T [g(X)]|, then by the monotone convergence theorem
Ex(|g9(2)]) = limy— E(Ys) < s — &0,

which is contradicting with F)(|g(z)|) = s. O
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Lemma 6.6. Suppose g : x — R is a measurable function such that \(|g]) = s <
o0o. Then for each sequence {e,} — 0, there exists a subsequence €, \, 0 such that
EnyMe,, — 0 asn—0.

A(ES,. )

n

Proof. Following lemma 6.5 we know that 0 < < 1, there is a subsequence

MBS, )
eM "1 is convergent to some a. Then we can think about the
Nk

£n, \ 0 such that {

problem in the following two cases:

AES,. )
(1). 0 < a < 1; then there exists N > 0 such that for each & > N, | EME"’“ —al < 3,
"k
ie. A(Ej/fgnk) > S€n,, SO
0 = limk_m/ lg(x)|m(dx)
Ene,
> limg—coN(Ehy. )M,
_ a
2 lzmk—woignkMsnk
> 0.
So limy—.oo€ny M, = 0.
(2). a = 0; then there exists N, kK > N, such that
. 1
And following (6.3) for each 6 > 0,
Mlg(@)| = M, —0) > e, (6.6)

Following (6.5) and (6.6), let 6 — 0, we can get:
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Since €, ,, < €n,, Mgnk < Mankﬂ,

0 = lime. / () A(d)

Mep,

> limp / g(x) [ \(dx)
{lg(@)|=Me,, .1 }

limkeooMankﬁ_l ’ /\(|g(l’>| = Ménk_H)

) 1
> lmruHooﬁMEkn+1 * Enpyr
> 0.
So limk_)ooME"de . 877«k+1 =0. ]

Lemma 6.7. Suppose g : x — R is a measurable function such that A(|g|) = s < oo.

Then e- M, — 0 as e — 0.

Proof. Suppose there exists ¢ > 0 such that for each n € N, there exists ¢, < % and
€n + Me, > c for all n, then every subsequence {e,, } of {e,} satisfies that e,, - M., >c,

which is contradicting with the lemma 6.6. So - M. — 0 as ¢ — 0. ]
Lemma 6.8. Under the conditions of corollary 6.1, we have that condition (a) holds.

Proof. Following the proof of Corollary 12 in Roberts and Rosenthal [48](2005), we can

get the lemma directly. O]

Lemma 6.9. Condition (a) is equivalent to: There exist M > 0 and 0 < p < 1 such that

for any x, v we have:
1P} (, ) = ()] < Mp".

Proof. Suppose t,(n) = 2sup,cy ||} (7, ) — 7(-)||, following Roberts and Rosenthal [46]
(2004) Proposition 3(c), we know that ¢,(m + n) < t,(m)t,(n). Under condition (a),

there exists n which is independent of v such that ¢,(n) = § < 1, so for all j € N,
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t,(jn) < (t,(n))? = B7. Therefore, we have:

HP’;n(x7 ) - 7T(>H < ”Pfytm/an(x7 ) - 7T(>H < lty(tm/njn> < ﬁtm/nJ < 6—1<51/n)m'

[\]

So all the kernels are uniformly ergodic with M = 3! and p = 3'/". O

Lemma 6.10. Suppose Py(z,A) = [, Fo(z, YN(dz) + 7 (2)0,(A), then there exist mea-
surable functions f\" (x,y) on x? such that Pz, A) = [, P (@, ) Mdx) + 2 (2)0.(A).

Proof. We will prove it by induction, and obviously the conclusion holds when n = 1.

We suppose it also holds when n = k, then let’s consider the case when n = k + 1:

P A) = [ Ph AP oy
- / [ 902 2) + 8 AN, o)) + 7, (005 d)]
= / [ 92 1 A )+ FO 2o ()6 )
£ A8,V (@ )IAy) + 75()0,(A)r (2)8.(dy)
- /1 7w ) + [ @Bt 2)maz)

" / () f (,9)Mdy) + 5 (2)8,(A)
A

_ / FED (@, 2)A(dz) + 7 (2)0,(A),
A

where

fE (@, 2) = /fy(k)(y,Z)fw(%y)W(dy)+Tv(fff>f~5($7z)+T5(x)fv(xaz)‘ (6.7)
O

Lemma 6.11. Suppose P,(z,A) = [, Fo (@, )N(dz) + 7 (2)0,(A) where A(+) is a finite
reference measure on X such that N({x}) = 0 for any x, with corresponding density w
for w(-) so that w(dy) = w(y)A(dy). Then under condition (a)we have 0 < r.(x) < n,

where the n is the same as in Lemma 6.9.
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Proof. Because P, (z,{z}°) = fx—w fo (@, y)m(dz), Py(z,x) = ry(z) and m(z) = 0, and fol-
lowing that Pi*!(z, A) = [, FO (g, 2)A(dz)+rEt (2)0,(A), we know that |P]'(z, {z})—
m({z})| = r}(x) for each z € x. Then following condition (a), we know for Ve > 0, there
exists NV such that r)Y(z) < e, that is 7, (z) < en for each v and z. Then we take € < 1,

and we can getn:e% < 1. O]

Lemma 6.12. Suppose A% (x, A) = P(X,, € A|Xo = 0,T¢ = ), then under the condi-

tions of corollary 6.1, there exist L > 0 and 0 <n < 1, such that

A B) = [ KD ()Nl + ol )3 (),

where W\ (z,y) < L and v\ (z) < 0.

Proof. Suppose the joint distribution of (X, Xo, -+, X,,,['1,T9,- - -, I',,_1) given Xy =z

(n)

and 'y = v is e

> obviously the marginal distribution of X, is AW ((x,7),-). Since 7,

is a measurable function of (x1, 29, -+, Tpn,Y1,%2,* s Yn_1), We have:

A ((z,9), B) = / Pr, (n, B (davy -+ - dtgdys - - - dyn 1)
anynfl
= [ )N + ) G (B - )
Xnxyrn—=1 JB
= [ Rl (o e )My
B Xan7L—l

+ / L% (xn)ézn<B)/~LEZ?7)(dxl o drgdyy - dypen).
anyn—l
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We can observe that the second term:

[ ) (B (s iy )
xXn Xynfl

n—1 Xyn—l

=

/.
\/‘)(‘n—l Xyn—l
/);‘nl ><)J"*1

+ /
Xn—1 Xyn71

/ L™ (xn>P%71(xn—la dxn)/v‘(x ~) (dxl ~d,_1dyy - dyp-o)

T — 5

If v, = Yoz, 21, - -, 0y Y, Y15+ * s Y1), then we can define:

i __ 1 i—1
Tn = %z(%ifl, sy Tn—i—1y Tn—iy Tn—iy " " s Tn—iy V5 V15" " " Vn—ig1s " '7771—1)'

Similarly we can compute the second term of the above inequality:

/ T (T0) Ty (T—1) 0, (d) 1 E (dxl cdxy_1dyy - - dyn—2)

an—lxyn-1JpB

= / / (ﬂﬁn 1)7“% 1(% 1)Pvn z(xn 9, ATy 1) (d$1 o dzp_odyy - "d’Yn—?,)
xXn— 2><yn 1 B

= / / (%—1)7’%71(mn—1)f%,2($n—2,l’n—l))\(d% 1) (d$1 Ay _odry - 'd%—?,)
xn— yn 1 B

v f [ ) s 2) O (o oo )
an—2xyn-1.JB

/ Tvn(xn)éﬂcn(B)P% (T, dxn) (dml cdxn_qdryy - - - dyp—)

Ty (xn>f“/n71(xn717 xn>>‘(dxn> (dxl “dry_ydyy - - - dyp—)

T.'Yn (‘CCTL)T'Yn l(xn 1>5xn l(dxn) E (dxl : dxnfldf}/l T dfyn*Q)'

78
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Inductively we have:

h({‘“)(x, y) = / f’Yn (Tns y) x’y)(dml ~dandyy - - dyn)
anyn—l

" / P () oo s s )i (A - g1y -+ )
An—lxyn—2

1
+ / / Hm;_i(:vnfi)f%,x,(xnfz,xnfl)ugzgf)(d:v-~dxn72d71~~d’Vn73)
Xn72><yn73 B i=0

+

n—1
+ / HTW:.L—i(xl)-f’Y(x7ml),u%xﬂ)(dl'l)
B i=o
n—1
FZUZ

IN

IN

and

6.4.2 The proof of Theorem 6.2

Now we state the proof using the above lemmas as below:

Proof. Suppose 7(g) = 0,\(|lg|) = s,D,, = = SUD,¢, | Pr,..(x,-) — Pr,|| and f,(z,y) < F.

Lemma 4.2 implies that given ¢ > 0, there exits 1 > 0 such that M, n < € denote

[l <=

My,

72 = %, then we have:

Following lemma 4.4, we can find < min{n;, 72} such that M,n < e and

| o) <=

My
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Then we define gi(x) = g(x)dg, (), Since gas, () is a bounded measurable function, then

we can find an integer N such that:

ZZ‘]\;1 gm, (Xz)

E'Vzm [| N

| <e, zeX ye).

Denote H,, = {D,, > 7z}, then Diminishing Adaptive condition implies that we can find

N; € N such that for each n > Ny, P(H,) <

% and % < €. Define the event

E =N H¢. Then when n > Ny, we have P(E°) < n.For all n > Ny, following the

i=n-+1

triangle inequality and induction, on event F we have:

reEX

In particular, for all x € y and k — N <m < k

||PFI¢—N($7 ) - Prm(l', )” < m,0on E.

So [|PY_ (z,) = P(Xy € | Xp—ny = 2,Gr_n)|| <n on E for all z € x. Then we can

construct a second chain {X| }*_, . such that X, y = Xz _ny and X, ~ Pr,_ (X, |,

for k — N +1 < n < k such that P(X,; # Xi) < mn. So for any n > Nj, we have the

following inequality (*):

IN

IN

IN

IN

IN

IN

1 n+N
E(5! > 9(X)|Xo = 2., To =)
1=n-+1
n+N n+N
i1 90, (X ient1g— g X;
B = “NM’( 1G,)1 X0 = . Ty = ) + b2t N ), %, 1)
N n+N
iy g, (X o 2V E(1(9 = g0) (X)) X0, To)
E(EFn,Xn(‘%mXO;F@ +M7777+M71P(E ) 4 +1 Nﬁ
S fpe gl @AY (@2, 7), dy)
€+e+ Myn+ . N
SN L 1l )R (2, )M (dy) + 0l (2.)] ()]
€+e+ e+ Mn
N
St L, 191N dy) + 7'lg()
3e + N
lg(z )|+
3+ L)e+ =—~—~>t———.
B+ L+ N =

(4+ L)e (+)
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Now consider any integer T" sufficiently large such that:

N, Fs + |g1(f;)l NFs+ |gl(fj])|

mazx v ; T ] < e
Then we have
B(Z=05) %, 1y = .
(|ZZ lg( )||X0—$*;FO )
1 LT NIJ 1 N
" E(L—T_TMJ Z N ZQ(XN1+(j—1)N+k|X0 = 2., Lo = 7))
j=1 k=1
Z§1+ T—-Ny N+1 g(X’L)
+ B(— X0 = ., Ty = 7).

T

For the first term we have:

p(| =0 L)) ) = 2Ty = )

Z E(|9( Xl Xo = x4, To = 74)
T
SN e lg@A™ (24, 7). dy)
T
SN L lg@) B (e, )M (dy) + g ()i
T

IN

IA

IA

N, Fs + \gl(f;)l
T

IN

IN
\.(7\

and for the third one we know that:

T
ZNH—LT_TN*JN-H g(XZ) |>
T
T
ZN*JFLT*TN*JNH E(]g(X3)]
T
NF8+ \gl(f;)\
T

E(]

IN

IN
Q)

81

(6.8)
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Finally following the inequality (*), the second term < (4 4 L)e, so we have

E(|—Zizlﬁ(Xi)|) < (6+ L)e.

Markov’s inequality then gives that
T
1 1
P(IT7) " g(X)| > £2) < (6+ L)e>.
i=1

Since this holds for all sufficiently large 7', and since ¢ > 0 is arbitrary, the result

follows. O]

Remark: Here we actually get the conclusion: for any ¢ > 0, x € X and v € Y,

there exists N such that for any n > N we have:

P(\M] >€) < e

But here the “N” is dependent on the choice of the starting value x, but independent
of the starting value 7. In fact, this kind of dependence of the starting value is reasonable
when ¢ is unbounded. Let us consider the following example which is a general Markov
chain with the kernel being uniformly ergodic:
Consider X = (0, 1], and

2 1

P(Ia A) = gM(A) + gém(A)a

where p is Lebesgue measure on (0, 1]. Since

/X P, Ap(dz) = /X 2(A) + 0.(A) ()

7 is stationary with respect to P(z,-). And following that:

1P = 1O ear = = 3(A) + 50l ar <

1
3
Therefore, P is uniformly ergodic with respect to p. Now suppose g(x) = x’%, then

1(g) = 2, and then P(X; € (0, 5]|Xo = -15) = 525 + 3 for each m € N. Suppose for

m2
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P

N .
some 0 < € < 3, there exists N such that P(|%(X)

> €| Xo = x0) < € for all zy € X.

If we take zo = (3N)72, since g(X;) > 0, we have:

p(Z= ) o) > dXo= gy 2 PO -2 do = o)
> Pl 2 3% = i)
> P(X < (311[)2|X0 N (31102)
o

Contradiction!

6.4.3 A Corollary

In Roberts and Rosenthal [48] (2007), they also studied the adaptive MCMC with

bounded densities and proved the following corollary:

Corollary 6.2. Suppose an adaptive MCMC' algorithm satisfies the Diminishing Adap-
tation property, and also that each P, is ergordic for m(-). Suppose further that for
each v € Y, Py(z,dy) = f,(x,y)\(dy) has a density f,(x,y) with respect to some fi-
nite reference measure A(-) on X. Finally, suppose f,(z,y) are uniformly bounded, and
that for each fized y € X, the mapping (x,v) — fy(z,y) is continuous with respect
to some product metric space topology, with respect to which X x Y s compact. Then

lim, oo T(x,v,n) =0 for allz € X and vy € ).

We also have the WLLN for the unbounded measurable function g under the same
conditions in the corollary 6.2. Actually P, (z,A) = [, f,(x,y)A(dy) is a special case of
P(z,A) = [, fy(z,y)M(dy) + 7 (2)0,(A) when r., () = 0. We just plug in n = 0 to the

proof of the Theorem 6.3, then we can prove the following corollary:

Corollary 6.3. Consider an adaptive MCMC' that satisfies the conditions in Corollary

6.2, then for any measurable function g such that A\(|g|) < co and 7w(g) < oo we have:

Z:‘L:1 9<Xz> _

n

m(g)
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in probability as n — 0o, conditional on Xo = x and I'y = 7.

Remark:The Corollary 6.3 indicates that: for any € > 0, x € X and v € ), there

exists N such that for any n > N we have:

p(\—Z?ﬂng(X”y >6) <e.

However it is not hard to find that such an “N” is independent of the choice of the

initial values x and ~.

6.4.4 Applications

As an application of the Theorem 6.3, we will think about the Adaptive Metropolis
algorithm of Haario et al. [25](2001) , in which the target distribution 7 is supported on
the subset S C R? and it has the density 7 with a slight abuse of notation with respect
to the Lebesgue measure on S.

Haario et al. [25] (2001) have prove the following Strong Laws of Large Number(SLLN):

Theorem 6.4. Let m be the density of a target distribution supported on a bounded
measurable subset S C R?, and assume that 7 is bounded from above. Let € > 0 and
let o be any initial distribution on S. Define the adaptive MCMC' as above. Then the
AMCMC simulates properly the target distribution w: for any bounded and measurable

function f : S — R, the equality:

lim
n—oo 1

L)+ FOX) 4 ) = [ Flamtaa)
S
holds almost surely.

However following the Theorem 6.3, we actually can prove that the WLLN holds for

any unbounded measurable function g with \(|g|) < oo where X is Lesbesgue measure.

Corollary 6.4. The WLLN holds for the above adaptive MCMC" and any measurable

function g satisfying A(|g|) < oo and 7(|g]) < oo.
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Proof. In this adaptive algorithm, according to the formula (14) in Haario et al. [25]
(2001), the parameter space ) consists of all the d x d matrix ~ satisfying that ¢;I; <
v < ¢oly for some ¢; > 0 and ¢ > 0. If we consider ) as a d? vector space and define

2
the metric on it as d(y1,72) = \/Zl<i<j<d (('yl)ij — (vg)ij) . Obviously Y is compact

with respect this metric topology, hence X x ) is also compact. Furthermore since

the proposal distribution Q. (z,-) = MV N(z,7), P, is ergodic for m(-) and the density
mapping (z,v) — f,(z,y) are continuous and bounded. Therefore following the Theorem

6.3 we have the conclusion. O

6.5 WLLN Under Conditions of Theorem 6.5

Here we will prove the WLLN of AMCMC for bounded function under the conditions of
the Theorem 5.1.

Theorem 6.5. (WLLN) Consider an adaptive MCMC' algorithm. Suppose that the
conditions of the Theorem 5.1 hold. Let g : X — R be a bounded measurable function.
Then for any starting values v € X and v € Y, conditional on Xog = x and I'y = v we

have

i probability as n — oo.

Similar to the proof of theorem 5.1, it suffices to prove the following lemma before we

prove the Theorem 6.5:

Lemma 6.13. Under the conditions of lemma 5.2. Let g : X — R be a bounded mea-
surable function. Then for any starting values x € X and v € ), conditional on Xg = x

and I'g = v we have

in probability as n — oo.
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6.5.1 Some Technical Results

Following the usual laws of large numbers for Markov chain (see e.g. Meyn and Tweedie
[37]) imply that for each fixed z € X and v € Y, lim, oo = > i, 9(X]) — 7(g) in
probability, where {X'} is the usual Markow chain with kernel P,. Actually we will
prove that under the conditions in lemma 5.2 the above convergence is uniformly with
respect to the parameter v. Before we start the proof, let us define some symbols, let

7a(i+1)

sig) = > 9(X)),

J=ta(i)+1

and
[} =max{i > 0:745(i) <n}.

Lemma 6.14. Under the conditions of lemma 5.2, for any € > 0 and fized start value
x, there exists N which is independent with the choice of v such that for any n > N we

have:

PA|M —7(g)] >¢€) < eW(x)+e.

n

Proof. Without losing generalities, we suppose m(g) = 0 and |g(z)| < M then

(|Zz lg( )|>3€)

n

|ZZ 19( NS silg) N D i Ta(ln;;rl 9(X7)| > 3¢)

+
n
> Ta(ln)+1 9(X7)
n

P
< <|Z“g< >|>e>+P<\ZZ°Z”|>e>+P<|

| >€).

Regarding the first term we have:

|leg( i) < Bl g o(X)I

ne
E:E [TQ]M
ne

ne

Pi(

| >€)

IN
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Regarding the third term we have:

imra ()41 9(X7 Eall Xy 97
St 9D Eall Dl 90601
n ne
Ed[Td]M
ne

KM
ne

Actually the second term is independent with the choice of start value z,i.e.

P (209 o = py (209 g

P
Suppose for any n € N, there exists 7, such that Py (|°—\ > €) > 4, same as the

proof of lemma 5.6, we can find certain vy € A such that:

| >¢€) >

Y

lim P (|—Z:Z OnZ (9)

n—oo

NN e

Which is conflicting with the fact that for any v € A and € > 0, we have:

ln Tn
hm Pd(| Zi:O Si (g)

n—00 n

| >¢)=m(g) =0.
Therefore there exists Ny, such that for any n > N; and ~, we have:

(‘Zzn(] z( )

| >¢€) <

N ™

We also can find N, such that for any n > Ny we have % < €% and % < % Then let

N = max{N;, Na} we can get the conclusion. O

Lemma 6.15. Given € > 0, we can find N > 0 such that when n > N we have:

N

E. .| ] < eW(x)+e.

Proof. Following Lemma 6.14, we know that for any € > 0, there exists N such that:

|Zz lg( )|>€)<iW()—|——

Bl M 2M
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P"L
< M. If we denote A = {w € Q||%(Xv)

P
na(X7Y .
We also have \%() > % given Xy = z}.

Then we have:

g, 2=y g g2 I g g 2= D g ey
< MW():+ 5=+ 5
< eW(z)+e

6.5.2 The Proof Of Theorem 6.5

First we can prove the Lemma 6.13:

Proof. Given starting value X = z, I'g = v and € > 0, W(X,,) is bounded in probability,

i.e. for any € > 0, there exists a > 0 such that:
P(W(X,) > a) < ﬁ for all n € N.

Following the Lemma 6.15, we know that there exists N = N(¢), such that for any x and

~v we have:

Then let D,, = sup,cy || Pr,,,(2,) — Pr,(z,-)| and H, = D,, > 5775z Using the Dimin-
ishing Adaptation condition to choose n* = n*(¢) € N large enough so that

€
P(H) < —5 n<nt
(Ho) < 3pp =7

To continue, fix a “target time” K > n* + N. We shall construct a coupling which
depends on the target time K (cf. Roberts and Rosenthal [45], 2002), to prove that
L(Xg) = m().

Define the event E = N/%N, HE, we have P(E) > 1 — 5. Now, it follows from the

triangle inequality and induction that on the event E, we have:

€
P )= P (z,)] < —o—, k<N,
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In particular, on £ we have || Pr, _ (z,-) — Pr,,(2,-)|| < g7 forallz € X and L — N <

m < L, so by induction again,

[z (@) = Pr (X €[ XN =2,G- N)||<monE for x € X.

To construct the coupling, first construct the original adaptive chain {X,,} together with
its adaption sequence {I',,}, starting with X, = x and I'g = 7.

We now claim that on E, we can construct a second chain { X }-_,  such that X, , =
Xy yand X, ~ Pp, (X, _,-) for L—N+1<mn < L, and such that P(X; # X) < e.

Indeed, conditional on G;_x, we have XLPIQ\Q_N(XL_N, -). Then we have:

120X — LX) < 5

The claim then follows from e.g. Roberts and Rosenthal [46](2004, Proposition 3(g)).

Since |g| < M, we have:

n+N N
- ) < E M-S+ MP(E®
B 30 o006 ) < B (1 30 0001) M g+ M)
< eW(X,) E’
- 4a 2

and we also have:
n+N
(—| 3 gl |gn) < M
1=n+1

Therefore,

n+N

_|Z

i=n+1

—|§jv |gn)

i=n-+1

(=
- <_|7§:V Xi)|Gn, W n)Sa)) (—I%J:V Xi)|Gn, W )>a))
+

= n+1 i=n-+1
€ €
St M—
2 4+ 4M

= €.
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Now consider any integer 1" sufficiently large that:

Mn* MN
T T

max| | <e.

Then we have:

B(1Z== 9% x = 4Ty = )

T
" g(X;
< E(\%HXO =1,To=7)
L UE
+ E( T_"*J N Zg(XN1+(jfl)N+k|X0 =z, = 7))
=~ j=1 k=1
Z:*JFLT*"UNH 9(Xi)
+ (= 1X = 20, Tg = )
< e+e+e

= 3e.

Markov’s inequality then gives that:

T
; X;
p(|%| > €%|X0 =uxz,T=7)) < 3ez.

=

Since this holds for all sufficiently large T and since ¢ > 0 was arbitrary, the results

follows. o
Secondly we can prove the Theorem 6.5 easily using the lemma 6.13.

Proof. Similar to proof of theorem 5.1, the splitting chain of { X'} satisfies the conditions
of lemma 5.11 for any v € ). Therefore we have the WLLN hold. [



Chapter 7

Regional Adaption Algorithm

7.1 Introduction

We notice that the HST algorithm and many modern MCMC algorithms with certain
notions of local adaptation e.g. [20], [35] and [13], [22], [16] are not efficient when the
target distribution is multi-model. One obvious reason is that different “optimal” kernels
are needed in different regions of the state space in many practical problems, however
many current adaptive MCMC algorithms try to find the uniformly efficient transition
kernel on all regions of the state space through the adaptation. Another reason is that
the switches between different models are not continual enough, even in lots of cases the
algorithms cannot find the other models except the one that contains the initial value.
The last reason is that we do not know how to make the exact partition of the state

space.

Regarding the first reason above, we will propose the regional adaptive MCMC al-
gorithm in which the parameters of the proposal distribution with respect to different
regions are adapted carefully using the historical samples from the same region so that
the performance of the algorithm is “optimal”. Regarding the second reason, we will

design the mixed regional adaptive MCMC algorithm in which we add another Gaussian

91
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proposal to the regional adaptive MCMC and expect the new part in the proposal distri-
bution will switch the models fluently. Regarding the third reason, we propose a parallel
chain adaptation strategy that incorporates multiple Markov chains which are run in
parallel and tempered inter-chain adaptation to detect different models. One can find
more details about these two strategies in section 2 of R. Craiu, J. Rosenthal and C.
Yang [14]. Further we construct the coefficients of different proposal distributions with
respect to regions using jump distance under the assumption that the partitions are not
optimal, so that we can select the optimal proposal distribution at each rough partitions
with more possibilities.

We not only provide theoretical justification using the Theorem 5.4, but also show
the performance of the methods using simulations. In addition, we conduct analysis on
a mixture model for real data using an algorithm combining the two methods together.

Focusing on the practical aspects of AMCMC, we try to realize the above ideas in this
chapter. Section 7.2 is about the regional adaptation. Section 7.3 shows the ergodicity
of RAPT first, then using the same idea we prove that Dual RAPT algorithm and Mixed

RAPT algorithm are both ergodic too. Section 7.4 presents the real data analysis.

7.2 Regional Adaptation

Consider the target distribution
(x|, pr2, ¥1, ¥2) = 0.5N10(z; p1, £1) + 0.5N19(2; p2, X2),

with Ng(x; p, ) denoting the density of a d-dimensional Gaussian random variable with
mean g and covariance matrix ¥ and where puy; = (3,3,3,- -, 3)T, pp = (=3,-3,-3,- -
. —3)T, Y1 = I1p and ¥y = 511g. The target distribution consists of two different models
with the same weight (see Figure 7.1). Obviously due to the different covariance matrix
of each model, the “optimal” proposals of each model should be different. For instance,

following Roberts and Rosenthal [44] the “optimal” covariance matrix of the Gaussian



CHAPTER 7. REGIONAL ADAPTION ALGORITHM 93
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Figure 7.1: The marginal distribution for each coordinate.

proposal distribution of Metropolis-Hasting algorithm should be %[m for the model

centered at pq. Similarly the “optimal” one for the model centered at s should be

5x2.382
10

I9. In one word, there does not exist a common “optimal” proposal distribution
for both regions, therefore we need to tune the empirical covariance matrices by learning
the “history” of different regions of the state space. We assume that there is a partition
consists of two regions Sp1, Spo, that is Sp1NSge = and Sp1 USp, = S. Then following the
above analysis we hope to use different proposal distributions @);, ¢« = 1,2 with respect

to different regions Sp1, Spe. Formally we will use the proposal as:

2

q(x,y) = Zasoi(x)qi<x7y) (71)

i=1
where dg () is the indicator function of region So;, and ¢;(z,y), i = 1,2 are Gaussian
distribution with covariance matrix collecting the information independently in region

Soi- For an adaptive Metropolis algorithm with two regions, the acceptance ratio is:

% , if T,y € Soi
Of(l‘,y): % ,ifoSOQ,yES()l )
S 2SS

where ¢; is the density of Q;.

However the critical problem is that we usually do not know exactly how to split the
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state space into two parts Sg; and Spa. Actually in most cases the true boundary should
be certain surface which depends on the target distribution and is hard to compute, so
our assumption in this chapter is that the partition is not good. To illustrate easily , let
us see Figure 7.2 in which & and S5 form the partition in practice, and Sg; and Spo form
the perfect partition. The solid black line indicates the true boundary between Sy; and
So2 which we do not known. The dashed red line denotes the boundary of the regions S,
and S, used for the regional adaptation. Now we can find that there are still two models
in the region S;. If we still use the proposal distribution (7.1), the wrong proposal will
be used in the region between the true boundary and the estimated one. Intuitively we
can mix both (), and @) linearly with different weights for each region §;. So we suggest

the proposal as
2

i=1
Obviously fixed coefficients )\gi), 1 = 1,2 are not reasonable. Therefore we hope to modify
the weights )\gi), 1=1,20of qi(t), © = 1, 2 regionally so that we can get some optimal values
finally. Then the problem arises: how to adapt the weights of qi(t) (z,y), i = 1,2 using
the past simulations? We need to find out some statistics which can reflect how good
the proposal fits the given region. One possible option using the average square jump
distance up to time t is:
W= O
2n=1 (1)
where d;i)(t) is the average square jump distance up to time ¢t computed when the
accepted proposals are distributed with QSO and the current state of the chain lies in §;.
So far using this Dual Regional Adaptive MCMC in which both qZ@ (x,y), i = 1,2 and
their coefficients are adapted, we have already found more “optimal” proposals than the

RAPT algorithm. Formally we will use the proposal distribution at the t — th step as:

2

¢ (z,y) =D 1 (@) Oar(@.y) + A (#)ge(x,y)), (7.3)

=1
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where A7 (t) + A () = 1. Then the adaptive Metropolis Hastings algorithm with the
above proposal distribution is called Regional Adaptive MCMC(RAPT).

We know that the “optimal” proposal distribution depends on the properties of target
distribution, even when we consider all the Gaussian proposals. Therefore we adapt the
gi(x,y) using the past simulations. That is we will use the proposal distribution at the

t — thstep as:

2

¢ (@, y) =D 1g (@) N O (2,9) + X ()as (2,y)). (7.4)

i=1
where )\(li) (t) + )\g)(t) = 1. We call this adaptive Metropolis MCMC algorithm as Dual
RAPT.

When we start the Dual Regional Adaptive MCMC at one of the regions, its perfor-
mance in this region will be better and better. However it is not very efficient to switch
the models. To switch the models continually, we need the proposals to have bigger log
than the locally “optimal” ones and have precise jump directions. Therefore we add a
third component to the proposal distribution in the Dual RAPT algorithm and hope this
part will make a good flow between different regions. From all analysis above, we set up

the proposal distribution at the t — th step as:

2

¢y =1-0)Y 1g.@)N Oa" (@, y) + A O (@, 9)] + Balpe(@.y),  (7.5)

i=1

(®)

whote 18 adapted using all the samples till £ in S, and (3 is always a constant.

where ¢

7.3 Theoretical Results

In this section we will prove the ergodicity of the Mixed RAPT algorithm for random
walk Metropolis using the Theorem 5 in Roberts and Rosenthal [48] when the state
space is compact. We notice there are too many variables in the parameter space when

we consider the kernel family generated by the Mixed RAPT. Therefore to make the
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Exact boundary

(1) (1)
A1P1+ Ao Pp

' Approximate boundary

Figure 7.2: [lllustration of the regional adaptive MCMC sampler. The dashed black line
indicates the true boundary between Sg1 and Soo which we do not know. The dashed red

line denotes the boundary of S1 and Sy used for the regional adaptation.

main idea more clearly and avoid tedious calculations, at first we will introduce the proof
from RAPT case, i.e. only the weights )\S-i), 1 <i4,5 < 2 are adapted. Secondly we will
prove that the Dual RAPT algorithm is ergodic. Finally we show that the same idea can
be applied to prove the ergodicity of the Mixed RAPT.

Before we start the proof, we introduce some notations first. Let {z;}!_, be the
samples obtained by time ¢ and Ni(t) be the total number of sample points {xiq };V;'Ef)
generated up to time ¢ that are in §;. We also define the set of time points where the

proposal is generated from (); and the current state is in S, Wj(f) ={0<s<t: z4€

S; and proposal at time s is generated from @), }.

7.3.1 The Ergodicity of the RAPT Algorithm

Let M(S) denote the class of densities m with m(x) being continuous, 7(z) > 0 for any

r €S and m(x) =0 for x ¢ S, where S C R¥ is a compact set. Now we will prove the
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. ()
ergodicity of the RAPT algorithm with the linear coefficients )\gz) = P%, where
h

dgi) (t) is the average jump distance until time ¢ computed for proposals generated from

h=1 d

Q. And recall that ¢;(z,y), ¢ =,2 are fixed at each step for the RAPT algorithm.
Since )\gi) =1- /\gi), the adaption parameter space consists of ()\gl),)\§2))|()\gl),)\g2)) €
[0,1] x [0,1], that is: ¥ = {(AM, AW, AP € [0,1] x [0, 1]}

Theorem 7.1. Let S C R¥ be compact, © € M(S) and assume q;(x,y) is positive and
continuous for all x,y € S. Then the RAPT algorithm is ergodic with respect to the

target distribution .
Following the Theorem 5 in [48] it suffices to prove the following lemmas.

Lemma 7.1. Under the conditions of the theorem 4.4. There exists 0 < p < 1, for any

v = (71,72) € Y such that:
1P} () =7 ()] < p"

Proof. Since § is compact and non-empty; by positivity and continuity we have d =
sup, g m(z) < oo and € = min{inf_ g qi(z,y),inf, g a(z,y)} > 0. Following (7.4),

we have:
2
¢o(2,y) =Y 1g ()i (e,y) + (1 = w)aa(z,9)] > e,
i=1
for any x,y € §. Choose B C S§. By construction, for fixed x, denote

B - 7(y)gy(y, x)
Rl B) = {y €5 Oy < 1}

and A,(B) = B — R,(B). We have

P, (x,B) >
m(y)g,(y, ) Leb mind "Wy, 2) Leb
= gy min { SO 1 @+ [, wlen Tty )
— / W(y)Q'Y(%x)IuLeb(dy)_'_/ qy(x,y)/zLeb(dy)
R (B) ™ 3?) Az(B)

AV
IS NG
S
3]
=

=
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Thus & is small and we have
PW(x7B) 2 V(B)7

where v(B) = Sm(B) is a non-trivial measure on S. Therefore the chain is automatically

aperiodic. Note that the measure v(+) is independent of ~.

Following the Theorem 16.0.2 in [37]

1Py (2, ) =) < p"

where p=1—-v(S)=1— O

£
a

Lemma 7.2. Under the conditions of the theorem 7.1. The Diminishing Adaption con-

. (4) e B
dition holds when \; (k) = o )er(z)(k),

i=1,2; j=1,2.

Proof. Denote fi(x,y) = Aqi(x,y) + (1 — N)ga(z,y). Since S is compact, we let M =

max{sup, s ¢ (z,y),sup, g ¢(z,y)} > 0. For any x € S; and A € B(S), we have:

P, (z, A) = /Ams1 f)\(ll)(k) (x,y) - min {1, %} dy
. ﬂ(y)f (2)(k (ZL‘, )
" /AOS ngl)(k) (x’ y> i {17 7T(£IZ‘) >\(1>(k) (IE, ) } d

o f st - 2

) 7T<y) >\§2 )
+ 0.(A) /52 fxgl)(k)(xvy) [1 - mln{ 77(3:')ng1> ( )}] W

Denote the first term I (x, A), the second term I (x, A), the third term I1I;(z, A) and

the fourth term IVj(z, A). Then we have:

‘P’YkJrl(x’A) - P7k<x7A)| S |I’Y1c+1('r7A) - I’Yk(‘r7A>| + ’II%+1($,A) - II’Yk(x7A)|
+ |II 'Yk+1($’A) - ]]I%(x714)| + |]V’Yk+1($’A) - IV‘/k(x7A)|
Let

a0 (x,y) = min {1,
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Then

(11, (x, A) = IL, (z, A)| < /Ans F30 iy (T Y) oy (2, 9) = Fro gy (2 9) e (2, y) |dy
2

IN

/AOSQ |f)\51)(k+1) (I, y)a(k+1)52) (l‘, y) - ngl)(k-&-l) (ZL“, y)akf) ("L‘7 y)

+ f)\gl)(k-i-l)(x’ y)akf) (‘Ta y) - f/\?)(k) (l’, y)ak?) (l’, y) ‘dy

IN

/AQSQ f)\(ll)(kJrl) (ZL’, y) |Oé(k+1)51) (.T, y) - Oék§1) (Z‘, y)) |dy
e @l @ 8) Sy )l
2

< M |Oé(k+1)(11)($,y) - (ngl)(df,y))ldy
ANSsy

+ / (@) — Fron ()| dy.
g, VD A ()

For the second term, following the fact that |f/\(1)(k+1) (x,y)— f)\(l)(k)(m, y)| < 2M|)\§1)(k—|—
1 1
1)— )\gl)(k)|, it suffices to prove limy_, o |/\§1)(k‘ +1)— A(ll)(k:)| = 0. For the first term, we

have:

M Anss |Oé(k+1)§1)(l‘, y) - ak§1>(x,y))|dy
7T(y) f)\f) (Q?, y) f)\(Q) (ZL‘, y)
= M + — -k dy
ANSs W(I) f)‘l(clll (‘ra y) f/\gcl) (‘7:7 y)
< o/ ha @y ey
— (@) Jans, | fyo (@y) S (@y)

It is easy to check that when limy_ ])\gi)(k +1) — )\gz)(k)\ =0, ¢ = 1,2 the first term
a9 (k)
J

(@) _
tends to zero. We know that )\j (k) = a0’

1 =1,2; 5 = 1,2. Consider the

random variable d,, = (X,;; — X,,)% Since § is compact, we know that d, is bounded
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by some R > 0. Therefore

A+ 1) = A ()

_ dV(k+1) A
dV (k + 1) + dy” (k + 1) d“)(k) +dy) (k)
dM(k + 1)d(1)(k) 4V (k)dd (k + 1)
Ak + 1)+ dV (k + D[V (k) + a5 (k
(k + 1)~ {[kdi" (k) + (241 — 2) ]d“><k
[V (k+1) +dP (k41
(k + 1) {[kd{" (k) + (zrs1 — z4)*]d5” (k
[V (k+1) +dP(k+1

R? B R2

b+ D@D (k+1) +d(k+1) X (@ —2i0)?

~—

]

IN

IN

‘-’“_,‘—’“
—
ISH
=
-
~~
&y
N
QU
N —~
=
=
—
5
SN—
=

AN
l
s
>
l
8

So we have: |IL,  (v,A)— IL,(x,A)] — 0. Similarly we can prove |I, (z,A) —

L,(x,A) —0,|IIL,, (z,A)—IIL,(x,A)]—0,|IV,_, (x,A)—IV,, (z,A)| — 0. There-

Vk+1 k+1

fore, the Diminishing Adaptation holds. O

7.3.2 The Ergodicity of the Dual RAPT Algorithm

Further we will prove the ergodicity of the Dual RAPT algorithm in this subsection. As

stated in section 7.2, the proposal distribution at the ¢t — th step of the Dual RAPT is

(z, dy) = Zlg 0" (z.y) + 2 () ().

where the qZ@

, © = 1,2 are Gaussian distribution with the covariance matrices adapted
using the same algorithm as [26] regionally. More precisely, ()( ,y) @ = 1,2 are the

Gaussian distributions with mean at the current point X, ; and covariance C’Z-(t) =

C(t) (X, X7, XZN . )) where C’i(t) is defined as below:
Coi, t<to
o =
sqcov(X] X} - XZN o)+ saels, >t
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Here s4 is a parameter that depends only on the dimension d, € > 0 is a constant that we
may choose very small compared to the size of S, I; denotes the d-dimensional identity
matrix and the initial covariance Cjy; is a strictly positive definite matrix chosen in line
with our prior knowledge of .

We note that all the parameters adapted in the kernel of the Dual RAPT are made up
of four parts: )\gi) (t),1=1,2 and Ci(t), i = 1,2. In the proof of Theorem 1 of [26], they

have proved the following inequality:
il < C < eoly,

for some ¢1,¢5 > 0 (i.e., both C' — ¢1 Iy and ¢l — C' are non-negative-definite). If we
define M(¢y, ¢0) = {M € Mg|er I, < M < ¢yl } where M, is the set of all positive definite
matrices of dimension k, that is, Ml(c1, c2) consists of all the positive definite matrix M
such that both M — ¢iI;, and coly — M are non-negative definite. Then the parameter

space can be expressed as:
Y={" A0, G0, 6%) € [0,1] ¢ [0,1) x Mi(er, e2) x M(ea, )}
Without loss of generality, we will consider the parameter space
Y =[0,1] x [0,1] x M(cq, c2) x M(eq, ¢2).
Then we can prove that the proposed algorithm is ergodic.

Theorem 7.2. Suppose the state space S is compact, 7 € M(S) and g¢;(x,y) are
Gaussian distributions as described above. Then the Dual RAPT algorithm is ergodic

with respect to the target distribution .

Proof. Using the fact that infx’yes, MEM(er.c) qu(x,y) > 0 (where ¢ denotes the density
function of Gaussian distribution with variance M), we have inf s ¢,(z,y) > 0.
Then following a similar proof to that of the Lemma 7.1, one can show that there exists

0 < p <1 so that for any v € Y

1Py (@, ) = ()] < p"
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Using the fact that d,, = (X,,11— X, )? is still bounded and the similar proof of the Lemma

7.2, we can prove that the Diminishing Adaptation condition holds for Dual RAPT. [

7.3.3 The Ergodicity of the Mixed RAPT Algorithm

Finally we show the ergodicity of the Mixed RAPT algorithm which has one more compo-

nent qfl(ji)wle
(t)

Quhore 1 (7.5) at the t—th step by adapting its covariance matrix as in [26]. First compute

than the Dual RAPT algorithm. We still tune the Gaussian proposal density

the empirical covariance matrix C® of {X;}_, as:

e Co, t<ty

sqcov(Xo, X1, -+, Xy) + sa€ly, t >t

Then we will use the proposal of Mixed Dual RAPT algorithm at the t — th step as:

2

(O(z,y) = (1-5) Y 1s, (@) (0" (2,9) + No(t)as” (2.9)] + Beiore (2, 9).
i=1
where qi(t)(x,y), )\Et), i = 1,2 are the same as those in the dual adaptive kernel and
qg,)wle (z,y) is the Gaussian proposal distribution with covariance C®. Similarly following

the proof of Theorem 1 in [26] and the construction of the covariances C®, C ® 5= 1,2,

7

we know that:
al, < C'(t), C’i(t) < coly,.
for some c1,cy > 0. Therefore we consider the adaption parameter space as:
Y =10,1] x [0,1] x M(cy, ca) x M(eq, ) X M(cq, c2).

Theorem 7.3. Suppose the state space S is compact, 1 € M and the mized proposal
distribution ¢ (z,y) is defined as above. Then the Mized RAPT algorithm is ergodic

with respect to the target distribution .
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Proof. Given that inf ¢ MEM(er.c) qum(z,y) > 0, then infx,yes,'yey ¢y (z,y) > 0. Fol-

lowing the similar proof of lemma 7.1 there exists 0 < p < 1 so that for any v € Y
1P (@, ) = ()] < p"
The proof for showing diminishing adaptation is similar to that of the Lemma 7.2 using

that d, = (X,11 — X,)? is bounded. Then, following the Theorem 5 in Roberts and
Rosenthal [[48]] (2007), we obtain the ergodicity of the Mixed RAPT. O

7.4 Real Data Example: Genetic Instability of Esophageal
Cancers

Cancer cells undergo a number of genetic changes during neoplastic progression, including
loss of entire chromosome sections. We call the loss of a chromosome section containing
one allele by abnormal cells by the term “Loss of Heterozygosity” (LOH). When an
individual patient has two different alleles, LOH can be detected using laboratory assays.
Chromosome regions with high rates of LOH are hypothesized to contain genes which
regulate cell behavior so that loss of these regions disables important cellular controls.

To locate “Tumor Suppressor Genes” (TSGs), the Seattle Barrett’s Esophagus research
project [8] has collected LOH rates from esophageal cancers for 40 regions, each on a
distinct chromosome arm. A hierarchical mixture model has been constructed by [54] in
order to determine the probability of LOH for both the “background” and TSG groups.
The labeling of the two groups is unknown so we model the LOH frequency using a
mixture model, as described by [15]. We obtain the hierarchical Binomial-BetaBinomial

mixture model
X; ~ nBinomial(N;, m1) + (1 — n)Beta-Binomial(N;, ma, ),
with priors

n ~ Unif[0, 1],
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7 ~ Unif]0, 1],

7y ~ Unif{0, 1],

v ~ Unif[—30, 30],

where n is the probability of a location being a member of the binomial group, m is
the probability of LOH in the binomial group, 75 is the probability of LOH in the beta-
binomial group, and 7 controls the variability of the beta-binomial group. Here we
parameterize the Beta-Binomial so that v is a variance parameter defined on the range
—o0 < v < o00. As v — —oo the beta-binomial becomes a binomial and as 7 — oo the
beta-binomial becomes a uniform distribution on [0, 1]. Similarly we also parameterized

n, ™ and my. This results in the unnormalized posterior density

7T(777 1, 7T2,"}/’-/13) X Hi\ilf(mu nz’na 1, 71'2,&)2)

on the prior range, where

n
f(x,n|77,7r1,7r2,w2) =7 Wf(l_ﬂl)nfm"‘
T
n r'(Z) I'(z+ 22)
+ (=) [(Z2) (QI_WQ)F(n—a:jLﬂ)QF(n—i-l)
a w2 w2 w2 w2

and wy = 2(%767) In order to use the random walk Metropolis we have used the logistic
transformation on all the parameters with range [0, 1]. However, all our conclusions are
presented on the original scale for an easier interpretation.

Using the optimization procedures used by [54] we determine that the two modes of 7
are reasonably well separated by the partition made of Sy = {(n, 71, m, ) € [0,1] %[0, 1] x
[0,1] x [=30,30]|my > 1} and Sy = {(n, 71, m2,7) € [0,1] x [0, 1] x [0, 1] x [—30, 30]|my <

7T1}.
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Mean in | Region 1 | Region 2 | Whole space
n 0.897 0.079 0.838
m 0.229 0.863 0.275
e 0.714 0.237 0.679
¥ 15.661 -14.796 13.435

Table 7.1: Stmulation results for the LOH data.
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Figure 7.3: Scatterplot of the 50,000 samples for (71, m).

Simulation results

105

We will combine the parallel chain strategy with the MRAPT algorithm together in

this part. For more details of the parallel chain strategy, readers can refer to R.Craiu,

J.Rosenthal, and C.Yang [14]. Here we run five parallel mixed RAPT algorithms to

simulate from 7 using the partition S;USs. After 50, 000 iterations, we obtain )\gl) =0.923

and A§2) = 0.412. Further results are shown in Table 7.4. A two dimensional scatter plot

of the (7, m3) samples which is similar to the findings of [54] (Figure 8) is shown in Figure

7.3.
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Figure 7.4: The total number of switches times for the five parallel Mized RAPT vs the

number of switch times of a single Mized RAPT run for 300,000 iterations.

The most advantage to run five parallel MRAPT together is that all these parallel
chains can share all the past information so that they can learn the “geography” much
more quickly than a single chain, although the total iteration times are the same. To
see this fact more clearly, we run a single Mixed RAPT algorithm for 300,000 iterations,
and five parallel Mixed RAPT algorithms independently for 60,000 iterations each. To
be fair, we plot the total number of switches for the five parallel chains up to 60,000
iterations versus the number of switches for the single chain up to 5 x 60, 000 iterations
in Figure 7.4. One can see that the five parallel Mixed RAPT switch the models much

better than a single chain.

Finally we use the BGR diagnostic statistic as a criterion to describe how these
parallel chains learn from each other. More precisely, following the definition of the BGR
diagnostic statistic, we can assume all chains have the same information regarding =
when the BGR is close to 1. For this LOH data example, we can see that each chain has

learned almost all the information from the other chains after 40,000 iterations, because
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Figure 7.5: The evolution of BGR’s R statistics

the BGR statistic becomes below 1.1 at that time (see Figure 7.5). In the practical use

we only need to run a single chain to reduce the computation costs.



Chapter 8

The Ergodicity of Modified Mixed
RAPT on the State Space R¥

8.1 Introduction

In last chapter we designed the MRAPT algorithm to sample from a multi-model distri-
bution on compact state space(see also [14]). Here we will try to construct the modified
MRAPT algorithm when the state space is R*¥ and show the ergodicity of modified
MRAPT algorithm under additional conditions. Furthermore, we will simulate some toy
examples to discuss the complications arising when using AMCMC, especially adaptive
random walk Metropolis, for sampling from multi-model targets and also when the op-
timal proposal distribution is regional, i.e. the optimal proposal should change across
regions of the state space, and check our theoretical results.

We still suppose the state space X = §1USs. Given the initial value Xy = xq and I'g = 7y,

at t — th step we will run the MH algorithm with the adaptive proposal distribution:

0 (w,y) = D LS = BN (0l (@.9) + 2705 (@ 9)] + Basnge(2.9)} (8.1)
(t)

where ¢;7, j = 1,2 are Gaussian distributions with adaptive variance covariance

108
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matrixes C\”) as in [26] (henceforth denoted HST), but here we need to do a little change
to ensure the ergodicity and avoid singular cases. Suppose {z;}!_, are the samples
obtained until time ¢, let N;(t) is the total number of sample points {x} }év;(ot) generated
up to time t that are lying in S;. We also define the set of time points at which the
proposal is generated from (); and the current state is in S, Wj(f) ={0<s<t: z5€

S; and proposal at time s is generated from ();}. For some large B > 0 and 0 < 7 < %,

we let q(t)

whote P€ @ Gaussian distribution with variance covariance matrix C® . Since it

is hard to estimate the bound of samples {z;}!_, for any fixed ¢, we can not ensure the
ergodicity if we still tune the C* as in [26]. We construct new samples {y;}i_, using
{x:}t_y. Let y; = x;, i = 1,---,ng, when ¢t > ng, if |z;| < B+ ¢ for some B > 0 large
enough and 0 < 7 < %, we still set y;, = x;, otherwise 1, = x;_;. The we can adapt C* as
below:

1. When ¢ < ng, we set C' = Cy, where C} is some fixed positive definite matrix;

2. When t > ng, if Tr(sicov(yo, y1,- - -, yt) + skelx) < L where L > 0 is large enough, we

will set

C(t) = SkCOU(yOa Y1,y yt) + SkEIlm

otherwise CY) = C(t=1).

As a basic optimal choice for scaling parameter we have adopted the value s, = % from
[19]. Similarly we let qgt) be Gaussian distributions with adaptive variance covariance
matrixes C\”. Let us construct new samples {ui, };V;g) first, Let y; =}, 1 <t, < ny,
when t, > ng, if [z} | < B+ Ni(t)” for some B > 0 large enough and 0 < 7 < %, we still
set y;, = x; , otherwise y; =z . We can adapt " as below:

1. When ¢ < ng, we set C! = C, i = 1,2, where C;, i = 1,2 are fixed positive definite

matrices;

2. When t > no, if Tr(cov(y;,, vi s - - y,fN_(t)) + spely) < L, we will set

C(t) = SkCOU<yZ07yti17 o "yZNi(t)> + 5k€[k7
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else C® = Ot-1),

Since we do not know enough information to find the perfect partition S;,7 = 1,2 espe-
cially when both model affect each other too much, we will use the linear combination of
qgt),i = 1,2 at each region. We will adapt the coefficients )\gi) (), i,5 =1,2 of qj(.t) (x,y)

when = € §; respectively using the ratio of jump distance. That is
. dD (¢

) =

2 n=1 &y (1)

where d,(f) (t) is the average square jump distance up to time n computed when the

accepted proposals are distributed with (), and the current state of the chain lies in S;.
- ; at? :
To avoid singular case, we suppose )\g‘) (t) = max{a, Pﬁ?’(ﬂ}’ where a > 0 will take

very small value.

Recall that the average square jump distance:

ad g2

d(t) = Lsewly [Tivs — T,

T Wy |
gt

where |Wj(:)| denotes the number of elements in the set Wj(:). Since all the covariances

fol0) C(t)

7, 1= 1,2 satisfy the matrix inequality :
e, <CW, Y < LI,
and AV (t)=1- )\g) (), we can see that the parameter space consists of

(0P @), 2 @), o cDy e [a,1] x [a, 1] x M(e, L) x M(e, L) x M(e, L)},

where M(e, L) = {M € Mylel, < M < LI}, M, denotes the set of all positive definite
matrices of dimension k, that is M(e, L) consists of all the positive definite matrix M such
that both M — el and LI, — M are non-negative-definite. Without losing generalities,

we let the parameter space

Y =a,1] x [a,1] x M(e, L) x M(e, L) x M(e, L).
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We hope the mixed RAPT proposal to use “better” proposals with high proportion in
each region, and expect the qpnoe is more efficient to switch the models through learning
the “geography” of different regions separately than the general AMCMC algorithm.

To prove the ergodicity theorem of MRAPT algorithm when the state space is RF, we
need the target distribution 7 to have smoothly decreasing properties in its tail. First we
suppose the target density 7 on R* super-exponential that is it has exponential or lighter

tails. More precisely, m(x) is positive and has continuous first derivatives such that:

lim n(x) - Viogn(z) = —oo,

|z|—o0

T

where n(x) denotes the unit vector Tl The condition implies that for any H > 0 there

exists R > 0 such that:

et OUD) < exp(-att) (Ja] > B, a > 0) (52

m(x)
That is, 7(z) is at least exponentially decaying along any ray with rate H tending to
infinity as x goes to infinity. It also implies that for ¢ small enough the contour manifold

C. defined by C. = {x € R¥|r(x) = €} can be parameterized by the unit sphere S¥~1,

that is:

Ce = {r(Q)¢|¢ € S*13,

where 7 is a positive continuous function on S*~!, and the set enclosed by the contour
manifold Cf(;) through a point z is the region Ay(z) = {y € R¥|r(z) < 7(y)}. Secondly

we assume target density 7 is decreasing along any direction when |z| is large enough.

That is:
limsup n(z) - m(x) < 0, (8.3)
|z|—00
where m(z) = é:ggr We suppose € = {all the positive density functions satisfy (8.2) and (8.3)}.

We also suppose 05; is a hyperplane. However, Theorem 8.1 holds also when 0.5; is any

surface with good smooth properties.
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Theorem 8.1. Suppose m(x) € €. Let Sy U Sy be a partition of R* where 0S; is a hy-

perplane in R*. Then the above MRAPT algorithm is ergodic with respect to distribution

7(+).

8.2 Preliminary

In the MRAPT algorithm, we actually consider a family of kernels {P,},cy generated
by the adaptive MH algorithm. For any v = (A" (1), \?(y),c, ¢ c™) e ¥, P, is

the transition kernel corresponding to the proposal distribution

2

0 (@, y) = > L(SH (1 = BN (a” (2,9) + (1= A () (@, )] + Bai e (2, 9)},

=1

where qgi) and ¢ are Gaussian distributions with variance matrix C’gi) and C,, respectively

and with mean x. We will apply the Theorem 4.4 to prove teh Theorem 8.1 . Before
starting the proof, we introduce some notations first. Define the acceptance region for

eacthRkandveyas

Alz;y) = {y € R¥|n(y)qy(y, ) > w(2)qy (2, )}
Denote:
Ai(z;y) = Alzsy) NS i =1,2.

)ay

The acceptance rate o (z,y) = min{1, %}, and the rejection region is

T)qy
R(z;7y) = {y € R¥|n(y)q (y, z) < m(2)g,(z,y)}.

Denote:

We also denote:

A(z) = {y € R¥|r(y) > ()},
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R(z) = {y € R*|x(y) < 7(x)}

and denote A;(z) = A(x) N S;, Ri(x) = R(x)N S, i =1,2.

8.3 Some Technical Results

Let us prove some lemmas first.

q’Y (y7 )
¢y ()

< M for anyy € ).

Lemma 8.1. For any v € Y, we have 1s uniformly bounded. That is there exist

M>m>05uchthat0<m<q”g )

Proof. Without losing generalities, suppose x € S;. Obviously when y € S;, we have

% = 1. It suffices to prove the result when y € 5. In this case we know that
(2 2
w.r) _ (=B )(7) “’( y) + (1= A7 (0))as” (2, 9)] + Beie (@, )
1
@y 1= (@) + (1= A0 (@ y)] + BaSie (. 9)
AP d @) +1-AP () @) | 8 a) e (xy)
_ Aﬁ“(w)qﬁ”(:c,y>+<1—x“>w))qé”(x,y) 102D el @) +(1-27)ad” (@)
B 1 _|_ qfu’yh?ole(a:’y) .
1- ﬂx(”(v) (@) +1-2D ()ed” (29)
&)
We can denote W = -2 Guhole (2:9) > 0. If we know that there exist

=820 (el @)+ 12 (1))as ()

A (e @)+ (-2 ())as” (@)
M > 1> m > 0 such that for any v € J, m < AT (@)t AT e (@) < M, then

4 (ysr) o MAW qw(y7 ) m+W
we have ey < T < M and ey > Ty > m. We have

(2) M (z,) (2
A (g @, y) + 1= A0 @ y) N ey (”( » T AT0)
()
M (@ y) + (1= 2 0)a (@) AP ()4 D 4 (1-20()

a5 (@y

AP ()z+(1-27 (7))

()
Let » = &% o know that 0 < 2 < co. Consider function g,(2) = T e (1A ()
1 )z —A

(7)( )

we know that:

S () = — M) =XN00)
! AP ()2 + 1= AP ()2
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If )\52) (v) > /\gl)(fy), we have g,'y(z) > 0, then g,(z) is increasing function. So we have:

9:(0) < 9,(2) < g(0)

1— )\(2) ~ )\(1) ~
én( ) < gy(2) < §2>( :
L—X\ (V) Al (7)
1
= 1<g,(2) < o

If Agz) (7) < A§1)(7), we have g;(z) < 0, then g(z) is decreasing function. Similarly we
have

a<g,(z) <1

From all above we know that: £ > g(z) > a, therefore we can let m = min{a, 1} and

M = max{%,1}. O

Since m(z) is super-exponential, we know that for any v € ) there exists §; > 0 such
that for any y € C'*, rw (01) ={y + sn(y)|ly € Cr(z) NS, s = 61}, following the Lemma 8.1

we have:

7(y)g, (y, ) m(y

@ (ey) = e

< Mexp{—aH} <1

)
)
for = large enough. That is C’ »(01) C Ro(x). Similarly, we also can choose §; > 0, then
consider any y € C_,,(61), where C_ (61) = {y — sn(y)|y € Cr(z) N S2,s = d1}. Denote

—
Y is the intersection point of the radius with direction Oy and the contour Cr(y).

m(y)q,(y, ) mﬁ(y)
m(x)gy (7, y) — 7 (Ya)

V

> mexp{aH} > 1
for z large enough. That is C, (61) C Az(x). Then we denote:

61(x) = inf{d; > 0| for any y € C, (1), % > 1
Y\

7(y)q,(y, )

and for any y € C7_ (61),
@ @) @)

< 1 for any v € Y}
We know that d;(x) — 0 as |z| — oc.

Lemma 8.2. If 7 € &, then there exists n > 0 such that Q~(x, A(x;7v)) > n for any

yey.



CHAPTER 8. THE ERGODICITY OF MODIFIED MIXED RAPT ON THE STATE SPACE R*115

Alx) I-, 1 1 :i

L

Figure 8.1: The contour manifold Cry (the curved solide line), the radius §;—zone
Cr@)(0;) i = 1,2 (the areas between the four curved dotted lines) and the regions A;(x)

and R;(z).
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Figure 8.2: The 0y(x)—zone and the cone M(z).

Proof. Following (8.3), we know that there exists 8 > 0 such that for x sufficiently large
n(x)-m(x) < —F. With this § and with fixed K > 0, we consider the cones (see figure

8.2):
W(z)={z—afl0 < a<K,&e S |¢ —n(z)| < %}.

For x large enough that n(y) - m(y) < —n and [n(z) — n(y)| < 4 for all y € W(z) we

have for y =  — af in W (x). Since that

§-mly) = (€ = n(2) +n(x) = nly) +n(y)) - mly) < 5+ 3 =1 =0,
and the Lemma 4.2 in [32], we know that W (x) € A(z). Define
Wi(z) ={z — a§|§ <a< K,6€ S |¢—n(x)] < %}

Because 0,(x) tends to zero as |x| tends to infinity, for fixed K, Wi (x) N Cr (02(2)) = 0.
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Therefore for any x € S; and |z| large enough we can get:

limsup liminf @, (x, A(x;7)) > limsupliminf Q,(z, Wi(z)) >

veY  lzl—oo yeYy  lzl—oo
> min{Qf (x, Wi (2)), QY (2, Wi (@)} = ¢ > 0.
The last equation is followed by the fact that QSQ), 1 = 1,2 are both symmetric. So the

Q(()i) (x,-)—measure of Wi (z) does NOT depend on z. O
Using the above lemma we can prove that:

Lemma 8.3. Consider the kernel family {P,}cy, there exists V : R — [1,00) such that
PV (x)

sup lim sup ———~

< 1.
veY loj—oo  V(T)

Proof. Assume z € Sy, denote p = (1 — BN (gl (z,y) + (1 = A (1) (=, 9)] +

ﬁqm"le(%’ y), i =1,2. Consider V(z) = Cﬂ(x)fé, where ¢ is a constant such that V(z) >

1. and Let us compute P‘V/‘(/x(f) for any v € ),
P,YV($) _ ka qV<w7y)O"y($ay)ﬂ-(y)_%dy + (1 - ka Q’Y(x7y)a’y(x7y)dy)6ﬂ-(x)_%
V(l’) cﬂ(x)*%
()3 W), (y,2) | 7(y)2q,(y, )
= ¢ (z,y) dy+/ gy (z,y)[1 — + |dy
/Am) T n(y)z Ria) m(@)gy(,y)  w(2)2q,(2,y)
1 1., 1 (2) 1/2
m(x)2 m(x)2(py (2, y)2 _ (py (2,9))
= / p (@, y) ( )1dy+/ P (z,y) );< ZQ) T X (71) 1/2dy
Av() m(y)2 As () ()2 (py (z,v)  (py'(7,y))
(1) (1) m(y) (1) W(Q)sz) (z,y)
+ Py dy — py (2, y) — =S dy — Py ———m,
R(z:) Ri(x) m(x) Ra(@) | T(x)py (7, y)
1 1 (2) 1 (2) 1
m(y)z m(y)zpy (x,y)2 _ (py ' (z,y))2
+ / pgl)(%y) (y)ldy+/ pgl)(ﬂfay) ( )1 Zl)( )1 X ( Zl)( Tdy
Ri(x) m(z)> Ra(x) m(x)2py (z,y)2  (py (2,9))2

| @ 1
+ / P (2, y) min{l, 1 }dy+/ (Hflp(j))min{L (M%y)) }dy
Ri(a) m(z)? Ra(2) m(z)
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Step 1: For any n > 0,there exists K > 0 which is independent with the choice of = such
that each of the first six integrals outside the ball B(x; K) are less than 7%. For example,

for the sixth term

(2) 3
i o m(y)py (z,y)\* 1
/ (H2 1p'(y)(£7y)2>mln{17 ( ’(Yl) dy S H2 1p,(y)($,y>2dy
Ra(2)NB(z;K)e m(x)py’ (z,y) Ra(z)NB(x;K)e

< / max {q(gl)(z), q(()Q)(z) }dz
B(O K)e

< 1_8 if K is large enough.

Step 2: Suppose ¢,(z,y) < E for i = 1,2 for any y € B(z;K) and v € Y. Then
for fixed n, when |z| is large enough, there exists d; > d;(x) such that for any y €

T @y x . o
Clliy(02) N R(z) we have —Wgzwg’,yi < min{yg, [¢5)*} and for any y € C_,,(02) N
ng) (z,y)

A(x) we have % < min{ {5, [BLE}Z} Then we can define:

— infls, > . W) L 0
02(x) = inf{dy > b (x)[for any y € C,(d2) N R(z) we have ()0 (2.9) min RE [18E]

m(
fi iy A have ————"-= < f :
orany y € C 1 (d2) N A(z) we have W(y)qw(y, ) min { L [18L] } or any v € YV}

Then there exists N > 0, such that for any = with |z| > N the first six integrals which

are outside the ball of radius dy(z) and inside in any ball B(x, K) will be less than 5.

For example,

/RQW)mB(x;K)mc:(I)(«b(x)) m(x)py (7, y)
17
</ 12, ()3~ dy
Ray(@)NB(@: KNGS, (52(a)) 18K
< / E—_dy
Ra(@)NBKINCY, (5a(@)  18E
< I
= 18

Step 3: Since dy(z) — 0 as |x| — oo, for the fixed K and n > 0 in step 1, there exists

N large enough such that for any |z| > N; we have:

Le n
1 (Criay (92(2)) N B, K)) < 705
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Then we have the first six integrations which are inside the radius ds(z)—zone in any ball

B(z, K) will be less than % too. Therefore following the above analysis, we know that:

PV
lim sup P Viz) < n+ limsup Q,(z, R(z;7)).

Since 7 is small enough, we only need to prove that:

limsup Q. (z, R(z;7)) = 1 — liminf Q. (x, A(z;v)) < 1.

The last inequality is followed by the Lemma 8.3. O]

Lemma 8.4. Suppose q(z) is the k—dimension Gaussian distribution with variance ma-
triz X2 such that el <3 < LI < (L + p)I where p > 0. Then there exists R > 0 such
that for any |z| > R, we have q(z) < qo(2), where qo(2) is the k—dimensional Gaussian

distribution with variance matriz (L + p) - 1.

Proof. We need to find z such that
kl —e” 2tE1z
a(z)  _ (2m 82 _
qo(z) —— (N
(2m) 3| (L+p)1]2

N

(LA s @ron <«

BE -
If we denote ¢ = 2%, then we have 2/(X~!1 — (LI)™1)z < ¢. Since (37! — (LI)7!) is
positive definite, {z : /(X1 — (LI)™1)z < ¢} is the interior of an ellipsoid and its longest

semi-axis is ﬁ where ) is the smallest eigenvalue of (X' — ((L + p)I)~'). We know

that A\g > % — L+rp = ﬁ, therefore the longest semi axis less than L(pL—jEm. So we can
set R = L(pL—jEm to satisfy the conclusion of the lemma. O]

Recall that the distance between two n x n matrices M; and My can be defined as

| My — Ms| = max{|(M);; — (Ma);]|1 <4, j <n}. Then we have:

Lemma 8.5. |[Ct) — CO|| = 0 and | — CP|| — 0 as t tends to infinity.
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Proof. To prove that ||[C*) — C®|| — 0 as t tends to infinity, obviously we only need

to check [[cov(yo, 1, - - - yt) — cov(yo, yr,- - tr-1)|| — 0 as t — 0. We denote C) =

cov(Yo, Y1, - -, Yi—1). Then we have the following the recursion formula:
cen a0 Lig gt Vgt )
B— / Yt—1Yr—1 YtYe T YtYs )s
Pk
where g, = —=%*. So

|+ — ) =

1o 1. -
= ||;C“) = Sty = (E+ D57 + ytytTH <
e .t

;C(”H 1G5 — =

A

—uyl |+ = HytytTH~

Recall that C') = %(Zz o iyl —(t+1)g-15/L ), following the fact that |y;| < B4+n”, 0 <

K < 3, we have || 1C®|| — 0 as t — oco. Similarly Hlyyd | — 0 as t — oo.

27

Regarding the second term we have:

o t+1
[ - — 0.0 || =
o t+1 YUl Gyl yy

= ||yt—1ytT—1 t (yt 1yt 1+ tt L+ tt . il || <

< —IIyt Ui 1||+ ||ytyt 1H+ Hyt e | it Hytyt .

Using |y;| < B +n", 0 < k < 5, we can check that each term in above formula tends

to zero as t tends infinity. Therefore we have ||[C*1) — C®|| — 0 as t tends to infinity.

(1) _ (0

Similarly we have and ||C; | = 0ast— oo. O

Lemma 8.6. The Diminishing Adaptation condition holds for the MRAPT algorithm.

18P D @) +1-2A (1))ad” (@) +845) 1. (z.y)

Proof. We denot
roof. We denote ry(z,y) = = e AT e 5y o)

. For any x €

Sy and A € B(X), we have:

3

PreA) = [ oty min (.28 [ o P min {1 T2 by

£ 64 /Slpg%c,y)u—min{l,@}dw /Sng}Jr%(x,wu—m(sc,y)mm{LM}dy.

7(x

3
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Denote the first term Iy (x, A), the second term [ (x, A), the third term I1I;(z, A) and

the fourth term Vi (z, A). Then we have:

|PFk+1(x’A) - PFk(x7A)| < |ka+1({E,A) - IFk(IvA” + |]ka+1(x,A) - I‘[Fk<x7A)|

Iy, (0, A) = I (2, A)| 4 [TVi,, (2, A) = IV (2, A)]

Since for any n, we have eI < C’fn), C’Q(n), C™ < LI, following the Lemma 8.2, for any n >
0, there exists R > 0 large enough such that fB(x,R)CﬁSQ p%)(:c, y) min{1,r,, (x, y)%}dy <
n, where B(z, R) is the ball centered at z with radius R, and q%) is bounded inside

B(z, R). We denote agk) = min{1,r,, (z, y) } Then we have

[Ty, (v, A) = IIr,(x, A)| < / P (@, 9)ad ™ (@, y) — pD (@, y)al (@, y)|dy
ANS2NB(z,R)

1 k+1 1 k
+ / P8 (2, m)0 (@, y) — P (2, y)al? (2, y)|dy
ANS2nB(z,R)*

IN

k+1 i
/AS B ) @ y)al™ (@, y) = b)) (2, 9)08 (2, )
NO2NB(x,

k k
+ P (2, y)al )(95 y) — b, (2, )8 (z,y)|dy + 1

D (2, y) — o (2, y)|dy

VAN
T
o)

N
o)
m

@

2 =
x>
t

B

s

3

+ / %<awmm4aw—m$uwww+n
ANSNB(z,R

< | TP @Y ol
< AOS2OB($R 7'('(.7}) TYe+1\" RN

+»‘/‘ D (2,y) — pO(x, )ldy
ANS2nB(z,R)

™ & x,
For fixed x, we suppose % < B, for any y € B(x, R), then the first term less

than B, fAﬂSgﬂB(m,R) 7es (2, y) = 1 (2, y)|dy. It suffices to prove that |r,, ., (z,y) —

T+, (2, y)| tends to zero in probability as k tends infinity. Following the Lemma 8.5, we

(7n+1)(

have |g; (@)l = 0, i = 1,2 and |q0i) (2,) — a\. (2, y)] — 0 as n

whole whole

r,y) —

tends to infinity. Secondly consider the random variable d,, = (X, 41 — Xn)z, based on

the fact that el < C C(n < LI, we have for any n > 0, there exists M > 0 such that

P((Xp41 — X,)? > M) < max {/|

z|>M

Nd(z)dz,/ NLI(z)dz} <.
|z|>M



CHAPTER 8. THE ERGODICITY OF MODIFIED MIXED RAPT ON THE STATE SPACE RF122

Using the similar proof of the Lemma 4.2 in [14], |\ (n+1) = A%” (n)| — 0 in probability
as n tends to infinity. Therefore, it is easy to check that |r,  (z,y) —r,, (2,y)| tends to
zero in probability as k tends infinity. Similarly, we can prove [, SonB(a.R) |p£,?+1 (x,y) —
p%) (7, y)|dy tends to zero too. So |IIr, (v, A)—IIr,(z, A)| — 0in probability. Obviously
same conclusions hold for terms I, 11 and IV. So we have proved the Diminishing

Adaptation condition for the MRAPT algorithm. O

8.4 The Proof Of Theorem 8.1

Now we can prove the theorem 8.1 using the Theorem 4.4.

Proof. Following theorem 4.4 and lemma 8.6, we only need to check the simultaneously
strongly aperiodically geometrically ergodic conditions for the kernel family {P,}.cy.
Consider any compact set B(r) = {z € R¥||z| < r} and denote gy (z,y) is the Gaussian
distribution with variance matrix e}, and mean = and goa(z,y) is the Gaussian distribu-
tion with variance matrix LI and mean z. Since m(x) is continuous and positive, we can
define d, = sup,cp 7(z) < 0o and €, = min{inf, yep() qo1 (2, y), infs yepe) qo2(z,y)} > 0.
Obviously, we have ¢,(z,y) > € for any =,y € B(r) and v € Y. Then for any z € B(r)

and F C B,, we have
m y q y7x e e
Py(x,B) > / M/ﬁ *(dy) +/ gy (z, y) " (dy) >
R(z;7v)NB(r) A(z;y)NB(r)

m(x)
> / m(y)p e (dy) =
AN B(r)

m(y) < (dy) +

Ul &l
=
8
2
5
S+
=
IS NG

Thus B(r) is small and we have Py(z, E) > 6,1.(E), where 6, = TEC) and p,(.) =

d;
()
m(B(r))

0 < p < Isuch that for any |z| > 79, we have sup. ¢y,

is a probability measure on B(r). Lemma 8.3 indicates that there exists ry and

PV (z)
V(z)

[NIES

< p, where V(x) = cn(x)
Now let C = B,,, b = max{V (z)|x € C'}. We get kernel family { P, },cy is simultaneously

strongly aperiodically geometrically ergodic. O
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Remark: Based on the above construction of empirical covariance matrices from all
the historical simulations and the proof of the Theorem 4.4, we actually extended the
HST adaptive algorithm from compact state space to general state space. We can observe
that our empirical covariance matrices up to time ¢ do not come from all the history, but
from part of them which are bounded by B +¢™ or B + N;(t). It seems that we miss
some information from the samples which are out of B + t™ or B + N;(t). However we
know that B 4+ t™ or B + N;(t) both tend to infinity as ¢ tends to infinity, therefore the

loss will become less and less when ¢ increases.

8.5 Examples

In this section we will simulate some toy examples to verify our analysis before and check
the main theoretical results. More precisely we will make comparisons on the following
three aspects:

1. The efficiency of the MRAPT, the Dual RAPT and the HST algorithms to detect
different models in the case of two models being far way;

2. The number of switches between differen models of the modified MRAPT and the
HST algorithms in the case of two models being close;

3. The difference between running a single modified MRAPT and several parallel modi-
fied MRAPT.

Now we consider a mixture of two Gaussian distributions with equal weights as our target

distribution and the state space is the whole space R® which is not compact. We let

7T(ZIZ') = 0.5 X N(,ul, 21) + 0.5 x N(ILLQ, 22),
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L pi pi pi
pi L pio p

where p; are ten dimensional vectors and ¥; = o; pi pi 1 py e
pl .« .. DY p7, 1

10x10
1,2. Since any Gaussian distribution lies in &, following the Theorem 4.4 in Jarner and

Hansen [32],1998, we know that 7 € £. Then using the Theorem 8.1 we know that the
Modified MRAPT should be ergodic. The HST algorithm is ergodic too based on the

main results of [32].

For fair comparison we will consider six cases of target distributions with different mean

and covariance matrices. Let us consider the following scenarios:

Scenario A: p; =0.2, po =03, &£ = %, pij =3, po; = —3, 1 <5 < 10.
Scenario B: p; =0.2, po = 0.3, & =1, uy; = 0.5, pg; = —0.5, 1 < j < 10.
Scenario C: p; = —0.1, p, = 0.1, 2L = %, pij =3, po; = —3,1 <5 < 10.

o1 _

Scenario D: p; = 0.1, po = —0.1, 2 = 3, 1, =3, pugj = =3, 1 < 5 < 10.

q
)
Wik

Scenario E: p; = —0.1, pp = 0.1, Z = 3, pu1; =1, pg; = —1,1 < j < 10.
Scenario F: p; =0.1, po = —0.1, & = %, pij = 1.5, po; = —1.5,1 < j < 10.

We adjust the difficulty of the inter-model transitions by changing the distance between
w1 and po. Meanwhile we try to vary the shape of both models by using different covari-
ance matrices, like scenarios C&D and E&F. We let the partition be &7 = Z;ﬂl x; <0
and 82 = Z,ngl x; > 0.

We first consider the scenarios A, C and D in which the two models are far away.

We draw the histograms of the first two and the last two coordinates, i.e. x1, s, 9, 19
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Figure 8.3: Scenario A: The simulations of the first two coordinates and the last two
coordinates with mized RAPT after 50,000 iterations. The red curve is the true density

function.

with the true marginal density to observe the performance of the algorithms. Now let
us consider Scenario A. We try the HST algorithm for 50,000 iterations and show the
histograms in Figure 8.5. We notice that the performance in the second region is not
good even when we choose the initial values in this region. Similarly the dual RAPT is
not efficient to switch the models either, and the histograms of z1, x5, x9, 219 are showed
in Figure 8.4. However the mixed RAPT algorithm has a much better performance
in Scenario A. After 50,000 iterations, the parameters are /\gl)(50,000) = 0.681 and
)\52)(50, 000) = 0.353 and the histograms of the first two coordinations and the last two
coordinations are presented in Figure 8.3. Similarly neither HST algorithm nor Dual
RAPT algorithm can switch the models fluently in Scenario C and Scenario D. It seems
that HST algorithm is very easy to get stuck in the S; and Dual RAPT algorithm
is hard to jump out of the region ;. Even though we vary the initial values of the
covariance matrices the results do not become much better. In Scenario C the Mixed

RAPT still has a very good performance as in Scenario A when we select initial values
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Figure 8.4: Scenario A: The simulations of the first two coordinates and the last two
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coordinates using the dual RAPT algorithm after 50,000 iterations. The red curve is the

true density function.

randomly. However in scenario D running a single mixed RAPT algorithm with the
starting value zo = (0,...,0)T, 3 = 0.3 and Yypoe = diag(10,...,10) the algorithm
does not detect both models. So we increase the “detection” log by using the initial
Ywhote = diag(25,...,25), then the performance of Mixed RAPT is illustrated in Figure
8.10. We note that it is important for the initial variances of qunoe to be large enough
so that both modes are visited during the initialization period. Another strategy to
improve the detection efficiency is to run some parallel Mixed RAPT. For more details
see R.Craiu, J.Rosenthal, and C.Yang [14]. Here we run five parallel chains together with
10,000 iterations. The initial value for the i —th chain is z;0 = (3—1i,3—1,...,3—14)T for
1 <i<b5andlet §=0.2. The initial values ¥; for the Gaussian proposals ¢;, i = 1,2 and
the covariance matrix X, noe 0f Gunole are the identity matrices, i.e. 31 = X9 = Xnore = 1.
The histograms of the first two coordinates and the last two coordinates are shown in
Figure 8.9. We notice that there are much more freedom to choose the initial values of

the parallel MRAPT.
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Figure 8.5: Scenario A: The simulations of the first two coordinates and the last two
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coordinates with the HST algorithm after 50,000 iterations. The red curve is the true

density function.

Secondly we consider the Scenarios B, E; and F. In these cases both modes are close,
therefore it is not hard to detect all the models even by the HST algorithm. Figure 8.7
shows the simulation results of Scenario B after 50,000 iterations. As anticipated the
mixed RAPT simulates the Scenario B very well, which can be seen in Figure 8.6. In
these cases we will compare the number of mode switches for both the modified MRAPT
and HST algorithm. We show the inter-model switch times of both algorithms in Figure
8.8 in the case of Scenario B. We observe that the modified MRAPT switches modes
more efficiently. Similar result also happens when we analyze the switch times (Figure

8.11) of both algorithms for Scenario E.
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Figure 8.6: Scenario B: Histograms of the first two coordinates and the last two co-
ordinates using mized RAPT after 50,000 iterations. The red curve is the true density

function.

Figure 8.7: Scenario B: Histograms of the first two coordinates and the last two coordi-
nates using the HST agorithm after 50,000 iterations. The red curve is the true density

function.
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Figure 8.8: Scenario B: Number of switches for the HST algorithm (dashed line) and for
the mized RAPT (solid line).

Figure 8.9: Scenario D: The simulations of the first two coordinates and the last two
coordinates with the five parallel MRAPT chain after 500,000 iterations. The red curve

15 the true density function.
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Figure 8.10: Scenario D: The histograms of the first two coordinates and the last two
coordinates using Mized RAPT after 500,000 iterations. The red curve is the true density

function.
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Figure 8.11: Scenario E: The switch times of MRAPT versus HST after 100,000 itera-

tions.



Chapter 9

Conclusions and Further Research

Our first result focuses on the proof of CLT for uniformly ergodic Markov chain using
regeneration methods. Actually under the condition of the Theorem 5.1, we can define
the regeneration time for the common small set of all the kernels {P,},cy. The future
research direction is how to extend the regeneration proof to explore the CLT of adaptive
MCMC under the same conditions as in Theorem 5.1.

There are quite a few conditions and conclusions in chapter 5 and chapter 6. To compare
all of these, please see Table 8.1. One possible future research is to find out the sufficient
and necessary condition of AMCMC’s ergodicity under condition (a)(see some related
reference Bai,Roberts and Rosenthal [7]).

Another possible direction is to explore some weaker conditions than those in the Theorem
5.1 to ensure the ergodiciy, or to prove the open problem 20 in in Roberts and Rosenthal
[48] directly. And since the condition: {V(X,)}°, bounded in probability is hard to
check in practice, we should look for other equivalent conditions which are easy to verify
so that we can close some of the gaps between theory and practice.

Regarding the WLLN of AMCMC, we have also proved the WLLN for bound functions
under the conditions of the Theorem 5.1. The Theorem 6.3 could be extended to non-

compact state space with the super-exponential target distribution.

131



CHAPTER 9. CONCLUSIONS AND FURTHER RESEARCH

132

condition 1

condition 2

condition 3

conclusion

condition (a) condition (b) = Ergodicity of AMCMC
WLLN for bounded function

condition (a) condition (b) # | WLLN for unbounded function
condition (a) condition (b') = | WLLN for unbounded function
condition (b) condition (d) = Ergodicity of AMCMC
condition (b) | Ergodicity of AMCMC * condition (d)
condition (b) condition (d) + Ergodicity of AMCMC
condition (b) condition (ds) = Ergodicity of AMCMC
condition (e) condition (b) condition (f) | = Ergodicity of AMCMC

WLLN for bounded function

Table 9.1: Main results of Chapter 3,4 and 5.

Regarding the RAPT and MRAPT algorithms, intuitively we can generalize the regional

adaptive algorithms to the cases with more than two regions. However it is difficult to

make sure that the MRAPT algorithm visits each region often enough when there are

too many regions. More precisely, we hope to visit the different regions with differen

frequencies because the weight of each model may be different. How to design more

efficient regionally adaptive algorithm for more regions based on our current work is one

of the possible directions for our future research.
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