
Group-Based criminal trajectory analysis using
cross-validation criteria

J.D. Nielsen1, J.S. Rosenthal2, Y. Sun3,
D.M. Day4, I. Bevc5, and T. Duchesne6

(Last revised July 30, 2012.)

1 School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada, K1S
5B6.

2 Department of Statistics, University of Toronto, 100 St. George Street, Toronto, Ontario,
Canada, M5S 3G3.

3 Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada, M5G 1X5.

4 Department of Psychology, Ryerson University, 350 Victoria Street, Toronto, Ontario,
Canada, M5B 2K3.

5 The Hincks-Dellcrest Centre, 1645 Sheppard Avenue West, Toronto, Ontario, Canada,
M3M 2X4.
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Abstract

In this paper, we discuss the challenge of determining the number of classes in a family of

finite mixture models with the intent of improving the specification of latent class models

for criminal trajectories. We argue that the traditional method of using either the Proc Traj

or Mplus package to compute and maximize the Bayesian Information Criterion (BIC) is

problematic: Proc Traj and Mplus do not always compute the MLE (and hence the BIC)

accurately, and furthermore BIC on its own does not always indicate a reasonable-seeming

number of groups even when computed correctly. As an alternative, we propose the new

freely available software package, crimCV, written in the R-programming language, and the

methodology of cross-validation error (CVE) to determine the number of classes in a fair

and reasonable way. In the present paper, we apply the new methodology to two samples of

N = 378 and N = 386 male juvenile offenders whose criminal behavior was tracked from late

childhood/early adolescence into adulthood. We show how using CVE, as implemented with

crimCV, can provide valuable insight for determining the number of latent classes in these

cases. These results suggest that cross-validation may represent a promising alternative to

AIC or BIC for determining an optimal number of classes in finite mixture models, and in

particular for setting the number of latent classes in group-based trajectory analysis.

Key Words and Phrases: Group-based trajectory analysis; juvenile offenders; zero-

inflated-poisson (ZIP); cross-validation; Bayesian information criterion; crimCV.
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1 Introduction

Group-based trajectory models are a valuable method of modeling the relationship between

age and criminal behavior in an effort to uncover the underlying or latent heterogeneity of

the sample. It is widely known that criminal offenders are a diverse and varied population.

Finite mixture models allow us to approximate this heterogeneity by clustering individuals

into small numbers of groups that show statistically similar trajectories in terms of rate

or severity of offending over time. One challenge to these methods is to determine the

number of groups to use in such a model. The most common approach is to optimize the

Bayesian Information Criterion (BIC) (e.g. Brame, Nagin & Wasserman, 2006; D’Unger,

Land, McCall, & Nagin, 1998; Kass & Raftery, 1995; Raftery, 1995; Bartolucci et al., 2007),

by computing the corresponding maximum likelihood estimator (MLE) using the software

Proc Traj (Jones, 2001; Jones, Nagin, & Roeder, 2001; Jones, & Nagin, 2007). Although

versions of this procedure have had much success, it is known that such optimization can be

problematic (e.g. Nagin, 2005; Kreuter & Muthen, 2008).

In this paper we argue that this approach is fundamentally flawed in that Proc Traj and

Mplus often fail to accurately compute the MLE and, hence, the BIC and, furthermore,

BIC on its own does not always indicate a reasonable-seeming number of groups even when

computed correctly. As an alternative, we propose the new software package, crimCV,

together with the methodology of cross-validation error (CVE), to compute the MLE more

accurately and provide an alternative determination of the number of latent classes to be

used.

1.1 Previously-Known Problems with BIC

The BIC (Schwartz, 1978) is commonly used in analyses such as those described in Section 2.1

of this paper. However, it is known to be problematic and often suggests far too many latent

classes (Ward, Day, Bevc, Sun, Rosenthal, & Duchesne, 2010). For example, the book by



Trajectory Analysis using Cross-Validation 4

Nagin (2005, pp. 74–75), Group-based modeling of development, contains an entire section

entitled “When BIC Is Not Useful in Identifying the Best Model,” which notes that:

BIC does not always cleanly identify a preferred number of groups. Instead,

in some applications the BIC score continues to increase as more groups are

added. In such instances, more subjective criteria based on domain knowledge

and the objectives of the analysis must be used to select the number of groups

to include in the model. . . . [In a particular study] BIC continued to improve for

this measurement series as more groups were added.

Similarly, Loughran and Nagin (2006, p. 259; see also Blokland, Nagin, & Nieuwbeerta,

2005) conducted an application and observed that:

In this application, the BIC was not helpful in identifying a preferred model

because over the range of models explored, BIC monotonically increased with the

number of groups. We settled on the four-group model . . . for several [unrelated]

reasons.

In D’Unger, Land, and McCall (2002), the BIC again increases monotonically with the

number of classes and the authors are forced to cut off this number when they can no longer

invert a certain Hessian matrix as required to assess their standard errors. Similarly, in

Piquero, Blumstein, Brame, Haapanen, Mulvey, and Nagin (2001), BIC again calls for more

and more groups, until with K = 7 their models “failed to converge on a solution,” forcing

them to “settle on six-class models,” Finally, Yessine and Bonta (2009, pp. 446–447), using

MPlus rather than the Proc Traj, also found that BIC is monotonically increasing with group

number, but settled on using two groups after determining that “the mixture models failed

to converge to a trustworthy solution when more than two groups were specified.” Such deci-

sions are ad hoc, forced by computational issues rather than genuinely indicating optimality

of choice of number of groups, and are thus quite unsatisfactory since the number of groups
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is selected by software limitations rather than by optimally modeling the data. Indeed, fi-

nite mixture models can be viewed as an approximation to the marginal distribution of a

response variable in a heterogeneous population, and hence the number of elements should

be chosen so as to ensure that the approximating model will yield adequate inference and/or

prediction. Thus, despite the widespread use of BIC for determining the number of latent

classes, this approach is well-known to be problematic, posing challenges for researchers in

this field. As noted by Nylund, Asparouhov and Muthén (2007, p. 537):

To date, there is not common acceptance of the best criteria for determining

the number of classes in mixture modeling, despite various suggestions. This is

a critical issue in the application of these models, because classes are used for

interpreting results and making inferences.

Likewise, Eggleston, Laub and Sampson (2004; see also Nagin, 1999) write:

Although the Bayesian Information Criterion has been emphasized as the primary

criterion to assess the optimal number of groups, the model selection process is

often more complex and, thus, group selection remains somewhat subjective.

Of course, many authors who recognize the limitations of BIC on its own argue that BIC

should be combined with subject-specific judgement to decide the number of latent classes

(see e.g., Blokland, Nagin, & Nieuwbeerta, 2005; Eggleston et al., 2004). Such judgement

may indeed lead to appropriate numbers of latent classes in many cases. However, it is

necessarily subjective in nature, and in any event it does not alleviate – rather, it reinforces

– the fact that BIC alone is not a completely satisfactory approach in this context.

1.2 Goal of this Paper

The primary motivations and objectives of the use of finite mixture models in empirical

statistical analyses arise from the fact that many empirical frequency distributions do not
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conform to one of the standard frequency distributions in statistics. Because of this, the

empirical frequency distributions may contain hidden heterogeneity that must be taken into

consideration in the modeling process. But by their very nature, finite mixture models are

approximations to a mix of conventional frequency distributions that models the hidden

heterogeneity. In light of this, in this paper, we take the aforementioned concerns about

BIC two steps further. First, we argue that the standard software packages, Proc Traj and

Mplus do not always compute the MLE (and hence the BIC) accurately, potentially leading

to incorrect conclusions. This leads us to develop our own software package, crimCV, which

computes the MLE more reliably. Second, we argue that even when computed correctly,

BIC is a flawed criterion that often fails to propose an approximation to the population

distribution that is reasonable for inference or interpretation purposes because it tends to

suggest finite mixture models with too many latent classes. This leads us to propose the use

of CVE as an alternative and practically valuable criterion.

2 The Models and Data

Though the CVE could be used to help in finding an appropriate number of latent classes

in virtually any latent class model, in this paper we will illustrate its use by considering a

particular family of zero-inflation Poisson (ZIP) models for latent class trajectories of criminal

careers. These are specific instances of more general finite mixture models in statistics, which

have been applied to many other areas in addition to criminology; see for instance Heckman

& Singer (1984) or McLachlan & Peel (2000) for general references on finite mixture models.

This provides evidence that such models are a useful way to analyze a wide variety of count

data which can be thought of as falling into latent classes of some kind. In this section we

provide background information about the model, data and approach that we will consider.
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2.1 The ZIP Latent Class Model

We first summarize the standard ZIP statistical model (Lambert, 2002) that we shall use

to model criminal trajectories (Jones et al., 2001; Nagin, 2005).

Let Yij be the number of offenses by individual i at age j (in years), for 1 ≤ i ≤ N and

L ≤ j ≤ U . (Here L is the lower bound on offense ages, while U is the upper bound; e.g. for

our first data set L = 8 and U = 38, while for our second data set L = 9 and U = 38.) To

specify the statistical model, we need to specify the probability that Yij = yij for all i and

j. For shorthand, let Yi = (Yi,L, Yi,L+1, · · ·YiU)′, and yi = (yi,L, yi,L+1, · · · yiU)′.

Though it is quite possible that the distribution of Yi may be different for each individual,

in finite mixture modeling we assume that each individual i can be in one of K different

(homogeneous) latent classes, so that

P (Yi = yi) =
K∑
k=1

pk P (Yi = yi | individual i is in class k) , (1)

for some unknown probabilities {pk} with 0 < pk < 1 and
∑K

k=1 pk = 1. We further make

the standard assumption (which surely is not strictly true, but which greatly simplifies the

mathematics) that, conditional on individual i being in class k, the number of offenses Yij

are independent for different ages j so that equation (1) becomes

P (Yi = yi) =
K∑
k=1

pk

U∏
j=L

P (Yij = yij | individual i is in class k) . (2)

Equation (2) requires us to specify the probabilities for the Yij conditional on being in

class k. To do this, we follow the zero-inflation Poisson (ZIP) model, which assumes that

if individual i belongs to class k, then the distribution of Yij is a mixture of a Poisson

distribution together with excess probability of zero offenses (corresponding to being in a

“non-criminal” state). If we wish, we can also include year-by-year exposure times (i.e.,

times-at-risk), tij, which indicate the fraction of the year j in which individual i was not in
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secure custody. (Thus, the tij are all between 0 and 1, and can be taken to be 1 if time-at-risk

adjustments are not available or required. That is, 0 ≤ tij ≤ 1, with tij = 1 indicating that

individual i was at large for the entire year j.) Hence, the conditional probability distribution

for Yij conditional on individual i being in class k becomes:

(Yij | individual i is in class k) ∼ (1− qkj ) Poisson(tijλ
k
j ) + qkj δ0 (3)

for some (unknown) mixture probabilities qkj and intensities λkj , where δ0 is a point-mass at

zero. That is,

P (Yij = yij | individual i is in class k) = (1− qkj )e−tijλ
k
j
(tijλ

k
j )
yij

yij!
+ qkj I(yij = 0) (4)

=


(1− qkj )e−tijλ

k
j
(tijλ

k
j )

yij

yij !
if yij > 0

(1− qkj )e−tijλ
k
j + qkj if yij = 0

In particular, this equation provides the estimated mean or expected value, µkj , of the offense

count Yij at age j of an individual i who is known to be in class k:

µkj = E(Yij | individual i is in class k) = (1− qkj )(tijλ
k
j ) . (5)

2.2 The Predictor Functions

It remains to model the unknown parameters λkj and qkj . The λkj are modeled by either the

quadratic predictor functions:

log(λkj ) = β0k + β1kj + β2kj
2 (6a)
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or the cubic predictor functions:

log(λkj ) = β0k + β1kj + β2kj
2 + β3kj

3, (6b)

where for each latent class k, the unknown values βik need to be estimated.

The qkj model the amount of zero inflation, that is, the excess probability of individual

j being in a “non-criminal” state. They are modeled by predictor functions given as either

logit-linear:

logit(qkj ) ≡ log

(
qkj

1− qkj

)
= α0k + α1kj (7a)

or logit-quadratic:

logit(qkj ) ≡ log

(
qkj

1− qkj

)
= α0k + α1kj + α2kj

2 (7b)

or proportional to log(λkj ) as in the ZIP(τ) model of Lambert (2002):

logit(qkj ) ≡ log

(
qkj

1− qkj

)
= −τk log(λkj ) , (7c)

where the αik or τk are again unknown values to be estimated.

Combining these equations, the overall likelihood function is given by

LK(θ) =
N∏
i=1

K∑
k=1

pk

U∏
j=L

[
(1− qkj )e−tijλ

k
j
(tijλ

k
j )
yij

yij!
+ qkj I(yij = 0)

]
, (8)

where θ is a vector consisting of all of the unknown parameters (i.e., of all of the {pk}, {βik},

and {αik} or {τk} as appropriate depending on which versions of the predictor functions

(6a)–(6b) and (7a)–(7c) are used). Thus, the length fK of the vector θ is equal to 7K−1 for

the quadratic-quadratic pure-ZIP model (i.e., using equations (6a) and (7b)), or 6K − 1 for

the cubic-ZIP(τ) model (i.e., using equations (6b) and (7c)), etc. (The “−1” comes because
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we omit pK from the vector θ, since we must have pK = 1− p1 − p2 − . . .− pK−1.)

2.3 Fitting the Model

To fit the model, we require a maximum likelihood estimator (MLE), that is, a vector θ̂

of estimated values of all the unknown parameters that maximizes the likelihood function

LK(θ) in equation (8). Such θ̂ consists of estimated values {p̂k}, {β̂ik}, and {α̂ik} or {τ̂k}

as appropriate, which in turn implies estimated values {λ̂kj} and {q̂k}, and thus allows us to

estimate all relevant quantities and probabilities associated with the model with K latent

classes.

After obtaining the estimator θ̂, we can then use (8) to estimate the a posteriori proba-

bility πki that individual i belongs to group k, by

π̂ki =
p̂k
∏U

j=L

[
(1− q̂kj )e−λ̂

k
j
(λ̂kj )

yij

yij !
+ q̂kj I(yij = 0)

]
∑K

m=1 p̂m
∏U

j=L

[
(1− q̂mj )e−λ̂

m
j

(λ̂mj )yij

yij !
+ q̂mj I(yij = 0)

] . (9)

If we wish, we can also identify the most probable latent class of each individual i, as

most probable latent class of individual i = arg max
k

π̂ki . (10)

We can then classify the individuals by most probable latent class and investigate the criminal

characteristics of each such group.

Now, the length fK of the vector θ grows fairly quickly with K. So, for even moderately

large K, computing the MLE is computationally challenging. Such issues are considered

further below.
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2.4 Prediction for New Subjects

This model also provides a method for predicting offense trajectories of new individuals. In-

deed, if an (N+1)st individual comes along, with offense data counts yN+1,L, yN+1,L+1, . . . , yN+1,U ,

we could estimate the class membership probabilities π̂kN+1 from (9). Then, combining the

values π̂kN+1 with the conditional means given by (5), we conclude that

ŷN+1,j ≡ estimated mean of YN+1,j =
K∑
k=1

π̂kN+1 (1− qkj )(λkj ) . (11)

If ŷN+1,j is close to yN+1,j, this indicates that the model does a good job of predicting future

individuals’ offense patterns. Such issues will be important in Section 3.2 below.

3 Number of Latent Classes

The above discussion provides a complete and unambiguous recipe for estimating the entire

multidimensional vector of parameters θ, as well as the a posteriori group membership prob-

abilities πki in (9), at least once we have specified the number K of latent classes. However,

the choice of number of classes K must first be made. As we have already argued, this choice

should be made so as to obtain an “optimal” approximation to the distribution of Yi in a

heterogenous population. In practice, this is usually done by considering several potential

values of K and choosing the one which yields the best value of a given criterion. In the

remainder of this section, we present such criteria and argue that the CVE criterion tends

to propose values of K that correspond to models that are more sensible in practice.

3.1 BIC and AIC

A conventional method for selecting the number of classes, or more generally the number

of parameters to use in a model, is to minimize the Bayesian Information Criterion (BIC),
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given by

BIC = −2 log(likelihood) + (number of free parameters) log(number of observations) .

(12)

For the model described in Section 2.1, the likelihood function is LK(θ), and the number of

free parameters is equal to the length fK of the vector θ and hence is equal to 7K−1 for the

quadratic-quadratic model, or 5K − 1 for the cubic-tau model, and so on. Also, the number

of observations is taken to be N(U −L+ 1), the total number of yij data values. (Note that

some implementations by default use N instead of N(U − L + 1). For consistency we stick

with N(U − L+ 1) here, but in any case such difference will not greatly affect the results.)

Hence, the formula becomes

BIC = −2 log(LK(θ̂)) + fK log
(
N (U − L+ 1)

)
. (13)

The BIC criterion would then have us choose the value of K that minimizes (12).

Closely related to BIC is the Akaike information criterion (AIC), proposed by Akaike

(1974), defined by

AIC = −2 log(likelihood) + 2 (number of free parameters) . (14)

which in our case becomes

AIC = −2 log(LK(θ̂)) + 2fK . (15)

The AIC criterion would then have us choose the value of K that minimizes (15). A com-

parison of (14) and (12) (or of (15) and (13)) shows that AIC is similar in spirit to BIC, and

indeed we shall see below that it appears to have similar difficulties and limitations to BIC.

In a related direction, Brame et al. (2006) compare AIC and BIC in simulations, concluding
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that “AIC generally outperformed BIC in identifying the correct number of groups. How-

ever, this is not uniformly the case and both criteria performed well with large samples”,

but they do not compare AIC and BIC to other criteria such as CVE.

We note that BIC is sometimes defined as −1/2 times the value described in (12) and

(13) (and similarly for AIC). In this case, the criterion would instead have us choose the

value of K that maximizes the BIC. So, to compare our results with other results using the

alternative definition, simply multiply all of our BIC (and AIC) values by −1/2.

Below, we shall consider both BIC and AIC, and will find (as previously observed) that

neither provides a satisfactory resolution for determining the number of latent classes K.

Because of these difficulties, we will consider an alternative method, cross-validation error

(CVE), for determining the number of latent classes K.

3.2 The Cross-Validation Approach

The previous section discussed the challenge of accurately computing the BIC. However, we

shall argue below that even when computed correctly (e.g. with crimCV), BIC on its own

still does not provide a very useful criterion for determining the number K of latent classes.

Thus, we propose an alternative criterion for this purpose. Specifically, we propose to make

use of cross-validation (Hélie, 2006; Stone, 1974). This is a method of using data to test the

predictive power of a model. If the model predicts well, then this suggests that it is a good

and appropriate model which provides a good “fit” of the data and should be used.

In the present context, we proceed as follows. For each possible choice of number of

latent classes K, we compute a cross-validation error (CVE) indicating the extent to which

the model fails to perfectly model the data. The final choice of K is then the one that

minimizes this CVE value.

More specifically, we use leave-one-out cross-validation. This method measures the ac-

curacy of the fit for individual i by using estimates of the model parameters θ based on

data for all the other individuals but not individual i. Specifically, for a given choice of the
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number K of latent classes, we proceed as follows. For each individual i, we omit the data

for individual i, and then determine an MLE θ̂[−i] for θ based on data for the other N − 1

individuals only. Then, using the parameter values θ̂[−i], we then use (9) and (11) to obtain

estimates ŷ
[−i]
ij for the various yij values (L ≤ j ≤ U). That is, we obtain the best possible

estimates for the offense counts for individual i, using a model whose parameters have been

fit without using the offense data of individual i. This provides a fair measure of the accuracy

of the model, without encouraging over-fitting (see e.g. Day et al., 2007).

Once we have estimates {ŷ[−i]ij }Uj=L, then the cross-validation error for individual i, CVE(i),

can be measured in terms of the average absolute difference between the true values

(yi,L, yi,L+1, · · · , yi,U) and the predicted values (ŷ
[−i]
i,L , ŷ

[−i]
i,L+1, · · · , ŷ

[−i]
i,U ), i.e.

CVE(i) =
1

U − L+ 1

U∑
j=L

∣∣∣yij − ŷ[−i]ij

∣∣∣ .
By repeating this process for each of the N individuals i, and then averaging the cross-

validation errors CVE(i) over all N individuals, we get our final cross-validation error (CVE):

CVE =
1

N

N∑
i=1

CVE(i) .

The value CVE thus provides a fair measure of how appropriate the approximation given

by the finite mixture model with the chosen group number K is for the given data in terms

of how accurately a model with that number of groups is able to predict the offender data of

new individuals. If CVE is large, this indicates that the model with K groups is not a good

statistical model for this data. By contrast, if CVE is small, then the model with K groups

is doing a good job of predicting offender data of new individuals.

The cross-validation criterion for number of groups then involves simply choosing the

value of K that minimizes CVE. The software package, crimCV, computes CVE for any

criminal offense data and any number K of latent groups and is thus appropriate for applying
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this cross-validation criterion. (Another possible method is the bootstrap likelihood ratio

test [BLRT], not considered here; see Nylund, Asparouhov & Muthén, 2007; Kreuter &

Muthén, 2008.) We shall see in Section 6 that the cross-validation criterion usually provides

a sensible, stable recommendation for the number of latent classes K, and thus represents

a valuable alternative to other criteria such as BIC and AIC.

4 Toronto Juvenile Offender Samples (TO1 and TO2)

To study this model, as well as the Proc Traj and crimCV software, and the BIC and CVE

criteria, we consider two Toronto juvenile offender data sets, referred to as TO1 (N = 378)

and TO2 (N = 386), previously studied by Day, Bevc, Duchesne, Rosenthal, Rossman, and

Theodor (2007) (see also Day, Bevc, Rosenthal, Duchesne, Rossman, & Theodor, 2003; Day,

Bevc, Duchesne, Rosenthal, Sun, & Theodor, 2008; Day, Nielsen, Ward, Sun, Rosenthal,

Duchesne, Bevc, & Rossman, 2011; Ward et al., 2010). These data sets are publicly available

for inspection in completely de-identified form, by contacting I. Bevc or by installing the

crimCV software package discussed below.

All the juvenile offenders in this study had served a sentence between January 1, 1986

and December 30, 1997 at one of two open custody facilities (i.e., group homes) in Toronto,

Canada, operated by a children’s mental health centre. During this period, a total of 764

male offenders served a sentence at one of the two sites; therefore, our research involves the

entire population of youth from these facilities during this period. Information about the

two samples is presented in Table 1.

[INSERT TABLE 1 ABOUT HERE.]

The first sample, “TO1”, comprised a randomly selected sample of 378 youth, from the

population of youth at these facilities during this period. The sample was, on average, 17.6
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years at the time of admission into the facility and the average sentence length was 124.6

days (Median = 92 days). Their criminal activity was tracked for an average of 18.7 years

(range = 12.3 – 29.3 years), from their first recorded involvement with the justice system to

September 26, 2007. The average age at the end of the follow-up was 34.1 years (range =

28.7 – 40.5 years).

The remaining 386 offenders from this population constituted the second sample, “TO2”.

This group was, on average, 17.7 years at the time of admission into the facility and the

average sentence length was 122.6 days (Median = 93 days). Their criminal activity was

tracked for an average of 16.4 years (range = 9.8 – 28.7 years), from their first recorded

involvement with the justice system up to and including September 26, 2007. Their average

age at first court contact was 15.6 years (range = 9.6 – 19.4 years) and the average age at

the end of the follow-up was 32.0 years (range = 26.3 – 40.2 years). A strength of these

samples is that the follow-up periods extended from late childhood (for offenses committed

under the Juvenile Delinquents Act [JDA] in Canada, for which the minimum age of criminal

liability was 7 years, unlike the Young Offenders Act [YOA], to which most of the criminal

data apply, and the current Youth Criminal Justice Act [YCJA], for which the minimum

age is 12 years) and early adolescence into adulthood, well beyond the challenging period of

emerging adulthood of the early 20’s (Arnett, 2000, 2007).

4.1 Criminal Data

The criminal data for TO1 were received, initially ,on March 17, 2001 and updated on

September 26, 2007, from four sources: (1) the (Ontario) Ministry of Community and Social

Services (MCSS); (2) the (Ontario) Ministry of Community Safety and Correctional Services

(MCSCS); (3) the Canadian Police Information Centre (CPIC); and (4) the Predisposition

Reports (PDRs) maintained by the children’s mental health centre. The criminal data for

TO2 were received from three sources: (1) the (Ontario) Ministry of Community Safety and

Correctional Services (MCSCS); (2) the Canadian Police Information Centre (CPIC); and
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(3) the predisposition reports (PDRs) maintained by the children’s mental health centre.

These data sources were used to ensure a high degree of completeness and accuracy of the

information, which is essential for research that requires an accurate temporal sequencing of

criminal activity (Smith, Smith, & Norma, 1984).

The reason only three data sources were used for TO2 (as well as for the second follow-up

for TO1 as noted below) was that, at some point between March 17, 2001 and September

26, 2007, the MCSS system was integrated into the MCSCS and thus two sources became

one main source. Due to the nature of the data integration process and the importance of

continued monitoring of active offenders, historical data for juvenile offenders between the

ages of ages of 12- 15 years (referred to as Phase I offenders) were available only for those

offenders who were still actively serving youth sentences at the time of our inquiry. Thus,

due to the limitations of accessible data at the time, the majority of these Phase 1 data for

TO2 were only retrieved through the PDRs.

As well, to aid the accuracy of our time-at-risk adjustments (see below), supplemental

movement data containing (institutional) location start and exit dates were provided by the

MCSCS for our data requested on September 26, 2007. Due to the implementation of a

new criminal record monitoring system between the first and second follow-up periods, TO2

data were received in electronic format from the Ministry and contained more information

than that received on the paper profiles (i.e. ”rap sheets”) for the initial follow-up of TO1.

Not only could the charges and dates of convictions be discerned as before, but now the

movement data associated with each charge was provided and allowed for a more accurate

account of time-served per date of conviction. As a result of these differences in data received

between the two follow-up periods, we decided not to combine the data for TO1 and TO2

into one large data set for analyses. The criminal data for these samples gave us year-by-year

offense counts {yij}; for TO1 we have 1 ≤ i ≤ N = 378 and L = 8 ≤ j ≤ U = 38, while for

TO2 we have 1 ≤ i ≤ N = 386 and L = 9 ≤ j ≤ U = 38.
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4.2 Time-at-Risk Adjustments

As described in Day et al. (2007), the time-at-risk adjustment contained additional challenges

since the data included dates of court contact but not dates of offense. This necessitated

computing estimates tij of the fraction of the year at age j when subject i was at large.

These tij values can then be used as offsets as in the previous section (as in Piquero et

al., 2001, p 59). Unfortunately, Proc Traj cannot easily handle time offsets. Alternatively,

we can use the “divide and round” (DAR) approximation of Ward et al. (2010) (see also

Eggleston et al., 2004, p. 6 bottom), consisting of adjusting each count yij by dividing it by

the corresponding exposure time tij and rounding the result to the nearest integer (truncated

at a maximum of 25). We feel that time offsets are a far preferable method, since DAR does

not distinguish between, for example, “5 offenses in 3 months at large” and “20 offenses this

year” even though the effect of these two different realities on our conclusions should be far

from identical. However, DAR does provide a clear and unbiased data set with which to

compare Proc Traj to other software, as we do in the next section.

5 Software Considerations

As noted above, the computation of the MLE for these models is very challenging, especially

for larger numbers of latent classes. To compute the MLE, we originally used the SAS

procedure Proc Traj provided by Jones (2001; see also Jones et al., 2001; Jones, & Nagin,

2007). However, we found that Proc Traj sometimes failed to converge consistently, and

sometimes gave different values when used with different versions of the program or different

initialisations, and sometimes failed to find the true MLE (see Section 5.2).

Another commonly-used software package is Mplus (www.statmodel.com; Muthén and

Muthén, 2001), which provides some improvements over Proc Traj, but still sometimes fails

to find the true MLE (see Section 5.2). In addition, both Proc Traj and Mplus are proprietary

packages that must be purchased and do not allow for inspection and modification of the
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source code. For all these reasons, we eventually decided to write our own software package,

crimCV, described next.

5.1 A New Software Package: crimCV

Our software package incorporates the above ZIP models for criminal offender data, com-

putes the MLE (and BIC and AIC) more reliably than Proc Traj, and also computes the

quantity CVE. Furthermore, it is available as a free, publicly available package to augment

the statistical software R at no cost to the user and with full access to the source code. We

note that while our R software package is called “crimCV” and was developed specifically

for analyzing criminal offense trajectories, the analysis it performs could be applied more

generally to many other types of data involving finite mixture models as well; we hope to

develop these ideas further in subsequent work.

To run crimCV, one should proceed as follows:

1) Obtain the R programming environment by following the instructions at:

http://www.r-project.org/

2) Run R, by double-clicking the R icon or typing ’R’ at the terminal.

3) At the R prompt ’>’, type ’chooseCRANmirror()’ and select the closest repository.

4) At the R prompt ’>’, type ’install.packages("crimCV")’, which will install the

crimCV package. (Note: you need to have administrative privileges on your computer to in-

stall packages. Alternatively, crimCV can be obtained directly from www.probability.ca/crimCV.)

5) At the R prompt ’>’, type ’help("crimCV")’ for a description of the software, options

and an example of usage.

After following the above steps, crimCV can be freely run, both on the TO1 and TO2

data to check our results herein, and on any other criminal offense data as desired.
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5.2 Comparison of the Different Software Packages

To compare these various software packages, we had each of Proc Traj, Mplus and crimCV

maximize the log-likelihood and compute the corresponding BIC and AIC values for the TO1

and TO2 data sets. Since Proc Traj cannot easily handle time offsets, nor was it designed for

the ZIP(τ) model, we therefore focused on the quadratic-quadratic pure-ZIP model together

with the DAR method of correcting for time-at-risk.

The computed results are presented in Table 2.

[INSERT TABLE 2 ABOUT HERE.]

These results show that for small numbers of latent groups, Proc Traj, Mplus and crimCV

obtain the same values for the maximum log-likelihood (and hence for BIC and AIC, as well),

as we would hope. However, for larger numbers of latent groups, discrepencies start to arise.

In such cases, the crimCV values for the log-likelihood are consistently larger (i.e., less

negative) than those computed by the other software packages. This shows that it is Proc

Traj and Mplus that sometimes fail to maximize the log-likelihood and thus obtain too small

an estimate of the MLE and thus a correspondingly too small estimate of the values of BIC

and AIC.

We note that this run used the Proc Traj default starting values. If Proc Traj is instead

initialised with excellent starting values, for example, as obtained from crimCV itself, it will

have a better chance of computing the correct answers. However, such starting values would

not normally be available to the user and it does not seem likely that a small amount of

“trial and error” will be sufficient to find starting values which allow Proc Traj to correctly

compute the MLE.

Similarly, Mplus was run with the command “start = 100 10;.” This means that in the

initial stage, 100 random sets of starting values were generated. An optimization is then

carried out for 10 iterations using each of the random sets of starting values. The ending
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values from the optimizations with the 10 highest loglikelihoods are then used as the starting

values in the final stage optimizations (EM algorithm in our case). Note that the default

starting values setting in Mplus for mixture models is 10 2 (10 random sets in the first stage

and 2 in the final stage), but we increase it to 100 10 (which is suggested by the program

for K > 2) to improve the Mplus results. It is possible that increasing these values still

larger would improve Mplus’s performance somewhat, but at the expense of even greater

computation time.

We conclude that Proc Traj and Mplus sometimes fail to accurately maximize the likeli-

hood and hence to compute correct values for BIC and AIC. They are thus sub-optimal as

software for optimizing the number of latent classes. (This is not intended as a criticism of

Proc Traj and Mplus, since such high-dimensional maximization is notoriously difficult, but

it does illustrate the limitations of the existing software.)

By contrast, we have demonstrated that crimCV more accurately maximizes the likeli-

hood and computes the BIC (and AIC) values. In addition, crimCV can directly handle

time-at-risk offset values tij, as well as both pure-ZIP and ZIP(τ) models. Furthermore, it

can also compute the CVE, as discussed further below. In addition, it is freely available

including its source code which can be inspected and modified as desired.

6 Comparison of AIC, BIC, and CVE

We have already noted in the introduction that BIC has been found to be problematic in

many applications. Of course, some of these difficulties may have been due to the compu-

tational limitations of Proc Traj as noted above. However, we now argue that even when

computed correctly (e.g. with crimCV), BIC still does not provide as useful a criterion for

determining the number K of latent classes as CVE does. We illustrate this by applying

BIC and CVE (and AIC) to our two offender data sets and find that CVE provides results

that suggest more reasonable numbers of latent classes.
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6.1 Optimal Number of Groups for the Toronto Data

We apply our crimCV software to the two Toronto data sets, TO1 and TO2, with what we

consider to be the most appropriate model, namely the cubic-ZIP(τ) model (i.e., using equa-

tions (6b) and (7c)), treating the time-at-risk exposure times tij as offsets in our model rather

than incorporating them using the questionable DAR method. Our results are presented in

Table 3.

[INSERT TABLE 3 ABOUT HERE.]

Table 3 shows that BIC and AIC decrease seemingly without limit, thus always advo-

cating more and more latent groups. This mirrors the problems reported previously in the

literature wherein BIC advocates more groups until such time as the computational software

(e.g. Proc Traj) crashes and cannot compute larger numbers of groups.

By contrast, CVE advocates a more reasonable numbers of groups since it achieves its

minimum value at a practically sensible number of groups, namely 8 for TO1, and 7 for

TO2. Thus, this provides some evidence that CVE is a useful criterion for determining the

number of latent classes K.

Of course, as the number of groups gets large, all of the criteria values tend to stabilize.

This is illustrated in Figure 1, which shows how CVE is minimized at 8 and 7 groups

respectively while BIC is never minimized, but also shows that the percentage increases get

close to zero as the number of groups gets large. Thus, an analyst might perhaps wish to

do the maximum likelihood classification of the members of the sample for each number of

classes for which the criteria are “nearly maximal”, to see whether or not the substantive

conclusions from the data are affected.

[INSERT FIGURE 1 (“Fig1.png”) ABOUT HERE.]
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6.2 Latent Group Analysis

We have thus used crimCV to determine the optimal number of latent groups according to

the CVE criterion, namely 8 for TO1, and 7 for TO2.

As described in Day et al. (2012; see also Day, Nielsen, Ward, Rosenthal, Sun, Bevc,

Duchesne, Rossman, & Samuels, 2010), these numbers of groups then lead to interesting

interpretations of the criminal behavior in the resulting latent classes. For the TO1 data,

the groups were heuristically labelled Low Rate Desister (LRD), comprising 28.0% of the

sample, Low Rate Chronic (LRC), comprising 26.2% of the sample, Low Rate Adolescent

Peaked (LRADOLP), comprising 16.4% of the sample, Moderate Rate Chronic II (MRC-

II), comprising 11.9% of the sample, Moderate Rate Chronic I (MRC-I), comprising 5.3%

of the sample, High Rate Adolescent Peaked (HRADOLP), comprising 4.8% of the sample,

Moderate Rate Adult Peaked (MRADLP), comprising 4.5% of the sample, and Moderate

Rate Escalator (MRE), comprising 2.9% of the sample. None of the groups had less than 10

individuals in them and the mean posterior probability coefficients were quite high across

all four groups, exceeding .88. The trajectory groups are plotted in Figure 2.

[INSERT FIGURE 2 (“TO1.png”) ABOUT HERE.]

Comparisons on offending-related variables across the seven groups indicated that the

LRD group had the latest age of first court contact (M = 15.8 years), the earliest age of last

court contact (M = 20.5 years), and the shortest criminal career, spanning, on average, 4.2

years. The HRADOLP group had the earliest age of first court contact (M = 13.7 years).

Not surprisingly, the MRE had the latest age of last court contact (M = 34.0 years) and the

longest criminal career at 19.3 years, on average. The MRC I group had the second longest

criminal career at 17.8 years, on average, followed by MRC II at 15.9 years, on average, and

the LRC group at 13.5 years, on average. Over the duration of their criminal trajectories,

the MRE group amassed the largest number of court contacts (adjusted by time-at-risk),
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with 110.1, on average, followed by the HRADOLP group with 89.5, on average, and the

MRADOLP group, 56.4, on average. By contrast, the LRD group had the fewest court

contacts, on average, with 4.6.

Similar to the TO1 data, analysis of the TO2 data yielded seven trajectory groups.

These groups were heuristically labeled Moderate Late Pesister (MLP), comprising 3.6% of

the sample; High Late (HL), comprising 3.9% of the sample; High Early (HE), comprising

4.4% of the sample; Moderate Adolescence-Peaked (MAP), comprising 11.7% of the sample;

Moderate Early Persister (MEP), comprising 14.2% of the sample; Low Desister (LD), com-

prising 29.8% of the sample; and Low Persister (LP), comprising 32.4% of the sample. None

of the groups had less than 10 individuals in them and the mean posterior probability coef-

ficients were quite high across all four groups, exceeding .89. These trajectories are plotted

in Figure 3.

[INSERT FIGURE 3 (“TO2.png”) ABOUT HERE.]

Comparisons on offending-related variables across the seven groups revealed some inter-

esting similarities with the TO1 data. The LD group had the latest age of first court contact

(M = 16.4 years), the earliest age of last court contact (M = 19.5 years), and the shortest

criminal career, spanning, on average, 3.1 years (see Figure 2). Once again, the HL group

had the earliest age of first court contact (M = 14.3 years). The MLP group had the latest

age of last court contact (M = 31.9 years) and the longest criminal career at 16.6 years, on

average. The MEP group had the second longest criminal career at 14.8 years, on average.

Over the duration of their criminal trajectories, the HL group amassed the largest number

of court contacts (adjusted by time-at-risk), with 78.1, followed by the HE group with 62.7,

on average, and the MLP group with 52.1, on average. By contrast, the LD group had the

fewest court contacts, on average, with 4.8.
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7 Discussion

This paper has argued that the traditional method of computing BIC using Proc Traj and

Mplus, does not maximize the likelihood in a numerically accurate manner and thus cannot

be completely trusted to optimize the BIC. Inspired by this, we have presented the free

software package crimCV for accurately maximizing likelihood and computing BIC (and

AIC). crimCV has the additional advantages that it can handle ZIP(τ) as well as pure-ZIP

models and can incorporate time-at-risk tij as a true offset variable (rather than only with

the more questionable method of dividing-and-rounding (DAR) the offense count data). It

can also compute the cross-validation error (CVE) in addition to BIC and AIC.

This paper has further argued that BIC, the traditional method of estimating number of

latent classes (groups) when analyzing criminal offense trajectories, is flawed in that it often

increases monotonically with group number – thus arguing for larger and larger numbers of

groups, which eventually have to be cut off due to computational or other ad hoc reasons

or by the use of subjective judgement on the part of the researcher. By contrast, we have

argued that the cross-validation error (CVE) is a theoretically sound method of evaluating

model appropriateness by directly measuring predictive ability, which makes sense logically

and which also provides reasonably approximating finite mixture models in practice.

We applied our crimCV software to two Toronto data sets of juvenile offenders. In both

cases, CVE has proved to be a more useful criterion than BIC (and AIC) to propose a

reasonable finite mixture model by achieving its minimum at a practical number of latent

groups (8 and 7, respectively), in contrast to BIC and AIC which continued to decrease

without apparent limit. We view this as providing some evidence that cross-validation is

a clear, objective, and effective method of determining the number of latent classes, and

should be considered as a serious alternative to BIC or AIC. As the crimCV package is

newly developed, our findings need to be replicated with additional data sets to further

verify its practical utility for group-based trajectory analysis.
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Table 1. Mean (SD) characteristics of the TO1 and TO2 juvenile offender datasets.

Variable TO1 (N = 378) TO2 (N = 386)

End of Follow-up Period: Sept. 26, 2007 Sept. 26, 2007

Age at admission into youth home 17.6 years (.85) 17.7 years (1.0)

Sentence length at youth home 124.6 days (109.8) 122.6 days (95.6)

Length of follow-up 18.7 years (3.0) 16.4 years (4.1)

Age at first court contact 15.5 years (1.8) 15.6 years (1.6)

Age at last court contact 26.1 years (5.5) 24.6 years (5.2)

Age at end of follow-up 34.1 years (2.6) 32.0 years (4.0)

Trajectory length 10.7 years (5.6) 9.5 years (5.6)
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Table 2. Computations of the maximum log-likelihood, AIC, and BIC, using each of the
software packages Proc Traj, Mplus, and crimCV, on the TO1 and TO2 juvenile offender
datasets with the quadratic-quadratic pure-ZIP model, for various numbers of latent groups
(ngr). For small ngr, the three software packages tend to agree. However, for larger numbers
of groups, crimCV consistently finds larger (less negative) maximum log-likelihood values,
and correspondingly smaller AIC and BIC values, than do Proc Traj and Mplus (and in some
cases, Proc Traj fails to converge entirely). This illustrates that crimCV does a superior job
of maximising the log-likelihood function.

TO1:

ngr llike AIC BIC
Proc Traj Mplus crimCV Proc Traj Mplus crimCV Proc Traj Mplus crimCV

1 −13756 −13756 −13756 27524 27524 27524 27568 27568 27568
2 −13756 −12133 −12133 27524 24293 24293 27568 24389 24389
3 −11604 −11604 −11555 23249 23249 23150 23396 23396 23298
4 −11254 −11295 −11254 22561 22644 22561 22760 22843 22760
5 −11106 −11123 −11062 22281 22314 22192 22531 22565 22443
6 −11051 −10950 −10934 22184 21981 21949 22486 22347 22251
7 −10880 −10904 −10846 21857 21904 21788 22210 22126 22141
8 −11229 −10811 −10757 22568 21731 21624 22973 22137 22029
9 failed −10770 −10711 failed 21663 21549 failed 22120 22003

TO2:

ngr llike AIC BIC
Proc Traj Mplus crimCV Proc Traj Mplus crimCV Proc Traj Mplus crimCV

1 −11239 −11239 −11239 22490 22490 22490 22535 22535 22535
2 −10119 −10119 −10108 20264 20264 20241 20359 20359 20337
3 −9613 −9572 −9572 19266 19183 19183 19413 19331 19331
4 −9619 −9387 −9387 19292 18829 18829 19491 19028 19028
5 −9341 −9252 −9236 18749 18571 18540 18999 18821 18790
6 −9183 −9184 −9149 18448 18451 18381 18750 18752 18682
7 failed −9068 −9064 failed 18232 18224 failed 18585 18577
8 failed −9038 −8980 failed 18185 18070 failed 18590 18475
9 failed −8951 −8928 failed 18026 17980 failed 18482 18437
10 failed −8937 −8901 failed 18011 17940 failed 18519 18448
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Table 3. Maximum log-likelihood, and the three optimality criteria (AIC, BIC, and CVE),
for the datasets TO1 and TO2 with the cubic-ZIP(τ) model, for various numbers of latent
groups. The smallest value for each of the three criteria is written in boldface. In particular,
note that AIC and BIC each continue to shrink and thus advocate more and more latent
groups without limit, while CVE reaches a minimum value and then increases again. (We
end the runs after 9 and 8 groups, respectively, since after that the models saturate with one
of the group probabilities becoming zero, so there are no further meaningful results to be
obtained.)

TO1:

ngr llike AIC BIC CVE
1 −13967.63 27945.26 27982.26 1.0902792
2 −11929.40 23880.81 23962.22 0.9128347
3 −11424.68 22883.37 23009.18 0.9592355
4 −11191.28 22428.55 22598.77 0.9052791
5 −11016.19 22090.37 22304.99 0.8535441
6 −10886.30 21842.61 22101.63 0.8334242
7 −10805.59 21693.18 21996.60 0.8261734
8 −10732.58 21559.16 21906.99 0.8123785
9 −10684.54 21475.08 21867.31 0.8240060

TO2:

ngr llike AIC BIC CVE
1 −11700.095 23410.19 23447.45 0.7731111
2 −10183.745 20389.49 20471.47 0.6698342
3 −9717.829 19469.66 19596.35 0.6529144
4 −9541.180 19128.36 19299.76 0.6364674
5 −9377.273 18812.55 19028.66 0.6171476
6 −9302.665 18675.33 18936.16 0.6122683
7 −9223.541 18529.08 18834.63 0.6108820
8 −9165.115 18424.23 18774.49 0.6271084
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Figure 1. Values (top) and percentage changes (bottom) of BIC (first and third columns)
and CVE (second and fourth columns) for the TO1 (first two columns) and TO2 (last two
columns) samples, illustrating that CVE is minimised at 8 and 7 groups, respectively, but
that the changes are less significant as the number of groups gets large.
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Figure 2. Estimated Criminal Trajectories for the Eight-Group Model for TO1.
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Figure 3. Estimated Criminal Trajectories for the Seven-Group Model for TO2.


