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Abstract. We discuss a formal mathematical framework for certain coupling
constructions via minorisation conditions, which are often used to prove bounds
on convergence to stationarity of stochastic processes and MCMC algorithms.

1. Introduction.

Bounds on the convergence of Markov chains and other stochastic processes to stationary

distributions has become a very widely studied topic in recent years, motivated largely

by applications to Markov chain Monte Carlo (MCMC) algorithms, e.g. [9, 22, 10, 11, 7].

One common method of obtaining such bounds is through coupling constructions, see e.g.

[21, 19, 16]. Here a second copy of a similar or identical process is constructed, jointly with

the original process, and the probability of the two chains becoming (or remaining) equal is

then examined and used.

Such coupling constructions are often presented in a somewhat informal and intuitive

style, of the form “First construct one random variable as follows, then find a joint distri-

bution for these two other random variables conditional on the first one, then conditionally

construct a fourth random variable like this”, etc. We believe this to be acceptable, and

to lead to rigorously valid coupling constructions. However, we recently became aware that

at least one mathematically-minded reader is not comfortable with such informal descrip-

tions. Thus, the purpose of this note is to provide a more formal, mathematical version of

common methods of constructing couplings of pairs of stochastic processes. We emphasise

that none of the results presented here are particularly novel – they are simple consequences

of the Kolmogorov Extension Theorem, the coupling inequality, and maximal couplings –

but we hope that they will help clarify the application of coupling constructions to MCMC

algorithms.
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Coupling constructions are often used to bound the probability of two Markov chains

with identical transition kernels becoming equal, thus bounding the total variation distance

between them (see e.g. [21, 18, 19]). Some other approaches instead bound the probability of

two processes with different probability laws staying equal for all times up to time N . Both

cases often involve conditional-type coupling constructions which are usually stated infor-

mally, but which can be stated formally if desired. Below, for concreteness, we concentrate

on the second case, since the recent questions about coupling constructions originated there.

However, similar methods can be used to “formalize” the coupling constructions in the first

case too – and indeed in any situation in which couplings are constructed informally, one

random variable at a time, in terms of various conditional distributions.

2. Statement of Main Result.

Let {Xn}∞n=0 and {X ′n}∞n=0 be two different stochastic processes, defined possibly on dif-

ferent probability spaces, but taking values in the same Polish measurable state space (X ,B)

(e.g. on Rd with the Borel subsets). Let Fn = (X0, X1, . . . , Xn) and F ′n = (X ′0, X
′
1, . . . , X

′
n)

be the two processes’ histories up to time n. For n ≥ 1, and A ∈ B, and a state history

vector s(n−1) = (s0, s1, . . . , sn−1) ⊆ X n, let Qn(A; s(n−1)) = P[Xn ∈ A |Fn−1 = s(n−1)] and

Q′n(A; s(n−1)) = P[X ′n ∈ A |F ′n−1 = s(n−1)] be the regular conditional probability distribu-

tions. As a special case, when n = 0, let F−1 and F ′−1 and s(−1) each be the empty set, so

that Q0(A; s(−1)) = P[X0 ∈ A | ∅ = ∅] = P[X0 ∈ A] and Q′0(A; s(−1)) = P[X ′0 ∈ A].

In terms of these definitions, a formal statement about sequential coupling constructions

which attempt to keep the two processes equal, is as follows.

Theorem 1. Let N be a non-negative integer. Suppose that for each 0 ≤ n ≤ N , there

is an ≥ 0 such that for each state history vector s(n−1) = (s0, s1, . . . , sn−1) ⊆ X n, either:

(i) supA∈B |Qn(A; s(n−1))−Q′n(A; s(n−1))| ≤ an; or

(ii) there are random variables W and W ′, defined jointly on some probability measure

space, each taking values in X , which are measurable functions of s(n−1) (i.e., such that if

W = W (s(n−1)) and W ′ = W ′(s(n−1)), then for each A ∈ B, the subsets {s(n−1) : W (s(n−1)) ∈
A} and {s(n−1) : W ′(s(n−1)) ∈ A} are measurable subsets of X n), such that P[W ∈ A] =

Qn(A; s(n−1)) and P[W ′ ∈ A] = Q′n(A; s(n−1)) for all A ∈ B, and P[W = W ′] ≥ 1− an; or

(iii) there is a probability measure ν(·) on (X ,B) which is a measurable function of s(n−1)

(i.e., such that if ν(·) = νs(n−1)(·), then for each A ∈ B, the mapping s(n−1) 7→ νs(n−1)(A)

is a measurable function of s(n−1) ∈ X n), such that Qn(A; s(n−1)) ≥ (1 − an) ν(A) and

Q′n(A; s(n−1)) ≥ (1− an) ν(A) for all A ∈ B.
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Then there exist random variables {X̃n, X̃
′
n}Nn=0 defined jointly on some probability mea-

sure space, such that L(X̃0, . . . , X̃N) = L(X0, . . . , XN), and L(X̃ ′0, . . . , X̃
′
N) = L(X ′0, . . . , X

′
N),

and furthermore

P(X̃i = X̃ ′i for 0 ≤ i ≤ N) ≥ 1− a0 − a1 − a2 − . . .− aN . (∗)

3. Background Tools.

In this section we collect a few standard results that will be used to prove the above

Theorem.

Proposition 2. Let ρ and σ be two probability measures on (X ,B), and let ε ≥ 0. Then

the following are equivalent:

(i) supA∈B |ρ(A)− σ(A)| ≤ ε.

(ii) there are jointly-defined random variables Y and Z taking values on (X ,B), such

that P(Y ∈ A) = ρ(A), and P(Z ∈ A) = σ(A) for all A ∈ B, and P[Y = Z] ≥ 1− ε.
(iii) there is a probability measure ν(·) on (X ,B) such that ρ(A) ≥ (1 − ε) ν(A) and

σ(A) ≥ (1− ε) ν(A) for all A ∈ B.

Proof. That (ii) implies (i) is the standard coupling inequality; see e.g. [21], or equation

(13) of [16].

That (i) implies (ii) is a well-known property of couplings, corresponding to the existence

of maximal couplings (e.g. [13]; Proposition 3(g) of [16]). Indeed, let η(·) = ρ(·) + σ(·)
be a joint dominating measure, with corresponding Radon-Nikodymn derivatives g = dρ

dη

and h = dσ
dη

, and let m = min(g, h). Then, let a =
∫
X mdη, b =

∫
X (g − m) dη, and

c =
∫
X (h −m) dη. The statement is trivial if any of a, b, c are zero, so assume they are all

positive. Then jointly construct independent random variables R,U, V, I such that R has

density m/a, U has density (g − m)/b, V has density (h − m)/c, and P[I = 1] = a and

P[I = 0] = 1 − a. Finally, let Y = Z = R if I = 1, and let Y = U and Z = V if I = 0.

Then Y ∼ ρ(·) and Z ∼ σ(·), and U and V have disjoint support so P[U = V ] = 0. Hence,

P[Y = Z] = P[I = 1] = a. But it is easily seen that a = 1− supA∈B |ρ(A)− σ(A)| (see e.g.

[16], Proposition 3(f)), which gives the result.

That (iii) implies (i) follows by setting α(A) = ε−1[ρ(A) − (1 − ε) ν(A)] and β(A) =

ε−1[σ(A) − (1 − ε) ν(A)], so that α(·) and β(·) are probability measures on (X ,B), and

ρ(·) = ε α(·) + (1− ε) ν(·) and σ(·) = ε β(·) + (1− ε) ν(·), whence

|ρ(A)− σ(A)| = |ε α(A) + (1− ε) ν(A)− ε β(A)− (1− ε) ν(A)| = ε |α(A)− β(A)| ≤ ε .
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Finally, that (ii) implies (iii) follows by setting ν(A) = P[Y ∈A, Y=Z]
P[Y=Z]

.

Corollary 3. Conditions (i), (ii), and (iii) of Theorem 1 are all equivalent.

Proof. This is essentially the content of Proposition 2, except that we have to check the

measurable dependence on s(n−1). However, using the explicit constructions in the proof of

Proposition 2 that (i) implies (ii), and that (ii) implies (iii), it is easily seen that the mea-

surable dependence conditions can all be preserved when establishing these equivalences. In

particular, when moving from (i) to (ii), the processes {Xn} and {X ′n} being jointly de-

fined imply that the probabilities Qn(·; s(n−1)) and Q′n(·; s(n−1)) respectively are measurable

functions of s(n−1); it then follows that the distributions of R, U , V , and I are themselves

measurable functions of s(n−1), and hence so are the distributions of Y and Z, as required.

Proposition 4. Given a probability measure µ(·) on (X ,B), and a family of probability

measures νy(·) on (X ,B) for all y ∈ X such that the mapping y 7→ νy(B) is measurable for

all B ∈ B, then there exist random variables Y and Z defined jointly on some probability

measure space, such that P[Y ∈ A] = µ(A) and P[Y ∈ A, Z ∈ B] =
∫
y∈A νy(B)µ(dy) for

all A,B ∈ B.

Proof. This follows directly from the Kolmogorov Extension Theorem (see e.g. Theo-

rem 36.1 of [6]), upon defining the finite-dimensional distributions {ρi1,...,ik} 1≤k≤2
ij∈{1,2}

by

ρ1(A) = µ(A), ρ2(B) =
∫
X
νy(B)µ(dy), ρ1,2(A×B) = ρ2,1(B × A) =

∫
y∈A

νy(B)µ(dy) .

4. Proof of Theorem 1.

We now prove Theorem 1. By Corollary 3, conditions (i) and (ii) and (iii) of Theorem 1

are all equivalent, so we can assume that they all hold, and in particular that condition (ii)

always holds.

We shall prove the theorem by induction on N . The case N = 0 is immediate, since in

that case the conclusion is equivalent to condition (ii). We assume now that the theorem

has been proved for some non-negative integer N−1, and proceed to prove that it also holds

for N .
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By our induction assumption, (∗) holds for N − 1, i.e. there are random variables

{X̃n, X̃
′
n}N−1n=0 with L(X̃0, . . . , X̃N−1) = L(X0, . . . , XN−1), and L(X̃ ′0, . . . , X̃

′
N−1) = L(X ′0, . . . , X

′
N−1),

and furthermore

P(X̃i = X̃ ′i for all 0 ≤ i ≤ N − 1) ≥ 1− a0 − a1 − a2 − . . .− aN−1 .

Then, by condition (ii), for each state history vector s(N−1) we can find W = W (s(N−1))

and W ′ = W ′(s(N−1)) such that P[W ∈ A] = QN(A; s(N−1)) and P[W ′ ∈ A] = Q′N(A; s(N−1))

for all A ∈ B, and P[W = W ′] ≥ 1− aN .

We next apply Proposition 4, with Y taking the role of (X0, . . . , XN−1, X
′
0, . . . , X

′
N−1) ∈

(XN)2, and Z taking the role of (XN , X
′
N) ∈ X 2. Specifically, we set

µ(·) = L(X̃0, . . . , X̃N−1, X̃
′
0, . . . , X̃

′
N−1) ,

and for s, t ∈ X n we let ν(s,s)(·) = L(W (s),W ′(s)), with ν(s,t)(·) defined arbitrarily for s 6= t

(say, ν(s,t)(·) = δ(x0,x0)(·) for some fixed x0 ∈ X ). Proposition 4 then ensures that there

are jointly-defined random variables X̆0, . . . , X̆N , X̆
′
0, . . . , X̆

′
N such that L(X̆0, . . . , X̆N) =

L(X0, . . . , XN−1,W ), and L(X̆ ′0, . . . , X̆
′
N) = L(X ′0, . . . , X

′
N−1,W

′), and

L(X̆ ′0, . . . , X̆
′
N |X0, . . . , XN−1,W ) = L(X ′0, . . . , X

′
N |X0, . . . , XN−1,W ) .

In particular,

P(X̆i 6= X̆ ′i for some 0 ≤ i ≤ N) ≤ P(X̆i 6= X̆ ′i for some 0 ≤ i ≤ N − 1) + P(X̆N 6= X̆ ′N)

= P(X̃i 6= X̃ ′i for some 0 ≤ i ≤ N − 1) + P(W 6= W ′)

≤ (a0 + a1 + . . .+ aN−1) + aN .

This establishes equation (∗) for N (with the X̃ now replaced by X̆). Therefore, this com-

pletes the induction step, and hence the proof of Theorem 1.

5. Auxiliary randomness.

Sometimes the transition probabilities for the chain {Xn} depend not just on its own

previous states, but also on additional auxiliary random variables. This is particularly the

case for adaptive MCMC algorithms, a recently widely-studied subject (see e.g. [14, 2, 4,

17, 1, 12, 5, 20, 3, 8, 15]). For such algorithms, sometimes the coupling only holds under
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certain conditions about the auxiliary randomness. To handle this, a slight extension of our

Theorem 1 is required.

To set it up, again let {Xn}∞n=0 and {X ′n}∞n=0 be two different stochastic processes, defined

possibly on separate probability spaces, taking values in the same measurable state space

(X ,B), and again let Fn = (X0, X1, . . . , Xn) and F ′n = (X ′0, X
′
1, . . . , X

′
n). Let {Γn} be a se-

quence of auxiliary random variables, taking values in some space (Y ,G), such that the law of

Xn+1 depends not only on X0, . . . , Xn, but also on Γn in some way (but assume for simplicity

that there is no auxiliary randomness in the law of X ′n+1). For n ≥ 1, let Qn(A; s(n−1), γn) =

P[Xn ∈ A |Fn−1 = s(n−1),Γn = γn], and Q′n(A; s(n−1)) = P[X ′n ∈ A |F ′n−1 = s(n−1)]. Again

let F−1 and F ′−1 and s(−1) and Γ−1 and γ−1 be the empty set. Finally, let Hn ∈ G be some

event (corresponding, intuitively, to “good” values of the Γn).

Theorem 5. Let N be a non-negative integer. Suppose that for each 0 ≤ n ≤ N , there

is an ≥ 0 such that for each history s(n−1), and each γn ∈ Hn, either:

(i) supA∈B |Qn(A; s(n−1), γn)−Q′n(A; s(n−1))| ≤ an; or

(ii) there are jointly-defined random variables Y and Y ′ taking values in (X ,B), such

that P[Y ∈ A] = Qn(A; s(n−1), γn) and P[Y ′ ∈ A] = Q′n(A; s(n−1)) for all A ∈ B, and

P[Y = Y ′] ≥ 1− an; or

(iii) there is a probability measure ν(·) on (X ,B) with Qn(A; s(n−1), γn) ≥ (1− an) ν(A)

and Q′n(A; s(n−1)) ≥ (1− an) ν(A) for all A ∈ B.

Suppose also that for each 0 ≤ n ≤ N , there is bn ≥ 0 such that for each history s(n),

and each γn ∈ Hn,

P(Γn+1 ∈ Hn+1 |Fn = s(n),Γn = γn) ≥ 1− bn .

Then there exist random variables {X̃n, X̃
′
n}Nn=0 defined jointly on some probability space,

such that L(X̃0, . . . , X̃N) = L(X0, . . . , XN), and L(X̃ ′0, . . . , X̃
′
N) = L(X ′0, . . . , X

′
N), and fur-

thermore

P(X̃i = X̃ ′i for 0 ≤ i ≤ N) ≥ 1− a0 − a1 − a2 − . . .− aN − b0 − b1 − b2 − . . .− bN .

Proof. The proof of Theorem 5 is a simple and direct generalisation of the proof of

Theorem 1. In particular, when applying Proposition 4, we now let Y take the role of

(X0, . . . , XN−1, X
′
0, . . . , X

′
N−1,ΓN−1) ∈ (XN)2×Y , and let Z take the role of (XN , X

′
N ,ΓN) ∈

X 2 × Y . That is, we also condition on the previous auxiliary randomness parameter ΓN−1,

and we also construct the new auxiliary randomness parameter ΓN . The remainder of the

proof is virtually identical to that of Theorem 1, so we omit the details.
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Remark. In particular, Theorem 5 provides a mathematically precise framework for the

coupling construction used in the proof of Theorem 5 of [17].
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[3] Y.F. Atchadé, and G. Fort (2010). Limit theorems for some adaptive mcmc algorithms

with sub-geometric kernels. Bernoulli 16, 116-154.
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