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Abstract

We present a mathematical analysis of a class of Gibbs sampler algorithms for non-
parametric mixtures, which use Dirichlet process priors and have updating steps which
are partially discrete and partially continuous. We prove that such Gibbs samplers are
uniformly ergodic, and we give a quantitative bound on their convergence rate. In a
special case we can give a much sharper quantitative bound; however, in general the
problem of sharper quantitative bounds remains open.

1 Introduction.

In many statistical problems it seems appropriate to specify the distribution of the data
as a mixture of parametric densities, i.e. to assume that the data X; are independent and
identically distributed, conditionally to a distribution function G, with density f(z | G) =
[ f(z | 0) dG(#). The mixing distribution G is unknown and, in a Bayesian nonparametric
analysis, it is considered as a random distribution function which is usually given a Dirichlet
process prior. Problems of mixtures arise in a great variety of applications, such as empirical
Bayes problems (e.g. Berry and Christensen, 1978; Liu, 1996) or nonparametric hierarchical
models (e.g. Ferguson, 1983; Lo, 1984; Escobar and West, 1995; Petrone, 1996).
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Analytical computations in these models are difficult, and approximations have been
suggested (Kuo, 1986, Newton and Zhang, 1996, Liu, 1996). In this paper we consider two
Gibbs sampling algorithms. These have been proposed by Escobar (1994) and MacEachern
(1994) for mixtures of normals and for ANOVA models. We first outline (section 2) the basic
structure of the Markov chains resulting from the Gibbs samplers, for a general mixture
model with a Dirichlet process mixing distribution. The Markov chains show interesting
properties and are difficult to analyze. However, some knowledge about rates of convergence
(cf. Rosenthal, 1995b; Roberts and Rosenthal, 1997) of Gibbs samplers in various contexts
are of benefit to understanding these algorithms more deeply.

In this paper, we prove (Section 3) that if the kernel f(x | ) is bounded, then the
Markov chains are uniformly ergodic, and we provide an explicit rate bound. The bound
is not sharp, and is too big for providing useful indications about the number of iterations
required in practical use of the Gibbs sampling. Improving sensibly the quantitative bound
seems however quite difficult, except in a special case (Theorem 2). We also discuss some
examples (Section 4).

2 The Markov chains.

Consider the following model. The data Xy,..., X, are conditionally independent, given
01,...,0,, with X; | 61,...,0, ~ f(x;]6;). Conditionally on G, the 6; are independent and
identically distributed with distribution function G, where G ~ D(MG)), i.e. G is a Dirichlet
process with parameter MG, where M is a fixed constant (called the scale parameter) and Gy
is a probability distribution function (d.f.) on the parameter space © C R. For simplicity,
we assume that Gy is absolutely continuous with respect to (one-dimensional) Lebesgue
measure, with density go.

The distribution of interest is the posterior distribution 7(dbs,...,d0, | z1,...,x,). This
distribution gives positive probability to ties in (64,...,0,). Let

C(D,ny,...,np)=A{(0y,...,0,) € ©" : there are D distinct values; one of them

is repeated n; times, one is repeated ny times, ..., one is repeated np times}

where (n1,...,np) is a sequence of integers such that n; > 0, n; < ny < -+ < np and
S2 n; = n. From results in Antoniak (1974) it can be shown (see Petrone and Raftery,
1997) that

mw(dfy,...,d0, | xq,. .., 2,)

o)

> .
D=1 (ni,...,np) M(n)
where M = M(M+1)--- (M+n—1); M© =1;(0,,...,0)) is the vector of distinct values
among (61, ...,0,), with 0 repeated n; times, i = 1,..., D, A\p is D-dimensional Lebesgue
measure, and [4(-) is the indicator function of the set A. The structure of 7 is complicated
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and computation of functionals such as [h(6y,...,0,) ©(dby,...,d0, | x1,...,x,) requires
summations over the set of the partitions of {1,...,n} whose number becomes intractable
if n is even moderately large. Therefore, alternative algorithms are required to estimate
such functionals. We consider two Gibbs sampling algorithms for obtaining (approximate)
samples from 7.

Algorithm A. This is just ordinary Gibbs sampling (cf. Smith and Roberts, 1993), where
(01, ...,0,) are updated one at the time. It was proposed by Escobar (1994) for mixtures of
normals. The general structure of the resulting Markov chain is as follows. The state space

is ©". Let fo(x) = [ f(z | 0)dGo(0) and go(0 | z) = %. The algorithm proceeds

by updating one coordinate 6; at a time. The i*" coordinate is updated by settin% i)t equal
0;

to the current value of 0; (j = 1,2,...,n, j # i) with probability ¢; ; = Mfo(x_)};(% AL
[ 14 i
M fo(zi)

Mfo(@)+y,,, F@ilo) we replace 6; by a new value chosen

independently from the distribution go(- | ;). In summary, the value of 6; is replaced
either by a previous value 6;, or by a fresh value chosen from go(- | z;), with appropriate
probabilities. It is straightforward to verify that these probabilities are chosen so that they
preserve the stationary distribution 7(dfy,...,d0, | x1,...,x,).

The overall Markov chain on ©™ will be one of two types. For the systematic scan Gibbs
sampler, one iteration of the Markov chain consists of updating, in turn, the current value
of 01, then 6, ..., then 6,,. For the random scan Gibbs sampler, one iteration of the Markov
chain consists of choosing uniformly at random I € {1,2,...,n}, and then updating ;. In
either case, the coordinate updatings are done according to the above coordinate updating
rules.

Algorithm B. It is clear that, if M fo(x;) is small (e.g. if M is very small), then the
probability of generating fresh values from go(- | x;) in the above Markov chain can be
small so that the chain moves slowly. Therefore, a different algorithm has been proposed
by MacEachern (1994) and Bush and MacEachern (1996). This involves updating all equal
0; values simultaneously. This modification may allow the chain to forget its initial values
much faster, especially for large n and small M, moving faster among the configurations of
(01,...,0,). A configuration can be described by the number D of distinct values among
(01,...,60,), and by a vector of r.v.’s (S, ..., S,) which, given the distinct values (], ..., 6%),
are such that S; = jif 9, = 6’9, 1 <1< n,1 <5< D. The Gibbs sampler consists of updating
the vector (Si,...,5,) and the vector of distinct values in turn, from the appropriate full
conditionals.

Specifically, to update the configuration, we generate a new vector (S1,...,S,) by up-
dating one S; value at a time, as follows. Let Sj; be the vector (Si,...,S,) without

with the remaining probability ¢; o =

the 7-th element. With probability ¢, = MfO(I')-‘rzM:fO(a;j()z" IR where n;[; is the num-
@ 14 4 LY ) T [

ber of elements in Sp; which are equal to j, we let S; = 0; otherwise, with probability

- f(@4]0%) nj [ o . :
Ui = Moty Filb) mp let S; = j. Updating (S, ...,.S,) also provides the updated

number of distinct values, say D.
To update the distinct values, we generate (6, ..., 0)) conditionally independently, choos-




ing 07 (1 < j < D) from a distribution proportional to

[1 /(e 1 05) 9o(65)

(el

where [; = {i : S; = j} is the group of observations which share the same value 6.

3 Results.

Our main method of proof below shall be the coupling method (see e.g. Lindvall, 1992).
Recall that for a Markov chain P(6,-) on a state space ©, with initial distribution gy and
stationary distribution 7, the coupling method works as follows. If we can jointly construct
chains {0x}7°, and {Z;}22,, such that 0y ~ po, Zo ~ 7, L(Ok | Oo, . ..,0k—1) = P(Ok_1,-), and
L(Zy| Zoy ..., Zy-1) = P(Zy_1,-), then we have

lnoP" = 7| = sup |uoP"(A) = w(A)] < P(T >n),

where || ...| is total variation distance, and where
T =inf{n € N; 0, = Z, for all k > n}

is the coupling time.

Our first result shows that if the kernel f(x | @) is uniformly bounded, then the Markov
chain is uniformly ergodic with explicit rate bound (independent of starting distribution and
of the gy and f(z | 0) distributions).

Theorem 1 Let m = min,—y__, fo(x;). Suppose that f(x; | 0) < J for all 0 and i. Then,
for the systematic scan Gibbs sampler as in algorithm A above, for any initial distribution
1o, we have

lp0P* — 7|l < (1 —g™)*,

mM

Tt () with M the scale parameter of the Dirichlet process.

where q =

Proof. Observe that

M fo(xi) + Xz f(xi | 00) — Mfo(xi) +(n—1)J =~ Mm+ (n—1)J

4i,0 =4q

the last inequality following by noting that % is a nondecreasing function of x for a > 0.
Now, by inspection, we can define the chains {Z;}32, and {6}, so that for each

coordinate i, with probability at least ¢, they both update from go(- | x;), and furthermore

in that case they choose the same value from go(- | x;). But then for each iteration of the

Markov chain, there is independent probability at least ¢" that the two Markov chains will

become equal in all coordinates. Thus, P(T > k) < (1 — ¢™)*. The result follows. ¢
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Remark. Clearly, for the random-scan Gibbs sampler, we can obtain a similar (but even
larger) bound.

The bounds of this proposition are impractically large (since ¢" will usually be very
small). To improve this, it is necessary to study the coupling more carefully. We are able to
obtain substantial improvements in a special case, namely when certain function values are
identically constant.

Theorem 2 For the random-scan Gibbs sampler, suppose that

folz;)) =m, and f(z;|0)=J (1)
are independent of © and 6. Then setting q = %, we have that for any wnitial

distribution i,

q
JioP* — 7)) < (1= Lyn.

Proof. Similar to the previous proof, we define the chains {Z;}32, and {6}, so that
for each coordinate i, with probability at least ¢, they both update from go(- | z;), and
furthermore in that case they choose the same value from go(- | ;).

Let D, be the number of coordinates at which the two chains differ at time k. Then by
considering separately the cases where we pick a coordinate where the two chains do or do
not differ, and where we update it either to a fresh value, to a value where the two chains
do not differ, or to a value where the two chains do differ, we have that

E(Dys1 — Dy | Zy, 0r) =

(=) G a0 - G frru-0(1-T)]

= _ng )
n

so that q
E(Dyy1 | Zy,0k) < (1— E)Dk )

Therefore,

E(Dy) < (1— %)’“E(DO) < (1- %)kn.

On the other hand, since Dy, is non-negative integer values, clearly E(Dy) > P(Dy > 0).

Hence,
q

P(T>k) = P(D,>0) < E(D) < ( —5)%.
The result follows. <.

The bounds in this theorem are not as impractically large as those of the previous theo-
rem. However, the hypotheses are much stronger. We return to this point below.
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One might hope to achieve stronger convergence results for algorithm B, since it appears
to get less stuck at particular parameter values. In fact, this is not easy, as we discuss below.
However, we can prove a general uniform ergodicity result for algorithm B, similar to that
of Theorem 1.

Theorem 3 Let m = min;_; __, fo(z;) and suppose that f(x; | 0) < J for anyi and §. Then
for the Gibbs sampling described as algorithm B, for any starting distribution pg we have

lpoP* =7l < (1—q")",

mM

where q = W(n—l)

Proof. The proof is similar to that of Theorem 1. Indeed, we can define two chains
{Zk}1_o and {0 }7_, such that, conditional on being in the same configuration (Si,...,S,),
they both update the distinct values from the same distribution with the same values. Now,
the probability of having the same configuration for both chains in one iteration is bigger
than the probability of having the configuration (Sy,...,5,) = (0,0,...,0) in both chains
in one iteration, and this is bigger than ¢".

Therefore, P(T > k) < (1 — ¢™)* and the result follows. ©

The above bound, like that of Theorem 1, is too large for practical use (because of the
factors of 1 —¢" instead of 1 — £). Indeed, for either algorithm A or algorithm B, we are only
able to achieve reasonable (i.e., non-exponential as a function of n) bounds under the special
case of “equal function values” as in equation (1). We leave as an open problem the task of
proving non-exponentially-large quantitative bounds for more general values of fy(z;) and
flzi | 0).

Interestingly, there are several other natural approaches to proving bounds on the con-
vergence rates of these Markov chains, but each such approach seems to work well (i.e., to
give non-exponential bounds) precisely when the same condition (1) — or something similar
— is satisfied! For example, for algorithm B, one can observe that after one iteration, with
high probability there will only be about O(logn) distinct values ;. If condition (1) is satis-
fied, then there is non-exponentially-small probability that two chains will jump to the same
cluster structure on the following iteration, thus leading to good coupling bounds. However,
if (1) is not satisfied, this does not seem to be the case.

Similarly, Jensen’s inequality can be used in the coupling proofs to replace certain tran-
sition probabilities by their expected values. If (1) is satisfied, this appears to again lead to
useful coupling bounds; but if not, then this approach does not seem helpful.

Finally, uniform ergodicity can sometimes be helpful for using perfect sampling algo-
rithms, as in Propp and Wilson (1996). Such algorithms are more feasible if the chain is
stochastically monotone with respect to some ordering. Now, there is a natural partial or-
dering on the space of configurations; specifically, two configurations C; and Cy are ordered
with C; < Gy if each element of C; is contained in some element of Cy, i.e. if C; is a finer
partition than Cy. If our Markov chain were stochastically monotone with respect to this



ordering, then to run a perfect sampling algorithm it would only be necessary to keep track
of the positions when starting from the two extreme partitions (i.e. C; = ({1,2,...,n}) and
Co = ({1},{2},...,{n})). Unfortunately, the Markov chain does not seem to be monotonic
with respect to this partial ordering in general; however, it is monotonic in the case that (1)
holds.

4 Examples.

(a) Empirical Bayes. Consider r.v.’s Xi,..., X, which, conditionally on (6y,...,6,), are
independently distributed, with X; | 6; having a binomial distribution of parameters [;
(known) and 6;. Also, 0y,...,0, are a sample from a d.f. G, where GG is a Dirichlet process
D(MGy). This setting is treated in Berry and Christensen (1979) and Liu (1996). The
Gibbs sampling algorithms A and B can be used in this problem, and the binomial kernel
is uniformly bounded, so that from Theorems 1 and 3 the Markov chains resulting from the
Gibbs sampling are uniformly ergodic.

Liu (1996) proposed a sequential imputation method for computation in this problem. It
is not easy to make a general comparison between Gibbs sampling strategy and sequential
imputation method. It can be noted (see Liu, 1996) that, since sequential imputation is
advantageous in updating posterior distributions when new data arrive, Gibbs sampling and
sequential imputation can be complementary to each other.

(b) Gaussian mizture models. Mixtures of normals are proposed in many applications,
e.g. in Bayesian nonparametric density estimation (cf. Escobar and West, 1995; West, Miiller,
and Escobar, 1994). Let 0; = (u;,0?) and suppose that X; | 6; ~ N(pi,02), 1 = 1,2,...,
01,0s,... | G are ii.d. according to G, and G ~ D(MG,) where G and G are bivariate
distributions on R x R™. If the variances o? are bounded away from zero, i.e. 02 > o* > 0,
then the normal kernel is uniformly bounded so that Theorems 1 and 3 hold. (If instead the
mixing distribution G(-) is parametric, then more precise convergence results are known; see
for example Rosenthal, 1995a.)

(¢) Finite mizture models. Consider a mixture model of the form f(z | {w;}) =
Zle w; fj(x), where f; are known probability density functions, and where the w; are weights
summing to 1. An example of f(z | {w;}) are Bernstein densities (Petrone, 1996). Then
f(x | {w;}) can be written in the form [ f(x | 0) dG(8) if we let f(z | 0) = Z?Zl fi(x)1e,(0),
where (01, ...,0y) is a partition of the parameter space © such that w; = fej dG(0). Thus,
the results of the present paper can be applied to finite mixture models in this manner. The
formulation of a finite mixture model in this form is useful for generalising to the case of a
random number k of components (as done e.g. in Petrone, 1996).

5 Final remarks.

We have studied the Markov chains resulting from two Gibbs sampling algorithms that are
useful in mixture models with a Dirichlet process mixing distribution. We showed (Theorems



1 and 3) that, if the mixture kernel is bounded, the Markov chains are uniformly ergodic, with
explicit rate bounds. Improving the bound seems difficult in general, due to the complicated
structure of the stationary distribution 7, and we leave this as an open problem. However,
we are able to give a much-improved result (Theorem 2) in a certain special case.

In fact, there might be examples where the Markov chain does actually converge slowly.
For algorithm B, which in practice seems more efficient, this might perhaps happen if the
prior and the likelihood suggest very different configurations, so that the posterior on the
space of configurations is multimodal. In this case, there might be a drift in the chain
towards staying in one configuration mode.

Our last remark is about the possibility of allowing uncertainty about M and Gj in the
model. The importance of determining the weight M and the shape of Gy is discussed in
detail in Escobar and West (1995). We do not treat this generalisation here, but the results
we show for the case of fixed M and Gy may be of benefit for studying convergence rates of
Gibbs sampling in the more general setting with random M and Gj.
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