
Convergence of Adaptive Markov Chain
Monte Carlo Algorithms

Christian Rudnick

August 31, 2009; last revised September 7, 2009

STA496 Reading in Statistics:
Investigations of Adaptive Markov Chain Monte Carlo Algorithms

Summer 2009
University of Toronto

Prof. Jeffrey S. Rosenthal

Christian Rudnick
96 Gerrard Street East
Toronto, ON, M5B1G7

e-mail: christian.rudnick@utoronto.ca

1

Contents

1 Markov Chain Monte Carlo Algorithms 3
1.1 Algorithms . 5
1.2 Proof of the Markov Chain Convergence Theorem 6
1.3 Ergodicity . 11
1.4 Central Limit Theorems . 16
1.5 Drawbacks . 19

2 Adaptive Markov Chain Monte Carlo Algorithms 22
2.1 Algorithms . 22
2.2 Ergodicity . 23

2.2.1 General Spaces . 24
2.2.2 Compact Spaces . 27
2.2.3 Adaptive Metropolis Algorithm 28

3 A Simulation Study 32
3.1 Method . 32
3.2 Results . 34
3.3 Conclusion . 36

Appendices 40

A Recursive Formulas for the Mean and the Covariance 40

B R Code for the Algorithms 45
B.1 Standard Algorithm . 45
B.2 Algorithm Updating Every k0 Iterations 47
B.3 Algorithm Using the Last 1/k0 of the Iterations 49

C Plots for Simulations 52

2

1 Markov Chain Monte Carlo Algorithms

In the past century, several techniques to obtain random samples from ar-
bitrary distributions have been developed. Standard techniques such as the
Inverse CDF method, importance sampling, rejection sampling, and slice
sampling fail in many instances because they cannot be (efficiently) imple-
mented. Markov chain Monte Carlo (MCMC) techniques, in turn, can be
used to obtain approximate samples from a very large class of probability
distributions. This includes distributions that have a density with respect
to the Lebesgue measure which is known up to the normalizing constant.
To introduce MCMC algorithms, the concept of a Markov chain, which is
a discrete-time stochastic process where, intuitively, the next step depends
only on the current state, is needed.

Definition 1 (Markov chain). Let X be a set with σ-field F . A stochastic
process (Xn)∞n=0 is a Markov chain on X if there exists a transition kernel
P (·, ·) which is a collection satisfying that for each x ∈ X , P (x, ·) is a prob-
ability measure and for each A ∈ F , P (·, A) is a non-negative measurable
function such that for every initial distribution µ(·), every n ∈ N, and every
measurable Xi ⊆ Ai for i = 1, 2, . . . , n,

Pµ (X0 ∈ A0, X1 ∈ A1, . . . , Xn ∈ An)

=

∫
y0∈A0

∫
y1∈A1

· · ·
∫
yn−1∈An−1

µ(dy0)P (y0, dy1) · · ·P (yn−1, An).

If µ = δx is the distribution that assigns probability one to the point x, it
is written as Px instead of Pµ. Proceed in the same way for the operator of
the expected value. The n-step transition kernels are obtained by convoluting
the transition kernel with itself n times.

Definition 2 (n-step transition kernel). Consider a Markov chain on X with
transition kernel P (·, ·). The n-step transition kernels are given by

P 0(x,A) = δx(A),

and for n ∈ N, inductively by

P n(x,A) =

∫
x∈X

P (x, dy)P n−1(y, A),

where x ∈ X and A ∈ F .

3

If there is a distribution π(·) on the state space X which is invariant to the
application of the transition kernel, the Markov chain is said to be stationary
and π(·) is called the stationary distribution.

Definition 3 (Stationary Distribution). Consider a Markov chain with tran-
sition kernel P (·, ·). Then the Markov chain is stationary with stationary
distribution π(·) if

π(dx) =

∫
y∈X

P (y, dx)π(dy).

If a Markov chain has a stationary distribution, the n-step transition
probabilities converge to the stationary distribution under some regularity
conditions. Such a Markov chain is said to be ergodic. To define ergodicity,
the total variation distance needs to be introduced:

Definition 4 (Total variation distance). The total variation distance between
two probability measures ν1(·) and ν2(·) is

‖ν1(·)− ν2(·)‖ := sup
A∈F
|ν1(A)− ν2(A)|.

Definition 5 (Ergodicity). A Markov chain with transition kernel P (·, ·) is
ergodic towards its stationary distribution π(·) if

lim
n→∞

sup
x∈X
‖P n(x, ·)− π(·)‖ = 0.

It is now straightforward to give an informal definition of MCMC al-
gorithms: They are techniques that sample from a distribution π(·) via a
Markov chain which has this distribution as a stationary distribution. For
large n, the transition probabilities of the Markov chain and the stationary
distribution will be approximately equal.

The regularity conditions needed for convergence are irreducibility and
aperiodicity. A Markov chain is irreducible if each set of positive measure
can be reached in a finite number of steps from any point in the state space.

Definition 6 (φ-Irreducibility). A Markov chain which has transition kernel
P (·, ·) is φ-irreducible if there exists a non-zero, σ-finite measure φ(·) on X
such that, for all A ⊆ X with φ(A) > 0 and all x ∈ X , there exists k ∈ N
such that P k(x,A) > 0.

4

A Markov chain is aperiodic, if there does not exist a partition of the
state space such that the Markov chain deterministically cycles through the
partition.

Definition 7 (Aperiodicity). A Markov chain with transition kernel P (·, ·)
is aperiodic if there does not exist a partition of the state space X , that is
disjoint sets X1,X2, . . . ,Xk with k ≥ 2,

⋃k
i=1Xi = X , and π(Xi) > 0 for all

i = 1, 2, . . . , k and such that for i = 1, 2, . . . , k − 1,

∀x ∈ Xi : P (x,Xi+1) = 1

and
∀x ∈ Xk : P (x,X1) = 1.

Otherwise, the Markov chain is said to be periodic.

The convergence result is summarized in the following theorem:

Theorem 1 (Markov chain convergence theorem). An aperiodic and φ-
irreducible Markov chain with stationary distribution π(·) is ergodic towards
its stationary distribution.

Proof. An upcoming subsection will be devoted to the proof of this theorem.

1.1 Algorithms

Several MCMC algorithms have been proposed. The most prominent is the
Metropolis-Hastings algorithm [8] which proceeds as follows: One starts with
some initial value X0 = x0 and then iterates: Given Xn, one draws Yn ∼
q(Xn, ·), where q is an arbitrary probability distribution that may depend
only on Xn. q is the so-called proposal. Define the acceptance function by

α(x, y) :=

{
min

{
1, q(y,x)π(y)

q(x,y)π(x)

}
q(x, y)π(x) > 0

1 q(x, y)π(x) = 0
.

Then, draw independently U ∼ Unif(0, 1) and sets Xn+1 = Yn if U <
α(Xn, Yn) (“accepting the proposal”) and Xn+1 = Xn otherwise (“rejecting
the proposal”).

5

A predecessor of the Metropolis-Hastings algorithm is the Metropolis al-
gorithm [11] which is only suitable for symmetric proposals, that is, proposals
that satisfy

∀x, y ∈ X : q(x, y) = q(y, x).

In that case, the quantity α(·, ·) becomes

α(x, y) =
π(y)

π(x)
.

If X = Rd, there is a further important special case, the Metropolis algorithm
with normal proposals. Its family of proposals is given by

qd(Xn,Yn) :=
1

(2π)d/2(det(Σ))1/2
exp

{
−1

2
(Yn −Xn)′Σ−1(Yn −Xn)

}
,

for some positive definite covariance matrix Σ. Both special cases are impor-
tant since they lead to more extensive theory.

1.2 Proof of the Markov Chain Convergence Theorem

This section provides a proof of the Markov chain convergence theorem that
relies on the so-called coupling construction (a self-contained proof by other
means can be found in [1]). For this one needs the following definition.

Definition 8 (Minorisation Condition). Consider a Markov chain on a state
space X with transition kernel P (·, ·). It satisfies a minorisation condition if
there exists a probability measure ν(·) on X , a set C ⊆ X , an integer n0 ∈ N,
and a constant ε > 0 such that

∀x ∈ C : P n0(x, ·) ≥ εν(·).

In this case, ν(·) is called minorisation measure and the set C is said to be
a small set.

The coupling construction uses two independent Markov chains (Xn)∞n=0

and (X ′n)∞n=0 with identical transition kernels, but different starting distri-
butions: X0 = x, whereas X ′0 ∼ π(·). Even though the Markov chains
are (marginally) updated using the same transition kernel P (·, ·), their joint
construction is such that they “couple”, i. e. become equal, with maximal
probability. To achieve this, consider a small set C and define the following
loop:

6

(i) If (Xn, X
′
n) ∈ C × C, with probability ε, choose Xn+n0 ∼ ν(·) and set

X ′n+n0
= Xn+n0 or otherwise, choose (conditionally independent)

Xn+n0 ∼ 1
1−ε (Pn0(Xn, ·)− εν(·)) ,

X ′n+n0
∼ 1

1−ε (Pn0(X ′n, ·)− εν(·)) .

Construct the intermediate steps

Xn+1, Xn+2, . . . , Xn+n0−1

and
X ′n+1, X

′
n+2, . . . , X

′
n+n0−1

from the appropriate conditional distributions given Xn and Xn+n0 (or
X ′n and X ′n+n0

, respectively). Increase n by n0. In words, if the joint
Markov chain hits the set C × C, there is a small chance that the
coupling occurs.

(ii) If Xn = X ′n, then update Xn ∼ P (Xn, ·), set X ′n = Xn and increase n
by one; this is the case where the Markov chains have already coupled,
so nothing has to be changed.

(iii) If Xn 6= X ′n and (Xn, X
′
n) /∈ C × C, sample

Xn+1 = Xn ∼ P (Xn, ·),
X ′n+1 = X ′n ∼ P (X ′n, ·),

and increase n by one.

The usefulness of this construction becomes evident by the following lemma.

Lemma 1 (Coupling inequality). Let Xn and X ′n be the Markov chains de-
scribed above. Then,

‖P n(x, ·)− π(·)‖ ≤ P[Xn 6= X ′n].

Proof. From the coupling construction, in particular the fact that Xn and
X ′n are marginally updated from the transition kernel P , it follows that

7

P n(x,A) = P[Xn ∈ A] and π(A) = P[X ′n ∈ A] for all n ∈ N. Therefore

‖P n(x, ·)− π(·)‖ = sup
A∈F
|P n(x,A)− π(A)|

= sup
A∈F
|P[Xn ∈ A]−P[X ′n ∈ A]|

= sup
A∈F
|P[Xn ∈ A,Xn = X ′n] + P[Xn ∈ A,Xn 6= X ′n]

−P[X ′n ∈ A,Xn = X ′n]−P[X ′n ∈ A,Xn 6= X ′n]|
= sup

A∈F
|P[Xn ∈ A,Xn 6= X ′n]−P[X ′n ∈ A,Xn 6= X ′n]|

≤ P[Xn 6= X ′n].

It should be mentioned that the coupling inequality is valid for the dis-
tributions of two arbitrary random variables (the proof remains the same).

To prove the Markov chain convergence theorem, three further auxiliary
results are needed and two of them will only be stated without proof. The
first one guarantees, under fairly general conditions, the existence of a mi-
norisation criterion.

Lemma 2. Consider a φ-irreducible Markov chain on a state space X that is
equipped with a countably generated σ-field. Then the Markov chain satisfies
a minorisation criterion with small set C and minorisation measure ν(·).
Moreover, the small set C ⊆ X satisfies ν(C) > 0.

Proof. See [9] or [12], theorem 5.2.1.

The second one is a rather technical result which makes use of the aperi-
odicity assumption in the Markov chain convergence theorem.

Lemma 3. Consider an aperiodic Markov chain with transition kernel P (·, ·)
and stationary distribution π(·). Assume that the Markov chain satisfies a
minorisation criterion with minorisation measure ν(·) and a small set C such
that

∀x ∈ X : ∃n0 ∈ N : P n0(x,C) > 0.

Let
T = {k ≥ 1 : ∃δk > 0 s. t. (νP)(·) ≥ δkν(·)}

be non-empty. Then there is n∗ ∈ N such that

{n∗, n∗ + 1, n∗ + 2, . . .} ⊆ T.

8

Proof. See [15], lemma 35 in the appendix.

The third one, finally, is a fact about return probabilities.

Lemma 4. Consider a Markov chain with transition kernel P (·, ·) and sta-
tionary distribution π(·). Let A ⊆ X and τA := inf{k ∈ N : Xk ∈ A}. If for
all x ∈ X

Px[τA <∞] > 0, (1)

then for π-a. e. x ∈ X
Px[τA <∞] = 1,

Proof. Suppose the conclusion is false. Then the set

B := {x ∈ X : Px[τA =∞] > 0} (2)

has a positive measure, i. e. π(B) > 0. Using countable additivity one can
extract a set B1 ⊆ B with π(B1) > 0 and a constant δ1 > 0 such that

∀x ∈ B1 : P (x,A) ≤ 1− δ1.

Similarly, using equation (1), one concludes that there is B2 ⊆ B1 with
π(B2) > 0, a constant δ2 > 0, and an integer `2 ∈ N such that

∀x ∈ B2 : δ2 ≤ P `2(x,A) ≤ 1− δ1.

Define η = # {k ∈ N : Xk`2 ∈ B2}. Then, for any x ∈ X ,

P[η = k, τA =∞] ≤
(
P `2(x,B)

)k ≤ (1− δ2)k.

This easily yields

P[η <∞, τA =∞] = 1−P[η =∞, τA =∞]−P[τA <∞]

≥ 1− lim
k→∞

P[η = k, τA =∞] + (1− δ1)

≥ 1− lim
k→∞

(1− δ2)k + (1− δ1)

= δ1.

Thus, there is a set B3 ⊆ B2 with π(B3) > 0, an integer `3 ∈ N, and a
constant δ3 > 0 such that for all x ∈ B3

Px [τA =∞, sup{k ∈ N : Xk`3 ∈ B2}] ≥ δ3.

9

However, B3 is contained in B2, and the conclusion is, of course, valid for
the smaller set, i. e.

Px [τA =∞, sup{k ∈ N : Xk`3 ∈ B3}] ≥ δ3.

Now, let L := `2`3 and define

S :=

{
sup{k ∈ N : XkL ∈ B} ∃k ∈ N : XkL ∈ B
−∞ otherwise

.

Then,

π(Ac) =

∫
x∈X

π(dx)P jL(x,Ac)

=

∫
x∈X

π(dx)P [XjL ∈ Ac]

=

∫
x∈X

∞∑
i=1

π(dx)P [XjL ∈ Ac, S = i]

≥
∫
x∈X

j∑
i=1

π(dx)P [XjL ∈ Ac, S = i]

=

j∑
i=1

∫
x∈X

π(dx)P [XjL ∈ Ac, S = i]

=

j∑
i=1

∫
x∈X

π(dx)

∫
y∈B3

P rL(x, dy)Py[X(j−r)L ∈ Ac, S = −∞]

=

j∑
i=1

∫
y∈B3

π(dy)P rL(x, dy)Py[X(j−r)L ∈ Ac, S = −∞]

≥
j∑
i=1

∫
y∈B3

π(dy)δ3

=

j∑
i=1

π(B3)δ3

= jπ(B3)δ3

> 1

if j > 1/(π(B3)δ3). This is a contradiction.

10

With this machinery, the proof of the Markov chain convergence theorem
is straightforward. First, lemma 2 yields existence the of a minorisation
condition with a small set C. From the coupling construction one has the
chain (X ′n, Xn)∞n=0. Consider the set

G :=
{

(x, x′) ∈ X × X : P(x,x′)[∃n0 ∈ N : Xn0 = X ′n0
]
}
.

If (X0, X
′
0) ∈ G, then Xk = X ′k for some k ∈ N by the definition of the

coupling construction. Then, by the setup of the coupling construction,
Xi = X ′i for all i ≥ k, hence, limn→∞P[Xn = X ′n] = 1. The coupling
inequality will yield the desired limn→∞ ‖P n(x, ·)− π(·)‖ = 0.

The proof is completed by showing that for π-a. e. x ∈ X , it is true that
P[(X0, X

′
0) ∈ G] = 1. Consider the slices Gx := {y ∈ X : (x, y) ∈ G} for

x ∈ X and G := {x ∈ X : π(Gx) = 1}.
By lemma 2, ν(C) > 0, so by lemma 3, the probability is greater than

zero that the joint chain will eventually hit C × C from any starting point
(x, y) ∈ X × X . By lemma 4, the joint chain will return to C × C almost
surely from π × π-a. e. (x, y) ∈ C × C. As soon as the chain reaches C × C,
conditional on not coupling, application of lemma 4 yields that the chain will
hit C ×C almost surely once again; therefore, the joint chain will hit C ×C
until coupling occurs, that is, Xn = X ′n. Hence (π×π)(G) = 1. Now assume
π(G) < 1. Then

0 = (π × π)(Gc) =

∫
x∈X

π(dx)π(Gc
x) =

∫
G
c
π(dx) (1− π(Gx)) > 0.

A contradiction, so π(G) = 1 which proves the theorem. Even though this
proof is relatively short, there is still doubt whether:

Open Problem 1. Is it possible to obtain a shorter proof of the Markov
chain convergence theorem following the idea of the proof above?

1.3 Ergodicity

In the upcoming section, the ergodicity of some explicit MCMC algorithms
will be proven. First, it will be shown that π(·) is actually the stationary
distribution for the Markov chain described above. This is easily done by
showing that the Markov chain satisfies the reversibility condition.

11

Definition 9 (Reversibility). A Markov chain on X with transition kernel
P (·, ·) is reversible with respect to a distribution π(·) if

∀x, y ∈ X : π(dx)P (x, dy) = π(dy)P (y, dx).

Lemma 5. Consider a Markov chain with transition kernel P (·, ·) which is
reversible with respect to π(·). Then π(·) is a stationary distribution for the
Markov chain.

Proof. Using the reversibility condition in the first step, obtain∫
y∈X

P (y, dx)π(dy) =

∫
y∈X

P (x, dy)π(dx)

= π(dx)

∫
y∈X

P (x, dy)

= π(dx).

We can now easily deduce:

Proposition 1. Assume a Metropolis-Hastings algorithm with the following
properties: π(·) and the proposal distribution both have densities with respect
to the Lebesgue measure,

π(dx) = π(x)dx

q(x, dy) = q(x, y)dy.

Then π(·) is a stationary distribution of the Markov chain produced by the
Metropolis-Hastings algorithm.

Proof. It suffices to show that the Markov chain is reversible and apply the
previous lemma. The equation is trivial if x = y. Otherwise,

π(dx)P (x, dy) = π(x)dxα(x, y)q(x, y)dy

= π(x) min

{
1,
π(y)q(y, x)

π(x)q(x, y)

}
q(x, y)dxdy

= min {π(x)q(x, y), π(y)q(y, x)} dxdy

= π(y) min

{
1,
π(x)q(x, y)

π(y)q(y, x)

}
q(y, x)dydx

= π(y)dyα(y, x)q(y, x)dx

= π(dy)P (y, dx).

12

According to the Markov chain convergence theorem, there are still two
conditions to check: aperiodicity and irreducibility. As for the stationarity of
π(·), there exists a condition that is easy to check and implies aperiodicity.

Lemma 6. Consider a Markov chain with transition kernel P (·, ·). Suppose
that for some x ∈ X , there exists a sequence of sets A1 ⊇ A2 ⊇ . . . with
P (x,Ai) > 0 for all i ∈ N and the property that for any B ⊆ X with x ∈ B
and π(B) > 0, there exists n0 ∈ N such that

∀i > n0 : Ai ⊆ B.

Then the Markov chain is aperiodic.

Proof. Suppose the Markov chain is periodic. Then there exist k ∈ N and
disjoint sets X1,X2, . . . ,Xk such that

⋃k
i=1Xi = X with P (x,Xi) = 1 for

x ∈ Xi when i = 2, . . . , k and P (x,X1) = 1 for x ∈ Xk. Without loss of
generality, assume that x ∈ X1. By assumption, there exist n0 such that
P (x,An0) > 0 and An0 ⊆ X1. Since P (x,X2) = 1 as well, a contradiction
follows:

1 = P (x,X) =
k∑
i=1

P (x,Xi) ≥
2∑
i=1

P (x,Xi) ≥ P (x,An0) + P (x,X2) > 1.

The following property is useful when investigating Markov chains.

Definition 10 (Regularity). A distribution ν(·) is regular if it has a density
with respect to the Lebesgue measure and it is bounded away from zero and
infinity on compact sets, that is, for every compact set D ⊂ Rd there exist
constant CD and cD such that

∀x ∈ D : cD ≤ ν(x) ≤ CD.

This leads to the following corollary:

Corollary 1. Consider a Metropolis algorithm on Rd with stationary dis-
tribution π(·). If the proposal distribution is regular, then the Metropolis-
Hastings algorithm is aperiodic.

13

Proof. First, calculate for arbitrary x ∈ Rd and B ⊆ Rd.

P (x, B) = P[Xn ∈ B|Xn−1 = x]

=

∫
y∈Rd

P[Xn ∈ B|Yn = y,Xn−1 = x]P[Yn ∈ dy,Xn−1 = x]

= 1B(x)(x)

∫
y∈Bc

P[Xn ∈ B|Yn = y,Xn−1 = x]q(x,y)dy

+1Bc

∫
y∈Bc

P[Xn ∈ B|Yn = y,Xn−1 = x]q(x,y)dy

+1B(x)

∫
y∈B

P[Xn ∈ B|Yn = y,Xn−1 = x]q(x,y)dy

+1Bc(x)

∫
y∈B

P[Xn ∈ B|Yn = y,Xn−1 = x]q(x,y)dy

= 1Bc(x)

∫
y∈Bc

(1− α(x,y))q(x,y)dy

+1B(x)

∫
y∈B

q(x,y)dy + 1Bc(x)

∫
y∈B

α(x,y)q(x,y)dy

= 1Bc(x)

∫
y∈Bc

(1− α(x,y))q(x,y)dy

+1B(x)

∫
y∈B

(α(x,y) + 1− α(x,y))q(x,y)dy

+1Bc(x)

∫
y∈B

α(x,y)q(x,y)dy

= 1B(x)

∫
y∈Rd

(1− α(x,y))q(x,y)dy +

∫
y∈B

α(x,y)q(x,y)dy.

Now, let B(z, ε) be the ball of radius ε > 0 with center z in Rd. Then, for
k ∈ N,

P (x, B(x, 1/k)) = 1B(x,1/k)(x)

∫
y∈Rd

(1− α(x,y))q(x,y)dy

+

∫
y∈B(x,1/k)

α(x,y)q(x,y)dy

≥
∫

y∈B(x,1/2k)

α(x,y)q(x,y)dy

> 0

14

since B(x, 1/2k) is compact, so q is positive on that set by regularity. Thus,
the sequence (B(x, 1/k))∞k=1 satisfies the requirements in the previous lemma
and proves that the Markov chain is aperiodic.

As an immediate corollary, one obtains

Corollary 2. The Metropolis algorithm with normal proposals is aperiodic.

Proof. This follows from the previous corollary since the normal distribution
is regular.

Next consider irreducibility:

Proposition 2. Consider a Metropolis-Hastings algorithm on Rd with target
distribution π(·) that has a density with respect to the Lebesgue measure.
Suppose that the proposal distribution is regular. Then the algorithm is π-
irreducible.

Proof. Let B ⊆ X such that π(B) > 0. Every set of positive measure in
Rd contains a compact set of positive measure, so there exists a compact set
B′ ⊆ B with π(B′) > 0. Since q(·, ·) is bounded away from zero and infinity
on compact sets,

inf
y∈B′

min{q(x,y), q(y,x)} ≥ δ

for some δ > 0. Hence, for any x ∈ Rd,

P (x, B) ≥ P (x, B′)

= 1B′(x)

∫
y∈X

(1− α(x,y))q(x, dy) +

∫
y∈B′

α(x,y)q(x, dy)

≥
∫

y∈B′
min{q(x,y), q(y,x)}dy

≥ δλ(y ∈ B′ : π(y) ≥ π(x)) + εKπ(y ∈ B′ : π(y) < π(x))

> 0,

where λ(·) denotes the Lebesgue measure of a set. The last inequality follows
from the fact that π(·) has a density with respect to the Lebesgue measure
and B′ has positive Lebesgue-measure, so both terms cannot be zero.

Consequently, the following result holds:

15

Theorem 2. Consider a Metropolis-Hastings algorithm where the target dis-
tribution as well as the proposal distribution are regular. Then the algorithm
is ergodic towards its stationary distribution.

Proof. Combine the previous corollaries to prove that the assumptions of the
Markov chain convergence theorem are satisfied.

In particular,

Corollary 3. The Metropolis algorithm with normal proposals is ergodic,
provided that the target distribution is regular.

Proof. The normal distribution is regular, so the previous theorem applies.

1.4 Central Limit Theorems

Even though the main focus in MCMC algorithms is to ensure that the
algorithm is ergodic to the target distribution, there are other features that
can be important. One of those is whether the Markov chain satisfies some
central limit theorem (CLT).

Definition 11 (Central Limit Theorem). Consider a Markov chain (Xn)∞n=0

on a state space X with stationary distribution π(·). Assume the Markov
chain is ergodic and consider some functional h : X → R with finite station-
ary mean, i. e.

π(h) :=

∫
x∈X

h(x)π(dx) <∞.

A Markov chain is said to satisfy a CLT if

1√
n

n∑
i=1

(h(Xi)− π(h))

converges weakly to a normal distribution with zero mean and some finite
variance σ2 as n→∞.

Whether Markov chains satisfy a CLT is related to modes of convergence
that are stronger than mere ergodicity. Two such properties are uniform and
geometric ergodicity.

16

Definition 12 (Uniform Ergodicity). A Markov chain with stationary dis-
tribution π(·) is uniformly ergodic, if there exists ρ ∈ (0, 1) and M ∈ R+

such that for all n ∈ N and all x ∈ X

‖P n(x, ·)− π(·)‖ ≤Mρn.

Definition 13 (Geometric Ergodicity). A Markov chain with stationary dis-
tribution π(·) is geometrically ergodic if there exists ρ ∈ (0, 1) and a function
M : X → R+ such that for all n ∈ N and all π-a. e. x ∈ X

‖P n(x, ·)− π(·)‖ ≤M(x)ρn.

It is immediate that uniform ergodicity implies geometric ergodicity which
in turn implies ergodicity. For uniformly or geometrically ergodic Markov
chains, there are some very simple conditions that guarantee a CLT:

Theorem 3. Consider a uniformly ergodic Markov chain with stationary
distribution π(·). If the functional h satisfies π(h2) <∞, then a CLT exists.

Theorem 4. Consider a geometrically ergodic Markov chain with stationary
distribution π(·). If for some δ > 0, the functional h satisfies π(|h|2+δ) <∞,
then a CLT exists.

There are several other conditions that do not depend only on the finite-
ness of some moments of the functional and provide CLTs for Markov chains,
see [15]. From a theoretical perspective, these theorems are appealing be-
cause they can be proved by a technique that is similar to the coupling
technique which turned out to be useful in the proof of the Markov chain
convergence theorem. This regeneration time method works as follows: Con-
sider a Markov chain (Xn)∞n=0. Furthermore, assume the existence of a mi-
norisation condition with some small set C. This time, given Xn, it proceeds
as follows:

(i) If Xn ∈ C, then with probability ε, choose Xn+n0 ∼ ν(·), or otherwise,
choose

Xn+n0 ∼
1

1− ε
(Pn0(Xn, ·)− εν(·)) .

Construct the intermediate steps Xn+1, Xn+2, . . . , Xn+n0−1 from the ap-
propriate conditional distribution given Xn and Xn+n0 . Increase n by
n0.

17

(ii) If Xn /∈ C, sample
Xn+1 = Xn ∼ P (Xn, ·).

and increase n by one.

The benefit of this procedure is that the Markov chain is split up into tours
by the so-called regeneration times, i. e. the times T1, T2, . . . where Xi has
been sampled from ν(·); this means that n0 time steps earlier, the chain had
entered the small set C and the case with probability ε occurred. Note that,
by convention, entries into C within n0 times steps of the last regeneration
time are ignored. That way, sums can be rewritten as

n∑
i=0

(h(Xi)− π(h)) =

r(n)∑
j=1

Tj+1−1∑
i=Tj

(h(Xi)− π(h)) + E(n),

where T0 := 0. Furthermore, r(n) := sup{i ∈ N : Ti ≤ n} is the number
of regenerations that occurred until time n, and E(n) :=

∑n
i=Tr(n)+1

(h(Xi)−
π(h)) is the sum of the terms which occur after the last regeneration. The
main point is to realize that the tours are independent, and the first step in
each tour is being sampled from the distribution ν(·); the tours are hence
i. i. d. and allow the application of the conventional central limit theorem,
provided the second moments of the variables exist, and the error term is
negligible.

Using this construction, [15] give a short proof of theorem 4 for geomet-
rically ergodic Markov chains. The proof of theorem 3 for uniformly ergodic
Markov chains has been independently approached by [10] and [4]. The latter
authors emphasize that the tours defined in a more general setting by

r(n)∑
j=1

mTj+1−1∑
i=mTj

(h(Xi)− π(h)) + E(n)

for some m ∈ N are not necessarily i.i.d. if m ≥ 2, even if they start by
sampling from ν(·). Consequently, the conventional CLT cannot be directly
applied. However, it remains the question whether a CLT holds in this
situation:

Open Problem 2. Does

1√
n

r(n)∑
j=1

mTj+1−1∑
i=mTj

(h(Xi)− π(h)) + E(n)

18

converge in distribution to a normal distribution with mean zero and some
finite variance?

1.5 Drawbacks

Whenever a Metropolis-Hastings algorithm is employed, the question on
which proposal distribution to chose arises. Naturally, one would like to
select a proposal distribution in such a way that Xn and pi(·) are approx-
imately equal as early as possible. To formalize this notion, the following
quantity has to be defined:

Definition 14 (ε-convergence function). Consider an ergodic Markov chain
with transition kernel P (·, ·) and stationary distribution π(·). For ε > 0 and
x ∈ X , define the ε-convergence function by

Mε(x) := inf

{
n ∈ N : sup

x∈X
‖P n(x, ·)− π(·)‖ ≤ ε

}
.

The smaller this quantity is for a fixed x ∈ X and ε > 0, the faster the
convergence of the Markov chain will be1.

The ε-convergence function does relate to other features of the MCMC
algorithm. Assume that X is some subset U ⊆ Rd, the target has a contin-
uous density and there is a family of continuous proposals densities qσ(·, ·)
which differ only by a scale factor σ. If one chooses a proposal with a very
small scale, the algorithm will usually propose values that are in a small
neighborhood of the current state. Since the target and proposal densities
are continuous, the density at the current state and the proposed state will
be roughly the same, thereby leading to an acceptance rate that is close to
one. However, the small step size will prevent the Markov chain from mov-
ing fast throughout the state space. Conversely, if the scale is very large, the
proposal values are likely to be far away from the current state. Of course,
the mass in the peripheral areas is small in the sense that for any x ∈ U ,

lim
M→∞

∫
y∈U/B(x,M)

π(y)dy = 0.

Therefore, the acceptance ratio will be small and once again there will be
very little exploration of the state space. Evidently, in both cases a fast

1Those so-called quantitative bounds on the convergence rates have been studied in
detail by several authors, see for example [18] and [5].

19

convergence of the transition probabilities to the stationary distribution is
prevented. Since the acceptance rate can be easily checked by the applied
statistician (whereas this cannot be done with the ε-convergence function),
it is suggested as a general guideline to chose the proposal variance such that
the acceptance rate will be neither to small nor too large. For a long time, this
suggestions had to be considered as informal since there was no mathematical
support. However, [14] were able to derive the optimal acceptance ratio in a
specific setting.

This setting is mainly characterized by two restrictions: First, there are
several regularity conditions in the sense that it is valid only for a Metropolis
algorithm with normal proposals and only specific target distributions. Sec-
ond, to derive the results, one considers a sequence of Metropolis algorithms
in Rn where the dimension of the state space is increasing. In practice, this
means that the result will be valid only in a large-dimensional context.

Suppose one has a sequence of target distributions which have densities
with respect to the Lebesgue measure πn : Rn → R taking the product form

πn(xn) =
n∏
i=1

f(xni),

where xn = (xn1 , x
n
2 , . . . , x

n
n) for n ∈ N and f : R → R which , for the

moment, is an arbitrary function. For each n ∈ N, the Metropolis algorithm
with normal proposals qn produces a Markov chain

Xn = (Xn
1 ,X

n
2 ,X

n
3 , . . .)

where Xn
i =

(
Xn
i,0, X

n
i,1, . . . , X

n
i,n

)
∈ Rn for i ∈ N, i. e. Xn

i,j ∈ R for j ∈
{0, 1, . . . , i}. Then the following holds:

Theorem 5. Suppose that f is positive, continuously differentiable, f/f ′ is
Lipschitz continuous, and that

Ef

[(
f ′(X)

f(X)

)8
]

:= M <∞,

Ef

[(
f ′′(X)

f(X)

)4
]

< ∞.

Let X∞0 = (X1
0,1, X

2
0,2, . . .) be such that all its components are distributed

according to f and assume that

∀i ≤ j : X i
0,j = Xj

0,j

20

Then, as n→∞, the process

Un
t := Xn

bntc,1

converges weakly in the Skorokhod topology to a stochastic process U which
satisfies the stochastic differential equation

dUt =
√
h(`)dBt + h(`)

f ′(Ut)

2f(Ut)
dt,

where

h(`) = 2`2Φ

(
− `

2
·

√
Ef

[(
f ′(X)

f(X)

)])
,

and U0 is distributed according to f . Furthermore, the average acceptance
rate

an(`) =

∫ ∫
πn(xn)α(xn,yn)qn(xn,yn)dxndyn

satisfies

lim
n→∞

an(`) =
h(`)

`2

which is maximized by

ˆ̀=
2.38√

Ef

[(
f ′(X)
f(X)

)]
with a(ˆ̀) = 0.234.

In other words, if the average acceptance rate is tuned such that it equals
0.234, the speed of the diffusion approximation is maximized, or equivalently,
the Markov chain converges fastest to its stationary distribution.

Even though this result is illuminating, there are two drawbacks to it.
First, since it is derived from a sequence of processes with increasing dimen-
sion of the target distribution, it can only be assumed to be valid if the state
space is high-dimensional. However, [6] have shown by the means of a simu-
lation study that the optimal acceptance ratio are close to the asymptotically
optimal values even if the dimension is as low as 4. Second, in MCMC the
transition kernel has been chosen in advance, but one usually has no informa-
tion on how the choice of a transition kernel relates to the acceptance ratio.
This drawback has led to the development of adaptive MCMC (AMCMC).

21

2 Adaptive Markov Chain Monte Carlo Al-

gorithms

A means of addressing the problem of choosing the appropriate proposal co-
variance matrix in Metropolis-Hastings algorithms with normal proposals is
AMCMC, where proposal covariance is not constant across iterations, but
is being optimized. Therefore, a family of kernels {Pγ}γ∈Y is used. Conse-
quently, one needs not only an updating rule for the Markov chain (which
is given by the kernel Pγ, and corresponds to the X -valued random vari-
able Xn), but also an updating rule for the kernel which is given by a
Y-valued random variable Γn (representing the choice of kernel when up-
dating from Xn to Xn+1).To be formally correct, introduce the filtration
Gn := σ(X0, . . . , Xn,Γ0, . . . ,Γn). Then

P (Xn+1 ∈ A|Xn = x,Γn = γ,Gn−1) = Pγ(x,B),

where x ∈ X , γ ∈ Y , and B ∈ F . Also, the conditional distribution of Γn+1

given Gn needs to be specified. The quantity of interest is then

A(n) ((x, y), B) := P (Xn ∈ B|X0 = x, γ0 = γ)

for B ∈ F . Note that this is not a Markov process. The concept of ergodicity,
however, can be transfered to this stochastic process.

Definition 15 (Ergodicity of AMCMC). An AMCMC algorithm is ergodic
if

lim
n→∞

sup
(x,γ)∈X×Y

∥∥A(n)((x, γ), ·)− π(·)
∥∥ = 0.

2.1 Algorithms

Generally, adaptive versions of existing MCMC algorithms can be easily con-
structed. The most popular algorithm is the adaptive Metropolis algorithm,
first proposed by [7], and is, as suggested by its name, an adaptive version of
the Metropolis algorithm on Rd. The family of proposal distributions is now
given by a two-parameter family where not only the center of the distribu-
tion (given by the current state), but also the covariance matrix is variable.
Indeed, the covariance matrix Σn used in the nth step is given by

Σn =

{
Σ0 n ≤ n0
(2.38)2

d
(Cov(X0,X1, . . . ,Xn) + εId) n > n0.

22

where X0,X1, . . . are the states of the stochastic process, Σ0 is a fixed starting
covariance matrix and n0 ∈ N is the fixed length of the initial phase. Note
that Id denotes the d× d-identity matrix. As usual,

Cov(X0,X1, . . . ,Xn) :=
1

n

n∑
i=0

(Xi −Xn)(Xi −Xn)′.

where Xn is the arithmetic mean of the iterations X0,X1, . . . ,Xn. Note
that the ε-multiple of the identity matrix is added to prevent the covariance
matrix from getting singular. Therefore, the proposal covariance is merely a
modification of the covariance matrix of the first n iterations. In the first few
trials, the proposal covariance matrix is held fixed since the initial states of
the Markov chain are expected not to lead to good estimates of the covariance
matrix. Note that the choice of the constant (2.38)2/d is a result of theorem
5 and reflects an attempt to approach the most efficient proposal covariance
matrix.

A slightly modified version has been suggested by [17]. The covariance
matrix is now calculated by

Σ′n =

{
Σ0 n ≤ 2d

(1− β)2 (2.38)2

d
Cov(X0,X1, . . . ,Xn) + β2 (0.1)2

d
Id n > 2d

for some β ∈ (0, 1).

2.2 Ergodicity

Whenever one expects an AMCMC algorithm to be ergodic, it is sensible
to assume that for each γ ∈ Y , the kernel Pγ is ergodic for π(·); this will
be assumed throughout the remaining sections. The first thing to notice is
that this is not sufficient for an adaptive algorithm to be ergodic for π(·). A
counterexample is given by [16], example 2. Obtaining sufficient conditions
for an AMCMC algorithm to be ergodic is usually a difficult task. A key
concept, however, is that of diminishing adaptation which largely states that,
asymptotically, the amount of adaptation tends to zero.

Definition 16 (Diminishing adaptation). Let A(n)((x, γ), ·) be an adaptation
algorithm. It satisfies the diminishing adaptation condition if

lim
n→∞

sup
x∈X

∥∥PΓn+1(x, ·)− PΓn(x, ·)
∥∥ =d 0.

23

The second class of conditions usually needed is some kind of assumption
on the family of proposal distribution {Pγ}γ∈Y . The next subsections give
an overview over conditions that suffice for an AMCMC algorithm to be
ergodic. First, results that apply on general spaces X × Y will be reported.
In the second section, compactness assumptions are imposed on (parts of)
the space. The final section deals with the adaptive Metropolis algorithm
which is defined for subsets of Rd.

2.2.1 General Spaces

A straightforward but rather strong condition is presented by [16]:

Theorem 6 (Simultaneous Uniform Ergodicity). Consider an AMCMC al-
gorithm which satisfies diminishing adaptation and simultaneous uniform er-
godicity, that is, for all ε > 0, there exists n0 ∈ N such that

∀γ ∈ Y , x ∈ X :
∥∥P n0

γ (x, ·)− π(·)
∥∥ ≤ ε.

Then the algorithm is ergodic.

Proof. See theorem 1 of [16].

However, it turns out that in their proof, the following and slightly weaker
condition suffices to prove ergodicity:

Proposition 3. Define the ε-convergence function Mε(x, γ) : X × Y → N
by

Mε(x, γ) := inf
{
n ∈ N :

∥∥P n
γ (x, ·)− π(·)

∥∥ ≤ ε
}
.

An adaptive algorithm is ergodic if {Mε(Xn,Γn)}∞n=0 is bounded in probability
for all γ ∈ Y and x ∈ X .

Proof. See [16], theorem 2.

Another approach relates to the minorisation criterion mentioned in pre-
vious sections and the existence of drift-functions.

Definition 17 (Drift function). A Markov chain with transition kernel P (·, ·)
satisfies a drift condition if there are constants λ ∈ (0, 1) and b <∞, and a
function V : X → [1,∞] such that

∀x ∈ X : 8PV 9(x) ≤ λV (x) + 1C(x);

24

where for x ∈ X and a function f ,

(Pf)(x) :=

∫
y∈X

f(y)P (x, dy).

In ordinary Markov chain theory, this condition is important because a
Markov chain that satisfies the assumptions of the Markov chain convergence
theorem, a minorisation condition and has a drift function, can be shown to
be not only ergodic, but geometrically ergodic [15]. However, adaptations of
this concept are useful to prove ergodicity of AMCMC algorithms.

Theorem 7 (Simultaneous Strong Aperiodic Geometric Ergodicity). Con-
sider an adaptive algorithm such that the family of transition kernels {Pγ}γ∈Y
is simultaneously strongly aperiodically geometrically ergodic, that is, there
exist a set C ∈ F , a function V : X → [1,∞), and constants δ > 0,
λ ∈ (0, 1), and b <∞ such that

(i) (Minorisation condition). For all γ ∈ Y there exists a probability mea-
sure νγ (·) on C with

∀x ∈ C : Pγ(x, ·) ≥ δνγ(·)

(ii) (Drift function). ∀γ ∈ Y , x ∈ X : (PγV)(x) ≤ λV (x) + b1C(x).

(iii) supC V <∞.

Furthermore, assume E[V (X0)] < ∞. Then the adaptive algorithm is er-
godic.

Proof. See [16], theorem 3.

As with the first theorem, there is a set of weaker conditions that guar-
antee the same result but may be less convenient to work with.

Proposition 4 (Simultaneous Polynomial Ergodicity). Consider an adap-
tive algorithm with a simultaneously polynomially ergodic family of transition
kernels {Pγ}γ∈Y , i. e.

(i) There exists a set C ∈ F , constants n0 ∈ N, δ > 0, and probability
measures νγ(·) on X such that π(C) > 0 and

∀γ ∈ Y , x ∈ X : P n0
γ (x, ·) ≥ δνγ(·).

25

(ii) There exists q ∈ N and measurable functions {Vi : X → (0,∞)}ki=0,
such that for k = 0, 1, . . . , q−1, there are sequences ak ∈ (0, 1), bk < 1,
and ck > 0, and a constant β ∈ (0, 1) such that

∀γ ∈ Y , x ∈ X : (PγVk+1)(x) ≤ Vk+1(x)− Vk(x) + bk1C(x),

∀x ∈ X : Vk(x) ≤ ck,

∀x ∈ X/C : Vk(x)− bk ≥ akVk(X),

supC Vq < ∞,
π(V β

q) <∞.

Then the adaptive algorithm is ergodic.

Proof. See [16], theorem 4.

Finally, there are the following two sets of conditions.

Theorem 8. Consider an adaptive algorithm that satisfies the diminishing
adaptation condition. Assume that

(i) (Minorisation condition). There exists a probability measure ν(·), a
constant ε > 0, and a set C ∈ F such that

∀x ∈ C : Pγ(x, ·) ≥ εν(·).

(ii) (Drift function). There exists a measurable function V : X → [1,∞)
and a constant b > 0 such that for any γ ∈ Y

∀γ ∈ Y , x ∈ X : (PγV)(x) ≤ V (x)− 1 + b1C(x).

(iii) For any sublevel set D` := {V (x) ≤ `} of V ,

lim
n→∞

sup
D`×Y

‖Pγ(x, ·)− π(·)‖ = 0.

Proof. See [2], theorem 4.3.

Theorem 9. Suppose an adaptive algorithm satisfies the diminishing adap-
tation condition. Then it is ergodic under each of the following cases:

(i) The algorithm is simultaneously polynomially ergodic and the number
q of drift functions is strictly greater than two;

26

(ii) The algorithm is simultaneously polynomially ergodic, the number q of
drift functions is strictly greater than one, and there exists a increasing
function f : R→ R such that V1(·) ≤ f(V0(·)).

(iii) There is a set C ⊆ X , some integer n0 ∈ N, some constant ε > 0, and
some probability measure νγ(·) on X such that π(C) > 0, and

∀x ∈ X , γ ∈ Y : P n0
γ (x, ·) ≥ ε1C(X)νγ(·).

Furthermore, there exists β ∈ (0, 1] such that π(V β
q) < ∞, and the

simultaneous drift condition has the form

∀α ∈ (0, 1), x ∈ X : PγV1(x) ≤ V (x)− cV α(x) + b1C(x)

where cVα(x) ≥ b on Cc.

(iv) There is a set C ⊆ X , an integer n0 ∈ N, a constant ε > 0, and for
each γ ∈ Y a probability measure νγ(·) on X such that π(C) > 0, and

∀x ∈ C : P n0
γ (x, ·) ≥ ενγ(·).

and when the simultaneous drift condition has the form

∀x ∈ X : PγV1(x) ≤ V1(x)− V0(x) + b1C(x).

where V0(x) ≤ b on Cc, and the process (V1(Xn))∞n=0 is bounded in
probability.

Then the adaptive algorithm is ergodic.

Proof. See [2], theorem 5.7, 5.8, 5.10, and lemma 5.2.

2.2.2 Compact Spaces

In this section, results that require (parts of) the space X ×Y to be compact
in some topology are presented. The first proposition can be easily derived
from proposition 3.

Proposition 5. Consider an adaptive algorithm that satisfies the diminish-
ing adaptation condition. Furthermore, assume that there is some topology
such that (i) X × Y is compact and (ii) the mapping

(x, γ) 7→ sup
X×Y

∥∥A(n)((x, γ), ·)− π(·)
∥∥

is continuous for every n ∈ N. Then the adaptive algorithm is ergodic.

27

Proof. See [16], corollary 3.

A drawback of the previous proposition is that it requires the product
space X × Y to be compact. A condition that requires only the space Y to
be compact is provided by [21].

Theorem 10. Consider an adaptive algorithm satisfying the diminishing
adaptation condition. Assume that

(i) (Minorisation and drift condition.) There is C ∈ F , V : X → [1,∞)
with π(V) <∞, ε > 0, and b > 0 such that, first, supC V <∞, second,
for each γ ∈ Y there exists a probability measure νγ(·) on C with

∀x ∈ C : Pγ(x, ·) ≥ ενγ(·),

and third,

∀γ ∈ Y , x ∈ X : (PγV)(x) ≤ V (x)− 1 + b1C(x).

(ii) Y is compact in the metric

d(γ1, γ2) := sup
x∈X
‖Pγ1(x, ·)− Pγ2(x, ·)‖ .

(iii) The sequence {V (Xn)}∞n=0 is bounded in probability given X0 and Γ0

Then the adaptive algorithm is ergodic.

Proof. See [21], theorem 3.1, and [2], theorem 3.3.

In most cases, however, not even the space Y will be compact so that one
has to use the general criteria provided in the previous section. The theory
is more developed for adaptive Metropolis algorithms.

2.2.3 Adaptive Metropolis Algorithm

In this section, sufficient criteria for the adaptive Metropolis algorithm (de-
fined on Rd) are presented. Furthermore, there are certain restrictions: First,
take X to be an open subset U ⊆ Rd and F to be the Borel sets of Rd. As-
sume that the target distribution has a density with respect to the Lebesgue

28

measure and is continuously differentiable, positive, and regular. Also, only
adaptive Metropolis algorithms with symmetrical proposal,

∀γ ∈ Y ,x,y ∈ U : qγ(x− y) = qγ(y − x),

are considered.
As results on the geometric ergodicity of symmetric Metropolis algo-

rithms, the ergodicity of the adaptive Metropolis algorithm is strongly re-
lated to the tail behavior of the density [13]. A criterion for lighter-than-
exponential tails is

Theorem 11 (Lighter-than-exponential tails). If a symmetrical adaptive
Metropolis algorithm satisfies the diminishing adaptation and the following
conditions:

(i) (Lighter-than-exponential, strongly decreasing target.) The target den-
sity π is lighter-than-exponentially tailed,

− lim sup
|x|→∞

〈
x

|x|
,∇ log π

〉
=∞.

and strongly decreasing,

− lim sup
|x|→∞

〈
x

|x|
,
∇x

|∇x|

〉
> 0.

(ii) (Proposal’s local positivity.) For each γ ∈ Y, there exists δγ > 0 and
εγ > 0 such that

∀γ ∈ Y , |z| ≤ δγ : qγ(z) ≥ εγ,

and there is a positive function q− : Rd → R+ bounded away from zero
in any compact set such that

∀γ ∈ Y , z ∈ Rd : qγ ≥ q−(z).

Then the adaptive algorithm is ergodic.

Proof. See [3], theorem 5.2.

Somewhat stronger conditions are needed if the target distribution has
exponential tails.

29

Theorem 12 (Exponential tails). If a symmetrical adaptive Metropolis al-
gorithm satisfies the diminishing adaptation and the following conditions:

(i) (Exponentially tailed, strongly decreasing target. The target density π
is lighter-than-exponentially tailed,

η1 := − lim sup
|x|→∞

〈
x

|x|
,∇ log π

〉
> 0,

and strongly decreasing,

η2 := − lim sup
|x|→∞

〈
x

|x|
,
∇x

|∇x|

〉
> 0.

(ii) There are constants ε ∈ (0, η1), β ∈ (0, η2), δ > 0, and ∆ ∈ (0,∞] with
0 < 3

βε
≤ δ < ∆ such that for any sequence (xn, γn) with |xn| → ∞ and

γn ∈ Y, there exists a subsequence (xnk , γnk) with xnk →∞ such that

lim
k→∞

∫{
z=aw

∣∣∣δ≤a≤∆,w∈Sn−1,

∣∣∣∣ξ− xnk
|xnk |

∣∣∣∣<ε/3
} |z|qγnk (z)dz >

3

βε(e− 1)
,

where Sn−1 is the unit sphere in Rn, and aw represents a scalar multiple
of w ∈ Rn by a ∈ R.

Then the adaptive algorithm is ergodic.

Proof. See [3], lemma 5.2 and theorem 5.1.

The condition can be replaced by a stronger condition that is easier to
verify, see [3]. If the tails are even heavier than exponential, there is, so far, no
result that applies to arbitrary symmetric adaptive Metropolis algorithms.
However, there is one result in the case that the proposal distribution is
uniform on some compactly supported set and the target distribution has
hyperbolic tails.

Theorem 13 (Hyperbolic tails). Consider a symmetrical adaptive Metropolis
algorithm satisfying the diminishing adaptation condition and the following
conditions:

30

(i) (Hyperbolically tailed, strongly decreasing target). The target density π
is twice differentiable, strongly decreasing,

− lim sup
|x|→∞

〈
x

|x|
,
∇x

|∇x|

〉
> 0,

and hyperbolically tailed, that is, there exists m ∈ (0, 1) and finite con-
stants ci, Ci for i = 0, 1, 2 and M > 0 such that for all |x| ≥M ,

0 < c0|x|m ≤ − log π(x) ≤ C0|x|m,
0 < c1|x|m−1 ≤ −|∇ log π(x)| ≤ C1|x|m−1,

0 < c2|x|m−2 ≤ −|∇2 log π(x)| ≤ C1|x|m−2.

(ii) (Proposal’s Uniform Compact Support and Uniform Upper Bound Den-
sity.) The proposal has a uniform compact support, that is, there exists
a L > 0 such that

∀γ ∈ Y , |z| > L : qγ(z) = 0,

and a uniform upper bound density, there exists a positive function
q+ : Rd → R+ with

∫
q+(z)dz <∞ such that

∀γ ∈ Y ,x ∈ Rd : qγ(x) ≤ q+(x).

Then the adaptive algorithm is ergodic.

Proof. See [3], theorem 5.4.

Finally, one can apply these results to the adaptive Metropolis algorithm
with normal proposals. If the tails of the target distribution are lighter-than-
exponential, the diminishing adaptation condition can be checked directly.
Therefore, the following theorem holds:

Theorem 14. The adaptive Metropolis algorithm with normal proposals is
ergodic provided that the target distribution is regular, strongly decreasing,
and lighter-than-exponentially tailed.

Proof. See [3], theorem 5.3.

31

3 A Simulation Study

Most AMCMC algorithms suggest to adapt the proposal in each iteration.
However, the authors in [7] raised the question whether it is more efficient
to perform adaptations only every k0 iterations for some fixed k0 ∈ N. As
mentioned above, even if the algorithm is assumed to be ergodic, the trials
from early iterations cannot be expected to be drawn from a distribution
which is close to the target distribution and might, therefore, distort the
estimate of the covariance matrix. The authors [7] suggested to use only
the last half of the iterations to avoid this problem. In general, one could
use the last bn/k0c iterations where n is the current iteration and k0 ∈ N is
fixed (so k0 = 2 if the last half of the iterations is being used). By taking
a fixed proportion of the last iterations as opposed to a fixed number of the
last iterations, diminishing adaptation is fulfilled which is essential in all the
theorems of the last section to prove the ergodicity of the adaptive algorithm.
Note, however, that diminishing adaptation is not a necessary condition for
convergence.

Lemma 7. Consider an adaptive Metropolis algorithm with normal propos-
als. If the target is exponentially-tailed, regular, and strongly decreasing, then
the adaptive algorithm is ergodic.

Proof. The proof is practically identical to proposition 5.3 and theorem 5.3
in [3]. The only difference is that the evaluation of the difference Σn+1 −Σn

leads to numerous terms which, however, can all be shown to be bounded in
probability by the methods used in the proof.

However, it remains the following question:

Open Problem 3. Does diminishing adaptation hold for arbitrary adaptive
Metropolis algorithms with normal proposals?

3.1 Method

To study whether the different strategies in updating the proposals do affect
the efficiency of the algorithm, a simulation study was performed. As a base-
line, the standard algorithm which updates the proposal covariance matrix
each iteration and makes use of all previous iterations was run. The algo-
rithm updating the proposal only each k0 iterations was run with k0 = 2 and

32

k0 = 10 and the algorithm which uses only the last b1/k0c of the iterations
was run with k0 = 2 and k0 = 10.

For an efficient implementation of the algorithm, [7] used an easy recursive
formula to update the covariance matrix; for the modified algorithms, these
recursions had to be modified (see appendix A).

For the target, a distribution resulting from a statistical application was
chosen to construct a situation which is typical for those emerging in the
work of applied statisticians. It results from analyzing the quadratic model

Yij = α + βxi + γx2
i + εij i ∈ {1, , . . . , k}, j ∈ {1, , . . . , ni},

from a Bayesian perspective. The error terms are assumed to follow a t-
distribution with mean 0, variance σ2, and 4 degrees of freedom,

εij ∼ t4(0, σ2) (σ > 0).

The purpose is to estimate (properties of) the posterior distribution of the
parameter vector θ := (α, β, γ, σ2). The prior distributions are set to be

α ∼ N(m1, v
2
1) (m1 ∈ R, v1 > 0),

β ∼ N(m2, v
2
2) (m2 ∈ R, v2 > 0),

γ ∼ N(m3, v
2
3) (m3 ∈ R, v3 > 0),

σ2 ∼ IG(s, t) (s, t > 0).

The posterior distribution is then easily calculated as

π(θ) ∝ exp

(
−1

2

(
(α−m1)2

v2
1

+
(β −m2)2

v2
2

+
(γ −m3)2

v2
3

)
− t

σ2

)
·

σ−2s−2−N ·
k∏
i=1

ni∏
j=1

(
1 +

(yij − α− βxi − γx2
i)

2

ν

)−(ν+1)/2

. (3)

Note that this distribution cannot be represented in closed form. Its charac-
teristics, such as moments, are not easily computed, and the dimension of the
parameter space Θ := R3×R+ is 4. Therefore, it is sufficiently high to make
numerical integration as well as other methods to sample from complicated
distributions such as rejection sampling or importance sampling unattrac-
tive, so that using MCMC methods is indicated. The model is fit to data
which have been reported in [20].

The adaptive Metropolis algorithm shown in equation 2.1 was used for
the simulation. Each model was run with one million iterations and a value of

33

Table 1: The performance indicators for the standard algorithm (S), algorithms updating only every k0
iterations (E2 and E10, where the number indicates the values of k0), and the algorithms which only use
a fraction of the iterations (L2, L10) to calculate the new proposal variance when the initial phase has
length 8.

condition S E2 E10 L2 L10

acceptance rate 0.171 0.166 0.158 0.194 0.196
average jumping distance 10.27 9.90 10.02 9.41 9.28
computing time [min:sec] 40:37 40:41 38:20 40:42 40:50
Mα 8.320 8.288 8.362 8.298 8.375
SDα 0.02649 0.02734 0.02599 0.02643 0.02591
Mβ -0.4033 -0.4004 -0.4114 -0.4008 -0.4091
SDβ 0.004047 0.004093 0.004019 0.003994 0.003930
Mγ 0.133220 0.133166 0.133556 0.133120 0.133393
SDγ 0.0001570 0.0001588 0.0001587 0.0001551 0.0001529
Mσ2 0.124441 0.124308 0.124405 0.124389 0.124453
SDσ2 0.0001698 0.0001639 0.0001603 0.0001714 0.0001681

Note. M· and SD· denote estimates of the mean and the standard deviation of the respective
parameters.

β of 0.05 was used. Several indices were used to evaluate the performance of
the different algorithms. To describe them, let (x0, γ0), (x1, γ1), . . . , (xn, γn)
be the realizations of a run of length n of the stochastic process. The propor-
tion of accepted proposals (acceptance ratio, AR), the mean of the distance
between consecutive iterations of the chain (average jumping distance, AJ);
note that iterations with rejected proposals are considered in this average,
so

AJ =
n∑
i=0

‖xi+1 − xi‖2,

where ‖ · ‖2 denotes the Euclidean distance. Finally, the estimated standard
errors for the parameters θ = (α, β, γ, σ2) and the time the computer needed
to process the data.

The simulations were run using R [19], version 2.7.1. See appendix B
for the corresponding code. The computing time was measured using the
command system.time.

3.2 Results

Plots of the iteration of the Markov chain versus its value indicate that the
Markov chain converged (see appendix C). Table 1 gives an overview of the
algorithms and how they performed with respect to the performance indica-
tors. The acceptance rate for the standard algorithm was 0.17. In conditions

34

where the adaptation of the proposal covariance was done only every k0 itera-
tions, the acceptance rate was slightly lower (0.158 to 0.166), whereas if only
the last 1/k0 iterations are being used to determine the proposal covariance,
the acceptance rates was higher (0.194 to 0.196). In contrast, the average
jumping distance was highest in the standard condition (10.3). If fewer up-
dates were done, the average jumping distance was only slightly lower (9.9
to 10.0), but it was substantially lower in the condition that uses less in-
formation (9.3 to 9.4). This result is inconsistent since one usually expects
that an optimal acceptance ratio is associated to a high average jumping dis-
tance [17]. The estimated parameters differ only slightly among the different
conditions and the estimated standard errors tend to be similar across the
conditions. There is no consistent advantage of any of the three types of
algorithms. Finally, the differences in computing time showed the following
pattern: If the updates are only done each ten iterations, the algorithm was
fastest (38:20 minutes), whereas the remaining algorithms needed between
40:37 and 40:50 minutes for the computations. The time savings of the fastest
algorithm compared to the standard algorithm is 6%.

Unexpectedly, there was very little variation in the performance of the
various algorithms. One possible explanation is that the initial phase in
which no adaptations are being done is too short with only 2d = 8 iterations.
The early start of the adaptation might lead to poor initial estimates of the
proposal covariance matrix and hence distort the results. Therefore, part of
the simulations were rerun with an initial phase of 50d = 200 iterations. Since
the effectivity of the algorithms with fewer updates of the proposal variance
did not depend on the rate of the updates, and the algorithm using only a
part of the last iterations did not depend on the fraction of the data that
were used, only the algorithms updating the proposal every second iteration
and the algorithm using the last half of the iterations were rerun.

Once again, the plots of iterations versus value of the Markov chain indi-
cate that the Markov chain converges (see appendix C). The results of this
simulation are shown in table 2. All the algorithms perform similar com-
pared to their counterparts with the shorter initial period. The standard
algorithm has a slightly smaller acceptance rate (0.16 vs. 0.17), whereas the
average jumping distance is practically left unchanged. For the algorithm
that updates the proposal only every second iteration, the acceptance rate
is almost identical, whereas the average jumping distance is slightly higher
(10.4 vs. 9.9). Finally, both the acceptance ratio and the average jumping
distance are unchanged for the algorithm using only the last half of the it-

35

Table 2: The performance indicators for the standard algorithm (S), algorithms updating only every k0
iterations (E2 and E10, where the number indicates the values of k0), and the algorithms which only use
a fraction of the iterations (L2, L10) to calculate the new proposal variance when the initial phase has
length 200.

condition S E2 L2

acceptance rate 0.159 0.167 0.194
average jumping distance 10.30 10.37 9.44
computing time [min:sec] 39:11 39:56 40:35
Mα 8.286 8.271 8.322
SDα 0.02679 0.02667 0.02698
Mβ -0.4016 -0.3956 -0.4077
SDβ 0.004112 0.004112 0.004026
Mγ 0.133232 0.132928 0.133463
SDγ 0.0001600 0.0001604 0.0001553
Mσ2 0.124368 0.124497 0.124267
SDσ2 0.0001675 0.0001639 0.0001714

Note. M· and SD· denote estimates of the mean and the standard deviation of the respective
parameters.

erations to determine the proposal. As in the previous simulations, for any
of the algorithms, the estimates of the parameters and their standard errors
show very little variation. For all the three algorithms, the computing time
tends to be faster when the initial phase is lengthened. The computing times
are between 39:11 and 40:35 if the initial phase is short, and between 40:37
and 40:42 if the initial phase is long. It might be tempting to attribute the
reduced computation time to the fact that the initial phase, in which no
time-consuming adaptations need to be done, is longer. However, recall that
since 1,000,000 iterations were done in total, the actual difference between
the length of the initial phases should not have a significant effect.

3.3 Conclusion

The conclusion from the simulation studies that have been performed so far
did not give conclusive evidence that any of the modifications applied to the
process of updating the proposal covariance matrix has significant effects on
the performance of the algorithms. However, most of the algorithms did not
show any evidence of being more computationally efficient, with the notable
exception of the algorithm that updates the proposal covariance only every
tenth iteration. The savings of roughly 6% of the computing time with
respect to the standard algorithm might not be worth the additional effort
in implementing the algorithm if the simulation can be run in as little time

36

as in the previous case; but if a simulation needs to be run for weeks, or even
month, the absolute savings in computing time are substantial. However, so
far this conclusion is limited to only a single Markov chain that has been
investigated. Hence, future research that generalizes these finding is needed.
Moreover, future explorations of how the changes of the updating process
affect effectivity and efficiency of the algorithm might focus on how little
adaptations an algorithm tolerates without showing a significant decay in
the performance.

Acknowledgements

I thank Professor Jeffrey S. Rosenthal for supervising me on the reading
course which led to this report and providing me with help when I needed
it. Also, I thank Yi Su and Matthew Thompson for proofreading this report
which led to many improvements.

References

[1] Krishna Balasundaram Athreya, Hani Doss, and Jayaram Sethuraman,
On the convergence of the Markov chain simulation method, The Annals
of Statistics 24 (1996), no. 1, 69–100.

[2] Yan Bai, Simultaneous drift conditions for adaptive Markov chain Monte
Carlo algorithms, Unpublished Manuscript. Department of Mathemat-
ics, University of Toronto, Toronto, Canada, 2009.

[3] Yan Bai, Gareth Owen Roberts, and Jeffrey Seth Rosenthal, On the
containment condition for adaptive Markov chain Monte Carlo algo-
rithms, Unpublished Manuscript. Department of Mathematics, Univer-
sity of Toronto, Toronto, Canada, 2009.

[4] Witold Bednorz, Krzystof Latuszyński, and Rafa l Lata la, A regeneration
proof of the central limit theorem for uniformly ergodic Markov chains,
Electronical Communications in Probability 13 (2008), 85–98.

[5] Randal Douc, Éric Moulines, and Jeffrey Seth Rosenthal, Quantitative
bounds on convergence of time-inhomogeneous Markov chains, The An-
nals of Applied Probability 14 (2004), no. 4, 1643–1665.

37

[6] Andrew Gelman, Gareth Owen Roberts, and Walter R. Gilks, Efficient
Metropolis jumping rules, Bayesian Statistics 5 (1996), 599–607.

[7] Heikki Haario, Eero Saksman, and Johanna Tamminen, An adaptive
Metropolis algorithm, Bernoulli 7 (2001), no. 2, 223–242.

[8] W. Keith Hastings, Monte Carlo sampling methods using Markov chains
and their applications, Biometrika 57 (1970), no. 1, 97–109.

[9] Naresh Jain and Benton Jamison, Contributions to Doeblin’s theory of
Markov processes, Zeitschrift füer Wahrscheinlichkeitstheorie und Ver-
wandte Gebiete 8 (1967), 19–40.

[10] Ajay Jasra and Chao Yang, A regeneration proof of the central limit
theorem for uniformly ergodic Markov chains, Statistics and Probability
Letters 78 (2008), 1649–1655.

[11] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall Nicholas Rosen-
bluth, Augusta Maria Harkanyi Teller, and Edward Teller, Equation
of state calculations by fast computing machines, Journal of Chemical
Physics 21 (1953), no. 6, 1087–1092.

[12] Sean Peter Meyn and Richard Lewis Tweedie, Markov chains and
stochastic stability, Springer, New York, 2005.

[13] Christian P. Robert and George Casella, Monte Carlo statistical meth-
ods, Springer, New York, 2004.

[14] Gareth Owen Roberts, Andrew Gelman, and Walter R. Gilks, Weak
convergence and optimal scaling of random walk Metropolis algorithms,
Annals of Applied Probability 7 (1997), no. 1, 110–120.

[15] Gareth Owen Roberts and Jeffrey Seth Rosenthal, General state space
Markov chains and MCMC algorithms, Probability Surveys 1 (2004),
20–71.

[16] , Coupling and ergodicity of adaptive Markov chain Monte Carlo
algorithms, Journal of Applied Probability 44 (2007), 458–475.

[17] , Examples of adaptive MCMC, Unpublished Manuscript. De-
partment of Mathematics, University of Toronto, Toronto, Canada,
2009.

38

[18] Jeffrey Seth Rosenthal, Quantitative convergence rates of Markov
chains: A simple account, Electronical Communcations in Probability
7 (2002), 123–128.

[19] R Development Core Team, R: A language and environment for statisti-
cal computing, R Foundation for Statistical Computing, Vienna, Austria,
2008, ISBN 3-900051-07-0.

[20] John Wilder Tukey, Exploratory data analysis, Addison-Wesley, New
York, 1977.

[21] Chao Yang, Recurrent and ergodic properties of adaptive MCMC,
Unpublished Manuscript. Department of Mathematics, University of
Toronto, Toronto, Canada, 2009.

39

A Recursive Formulas for the Mean and the

Covariance

Lemma 8. Let k, n ∈ N with k < n and x1,x2, . . . ,xn ∈ Rd. Then

xnk =
n− 1

n
x(n−1)k +

1

nk

nk∑
i=(n−1)k+1

xi

and

Σnk =
(n− 1)k − 1

nk − 1
Σ(n−1)k +

1

nk − 1

 nk∑
i=(n−1)k+1

xix
′
i − nkxnkx′nk

+(n− 1)kx(n−1)kx
′
(n−1)k

 .

Proof. For the mean,

xnk =
1

nk

nk∑
i=1

xi

=
1

nk

(n−1)k∑
i=1

xi +
nk∑

i=(n−1)k+1

xi


=

n− 1

n
x(n−1)k +

1

nk

nk∑
i=(n−1)k+1

xi

and for the covariance,

Σnk =
1

nk − 1

(
nk∑
i=1

xix
′
i − nkxnkx′nk

)

=
1

nk − 1

(n−1)k∑
i=1

xix
′
i +

nk∑
i=(n−1)k+1

xix
′
i − (n− 1)kx(n−1)kx

′
(n−1)k

−nkxnkx′nk + (n− 1)kx(n−1)kx
′
(n−1)k


40

=
(n− 1)k − 1

nk − 1
Σ(n−1)k +

1

nk − 1

 nk∑
i=(n−1)k+1

xix
′
i − nkxnkx′nk

+(n− 1)kx(n−1)kx
′
(n−1)k



Lemma 9. Let m,n ∈ N with m < n and x1,x2, . . . ,xn ∈ Rd. Define

xn,m :=
1⌊

n−1
m

⌋
+ 1

n∑
i=n−bn−1

m c
xi

and

Σn,m :=
1⌊
n−1
m

⌋
 n∑
i=n−bn−1

m c
xix

′
i −
(⌊

n− 1

m

⌋
+ 1

)
xn,mx′n,m

 .

Then

(i) if n = km+ 1 for some k ∈ N,

xn,m =
n− 1

n− 1 +m
xn−1,m +

m

n− 1 +m
xn

and otherwise

xn,m = xn−1,m +
1⌊

n−1
m

⌋
+ 1

(
xn − xn−bn−1

m c−1

)
.

(ii) If n = km+ 1 for some k ∈ N,

Σn,m =
n− 1−m
n− 1

Σn−1,m +
1

n− 1
(mxnx

′
n

+ (n− 1) xn−1,mx′n−1,m − (n− 1 +m) xn,mx′n,m
)

and otherwise

Σn,m = Σn−1,m +
1⌊
n−1
m

⌋(xnx
′
n − xn−1−bn−1

m cx
′
n−1−bn−1

m c

+
(⌊

n−1
m

⌋
+ 1
) (

xn−1,mx′n−1,m − xn,mx′n,m
))
.

41

Proof. (i) First assume that n = km+ 1 for some k ∈ N. Then n−1
m
∈ N,

and hence
⌊
n−2
m

⌋
=
⌊
n−1
m

⌋
− 1 = n−1

m
− 1. Then

x
(m)
n−1 =

1⌊
n−2
m

⌋
+ 1

n−1∑
i=n−1−bn−2

m c
xi =

1
n−1
m

n−1∑
i=n−n−1

m

xi.

Therefore,

x(m)
n =

1⌊
n−1
m

⌋
+ 1

n∑
i=n−bn−1

m c
xi

=
1

n−1
m

+ 1

n− 1

m
·

 1
n−1
m

n−1∑
i=n−n−1

m

xi

+
1

n−1
m

+ 1
xn

=
n− 1

n− 1 +m
x

(m)
n−1 +

m

n− 1 +m
xn.

Now assume n 6= km+ 1 for all k ∈ N. Then
⌊
n−2
m

⌋
=
⌊
n−1
m

⌋
, so

x
(m)
n−1 =

1⌊
n−2
m

⌋
+ 1

n−1∑
i=n−1−bn−2

m c
xi =

1⌊
n−1
m

⌋
+ 1

n−1∑
i=n−1−bn−1

m c
xi

and

x(m)
n =

1⌊
n−1
m

⌋
+ 1

n∑
i=n−bn−1

m c
xi

=
1⌊

n−1
m

⌋
+ 1

−xn−bn−1
m c−1 +

n−1∑
i=n−1−bn−1

m c
xi + xn


= x

(m)
n−1 +

1⌊
n−1
m

⌋
+ 1

(
xn − xn−bn−1

m c−1

)
.

(ii) For the covariances, if n = km+ 1 for some k ∈ N,

Σn−1,m =
1⌊
n−2
m

⌋
 n−1∑
i=n−1−bn−2

m c
xix

′
i

42

−
(⌊

n− 2

m

⌋
+ 1

)
xn−1,mx′n−1,m


=

1
n−1
m
− 1

 n−1∑
i=n−n−1

m

xix
′
i −

n− 1

m
xn−1,mx′n−1,m


and hence

Σn,m =
1⌊
n−1
m

⌋
 n∑
i=n−bn−1

m c
xix

′
i −
(⌊

n− 1

m

⌋
+ 1

)
xn,mx′n,m


=

1
n−1
m

 n−1∑
i=n−n−1

m

xix
′
i −

n− 1

m
xn−1,mx′n−1,m + xnx

′
n

+
n− 1

m
xn−1,mx′n−1,m −

(
n− 1

m
+ 1

)
xn,mx′n,m


=

n− 1−m
n− 1

Σn−1,m +
1

n− 1
(mxnx

′
n

+ (n− 1) xn−1,mx′n−1,m − (n− 1 +m) xn,mx′n,m
)
.

Otherwise,

Σn−1,m =
1⌊
n−2
m

⌋
 n−1∑
i=n−1−bn−2

m c
xix

′
i

−
(⌊

n− 2

m

⌋
+ 1

)
xn−1,mx′n−1,m


=

1⌊
n−1
m

⌋
 n−1∑
i=n−1−bn−1

m c
xix

′
i

−
(⌊

n− 1

m

⌋
+ 1

)
xn−1,mx′n−1,m

 ,

43

so

Σn,m =
1⌊
n−1
m

⌋
 n∑
i=n−bn−1

m c
xix

′
i −
(⌊

n− 1

m

⌋
+ 1

)
xn,mx′n,m


=

1⌊
n−1
m

⌋
 n−1∑
i=n−1−bn−1

m c
xix

′
i −
(⌊

n− 1

m

⌋
+ 1

)
xn−1,mx′n−1,m

−xn−1−bn−1
m cx

′
n−1−bn−1

m c + xnx
′
n

−
(⌊

n− 1

m

⌋
+ 1

)
xn,mx′n,m

+

(⌊
n− 1

m

⌋
+ 1

)
xn−1,mx′n−1,m


= Σn−1,m +

1⌊
n−1
m

⌋ (xnx
′
n − xn−1−bn−1

m cx
′
n−1−bn−1

m c

+

(⌊
n− 1

m

⌋
+ 1

)(
xn−1,mx′n−1,m − xn,mx′n,m

))
.

44

B R Code for the Algorithms

B.1 Standard Algorithm
library(mvtnorm) #load required packages

Y = read.table("data.txt",header=TRUE) #input data

N = dim(Y)[1] #sample size

nu = 4 #hyperparameters

m = c(0,0,0)

v = c(5,5,5)

s = 2.266167

t = 3.266167

M = 10^6 #number of iterations

B = M/2 #length of burn-in

d = 4 #dim of parameter space

np = 2 #length of initial phase

beta = 0.05 #beta from RR (in press)

g = function(X,log=FALSE) { #(log of) ~density of g

if (X[4] <= 0)

if (log==TRUE)

return(-Inf)

else

return(0)

else

E = -(1/2)*sum(((X[1:3]-m)/v)^2) - t/X[4]

S = sum(

log((1 + (1/nu) * (Y[,2] -X[1] -X[2]*Y[,1] -

X[3]*Y[,1]^2)^2

)

)

)

res = E -(s+1+N/2) *log(X[4]) -(nu+1)/2 *S

if (log==TRUE)

return(res)

else

return(exp(res))

}

X = matrix(0,M,4) #for samples

numaccept = 0 #for #accepted proposals

#X[1,] = rmvnorm(1, rep(0,4),diag(rep(1,4))) #starting vector from

overdispersered starting

distribution

X[1,4] = 1#abs(X[1,4]) #4.component >0

lastC = diag(rep(1,4)) #for covariance matrix

lastm = X[1,] #for mean vector

for (i in 2:M) {

if (i>np*d) {

propcov = (1-beta)^2 * (2.38^2)/d * lastC +

beta^2 * diag(rep(0.01/d,d))

Z = rmvnorm(1, X[i-1,], propcov)

45

}

else {

Z = rmvnorm(1, X[i-1,], diag(rep(0.01/d,d)))

}

logA = g(Z,log=TRUE) - g(X[i-1,],log=TRUE)

logU = log(runif(1))

if (logU < logA) {

X[i,] = Z;

numaccept = numaccept+1

}

else {

X[i,] = X[i-1,]

}

prelastm = lastm

lastm = (i-1)/i *lastm + 1/i * X[i,]

lastC=(i-1)/i*lastC + 1/i *

(i* prelastm %*% t(prelastm) -

(i+1)*lastm %*% t(lastm) +

X[i,] %*% t(X[i,]))

}

est = colMeans(X[(B+1):M,])

ACF = c() #for autocorrelations

k = 1 #count lag

mincorr = rep(1,4) #minimum lag

while (any(mincorr>0.05)) {

lagcor = cor(X[(B+1):(M-k),], X[(B+1+k):M,]) #calculate new lag

ACF = rbind(ACF, diag(lagcor))

mincorr = pmin(mincorr, abs(ACF[k,])) #determine minimum corr

k = k+1

}

varfact=rep(0,4) #for varfact

for (i in 1:4) {

bigacfs = abs(ACF[,i])>0.05

firstbigacfs = ACF[1:(which.min(bigacfs)-1),i] #acfs up to first <0.05

varfact[i] = 1+2*sum(firstbigacfs) #compute varfact

}

varest = diag(var(X[(B+1):M,])) #estimate sample ariance

seest = sqrt(varest * varfact / (M-B)) #estimate standard error

CIl = est+qnorm(0.025)*seest #estimate CI for estimate

CIu = est+qnorm(0.975)*seest

jumpdist = rowSums((X[2:M,]-X[1:(M-1),])^2) #jumping distances

avjumpdist = mean(jumpdist[jumpdist!=0]) #average jumpind distance

cat("proportion of accepted proposals:", numaccept/M, "\n",

"estimates for alpha, beta, gamma, and sigma^2:", est, "\n",

"corresponding standard errors:", seest, "\n",

"integrated autocorrelation times:", varfact, "\n",

"average jumping distance:", avjumpdist, "\n",

"95% confidence intervals:","\n")

paste(CIl,CIu)

46

B.2 Algorithm Updating Every k0 Iterations
library(mvtnorm) #load required packages

Y = read.table("data.txt",header=TRUE) #input data

N = dim(Y)[1] #sample size

nu = 4 #hyperparameters

m = c(0,0,0)

v = c(5,5,5)

s = 2.266167

t = 3.266167

M = 10^6 #number of iterations

B = M/2 #length of burn-in

l = 2 #update cov every l runs

d = 4 #dim of parameter space

np = 2 #length of initial phase

beta = 0.05 #beta from RR (in press)

g = function(X,log=FALSE) { #(log of) ~density of g

if (X[4] <= 0)

if (log==TRUE)

return(-Inf)

else

return(0)

else

E = -(1/2)*sum(((X[1:3]-m)/v)^2) - t/X[4]

S = sum(

log((1 + (1/nu) * (Y[,2] -X[1] -X[2]*Y[,1] -

X[3]*Y[,1]^2)^2

)

)

)

res = E -(s+1+N/2) *log(X[4]) -(nu+1)/2 *S

if (log==TRUE)

return(res)

else

return(exp(res))

}

X = matrix(0,M,4) #for samples

numaccept = 0 #for #accepted proposals

#X[1,] = rmvnorm(1, rep(0,4),diag(rep(1,4))) #starting vector from

overdispersered starting

distribution

X[1,4] = 1#abs(X[1,4]) #4.component >0

lastC = diag(rep(1,4)) #for covariance matrix

lastm = X[1,] #for mean vector

for (i in 2:l) {

if (i>np*d) {

propcov = (1-beta)^2 * (2.38^2)/d * lastC +

beta^2 * diag(rep(0.01/d,d))

Z = rmvnorm(1, X[i-1,], propcov)

} else {

Z = rmvnorm(1, X[i-1,], diag(rep(0.01/d,d)))

47

}

logA = g(Z,log=TRUE) - g(X[i-1,],log=TRUE)

logU = log(runif(1))

if (logU < logA) {

X[i,] = Z;

numaccept = numaccept+1

} else {

X[i,] = X[i-1,]

}

if (i%%l==0) {

prelastm = lastm

lastm = colMeans(X[1:l,])

lastC = cov(X[1:l,])

}

}

for (i in (l+1):M) {

if (M>np*d) {

propcov = (1-beta)^2 * (2.38^2)/d * lastC +

beta^2 * diag(rep(0.01/d,d))

Z = rmvnorm(1, X[i-1,], propcov)

} else {

Z = rmvnorm(1, X[i-1,], diag(rep(0.01/d,d)))

}

logA = g(Z,log=TRUE) - g(X[i-1,],log=TRUE)

logU = log(runif(1))

if (logU < logA) {

X[i,] = Z;

numaccept = numaccept+1

} else {

X[i,] = X[i-1,]

}

if (i%%l==0) {

prelastm = lastm

n=i/l

lastm = ((n-1) *lastm + colMeans(X[(i-l+1):i,])) /n

sumsq = X[i-l+1,] %*% t(X[i-l+1,])

for (j in (i-l+2):i) {

sumsq = sumsq + X[j,] %*% t(X[j,])

}

lastC=((i-l-1)*lastC + sumsq - i*lastm %*% t(lastm) +

(n-1)*l * prelastm %*% t(prelastm)) /(i-1)

}

}

est = colMeans(X[(B+1):M,])

ACF = c() #for autocorrelations

k = 1 #count lag

mincorr = rep(1,4) #minimum lag

while (any(mincorr>0.05)) {

lagcor = cor(X[(B+1):(M-k),], X[(B+1+k):M,]) #calculate new lag

ACF = rbind(ACF, diag(lagcor))

mincorr = pmin(mincorr, abs(ACF[k,])) #determine minimum corr

k = k+1

}

48

varfact=rep(0,4) #for varfact

for (i in 1:4) {

bigacfs = abs(ACF[,i])>0.05

firstbigacfs = ACF[1:(which.min(bigacfs)-1),i] #acfs up to first <0.05

varfact[i] = 1+2*sum(firstbigacfs) #compute varfact

}

varest = diag(var(X[(B+1):M,])) #estimate sample ariance

seest = sqrt(varest * varfact / (M-B)) #estimate standard error

CIl = est+qnorm(0.025)*seest #estimate CI for estimate

CIu = est+qnorm(0.975)*seest

jumpdist = rowSums((X[2:M,]-X[1:(M-1),])^2) #jumping distances

avjumpdist = mean(jumpdist[jumpdist!=0]) #average jumpind distance

cat("proportion of accepted proposals:", numaccept/M, "\n",

"estimates for alpha, beta, gamma, and sigma^2:", est, "\n",

"corresponding standard errors:", seest, "\n",

"integrated autocorrelation times:", varfact, "\n",

"average jumping distance:", avjumpdist, "\n",

"95% confidence intervals:","\n")

paste(CIl,CIu)

B.3 Algorithm Using the Last 1/k0 of the Iterations
library(mvtnorm) #load required packages

Y = read.table("data.txt",header=TRUE) #input data

N = dim(Y)[1] #sample size

nu = 4 #hyperparameters

m = c(0,0,0)

v = c(5,5,5)

s = 2.266167

t = 3.266167

M = 10^6 #number of iterations

B = M/2 #length of burn-in

d = 4 #dim of parameter space

np = 2 #length of initial phase

k = 2 #use last 1/k iterations

for computations

beta = 0.05 #beta from RR (in press)

g = function(X,log=FALSE) { #(log of) ~density of g

if (X[4] <= 0)

if (log==TRUE)

return(-Inf)

else

return(0)

else

E = -(1/2)*sum(((X[1:3]-m)/v)^2) - t/X[4]

S = sum(

log((1 + (1/nu) * (Y[,2] -X[1] -X[2]*Y[,1] -

X[3]*Y[,1]^2)^2

)

49

)

)

res = E -(s+1+N/2) *log(X[4]) -(nu+1)/2 *S

if (log==TRUE)

return(res)

else

return(exp(res))

}

X = matrix(0,M,4) #for samples

numaccept = 0 #for #accepted proposals

#X[1,] = rmvnorm(1, rep(0,4),diag(rep(1,4))) #starting vector from

overdispersered starting

distribution

X[1,4] = 1#abs(X[1,4]) #4.component >0

lastC = diag(rep(1,4)) #for covariance matrix

lastm = X[1,] #for mean vector

for (i in 2:k) {

propcov = (1-beta)^2 * (2.38^2)/d * lastC + beta^2 * diag(rep(0.01/d,d))

if (i>np*d) {

Z = rmvnorm(1, X[i-1,], propcov)

} else {

Z = rmvnorm(1, X[i-1,], diag(rep(0.01/d,d)))

}

logA = g(Z,log=TRUE) - g(X[i-1,],log=TRUE)

logU = log(runif(1))

if (logU < logA) {

X[i,] = Z

numaccept = numaccept+1

} else {

X[i,] = X[i-1,]

}

prelastm = lastm

l=floor((i-1)/k)

lastm=lastm+(X[i,]-X[i-l-1,])/(l+1)

}

for (i in (k+1):M) {

propcov = (1-beta)^2 * (2.38^2)/d * lastC + beta^2 * diag(rep(0.01/d,d))

if (i>np*d) {

Z = rmvnorm(1, X[i-1,], propcov)

} else {

Z = rmvnorm(1, X[i-1,], diag(rep(0.01/d,d)))

}

logA = g(Z,log=TRUE) - g(X[i-1,],log=TRUE)

logU = log(runif(1))

if (logU < logA) {

X[i,] = Z

numaccept = numaccept+1

} else {

X[i,] = X[i-1,]

}

prelastm = lastm

if (i%%k==1) {

50

lastm=((i-1)*lastm+k*X[i,])/(i-1+k)

lastC=((i-1-k)*lastC+k*X[i,] %*% t(X[i,]) + (i-1)*

prelastm %*% t(prelastm) - (i-1+k)*lastm %*% t(lastm))/

(i-1)

}

else {

l=floor((i-1)/k)

lastm=lastm+(X[i,]-X[i-l-1,])/(l+1)

lastC=lastC+(X[i,] %*% t(X[i,]) - X[i-1-l,] %*% t(X[i-1-l,]) +

(l+1)*(prelastm %*% t(prelastm) - lastm %*% t(lastm))

)/l

}

}

est = colMeans(X[(B+1):M,])

ACF = c() #for autocorrelations

r = 1 #count lag

mincorr = rep(1,4) #minimum lag

while (any(mincorr>0.05)) {

lagcor = cor(X[(B+1):(M-r),], X[(B+1+r):M,]) #calculate new lag

ACF = rbind(ACF, diag(lagcor))

mincorr = pmin(mincorr, abs(ACF[r,])) #determine minimum corr

r = r+1

}

varfact=rep(0,4) #for varfact

for (i in 1:4) {

bigacfs = abs(ACF[,i])>0.05

firstbigacfs = ACF[1:(which.min(bigacfs)-1),i] #acfs up to first <0.05

varfact[i] = 1+2*sum(firstbigacfs) #compute varfact

}

varest = diag(var(X[(B+1):M,])) #estimate sample ariance

seest = sqrt(varest * varfact / (M-B)) #estimate standard error

CIl = est+qnorm(0.025)*seest #estimate CI for estimate

CIu = est+qnorm(0.975)*seest

jumpdist = rowSums((X[2:M,]-X[1:(M-1),])^2) #jumping distances

avjumpdist = mean(jumpdist[jumpdist!=0]) #average jumpind distance

cat("proportion of accepted proposals:", numaccept/M, "\n",

"estimates for alpha, beta, gamma, and sigma^2:", est, "\n",

"corresponding standard errors:", seest, "\n",

"integrated autocorrelation times:", varfact, "\n",

"average jumping distance:", avjumpdist, "\n",

"95% confidence intervals:","\n")

paste(CIl,CIu)

51

C Plots for Simulations

0 25000 50000 75000 100000

− 5

0

5

10

15

20

iterat ion

αα

0 25000 50000 75000 100000

− 2

− 1

0

1

2

iterat ion

ββ

0 25000 50000 75000 100000

0.00

0.05

0.10

0.15

iterat ion

γγ

0 25000 50000 75000 100000

0.2

0.4

0.6

0.8

1.0

iterat ion

σσ
2

Figure 1: Plots of the first 100,000 iterations of the Markov chains (abscissa) versus the states of the
Markov chain for each of the components (ordinate) for the standard algorithm with initial phase of
length 8.

52

0 25000 50000 75000 100000

− 5

0

5

10

15

20

iterat ion

αα

0 25000 50000 75000 100000

− 2

− 1

0

1

2

iterat ion

ββ

0 25000 50000 75000 100000

0.00

0.05

0.10

0.15

0.20

iterat ion

γγ

0 25000 50000 75000 100000

0.2

0.4

0.6

0.8

1.0

iterat ion

σσ
2

Figure 2: Plots of the first 100,000 iterations of the Markov chains (abscissa) versus the states of the
Markov chain for each of the components (ordinate) for the algorithm updating the proposal each 2nd

step which has an initial phase of length 8.

53

0 25000 50000 75000 100000

− 5

0

5

10

15

iterat ion

αα

0 25000 50000 75000 100000

− 2

− 1

0

1

iterat ion

ββ

0 25000 50000 75000 100000

0.00

0.05

0.10

0.15

iterat ion

γγ

0 25000 50000 75000 100000

0.2

0.4

0.6

0.8

1.0

iterat ion

σσ
2

Figure 3: Plots of the first 100,000 iterations of the Markov chains (abscissa) versus the states of the
Markov chain for each of the components (ordinate) for the algorithm updating the proposal each 10th

step which has an initial phase of length 8.

54

0 25000 50000 75000 100000

− 5

0

5

10

15

20

iterat ion

αα

0 25000 50000 75000 100000

− 2

− 1

0

1

2

iterat ion

ββ

0 25000 50000 75000 100000

0.00

0.05

0.10

0.15

iterat ion

γγ

0 25000 50000 75000 100000

0.2

0.4

0.6

0.8

1.0

1.2

iterat ion

σσ
2

Figure 4: Plots of the first 100,000 iterations of the Markov chains (abscissa) versus the states of the
Markov chain for each of the components (ordinate) for the algorithm updating the proposal based on the
last half of the iteration which has initial phase of length 8.

55

0 25000 50000 75000 100000

− 5

0

5

10

15

20

iterat ion

αα

0 25000 50000 75000 100000

− 2

− 1

0

1

2

iterat ion

ββ

0 25000 50000 75000 100000

0.00

0.05

0.10

0.15

0.20

iterat ion

γγ

0 25000 50000 75000 100000

0.2

0.4

0.6

0.8

1.0

iterat ion

σσ
2

Figure 5: Plots of the first 100,000 iterations of the Markov chains (abscissa) versus the states of the
Markov chain for each of the components (ordinate) for the algorithm updating the proposal based on the
last tenth of the iteration which has initial phase of length 8.

56

0 25000 50000 75000 100000

− 5

0

5

10

15

20

iterat ion

αα

0 25000 50000 75000 100000

− 2

− 1

0

1

2

iterat ion

ββ

0 25000 50000 75000 100000

0.00

0.05

0.10

0.15

0.20

iterat ion

γγ

0 25000 50000 75000 100000

0.2

0.4

0.6

0.8

1.0

iterat ion

σσ
2

Figure 6: Plots of the first 100,000 iterations of the Markov chains (abscissa) versus the states of the
Markov chain for each of the components (ordinate) for the standard simulation with initial phase of
length 200.

57

0 25000 50000 75000 100000

− 5

0

5

10

15

20

iterat ion

αα

0 25000 50000 75000 100000

− 2

− 1

0

1

2

iterat ion

ββ

0 25000 50000 75000 100000

0.00

0.05

0.10

0.15

iterat ion

γγ

0 25000 50000 75000 100000

0.2

0.4

0.6

0.8

1.0

iterat ion

σσ
2

Figure 7: Plots of the first 100,000 iterations of the Markov chains (abscissa) versus the states of the
Markov chain for each of the components (ordinate) for the algorithm updating the proposal each 2nd

step which has an initial phase of length 200.

58

0 25000 50000 75000 100000

− 5

0

5

10

15

20

iterat ion

αα

0 25000 50000 75000 100000

− 2

− 1

0

1

2

iterat ion

ββ

0 25000 50000 75000 100000

0.00

0.05

0.10

0.15

0.20

iterat ion

γγ

0 25000 50000 75000 100000

0.2

0.4

0.6

0.8

1.0

iterat ion

σσ
2

Figure 8: Plots of the first 100,000 iterations of the Markov chains (abscissa) versus the states of the
Markov chain for each of the components (ordinate) for the algorithm updating the proposal based on the
last half of the iteration which has initial phase of length 200.

59

