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Abstract

We consider Markov chain Monte Carlo algorithms which combine Gibbs updates

with Metropolis-Hastings updates, resulting in a conditional Metropolis-Hastings sampler

(CMH). We develop conditions under which the CMH will be geometrically or uniformly

ergodic. We illustrate our results by analysing a CMH used for drawing Bayesian inferences

about the entire sample path of a diffusion process, based only upon discrete observations.

1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are an extremely popular way of approxi-

mately sampling from complicated probability distributions [see e.g. 1, 6, 30, 42]. In multivari-

ate settings it is common to update the different components individually. If these updates

are all drawn from full conditional distributions, then this corresponds to the Gibbs sampler.

Conversely, if these updates are produced by drawing from a proposal distribution and then

either accepting or rejecting the proposed state, then this corresponds to the componentwise

Metropolis-Hastings algorithm (sometimes called Metropolis-Hastings-within-Gibbs). We con-

sider the mixed case in which some components are updated as in the Gibbs sampler, while
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other components are updated as in componentwise Metropolis-Hastings. Such chains arise

when full conditional updates are feasible for some components but not for others, which is

true of the discretely-observed diffusion example considered in Section 5 herein.

For this mixed case, we shall prove various results about theoretical properties such as

geometric ergodicity. Geometric ergodicity is an important stability property for MCMC,

used e.g. to establish central limit theorems [2, 11, 26] and to calculate asymptotically valid

Monte Carlo standard errors [5, 12]. While there has been much progress in proving geometric

ergodicity for many MCMC samplers [see e.g. 7, 8, 9, 14, 17, 18, 24, 25, 28, 33, 36, 37, 41],

doing so typically requires difficult theoretical analysis.

For ease of exposition we begin with the two-variable case and defer consideration of

extensions to more than two variables to Section 4. Let π be a probability distribution having

support X ×Y, and πX|Y and πY |X denote the associated conditional distributions. Suppose

πY |X has a density fY |X , and πX|Y has density fX|Y . There are several potential component-

wise MCMC algorithms, each having π as its invariant distribution. If it is possible to simulate

from πX|Y and πY |X , then one can implement a deterministic-scan Gibbs sampler (DUGS),

which is now described. Suppose the current state of the chain is (Xn, Yn) = (x, y), then the

next state, (Xn+1, Yn+1), is obtained as follows.

Iteration n+ 1 of the deterministic-scan Gibbs sampler (DUGS):

1. Draw Yn+1 ∼ πY |X(·|x), and call the observed value y′.

2. Draw Xn+1 ∼ πX|Y (·|y′).

However, sometimes one or both of these steps will be computationally infeasible, neces-

sitating the use of alternative algorithms. In particular, suppose we continue to simulate

directly from πY |X , but use a Metropolis-Hastings algorithm for πX|Y with proposal den-

sity q(x′|x, y′). This results in a conditional Metropolis-Hastings sampler (CMH), which is

now described. If the current state of the chain is (Xn, Yn) = (x, y), then the next state,

(Xn+1, Yn+1), is obtained as follows.
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Iteration n+ 1 of the conditional Metropolis-Hastings sampler (CMH):

1. Draw Yn+1 ∼ πY |X(·|x), and call the observed value y′.

2. Draw V ∼ q(·|x, y′) and call the observed value v. Independently draw U ∼ Uniform(0, 1).
Set Xn+1 = v if

U ≤
fX|Y (v|y′)q(x|v, y′)
fX|Y (x|y′)q(v|x, y′)

otherwise set Xn+1 = Xn

As is well-known DUGS is a special case of the CMH where the proposal is taken to be

the conditional, that is, q(x′|x, y′) = fX|Y (x′|y′) [30]. Thus, it is natural to suspect that

the convergence properties of DUGS and CMH may be related. On the other hand, while

geometric ergodicity of the Gibbs sampler has been extensively studied [17, 21, 24, 25], the

CMH has received comparatively little attention [10].

If the proposal distribution for x′ does not depend on the previous value of x, i.e. if

q(x′|x, y′) = q(x′|y′), then in CMH the X values are updated as in an independence sampler

[see e.g. 31, 42], conditional on the current value of Y . We thus refer to this special case

as a conditional independence sampler (CIS). It is known that an independence sampler will

be uniformly ergodic provided that the ratio of the target density to the proposal density is

bounded [16, 19, 33, 40]. Intuitively, this suggests that the resulting CIS will have convergence

properties similar to those of the corresponding DUGS; we will explore this question herein.

This paper is organized as follows. In Section 2 we present preliminary material, including

a general Markov chain comparison theorem (Theorem 1). In Section 3 we derive various

convergence properties of CMH, including uniform ergodicity in terms of the conditional

weight function (Theorems 5 and 7) and uniform return probabilities (Theorem 11), and

geometric ergodicity via a comparison to DUGS (Theorem 12). In Section 4 we extend many

of our results from the two-variable setting to higher dimensions. Finally, in Section 5 we

apply our results to an algorithm for drawing Bayesian inferences about the entire sample

path of a diffusion process based only upon discrete observations.

3



Remark 1. The focus of our paper is on qualitative convergence properties such as uniform and

geometric ergodicity. However, a careful look at the proofs will show that many of our results

actually provide explicit quantitative bounds on spectral gaps or minorisation constants for

the algorithms that we consider.

2 Preliminaries

We begin with an account of essential preliminary material.

2.1 Background about Markov Chains

Let P be a Markov transition kernel on a measurable space (Z,F). Thus, P : Z ×F → [0, 1],

such that for each A ∈ F , P (·, A) is a measurable function, and for each z ∈ Z, P (z, ·) is a

probability measure. If Φ = {Z0, Z1, . . .} is the Markov chain with transitions governed by

P , then for any positive integer n, the n-step Markov transition kernel is given by Pn(z,A) =

Pr(Zn+j ∈ A|Zj = z), which is assumed to be the same for all times j.

Let ν be a measure on (Z,F) and A ∈ F and define

νP (A) =

∫
ν(dz)P (z,A)

so that P acts to the left on measures. Let π be an invariant probability measure for P , that

is, πP = π. Also, if f is a measurable function on Z let

Pf(z) =

∫
f(y)P (z, dy)

and

π(f) =

∫
f(z)π(dz) .

Let ||Pn(z, ·) − π(·)||TV = supA∈F |Pn(z,A) − π(A)| be the usual total variation distance.

Then P is geometrically ergodic if there exist a real-valued function M(z) on Z and 0 < t < 1

such that for π-a.e. z ∈ Z,

||Pn(z, ·)− π(·)||TV ≤M(z)tn . (1)
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Moreover, P is uniformly ergodic if (1) holds and supzM(z) <∞.

Uniform ergodicity is equivalent to a so-called minorization condition [see e.g. 20, 30].

That is, P is uniformly ergodic if and only if there exists a positive integer m ≥ 1, a constant

ε > 0 and a probability measure Q on Z such that for all z ∈ Z,

Pm(z,A) ≥ εQ(A) A ∈ F , (2)

in which case we say that P is m-minorisable.

Establishing geometric ergodicity is most commonly done by establishing various Foster-

Lyapounov criteria [13, 20, 30], but these will play no role here. Instead we will focus on

another characterization of geometric ergodicity which is appropriate for reversible Markov

chains. Let L2(π) be the space of measurable functions that are square integrable with respect

to the invariant distribution, and let

L2
0,1(π) =

{
f ∈ L2(π) : π(f) = 0 and π(f2) = 1

}
.

For f, g ∈ L2(π), define the inner product as

(f, g) =

∫
Z
f(z)g(z)π(dz)

and ‖f‖2 = (f, f). The norm of the operator P (restricted to L2
0,1(π)) is

‖P‖ = sup
f∈L2

0,1(π)

‖Pf‖ .

If P is reversible with respect to π, that is, if

P (z, dz′)π(dz) = P (z′, dz)π(dz′), (3)

then P is self-adjoint so that (Ph1, h2) = (h1, Ph2). In this case,

‖P‖ = sup
f∈L2

0,1(π)

|(Pf, f)| . (4)

Let P0 denote the restriction of P to L2
0,1(π), and let σ(P0) be the spectrum of P0. The

spectral radius of P0 is

r(P0) = sup{|λ| : λ ∈ σ(P0)} ,
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while the spectral gap of P is gap(P ) = 1−r(P0). If P is reversible with respect to π and hence

self-adjoint, then σ(P0) ⊆ [−1, 1], and also r(P0) = ‖P‖ (since we defined ‖P‖ as being with

respect to L2
0,1(π) only). Finally, if P is reversible with respect to π, then P is geometrically

ergodic if and only if gap(P ) > 0, or equivalently ‖P‖ < 1 [26].

2.2 A Comparison Theorem

Our goal in this section is to develop and prove a simple but powerful comparison result,

similar in spirit to [3] and to Peskun orderings [22, 43], which we shall use in the sequel to

help establish uniform and geometric ergodicity of CMH.

Theorem 1. Suppose P and Q are Markov kernels and there exists δ > 0 such that

P (z,A) ≥ δ Q(z,A), A ∈ F , z ∈ Z . (5)

1. If P and Q have invariant distribution π and Q is uniformly ergodic, then so is P .

2. If P and Q are reversible with respect to π and Q is geometrically ergodic, then so is P .

Proof. 1. Note that (5) implies that for all n,

Pn(z,A) ≥ δnQn(z,A), A ∈ F , z ∈ Z .

Since Q is uniformly ergodic, by (2) there exists an integer m ≥ 1, ε > 0 and probability

measure ν such that

Qm(z,A) ≥ εν(A), A ∈ F , z ∈ Z .

Putting these two observations together gives a minorisation condition for P , and hence yields

the claim by (2).

2. Let A ∈ F and define

R(z,A) =
P (z,A)− δQ(z,A)

1− δ
.

Using (5) shows that R is a Markov kernel. Also

P (z,A) = δQ(z,A) + (1− δ)R(z,A) .
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Let P0, Q0 and R0 denote the restriction of P , Q and R, respectively, to L2
0,1(π). Since P is

reversible with respect to π, and ‖R‖ ≤ 1 so r(R0) ≤ 1, we have by (4) that

r(P0) = r
(
δQ0 + (1− δ)R0

)
= sup

f∈L2
0,1(π)

∣∣∣δ(Q0f, f) + (1− δ)(R0f, f)
∣∣∣

≤ δ
[

sup
f∈L2

0,1(π)

|(Q0f, f)|
]

+ (1− δ)
[

sup
f∈L2

0,1(π)

|(R0f, f)|
]

= δ r(Q0) + (1− δ)r(R0)

≤ δ r(Q0) + (1− δ) .

Hence,

gap(P ) = 1− r(P0) ≥ 1− [δ r(Q0) + (1− δ)] = δ [1− r(Q0)] = δ gap(Q) .

Since Q is geometrically ergodic, gap(Q) > 0, and hence gap(P ) > 0. Therefore, P is

geometrically ergodic.

2.3 The Markov Chain Kernels

We formally define the Markov chain kernels for the various algorithms described in Section 1.

While we focus on the case of two-variables here and in Section 3, in Section 4 we consider

extensions to more general settings.

Let (X ,FX , µX) and (Y,FY , µY ) be two σ-finite measure spaces, and let (Z,F , µ) be their

product space. Let π be a probability distribution on (Z,F , µ) which has a density f(x, y)

with respect to µ. Then the marginal distributions πX and πY of π have densities given by

fX(x) =

∫
Y
f(x, y)µY (dy) (6)

and similarly for fY (y). By redefining X and Y if necessary, we can (and do) assume that

fX(x) > 0 for all x ∈ X and fY (y) > 0 for all y ∈ Y . (7)

The corresponding conditional densities are then given by fX|Y (x|y) = f(x, y)/fY (y) and

fY |X(y|x) = f(x, y)/fX(x).
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Define a Markov kernel for a Y update by

PGS:Y (x,A) =

∫
{y:(x,y)∈A}

fY |X(y|x)µY (dy) ,

and similarly an X update is described by the Markov kernel

PGS:X(y,A) =

∫
{x:(x,y)∈A}

fX|Y (x|y)µX(dx) .

We can define the Markov kernel for the deterministic-scan Gibbs sampler (DUGS) by the

composition of X and Y updates, i.e. PDUGS = PGS:Y PGS:X corresponding to doing first a

Gibbs sampler Y -move and then a Gibbs sampler X-move. That is, the DUGS Markov chain

updates first Y and then X, schematically (x, y) → (x, y′) → (x′, y′). If kDUGS(x′, y′|x, y) =

fY |X(y′|x) fX|Y (x′|y′), then we can also write this as

PDUGS((x, y), A) =

∫
A
kDUGS(x′, y′|x, y)µ(d(x′, y′)), A ∈ F .

Note that πPDUGS = π, i.e. π is a stationary distribution for PDUGS , although PDUGS is not

reversible with respect to π. Also note that DUGS depends on the current state (x, y) only

through x. For DUGS, the following simple lemma is sometimes useful (and will be applied

in Section 5 below).

Proposition 2. If the Y -update of PDUGS is 1-minorisable, in the sense that there is ε > 0

and a probability measure ν such that PGS:Y (x,A) ≥ εν(A) for all x and A, then PDUGS is

1-minorisable.

Proof. The result follows from noting that

PDUGS((x, y), A×B) ≥ ε
∫
B
ν(dy′)PGS:X(y′, A) .

which is a 1-minorisation of PDUGS as claimed.

Remark 2. We could have considered the alternative update order (x, y) → (x′, y) → (x′, y′)

resulting in a Markov kernel P ∗DUGS = PGS:X PGS:Y , which will play a role in Section 3.2.

Notice that with essentially the same argument as in Proposition 2 we have that if the X-

update is 1-minorisable, then so is P ∗DUGS .
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A related algorithm, the random scan Gibbs sampler (RSGS) with selection probability

p ∈ (0, 1), proceeds by either updating Y ∼ PGS:Y with probability p, or updating X ∼ PGS:X

with probability 1− p. The RSGS has kernel

PRSGS = pPGS:Y + (1− p)PGS:X ,

i.e.

PRSGS((x, y), A) = pPGS:Y (x,A) + (1− p)PGS:X(y,A) .

It follows that PRSGS is reversible with respect to π. Furthermore, it is well known [e.g. 10, 26]

that if PDUGS is uniformly ergodic, then so is PRSGS (as follows immediately from (2), since

we always have P 2n
RSGS(z,A) ≥

(
p(1− p)

)n
PnDUGS(z,A)). We also have the following.

Proposition 3. If PRSGS is geometrically ergodic for some selection probability p∗, then it is

geometrically ergodic for all selection probabilities p ∈ (0, 1).

Proof. For p ∈ (0, 1), let PRSGS,p be the RSGS kernel using selection probability p, so that if

A ∈ F , then

PRSGS,p((x, y), A) = pPGS:Y (x,A) + (1− p)PGS:X(y,A) .

It follows immediately that

PRSGS,p ≥
(
p

p∗
∧ 1− p

1− p∗

)
PRSGS,p∗ .

Since PRSGS,p and PRSGS,p∗ are each reversible with respect to π, the claim follows from

Theorem 1.

Next, consider the deterministically updated conditional Metropolis-Hastings sampler

(CMH) which first updates Y with a Gibbs update, and then updates X with a Metropolis-

Hastings update, schematically (x, y) → (x, y′) → (x′, y′). In this case, the Y update follows

precisely the same kernel PGS:Y as above. To define the X update, let q(x′|x, y′) be a proposal

density and set

α(x′, x, y′) =

[
1 ∧

fX|Y (x′|y′)q(x|x′, y′)
fX|Y (x|y′)q(x′|x, y′)

]
,
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and

r(x, y′) = 1−
∫
q(x′|x, y′)α(x′, x, y′)µX(dx′) .

Then the X update follows the Markov kernel defined by

PMH:X((x, y′), A) =

∫
{x′:(x′,y′)∈A}

q(x′|x, y′)α(x′, x, y′)µX(dx′) + r(x, y′)1(x,y′)∈A .

By construction PMH:X is reversible with respect to π (though it only updates the x coordi-

nate, while leaving the y coordinate fixed).

In terms of these individual kernels, we can define the Markov kernel for the conditional

Metropolis-Hastings sampler by their composition, corresponding to doing first a Gibbs sam-

pler Y -move and then a Metropolis-Hastings X-move:

PCMH = PGS:Y PMH:X .

It then follows that πPCMH = π, but PCMH is not reversible with respect to π. It is also

important to note that because of the update order we are using PCMH depends on the current

state (x, y) only through x. Finally, if

kCMH(x′, y′|x, y) = fY |X(y′|x) q(x′|x, y′)α(x′, x, y′) ,

then by construction we have that

PCMH((x, y), A) ≥
∫
A
kCMH(x′, y′|x, y)µ(d(x′, y′)), A ∈ F .

We will also consider the random scan CMH (RCMH) sampler. For any fixed selection

probability p ∈ (0, 1), RCMH is the algorithm which selects the Y coordinate with probability

p, or selects the X coordinate with probability 1−p, and then updates the selected coordinate

as in the CMH algorithm (i.e., from a full conditional distribution for Y , or from a conditional

Metropolis-Hastings step for X), while leaving the other coordinate unchanged. Hence, its

kernel is given by

PRCMH = pPGS:Y + (1− p)PMH:X .

Then PRCMH is reversible with respect to π. A similar argument to the one given above

relating the uniform ergodicity of PDUGS to that of PRSGS shows that, if PCMH is uniformly

ergodic, then so is PRCMH for any selection probabilities [10, Theorem 2].
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If the proposal distribution for x′ does not depend on the previous value of x, i.e. if

q(x′|x, y′) = q(x′|y′), then the CMH algorithm becomes the conditional independence sampler

(CIS). In this case, we will continue to use all of the same notation as for CMH above, except

omitting the unnecessary x arguments.

2.4 Embedded X-Chains

When studying geometric ergodicity, Theorem 1 (part 2) does not apply directly to PDUGS

and PCMH since they are not reversible with respect to π. However, each of these samplers do

produce marginal X-sequences which are reversible with respect to the marginal distribution

πX (with density as in (6)). Moreover, as we discuss below, if either of these X-sequences

are geometrically ergodic, then so is the corresponding parent sampler. For this reason, it is

sometimes useful to study the marginal X-sequences embedded within these Markov chains.

Consider the DUGS Markov chain. Define

kX(x′|x) =

∫
Y
fX|Y (x′|y)fY |X(y|x)µY (dy)

and note that the marginal sequence {X0, X1, . . .} is a Markov chain having kernel

PXDUGS(x,A) =

∫
A
kX(x′|x)µX(dx′), A ∈ FX .

Now PDUGS has π as its invariant distribution while PXDUGS has the marginal distribution πX

as its invariant distribution and, in fact, PXDUGS is reversible with respect to πX . Moreover,

it is well known that PDUGS and PXDUGS converge to their respective invariant distributions

at the same rate [17, 23, 29]. This has been routinely exploited in the analysis of two-variable

Gibbs samplers where PXDUGS may be much easier to analyze than PDUGS .

Now consider the CMH algorithm, and let its resulting values be Y0, X0, Y1, X1, Y2, X2, . . ..

This sequence in turn provides a marginal sequence, X0, X1, . . . which is itself a Markov chain

on X , since the PGS:Y update within CMH depends only on the previous X value, not on the

previous Y value, and hence the future chain values depend only on the current value of X,

not the current value of Y . (This is a somewhat subtle point which would not be true if CMH

11



were instead defined to update first X and then Y .) Thus, this marginal X sequence has its

own Markov transition kernel on (X ,FX), say PXCMH(x,A), and if

hX(x′|x) =

∫
Y
fY |X(y′|x) q(x′|x, y′)α(x′, x, y′)µY (dy′) ,

it follows by construction that

PXCMH(x,A) ≥
∫
A
hX(x′|x)µX(dx′), A ∈ FX .

Note that PCMH and PXCMH have invariant distributions π and πX , respectively. Now PCMH

is not reversible with respect to π, but we shall show that PXCMH is reversible with respect to

πX . Indeed, first note that by construction

PMH:X((x, y), (dx′, y))πX|Y (dx|y) = PMH:X((x′, y), (dx, y))πX|Y (dx′|y) .

Now we compute

PXCMH(x, dx′)πX(dx) = πX(dx)

∫
Y
PMH:X((x, y), (dx′, y))πY |X(dy|x)

=

∫
Y
PMH:X((x, y), (dx′, y))π(dx, dy)

=

∫
Y
PMH:X((x, y), (dx′, y))πX|Y (dx|y)πY (dy)

=

∫
Y
PMH:X((x′, y), (dx, y))πX|Y (dx′|y)πY (dy)

=

∫
Y
PMH:X((x′, y), (dx, y))π(dx′, dy)

= πX(dx′)

∫
Y
PMH:X((x′, y), (dx, y))πY |X(dy|x′)

= PXCMH(x′, dx)πX(dx′)

and conclude that PXCMH is reversible with respect to πX .

It is straightforward to see that, in the language of [29], the embedded chain PXCMH is

de-initialising for PCMH . This implies that if PXCMH is geometrically (or uniformly) ergodic,

then PCMH is geometrically (or uniformly) ergodic [29, Theorem 1]. In fact, it is not too hard

to show the converse [10] and conclude that PXCMH is geometrically (or uniformly) ergodic if

and only if PCMH is geometrically (or uniformly) ergodic.
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3 Ergodicity Properties of CMH

Our goal in this section is to derive ergodicity properties of the conditional Metropolis-Hastings

(CMH) sampler in terms of those of the corresponding Gibbs sampler. We focus on the case

of two variables; this is done mainly for ease of exposition, and we will see in Section 4 that

many of the results carry over to a more general setting.

3.1 Uniform Ergodicity of CMH via the Weight Function

Analogous to previous studies of the usual full-dimensional independence sampler [16, 19, 33,

40], we define the (conditional) weight function by

w(x′, x, y′) :=
fX|Y (x′|y′)
q(x′|x, y′)

x′, x ∈ X , y′ ∈ Y . (8)

(In the case of CIS, the weight function reduces to w(x′, y′) = fX|Y (x′|y′)/q(x′|y′).) We shall

see that these weight functions are key to understanding the ergodicity properties of CMH.

We begin with a simple lemma.

Lemma 4.

kCMH(x′, y′|x, y) = kDUGS(x′, y′|x, y)

[
1

w(x′, x, y′)
∧ 1

w(x, x′, y′)

]
Proof. Notice that

kCMH(x′, y′|x, y) = fY |X(y′|x)q(x′|x, y′)α(x′, x, y′)

= fY |X(y′|x)fX|Y (x′|y′)
[
q(x′|x, y′)
fX|Y (x′|y′)

∧ q(x|x′, y′)
fX|Y (x|y′)

]
= kDUGS(x′, y′|x, y)

[
1

w(x′, x, y′)
∧ 1

w(x, x′, y′)

]
.

Say that w is bounded if

sup
x′,x,y′

w(x′, x, y′) <∞ ,
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and is X-bounded if there exists C : Y → (0,∞) such that

sup
x′,x

w(x′, x, y′) ≤ C(y′) y′ ∈ Y .

We then have the following.

Theorem 5. If w is bounded and PDUGS is uniformly ergodic, then PCMH is uniformly

ergodic.

Proof. By Lemma 4, we have

kCMH(x′, y′|x, y) = kDUGS(x′, y′|x, y)

[
1

w(x′, x, y′)
∧ 1

w(x, x′, y′)

]
.

Since w is bounded, there is a constant C <∞ such that

kCMH(x′, y′|x, y) ≥ 1

C
kDUGS(x′, y′|x, y) ,

and hence

PCMH((x, y), A) ≥ 1

C
PDUGS((x, y), A), A ∈ F .

The result now follows from Theorem 1.

As noted above, uniform ergodicity of deterministic-scan algorithms immediately implies

uniform ergodicity of the corresponding random-scan algorithm, so we immediately obtain:

Corollary 6. If w is bounded and PDUGS is uniformly ergodic, then PRCMH is uniformly

ergodic for any selection probability p ∈ (0, 1).

The condition on w in Theorem 5 can be weakened if we strengthen the assumption on

the Gibbs sampler.

Theorem 7. Suppose that w is X-bounded, and that there exists a non-negative function g

on Z, with µ{(x, y) : g(x, y) > 0} > 0, such that for all x and y,

kDUGS(x′, y′|x, y) ≥ g(x′, y′) . (9)

Then PCMH is uniformly ergodic.
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Proof. By Lemma 4 we have

kCMH(x′, y′|x, y) = kDUGS(x′, y′|x, y)

[
1

w(x′, x, y′)
∧ 1

w(x, x′, y′)

]
.

That w is X-bounded implies there is a C : Y → (0,∞) such that

kCMH(x′, y′|x, y) ≥ 1

C(y′)
kDUGS(x′, y′|x, y)

and using (9) we obtain

kCMH(x′, y′|x, y) ≥ g(x′, y′)

C(y′)
.

Letting

ε =

∫
X×Y

g(x, y)

C(y)
µ(d(x, y)) > 0 and h(x, y) = ε−1 g(x, y)

C(y)
,

we have that

PCMH((x, y), A) ≥ ε
∫
A
h(u, v)µ(d(u, v)) A ∈ F .

That is, PCMH is 1-minorisable and hence is uniformly ergodic.

Remark 3. Notice that condition (9) implies that PDUGS is 1-minorisable.

Once again, the corresponding random-scan result follows immediately:

Corollary 8. If w is X-bounded, and condition (9) holds, then PRCMH is uniformly ergodic

for any selection probability p ∈ (0, 1).

3.2 A Counter-Example

In this section, we show that Theorem 7 might not hold if PDUGS is just 2-minorisable (as

opposed to 1-minorisable). We begin with a lemma about interchanging update orders for

Gibbs samplers. Specifically, define the Markov kernel P ∗DUGS to represent the Gibbs sampler

which updates first X and then Y : (x, y) → (x′, y) → (x′, y′). This kernel has transition

density

k∗DUGS(x′, y′|x, y) = fX|Y (x′|y)fY |X(y′|x′) .

The following lemma shows that we can convert a 1-minorisation for P ∗DUGS into a 2-minorisation

for PDUGS .
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Lemma 9. Suppose there exists a non-negative function g on Z, with µ{(x, y) : g(x, y) >

0} > 0, such that for all x and y,

k∗DUGS(x′, y′|x, y) ≥ g(x′, y′) .

Then there exists ε > 0, and a probability measure ν on Z, such that for all x and y,

P 2
DUGS((x, y), A) ≥ ε ν(A), A ∈ F .

Proof. We compute that

k2
DUGS(x′, y′|x, y) =

∫
X

∫
Y
kDUGS(x′, y′|u, v)kDUGS(u, v|x, y)µY (dv)µX(du)

=

∫
X

∫
Y
fY |X(y′|u)fX|Y (x′|y′)fY |X(v|x)fX|Y (u|v)µY (dv)µX(du)

=

∫
X

∫
Y
fX|Y (x′|y′)fY |X(v|x)

[
fX|Y (u|v)fY |X(y′|u)

]
µY (dv)µX(du)

=

∫
X

∫
Y
fX|Y (x′|y′)fY |X(v|x)k∗DUGS(u, y′|x, v)µY (dv)µX(du)

≥
∫
X

∫
Y
fX|Y (x′|y′)fY |X(v|x)g(u, y′)µY (dv)µX(du)

=

∫
X
fX|Y (x′|y′)g(u, y′)

[∫
Y
fY |X(v|x)µY (dv)

]
µX(du)

=

∫
X
fX|Y (x′|y′)g(u, y′)µX(du)

=: h(x′, y′) .

Notice that our assumption on g, and the assumption (7), ensures that µ{(x, y) : h(x, y) >

0} > 0. It follows that
∫
h(x′, y′)µ(d(x′, y′)) > 0. The result then follows by setting ε =∫

h(x′, y′)µ(d(x′, y′)) and ν(A) = ε−1
∫
A h(x′, y′)µ(d(x′, y′)).

We now proceed to our counter-example.

Proposition 10. It is possible that PDUGS is uniformly ergodic, and in fact 2-minorisable,

and furthermore w is X-bounded, but PCMH fails to be even geometrically ergodic.

Proof. Let π be the distribution on (0,∞)2 with density function f(x, y) = 1
2 e
−y 1A(x, y),

where A is the union of the squares (m,m+ 1]× (m− 1,m] for m = 1, 2, 3 . . . together with

the infinite rectangle (0, 1]× (0,∞) (see Figure 1).
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Figure 1: The region A used in the proof of Proposition 10.

We consider the CIS version of CMH. Let q(x′|y′) be the density of the Normal(0, 1/y′)

distribution. Then for m− 1 < y ≤ m,

w(x, y) :=
fX|Y (x|y)

q(x|y)
=

1
2 1[0,1]∪(m,m+1](x)√

y/2π e−x2y/2
=

1

2

√
2π/y ex

2y/21[0,1]∪(m,m+1](x) ,

so

sup
x
w(x, y) = w(m+ 1, y) =

1

2

√
2π/y e(m+1)2y/2 < ∞ ,

i.e. w is X-bounded.

Next, let P ∗DUGS be the Markov kernel corresponding to a Gibbs sampler in which we

update first X and then Y . Then P ∗DUGS is 1-minorisable. This is easy to prove with an

argument similar to the one in the proof of Proposition 2. Specifically, if the X-update is
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1-minorisable, then so is P ∗DUGS . Notice that if m− 1 < y ≤ m, then

fX|Y (x′|y) =
1

2
1[0,1]∪(m,m+1](x

′) ≥ 1

2
1[0,1](x

′) .

Moreover, the right-hand side of the inequality holds for every value of y > 0 and hence we

have that for all y > 0

fX|Y (x′|y) ≥ 1

2
1[0,1](x

′) .

From this, it is easy to see that P ∗DUGS is minorised by the measure 2−1 Uniform[0, 1]×Exp(1).

Hence, by Lemma 9, PDUGS is 2-minorisable and hence is uniformly ergodic.

Finally, we use a capacitance argument (see e.g. [15, 39]) to show that this PCMH is not

uniformly ergodic (in fact not even geometrically ergodic). However, since PXCMH is reversible

with respect to πX while PCMH is not reversible with respect to π, we shall work with the

former. (Recall that PXCMH and PCMH have identical rates of convergence.) Before we give

the capacitance argument we need a few preliminary observations.

Let Rm = (m,m + 1] × (m − 1,m] for some fixed m ≥ 3 and suppose that (x, y) ∈ Rm.

Then Y -moves will never leave Rm. Furthermore, X-moves will only leave Rm if a proposed

value x′ ∈ [0, 1] is accepted, therefore

α(x′, x, y) ≤ w(x′, y)

w(x, y)
=

e(x′)2y/2

ex2y/2
≤ e(1)2m/2

em2(m−1)/2
= e(−m3+m2+m)/2 ≤ e−m

3/4

where the first inequality follows from the definition of α while the second follows since

m < x ≤ m + 1 and m − 1 < y ≤ m and 0 ≤ x′ ≤ 1, and the third inequality follows since

m ≥ 3. Hence, for x ∈ (m,m+ 1], m ≥ 3

PXCMH(x, (m,m+ 1]C) = PXCMH(x, (0, 1]) ≤ e−m3/4 .

Also note that πX((m,m+ 1]) = 2−1(e−(m−1) − e−m).
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Let κ be the capacitance of PXCMH . Then

κ := inf
S:0<πX(S)≤1/2

1

πX(S)

∫
S
PXCMH(x, SC) πX(dx)

≤ inf
m≥3

1

πX((m,m+ 1])

∫
(m,m+1]

PXCMH(x, ((m,m+ 1]C) πX(dx)

≤ inf
m≥3

2

e−(m−1) − e−m

∫
(m,m+1]

e−m
3/4 πX(dx)

= inf
m≥3

2

e−(m−1) − e−m
e−m

3/4 1

2
(e−(m−1) − e−m)

= inf
m≥3

e−m
3/4

= 0 .

Hence, PXCMH has capacitance zero, and hence has no spectral gap ([15, 39]), and hence fails

to be geometrically ergodic [26]. Thus, PCMH also fails to be geometrically ergodic.

3.3 Uniform Return Probabilities (URP)

To this point we have assumed that w is either bounded or X-bounded. It is natural to wonder

if this is required for the uniform ergodicity of CMH. To examine this question further, we

present two examples involving the CIS version of CMH. The first shows that in general PCIS

can fail to be even geometrically ergodic. The second shows that a slightly modified example

is still uniformly ergodic even though w is neither bounded nor X-bounded.

Example 1. Let π = Uniform([0, 1]2) so that fX|Y (x|y) = fX(x) = I(0 ≤ x ≤ 1) and

fY |X(y|x) = fY (y) = I(0 ≤ y ≤ 1). Consider CIS with proposal density q(x′|y′) = 2x′.

Then the marginal chain PXCIS evolves independently of the Y values, and corresponds to

a usual independence sampler. This independence sampler has fX(x)/q(x) = (2x)−1, so

supx∈[0,1] fX(x)/q(x) = ∞. It thus follows from standard independence sampler theory

[16, 19, 33, 40] that PXCIS fails to be even geometrically ergodic. Hence, the joint chain

PCIS also fails to be geometrically ergodic.

Example 2. Again let π = Uniform([0, 1]2), but now let q(x′|y′) = 2{y′ − x′} where {r} is

the fractional part of r (so {r} = r if 0 ≤ r < 1, and {r} = r + 1 if −1 ≤ r < 0). Then
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w(x′, y′) = fX|Y (x′|y′)/q(x′|y′) = 1/(2{y′ − x′}). Intuitively, the x′ proposals will usually be

accepted unless x is very close to y′. More precisely, let S(x) = {y ∈ [0, 1] : {y − x} ≥ 1/2}.

If x ∈ [0, 1] and y′ ∈ S(x), then

w(x′, y′)

w(x, y′)
=
{y′ − x}
{y′ − x′}

≥ 1/2

1
=

1

2
.

Hence, if we consider the marginal chain PXCIS , then its subkernel hX(x′|x) satisfies

hX(x′|x) =

∫
y′∈Y

q(x′|y′)α(x′, x, y′) fY |X(y′|x) dy′

≥
∫
y′∈S(x)

q(x′|y′) min

(
1,

w(x′, y′)

w(x, y′)

)
fY |X(y′|x) dy′

≥
∫
y′∈S(x)

(2{y′ − x′})(1/2)(1) dy′

=

∫
y′∈S(x)

{y′ − x′} dy′ .

Now, S(x) is union of two disjoint intervals (or perhaps just one interval, if x = 0) within [0, 1],

of total length 1/2. Also, the mapping y′ 7→ {y′ − x′} is some re-arrangement of the identity

mapping on [0, 1]. So, since
∫
y′∈S(x){y

′ − x′} dy′ is an integral of some re-arrangement of the

identity over some set of total length 1/2, we must have
∫
y′∈S(x){y

′−x′} dy′ ≥
∫ 1/2

0 r dr = 1/8.

Hence, hX(x′|x) ≥ 1/8. Thus, for A ∈ FX ,

PXCIS(x,A) ≥
∫
A
hX(x′|x)µX(dx′) ≥ 1

8
µX(A) .

So, PXCIS is 1-minorisable, so PXCIS is uniformly ergodic, so PCIS is also uniformly ergodic.

This last example suggests that even if w is not bounded or X-bounded, CIS will still

be uniformly ergodic if the Y -move has a high probability of moving to a better subset.

Generalising from the example, we have the following.

Theorem 11. Suppose that a CIS algorithm satisfies the following conditions:

(i) there is a subset J ∈ FY and a function g : X → [0,∞) with µX{x : g(x) > 0} > 0, such

that for all x ∈ X and y ∈ J , we have q(x|y) ≥ g(x) and fX|Y (x|y) ≥ g(x); and
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(ii) the Y values have “uniform return probabilities” (URP) in the sense that there is 0 <

c < ∞ and δ > 0 such that πY |X(S(x) |x) ≥ δ for all x ∈ X , where S(x) = {y′ ∈ J :

w(x, y′) ≤ c}.

Then the CIS algorithm is uniformly ergodic, and furthermore PXCIS is 1-minorisable.

Proof. We again consider the marginal chain PXCIS , whose subkernel hX(x′|x) now satisfies

hX(x′|x) =

∫
y′∈Y

q(x′|y′)α(x′, x, y′) fY |X(y′|x)µY (dy′)

≥
∫
y′∈S(x)

q(x′|y′) min

(
1,

w(x′, y′)

w(x, y′)

)
fY |X(y′|x)µY (dy′)

≥
∫
y′∈S(x)

q(x′|y′) min

(
1,

fX|Y (x′|y′)
q(x′|y′)

1

c

)
fY |X(y′|x)µY (dy′)

≥
∫
y′∈S(x)

min

(
q(x′|y′), fX|Y (x′|y′)1

c

)
fY |X(y′|x)µY (dy′)

≥
∫
y′∈S(x)

min

(
1,

1

c

)
g(x′) fY |X(y′|x)µY (dy′)

≥ min

(
1,

1

c

)
g(x′) δ .

Hence, for A ∈ FX ,

PXCIS(x,A) ≥
∫
A
hX(x′|x)µX(dx′) ≥

∫
A

min

(
1,

1

c

)
g(x′) δ µX(dx′) .

That is, PXCIS is 1-minorisable. Hence, PXCIS is uniformly ergodic. Therefore, PCIS is also

uniformly ergodic.

3.4 Geometric Ergodicity of CMH

Our goal in this section is to study conditions under which the geometric ergodicity of the

DUGS chain implies the geometric ergodicity of the CMH chain. The key to our argument

is Theorem 1 (part 2), which we will use to compare the convergence rates of the reversible

Markov chains PXCMH and PXDUGS . The convergence rates of PXCMH and PXDUGS can then be

connected to those of PCMH and PDUGS as described in Section 2.4. Our main result is the

following.
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Theorem 12. If w is bounded and PDUGS is geometrically ergodic, then PCMH is geometri-

cally ergodic.

Proof. Let C = supx′,x,y′ w(x′, x, y′) <∞. Then

hX(x′|x) =

∫
Y
q(x′|x, y)α(x′, x, y)fY |X(y|x)µY (dy)

=

∫
Y
fY |X(y|x)fX|Y (x′|y)

[
q(x′|x, y)

fX|Y (x′|y)
∧ q(x|x′, y)

fX|Y (x|y)

]
µY (dy)

=

∫
Y
fY |X(y|x)fX|Y (x′|y)

[
1

w(x′, x, y)
∧ 1

w(x, x′, y)

]
µY (dy)

≥ 1

C

∫
Y
fY |X(y|x)fX|Y (x′|y)µY (dy)

=
1

C
kX(x′|x) .

It follows that if δ = 1/C, then

PXCMH(x,A) ≥ δ PXDUGS(x,A), x ∈ X , A ∈ FX .

Hence, by Theorem 1, if PXDUGS is geometrically ergodic then so is PXCMH . The result then

follows by recalling that PXDUGS is geometrically ergodic if and only if PDUGS is geometrically

ergodic, and PXCMH is geometrically ergodic if and only if PCMH is geometrically ergodic.

Example 3. Suppose X and Y are bivariate normal with common mean 0, variances 2 and 1,

respectively and covariance 1. Then the two conditional distributions are X|Y = y ∼ N(y, 1)

and Y |X = x ∼ N(x/2, 1/2). This Gibbs sampler is known [35, 38] to be geometrically

ergodic. Now consider a conditional independence sampler where we replace the Gibbs update

for X|Y = y with an independence sampler having proposal density

q(x|y) =
1

2
e−|x−y| .

Then it is easily seen that there exists a constant c > 0 such that q(x|y) ≥ cfX|Y (x|y). Hence,

Theorem 12 shows that the conditional independence sampler is geometrically ergodic.

Finally, we connect the geometric ergodicity of the random scan Gibbs sampler with that

of the random scan CMH.
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Theorem 13. If w is bounded and PRSGS is geometrically ergodic for some selection proba-

bility, then PRCMH is geometrically ergodic for any selection probability.

Proof. Let C = supx′,x,y′ w(x′, x, y′) <∞. Then similarly to Lemma 4,

PMH:X

(
(x, y′), A

)
≥
∫
{x′:(x′,y′)∈A}

q(x′|x, y′)α(x′, x, y′)µX(dx′)

=

∫
{x′:(x′,y′)∈A}

q(x′|x, y′)
[
1 ∧

fX|Y (x′|y′)q(x|x′, y′)
fX|Y (x|y′)q(x′|x, y′)

]
µX(dx′)

=

∫
{x′:(x′,y′)∈A}

fX|Y (x′|y′)
[

1

w(x′, x, y′)
∧ 1

w(x, x′, y′)

]
µX(dx′)

≥ 1

C

∫
{x′:(x′,y′)∈A}

fX|Y (x′|y′)µX(dx′)

=
1

C
PGS:X

(
(x, y′), A

)
.

Hence,

PRCMH = pPGS:Y + (1− p)PMH:X ≥
1

C
[pPGS:Y + (1− p)PGS:X ] =

1

C
PRSGS .

Since both PRSGS and PRCMH are reversible with respect to π, the first claim now follows from

Theorem 1. That the result holds for any selection probability then follows from Proposition 3.

4 Extensions to Additional Variables

In this section, we consider the extent to which our results extend beyond the two-variable

setting. Some of the above theorems (e.g. Theorem 12) make heavy use of the embedded X-

chain kernels PXCMH , and such analysis appears to be specific to the case of two-variables one

of which is updated using a Gibbs update. However, many of our other results extend beyond

the two-variable setting without much additional difficulty aside from more general notation.

Indeed, these generalisations will allow as many coordinates as desired to be updated using

Metropolis-Hastings updates, so even in the two-variable case they generalise our previous

theorems by no longer requiring one of the variables to be updated using a Gibbs update. In

this sense the context of the results below is somewhat similar to that considered in [27], except
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that the results below concern “global” rather than local / random-walk-style conditional

proposal distributions.

Let (Xi,Fi, µi) be a σ-finite measure space for i = 1, 2, . . . , d (d ≥ 2), and let (X ,F , µ) be

the corresponding product space. Let π be a target probability distribution on (X ,F , µ), hav-

ing density f with respect to µ. For x ∈ X and 1 ≤ i ≤ d, set x(i) = (x1, . . . , xi−1, xi+1, . . . , xd),

x[i] = (x1, . . . , xi) and x[i] = (xi, . . . , xd). Also, let x[0] and x[d+1] be null. As we did in the

two-variable case (recall (7)) we assume that the marginal densities satisfy fXi(xi) > 0 for

all xi ∈ Xi. Let fi denote the corresponding conditional density of Xi|X(i). Then the usual

deterministic-scan Gibbs sampler (DUGS) has kernel

PDUGS(x,A) =

∫
A
kDUGS(x′|x)µ(dx′), A ∈ F ,

where

kDUGS(x′|x) = f1(x′1|x[2]) f2(x′2|x′[1], x
[3]) · · · fd(x′d|x′[d−1]) .

Now consider the situation where some coordinates i are updated from the full-conditional

Gibbs update fi(x
′
i|x′[i−1], x

[i+1]) as above, while other coordinates i are updated from a

Metropolis-Hastings update with proposal density qi(x
′
i|x′[i−1], xi, x

[i+1]) and corresponding

acceptance probability

αi(x
′
[i−1], xi, x

[i+1], x′i) = 1 ∧
fi(x

′
i|x′[i−1], x

[i+1]) qi(xi|x′[i−1], x
′
i, x

[i+1])

fi(xi|x′[i−1], x
[i+1]) qi(x′i|x′[i−1], xi, x

[i+1])
.

In fact, if qi(x
′
i|x′[i−1], xi, x

[i+1]) = fi(x
′
i|x′[i−1], x

[i+1]), then αi(x
′
[i−1], xi, x

[i+1], x′i) ≡ 1, and this

is equivalent to updating coordinate i using a full-conditional Gibbs update. So, without loss

of generality, we can assume that each coordinate i is updated according to a Metropolis-

Hastings update as above.

To continue, let gi(wi|z) = qi(wi|z[i−1], zi, z
[i+1])αi(z[i−1], zi, z

[i+1], wi). Thus, gi represents

the absolutely continuous sub-kernel corresponding to the Metropolis-Hastings update of co-

ordinate i, and in particular gi is a lower-bound on the full update kernel for coordinate i. Of

course, for those coordinates i which use a Gibbs update we have gi(wi|z) = fi(wi|z[i−1], z
[i+1]),

the full conditional density of coordinate i. Thus if we let

kCMH(x′|x) = g1(x′1|x) g2(x′2|x′1, x[2]) · · · gd(x′d|x′[d−1], xd) ,
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then

PCMH(x,A) ≥
∫
A
kCMH(x′|x)µ(dx′), A ∈ F .

Correspondingly, for selection probabilities (p1, . . . , pd) ∈ Rd with each pi > 0 and
∑d

i=1 pi =

1, the random scan Gibbs sampler is the algorithm which chooses coordinate i with proba-

bility pi, and then updates that coordinate from fi(x
′
i|x′[i−1], x

[i+1]) while leaving the other

coordinates unchanged. The random scan version of CMH, PRCMH , is defined analogously.

Notice that if each gi is a Gibbs update, i.e. gi(x
′
i|x′[i−1], x

[i]) = fi(x
′
i|x′[i−1], x

[i+1]), then

PCMH is just the deterministic scan Gibbs sampler. That is, PDUGS is a special case of

PCMH [30], so that as in the previous section it is natural to seek to connect the convergence

properties of the two Markov chains.

Define the (conditional) weight function by

wi(x
′
[i−1], x

′
i, xi, x

[i+1]) =
fi(x

′
i|x′[i−1], x

[i+1])

qi(x′i|x′[i−1], xi, x
[i+1])

.

Say that wi is bounded if

sup
x′
[i]
, x[i]

wi(x
′
[i−1], x

′
i, xi, x

[i+1]) < ∞ ,

and is (Xi × · · · × Xd)-bounded if there exists C : X1 × · · · × Xi−1 → (0,∞) such that

sup
x′i, x

[i]

wi(x
′
[i−1], x

′
i, xi, x

[i+1]) ≤ C(x′[i−1]) .

Of course, for those coordinates i which use a full-conditional Gibbs update, we have

wi(x
′
[i−1], x

′
i, xi, x

[i+1]) ≡ 1 .

We begin with a generalisation of Lemma 4.

Lemma 14.

kCMH(x′|x) = kDUGS(x′|x)

d∏
i=1

[
1

wi(x′[i−1], x
′
i, xi, x

[i+1])
∧ 1

wi(x′[i−1], xi, x
′
i, x

[i+1])

]
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Proof. Notice that for i = 1, . . . , d

qi(x
′
i|x′[i−1], x

[i])

[
1 ∧

fi(x
′
i|x′[i−1], x

[i+1])qi(xi|x′[i−1], x
′
i, x

[i+1])

fi(xi|x′[i−1], x
[i+1])qi(x′i|x′[i−1], x

[i])

]

= fi(x
′
i|x′[i−1], x

[i+1])

[
1

wi(x′[i−1], x
′
i, xi, x

[i+1])
∧ 1

wi(x′[i−1], xi, x
′
i, x

[i+1])

]

In light of the above lemma, the proofs of the following two theorems are similar to the

proofs of Theorems 5 and 7. The corollaries follow as before.

Theorem 15. If each wi is bounded and PDUGS is uniformly ergodic, then PCMH is uniformly

ergodic.

Proof. By Lemma 14 we have

kCMH(x′|x) = kDUGS(x′|x)
d∏
i=1

[
1

wi(x′[i−1], x
′
i, xi, x

[i+1])
∧ 1

wi(x′[i−1], xi, x
′
i, x

[i+1])

]

Since each wi is bounded there exist constants Ci, i = 1, . . . , d such that

kCMH(x′|x) ≥ kDUGS(x′|x)
d∏
i=1

1

Ci

and hence

PCMH(x,A) ≥

[
d∏
i=1

1

Ci

]
PDUGS(x,A) A ∈ F .

The result now follows from Theorem 1.

Corollary 16. If each wi is bounded and PDUGS is uniformly ergodic, then PRCMH is uni-

formly ergodic for any selection probabilities.

Theorem 17. If each wi is (Xi× · · ·×Xd)-bounded, and there exists a non-negative function

g on X , with µ{x ∈ X : g(x) > 0} > 0, such that

kDUGS(x′|x) ≥ g(x′), x ∈ X , (10)

then PCMH is uniformly ergodic.
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Proof. By Lemma 14 we have

kCMH(x′|x) = kDUGS(x′|x)
d∏
i=1

[
1

wi(x′[i−1], x
′
i, xi, x

[i+1])
∧ 1

wi(x′[i−1], xi, x
′
i, x

[i+1])

]

Since each wi is (Xi × · · · × Xd)-bounded there exist Ci such that

kCMH(x′|x) ≥ kDUGS(x′|x)

d∏
i=1

1

Ci(x′[i−1])

Then using (10) we have

kCMH(x′|x) ≥ g(x′)

d∏
i=1

1

Ci(x′[i−1])
.

Letting

ε =

∫
X
g(x)

d∏
i=1

1

Ci(x[i−1])
µ(dx) and h(x′) = ε−1g(x′)

d∏
i=1

1

Ci(x′[i−1])

we have that if A ∈ F , then

PCMH(x,A) ≥ ε
∫
A
h(x′)µ(dx′) .

That is, PCMH is 1-minorisable and hence is uniformly ergodic.

Corollary 18. If each wi is (Xi× · · · ×Xd)-bounded, and condition (10) holds, then PRCMH

is uniformly ergodic for any selection probabilities.

Furthermore, Proposition 3 extends easily to the general case.

Proposition 19. If PRSGS is geometrically ergodic for some selection probability, then it is

geometrically ergodic for all selection probabilities.

Just as with Theorem 13, we can also give sufficient conditions for geometric ergodicity of

PRCMH in terms of the geometric ergodicity of PRSGS .

Theorem 20. If each wi is bounded and PRSGS is geometrically ergodic, then PRCMH is

geometrically ergodic for any selection probabilities.
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5 Application to Bayesian Inference for Diffusions

An important problem, with applications to financial analysis and many other areas, involves

drawing inferences about the entire path of a diffusion process based only upon discrete

observations of that diffusion [see e.g. 4, 32].

To fix ideas, consider a one-dimensional diffusion satisfying dXt = dBt + α(Xt) dt for

0 ≤ t ≤ 1, where α : R→ R is a C1 function. Suppose we observe the values X0 and X1, and

wish to infer the entire remaining sample path {Xt}0<t<1.

To proceed, let Pθ be the law of the diffusion starting at X0, conditional on θ, and let W

be the law of Brownian motion starting at X0. Then by Girsanov’s Formula [see e.g. 34], the

density of Pθ with respect to W satisfies (writing X[0,1] for {Xt}0≤t≤1) that

Gθ(X[0,1]) :=
dPθ

dW
(X[0,1]) = exp[A(X1)−A(X0)−

∫ 1

0
φθ(Xs)ds] , (11)

where A(x) =
∫ x

0 α(u) du, and φθ(x) = [α2(x) + α′(x)]/2.

Furthermore, if P̃ is the law of the diffusion conditional on the observed values of X0 and

X1, and W̃ is the law of Brownian motion conditional on the same observed values of X0 and

X1 (i.e., of the corresponding Brownian bridge process), then dP̃

dW̃
is still proportional to the

same density G from (11).

Assume now that α(x) =
∑m

i=1 pi(x)θi = pT θ, where p1, p2, . . . , pm : R→ R are known C1

functions, and θ1, θ2, . . . , θm are unknown real-valued parameters to be estimated.

We consider a Bayesian analysis obtained by putting a prior θ ∼MVN(0,Σ0) on the vector

θ, for some strictly positive-definite symmetric m×m covariance matrix Σ0. Then conditional

on X0 and X1, and letting Xmiss = {Xs : 0 < s < 1} be the missing (unobserved) part of the

diffusion’s sample path, the joint posterior density of the pair (θ,Xmiss) is proportional to

e−θ
T Σ−1

0 θ/2 Gθ(X[0,1]) = exp

−1

2

θTΣ−1
0 θ +

∫ 1

0

m∑
i=1

m∑
j=1

pi(Xs) pj(Xs) θi θj

+

∫ 1

0

m∑
i=1

p′i(Xs) θi ds

)]
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We can write this joint posterior density as being proportional to

exp

[
−1

2
θTV −1θ − rT θ

]
, (12)

in terms of the column vector r = 1
2

∫ 1
0 p
′(Xs)ds, and the positive-definite symmetric matrix

V −1 = Σ−1
0 +

∫ 1

0
p(Xs)(p(Xs))

Tds . (13)

Then, since

−1

2
(θ + V r)TV −1(θ + V r) = −1

2
θTV −1θ − rT θ − 1

2
rTV r

(using that V T = V , and that rT θ = θT r is a scalar), equation (12) in turn implies that the

conditional distribution θ|Xmiss is given by:

θ |Xmiss ∼ MVN(−V r, V ) . (14)

Now, suppose we wish to sample the pair (θ,Xmiss) from its posterior density (12). We first

consider using a deterministic-scan Gibbs sampler (DUGS), in which we alternately sample

θ|Xmiss and then Xmiss|θ.

Lemma 21. Assume the pi and p′i functions are all bounded, i.e.

max
1≤i≤m

sup
x∈R

max(|pi(x)|, |p′i(x)|) < ∞ . (15)

Then the deterministic-scan Gibbs sampler (DUGS) for the pair (θ,Xmiss) is 1-minorisable.

Proof. In light of Proposition 2, it suffices to show that the θ updates, as carried out through

(14), are 1-minorisable.

Denote the density of MVN(µ,Σ) by f(θ;µ,Σ), we remark that this function is positive

and continuous on Rm × Rm ×M (where M denotes the space of positive definite m × m

matrices). Therefore by the standard compactness argument, if A is any compact set in

Rm ×M then for all θ ∈ Rm

inf
(µ,Σ)∈A

f(θ;µ,Σ) > 0

thus providing a minorisation measure. It remains therefore to show that given all possible

diffusion trajectories, the mean (−V r) and variance (V ) in (14) are uniformly contained in
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bounded regions, with the determinant of the variance bounded away from zero. Note that

(15) and the definition of V imply immediately that V is uniformly bounded proving the

first part of this. Moreover, showing that det(V ) is uniformly bounded away from zero is

equivalent to a uniform upper bound on det(V −1). However this also follows trivially from

(14). Thus it follows that the θ update is 1-minorisable.

The above lemma shows that DUGS for the pair (θ,Xmiss) is uniformly ergodic. However,

in practice it is entirely infeasible to sample the entire path Xmiss from its correct conditional

distribution given θ. Thus, to sample the pair (θ,Xmiss) from the posterior density (12), we

instead consider using a conditional independence sampler (CIS). Here θ plays the role of Y ,

and Xmiss plays the role of X. We shall alternately update θ from its full conditional dis-

tribution conditional on the current value of Xmiss (which is easy to implement in practice,

since θ|Xmiss follows a Gaussian distribution), and then update Xmiss using a conditional

Metropolis-Hastings update step with proposal distribution q(Xmiss|θ) given by the corre-

sponding Brownian bridge, i.e. with q(Xmiss|θ) = W̃ (which can be implemented in practice

by e.g. discretising the time interval [0, 1] and then using the Gaussian conditional distri-

butions of Brownian bridge). This algorithm is thus feasible to implement in practice, thus

raising the question of its ergodicity properties, which we now consider.

This CIS algorithm has conditional weight functions given by

w(xmiss, θ) =
fXmiss|θ(xmiss|θ)

q(xmiss|θ)
=

dP̃

dW̃
(X[0,1]) = h(θ)Gθ(X[0,1]) .

where we explicitly include the normalisation constant h(θ) which is everywhere positive and

finite. The key computation in our analysis is the following.

Lemma 22. For the above CIS algorithm, assuming (15), the weights are X-bounded, i.e.

supxw(x, θ) <∞ for each fixed θ.

Proof. From (11), we can write

w(xmiss, θ) = h(θ)Gθ(X[0,1]) = h(θ) exp[A(X1)−A(X0)−
∫ 1

0
φθ(Xs)ds]

≤ h(θ) exp[A(X1)−A(X0)] exp{− inf
x
φθ} (16)
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which shows that it suffices to argue that φθ(x) is bounded below as a function of θ. But

φθ =
1

2

[
θT
(∫

p(Xs)(p(Xs))
Tds

)
θ +

(∫
(p′(Xs))

Tds

)
θ

]
.

Hence, by the boundedness of pi and p′i from (15), it follows that φθ(x) is bounded below.

This gives the result.

We can now easily prove our main result of this section.

Theorem 23. Assuming (15), the above CIS algorithm on (Xmiss, θ), conditional on the

observed values X0 and X1, is uniformly ergodic.

Proof. This follows immediately from Theorem 7, in light of Lemmas 21 and 22 above.

5.1 Generalisation to more data

In practice, fitting a diffusion model, we would almost certainly possess multiple data, Xobs =

(Xt0 , Xt1 , Xt2 , . . . , XtN ), observed at times t0, t1, t2, . . . , tN , leading in turn to missing diffusion

segments Xmiss,i = {Xt : ti−1 < t < ti} for 1 ≤ i ≤ N . For ease of notation we have avoided

this more general setting in this section so far. However we now give some brief remarks to

show that Theorem 23 easily generalises.

In this more general case (often called discretely observed data), the following algorithm

was implemented in e.g. [32] to infer the Xmiss,i segments and θ. To fit with earlier notation

we fix t0 = 0, tN = 1.

1. Given Xobs and {Xmiss,i}1≤i≤N , simulate θ from its full conditional as given in (14).

2. Sequentially for i = 1, 2, . . . , N , propose an update of Xmiss,i conditional on Xobs and θ

from Brownian bridge measure between Xti−1 and time ti−1, and Xti and time ti, and

accept according to the usual Metropolis-Hastings accept/reject ratio.

The key here is that conditional on θ, the {Xmiss,i}1≤i≤N segments are all conditionally

independent. As a result of this, using our multidimensional theorem extensions of Section 4,

we immediately obtain the following generalisation of Theorem 23.
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Theorem 24. Assuming (15), the above CIS algorithm on (Xmiss, θ), conditional on the

observed values Xt1 , Xt2 , . . . , XtN , is uniformly ergodic.
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