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1. Introduction.

This short paper considers certain issues surrounding the variance in the central limit

theorem (CLT) for Markov chains. This subject is particularly important when using Markov

chain Monte Carlo (MCMC) algorithms, see e.g. [11], [18], [7], [4], [5], [8], and [10].

Let {Xn} be a stationary, reversible Markov chain on a state space X , and let h :

X → R be a mean 0 measurable function. Often, n−1/2∑n
i=1 h(Xi) will converge weakly to

Normal(0, σ2) for some σ2 < ∞. The asymptotic variance σ2 is very important in applica-

tions, and various alternate expressions for it are available in terms of limits, autocovariances,

and spectral theory.

This paper considers three such expressions, denoted A, B, and C, which are known to

“usually” equal σ2. These expressions arise in different applications in different ways. For

example, it is proved by Kipnis and Varadhan [11] that if C < ∞, then a
√

n-CLT exists

for h, with σ2 = C. In a different direction, it is proved by Roberts [13] that Metropolis

algorithms satisfying a certain condition must have A = ∞. Such disparate results indicate

the importance of sorting out the relationships between A, B, C, and σ2.

2. Notation.

Let {Xn} be a stationary, time homogeneous Markov chain on the measurable space

(X ,F), with transition kernel P , reversible with respect to the probability measure π(·), so

P[Xn ∈ A] = π(A) for all n ∈ N and A ∈ F . Let P n(x, A) = P[Xn ∈ A |X0 = x] be the

n-step transitions. Recall that P is ergodic if limn→∞ supA∈F |P n(x, A)−π(A)| = 0 for π-a.e.

x ∈ X . This follows (cf. [18], [16], [15]) if P is φ-irreducible and aperiodic.

Write π(g) =
∫
X g(x) π(dx), and let L2(π) = {f : X → R s.t. π(f 2) < ∞}. Write

〈f, g〉 =
∫
X f(x) g(x) π(dx) for f, g ∈ L2(π); by reversibility, 〈f, Pg〉 = 〈Pf, g〉.
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Let h : X → R be a fixed, measurable function, with π(h) = 0 and π(h2) < ∞. Let

γk = E[h(X0) h(Xk)] = 〈h, P kh〉 be the corresponding lag-k autocovariance. Say that a
√

n-

CLT exists for h if n−1/2∑n
i=1 h(Xi) converges weakly to Normal(0, σ2) for some σ2 < ∞.

(We allow for the degenerate case σ2 = 0.)

We shall also require spectral measures. Let E be the spectral decomposition measure

(e.g. [17], Theorem 12.23) associated with P , so that

f(P ) =
∫ 1

−1
f(λ) E(dλ)

for all bounded analytic functions f : [−1, 1] → R, and E(R) = E([−1, 1]) = I is the identity

operator. Let Eh be the induced spectral measure for h (cf. [7], p. 1753), viz.

Eh(S) = 〈h, E(S)h〉 , S ⊆ [−1, 1] Borel

with Eh(R) = 〈h, E(R)h〉 = 〈h, h〉 = π(h2) < ∞.

3. Expressions for the Variance.

We are interested in the question of whether/when

n−1/2
n∑

i=1

h(Xi) ⇒ Normal(0, σ2) , σ2 < ∞ , (1)

and the corresponding variance σ2. (In fact, the convergence in (1) does not require station-

arity; see e.g. Proposition 29 of [15].) There are a number of possible formulae for σ2 in the

literature (e.g. [11], [7], [4]), including:

A = lim
n→∞

n−1Var

(
n∑

i=1

h(Xi)

)
= γ0 + 2 lim

n→∞

n−1∑
k=1

(n− k

n

)
γk ;

B = γ0 + 2
∞∑

k=1

γk = γ0 + 2 lim
n→∞

n∑
k=1

γk ;

C =
∫ 1

−1

1 + λ

1− λ
Eh(dλ) .

We shall also have occasion to consider versions of A and B where the limit is taken over

odd integers only:

A′ = lim
j→∞

(2j + 1)−1Var

2j+1∑
i=1

h(Xi)

 ;

B′ = γ0 + 2 lim
j→∞

2j+1∑
k=1

γk .
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Obviously, A′ = A and B′ = B provided the limits in A and B exist. But it may be possible

that, say A′ is well-defined even though A is not.

The following result is implicit in some earlier works (e.g. [11], [7], [4]), but does not

appear to have previously been written down precisely.

Theorem 1. If P is reversible and ergodic, then A = B = C (though they may all be

infinite).

Theorem 1 is proved in Section 5. We first note that the assumption of ergodicity cannot

be omitted:

Example 2. Let X = {−1, 1}, with π{−1} = π{1} = 1/2, and P (1, {−1}) = P (−1, {1}) =

1, so P is reversible with respect to π(·). Let h be the identity function. Then
∣∣∣∑n

i=1 h(Xi)
∣∣∣ ≤

1, so A = 0. On the other hand, γk = (−1)k, so B′ = 0 but B is an oscillating sum and thus

undefined. So A 6= B, but Theorem 1 is not violated since the chain is periodic and hence

not ergodic. And, a (degenerate)
√

n-CLT does hold, with σ2 = A = B′ = 0.

Now, Kipnis and Varadhan [11] proved for reversible chains that if C < ∞, then a CLT

exists for h, with σ2 = C. Combining this with Theorem 1, we have:

Corollary 3. If P is reversible and ergodic, and any one of A, B, and C is finite, then a

CLT exists for h, with σ2 = A = B = C < ∞.

Also, Roberts [13], considered the quantity r(x) = P[X1 = x |X0 = x], the probability

of remaining at x, which is usually positive for Metropolis-Hastings algorithms. He proved

that if limn→∞ nE[h2(X0) r(X0)
n] = ∞, then A = ∞ (and used this to prove that A = ∞

for some specific independence sampler examples). Combining his result with Theorem 1,

we have:

Corollary 4. If P is reversible and ergodic, and if limn→∞ nE[h2(X0) r(X0)
n] = ∞, then

A = B = C = ∞.

If the Markov chain is not reversible, then the spectral measure required to define C

becomes much more complicated, and we do not pursue that here. However, it is still

possible to compare A and B. It follows immediately from the definitions and the dominated

convergence theorem (cf. [2], p. 172; [4]) that if
∑

k |γk| < ∞, then A = B < ∞ (though

this might not imply a
√

n-CLT for h). The condition
∑

k |γk| < ∞ is known to hold for

uniformly ergodic chains (see [2]), and for reversible geometric chains (since that implies [14]
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that |γk| ≤ ρk π(h2) for some ρ < 1), but it does not hold in general. This leads to the

following question:

Open Problem #1. If the Markov chain is ergodic, but not necessarily reversible or

geometrically ergodic or uniformly ergodic, does it necessarily follow that A = B (allowing

that they may both be infinite)?

4. Converse: CLT Necessity.

The result from [11] raises the question of the converse. Suppose n−1∑n
i=1 h(Xi) converges

weakly to Normal(0, σ2) for some σ2 < ∞. Does it necessarily follow that any of A, B, and C

are finite? In particular, an affirmative answer to this question would allow a strengthening

of Corollary 4 to conclude that no
√

n-CLT holds for such h, and in particular a
√

n-CLT

does not hold for the independence sampler examples considered by Roberts [13].

Even in the i.i.d. case (where P (x, A) = π(A) for all x ∈ X and A ∈ F), this question is

non-trivial. However, classical results (cf. Sections IX.8 and XVII.5 of Feller [6]; for related

results see e.g. [3], [1]) provide an affirmative answer in this case:

Theorem 5. The converse to the result in [11] holds in the i.i.d. case. That is, if {Xi} are

i.i.d., and n−1/2∑n
i=1 h(Xi) converges weakly to Normal(0, σ2) for some σ2 < ∞, then A, B,

and C are all finite, and σ2 = A = B = C.

Proof. Let Yi = h(Xi), and let U(z) = E[Y 2
1 1|Y1|≤z]. Then since the {Yi} are i.i.d.

with mean 0, Theorem 1a on p. 313 of [6] says that there are positive sequences {an} with

a−1
n (Y1 + . . . + Yn) ⇒ Normal(0, 1) if and only if limz→∞ [U(sz)/U(z)] = 1 for all s > 0.

Furthermore, equation (8.12) on p. 314 of [6] (see also equation (5.23) on p. 579 of [6]) says

that in this case,

lim
n→∞

n a−2
n U(an) = 1 . (2)

Now, the hypotheses imply that a−1
n (Y1 + . . . + Yn) ⇒ Normal(0, 1) where an = c n1/2

with c = σ−1 > 0. Thus, from (2), we have limn→∞ c U(cn1/2) = 1. It follows that

limz→∞ U(z) = c−1 < ∞, i.e. E(Y 2
1 ) < ∞. We then compute that γk = 0 for k ≥ 1, so

B = γ0 = E(Y 2
1 ) = σ2 < ∞. Hence, by Corollary 3, σ2 = A = B = C = E(Y 2

1 ) < ∞.
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Remark 6. In the above proof, if E(Y 2
1 ) = σ2 < ∞, then of course U(z) → σ2, so

U(sz)/U(z) → σ2/σ2 = 1, and the (classical) CLT applies. On the other hand, there are

many distributions for the {Yi} which have infinite variance, but for which the corresponding

U is still slowly varying in this sense. Examples include the density function y−31|y|≥1, and

the cumulative distribution function 1 − (1 + y)−2 for y ≥ 0. The results from [6] say

that we cannot have an = c n1/2 in such cases. (In the y−31|y|≥1 example, we instead have

an = c (n log n)−1/2.)

Theorem 5 is specific to the i.i.d. case, leading to the following question:

Open Problem #2. Does Theorem 5 hold in the non-i.i.d. case, i.e. when {Xn} is

assumed only to be a reversible stationary ergodic Markov chain? (And, to what extent are

reversibility and ergodicity necessary?)

There are various results in the stationary process literature (e.g. [9], [12]) that are somewhat

related to those from [6] used in the proof of Theorem 5, but their applicability to Open

Problem #2 is unclear. Also, if {n−1∑n
i=1 h(Xi)

2} is uniformly integrable, then whenever a
√

n-CLT exists we must have A = σ2, which implies by Theorem 1 (assuming reversibility)

that σ2 = A = B = C < ∞, but it is not clear when this uniform integrability condition will

be satisfied. Finally, we note that Open Problem #2 is specific to the n−1/2 normalisation

and the Normal limiting distribution; other normalisations and limiting distributions may

sometimes hold, but we do not consider them here.

5. Proof of Theorem 1.

Theorem 1 follows from Corollary 10 and Proposition 11 below. We begin with a lemma

(somewhat similar to Theorem 3.1 of [7]).

Lemma 7. If P is reversible, then γ2i ≥ 0, and |γ2i+1| ≤ γ2i, and |γ2i+2| ≤ γ2i.

Proof. By reversibility, γ2i = 〈f, P 2if〉 = 〈P if, P if〉 = ‖P if‖2 ≥ 0.

Also, |γ2i+1| = 〈f, P 2i+1f〉 = |〈P if, P (P if)〉| ≤ ‖P if‖2‖P‖ ≤ ‖P if‖2 = γ2i.

Similarly, |γ2i+2| = 〈f, P 2i+2f〉 = |〈P if, P 2(P if)〉| ≤ ‖P if‖2‖P 2‖ ≤ ‖P if‖2 = γ2i.

Lemma 8. If P is reversible and ergodic, then limk→∞ γk = 0.
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Proof. Since P is ergodic, it does not have an eigenvalue 1 or −1. Hence (cf. [17],

Theorem 12.29(b)) its spectral measure E does not have an atom at 1 or −1, i.e. E({−1, 1}) =

0, so also Eh({−1, 1}) = 0 (cf. [7], Lemma 5). Hence, by the dominated convergence theorem

(since |λk| ≤ 1 for −1 ≤ λ ≤ 1, and
∫ 1
−1 1 Eh(dλ) = π(h2) < ∞), we have:

lim
k→∞

γk = lim
k→∞

〈h, P kh〉 = lim
k→∞

∫ 1

−1
λk Eh(dλ)

=
∫ 1

−1

(
lim
k→∞

λk
)
Eh(dλ) =

∫ 1

−1
0 Eh(dλ) = 0 .

Proposition 9. If P is reversible and ergodic, then A′ = B′. (We allow for the possibility

that A′ = B′ = ∞.)

Proof. We have that

(2j + 1)−1 Var

2j+1∑
i=1

h(Xi)

 = γ0 + 2γ1 + 2
j∑

i=1

(
2j + 1− 2i

2j + 1
γ2i +

2j + 1− 2i− 1

2j + 1
γ2i+1

)

= γ0 + 2γ1 + 2
j∑

i=1

γ2i

2j + 1
+ 2

j∑
i=1

2j + 1− 2i− 1

2j + 1
(γ2i + γ2i+1) . (3)

By Lemma 7, γ2i + γ2i+1 ≥ 0, so as j →∞, for fixed i,

2j + 1− 2i− 1

2j + 1
(γ2i + γ2i+1) ↗ γ2i + γ2i+1 ,

i.e. the convergence is monotonic. Hence, by the monotone convergence theorem,

lim
j→∞

2
j∑

i=1

2j + 1− 2i− 1

2j + 1
(γ2i + γ2i+1) = lim

j→∞
2

j∑
i=1

(γ2i + γ2i+1) .

By Lemma 8, γ2i → 0 as i →∞, so
∑j

i=1
γ2i

2j+1
→ 0 as j →∞. Putting this all together, we

conclude from (3) that

lim
j→∞

(2j + 1)−1 Var

2j+1∑
i=1

h(Xi)

 = γ0 + 2γ1 + 2 lim
j→∞

j∑
i=1

(γ2i + γ2i+1) ,

i.e. A′ = B′.

Corollary 10. If P is reversible and ergodic, then A = B. (We allow for the possibility

that A = B = ∞.)
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Proof. If P is ergodic, then by Lemma 8, γk → 0, so B = B′. Also,

(n + 1)−1Var

(
n+1∑
i=1

h(Xi)

)
− n−1Var

(
n∑

i=1

h(Xi)

)
(4)

= n−1

[
Var

(
n+1∑
i=1

h(Xi)

)
− Var

(
n∑

i=1

h(Xi)

)]
+ [n(n + 1)]−1Var

(
n+1∑
i=1

h(Xi)

)
Now, the first term above is equal to n−1∑n

i=1 γi (which goes to 0 since γk → 0), plus

n−1E[h2(Xi+1)] (which goes to 0 since π(h2) < ∞). The second term is equal to

γ0

n(n + 1)
+ 2

n−1∑
k=1

n− k

n2(n + 1)
γk

which is O(1/n) and hence also goes to 0. We conclude that the difference in (4) goes to 0

as n →∞, so that A = A′. Hence, by Proposition 9, A = A′ = B′ = B.

Proposition 11. If P is reversible and ergodic, then B = C. (We allow for the possibility

that B = C = ∞.)

Proof. We compute that:

B = lim
k→∞

(
〈h, h〉+ 2 〈h, Ph〉+ 2 〈h, P 2h〉+ . . . + 2 〈h, P kh〉

)
= lim

k→∞

〈
h, (I + 2P + 2P 2 + . . . + 2P k)h

〉
= lim

k→∞

∫ 1

−1
(1 + 2λ + 2λ2 + . . . + 2λk) Eh(dλ)

= lim
k→∞

∫ 1

−1
(2

1− λk+1

1− λ
− 1) Eh(dλ)

= lim
k→∞

∫ 1

−1
(
1 + λ− λk+1

1− λ
) Eh(dλ)

= C − lim
k→∞

∫ 1

−1
λk+1 Eh(dλ)

= C ,

where the final equality follows by dominated convergence as in the proof of Lemma 8.
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