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1. Introduction.

Imagine 1000 lily-pads arranged in a circle, numbered 0 through 999. Suppose a frog

begins on lily-pad number 0, and proceeds as follows. Each minute, she jumps either to

the pad immediately to her right, or to the pad immediately to her left, or to the pad she’s

already on, each with probability 1/3. Thus, after one minute she is equally likely to be

at pad 999, pad 0, or pad 1. After two minutes, she has probability 1/9 of being at pad

998 or pad 2, probability 2/9 of being at pad 999 or pad 1, and probability 3/9 = 1/3 of

being at pad 0.

It is intuitively clear that if we wait for a very large number of minutes, then our

frog will have approximately equal probability of being at any of the 1000 pads. But how

might we prove this assertion? More importantly, how long do we have to wait until this

approximate equality of probabilities occurs? Is 1000 minutes enough? How about 10,000

minutes?

These questions are closely connected to an exciting area of modern mathematical

research, the study of convergence rates for Markov chains. This research has applications

to card shuffling (in which the arrangements of the cards have various probabilities) and to

stochastic algorithms (in which a computer program follows a certain random procedure,

and we must determine when various probabilities converge to their desired values). It

involves such areas of mathematics as linear algebra, probability theory, group theory,

measure theory, and graph theory.

In this paper, we present some of the basic results about convergence rates for finite

(and infinite) Markov chains. We shall attempt to make connections to modern research,

but at the same time to keep the presentation elementary and accessible. After the prelimi-

nary material, we shall present the basic connection between Markov chains and eigenvalues

(Section 4). We shall then explore the subject of random walks on groups (Section 5), for

which tremendous progress has been made, which includes our frog’s travels and also in-

cludes most models of card-shuffling. Finally, we shall discuss coupling and minorization

conditions (Section 6), which are robust techniques that have been used to study various

stochastic algorithms.

Along the way, we shall prove that we would have to wait over 120,000 minutes (over

two months!) for our frog to have approximately equal probability of being at any of the

1000 pads.

None of the results presented here are new. Connections and references to the relevant

literature are given where possible.
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2. The general problem.

Our frog-process above is an example of a (discrete-time) Markov chain. In general,

a Markov chain consists of a (measurable) state space X , an initial distribution (i.e. prob-

ability measure) µ0 on X , and a transition kernel P (x, dy) which gives, for each point

x ∈ X , a distribution P (x, ·) on X (which represents the probabilities of where the Markov

chain will go one step after being at the point x). If X is a discrete space (e.g. a finite

space), then the initial distribution can be specified by the non-negative real numbers

µ0(x) for x ∈ X , where
∑
x
µ0(x) = 1. Similarly, the transition kernel can be specified by

the non-negative real numbers P (x, y) for x, y ∈ X , where
∑
y
P (x, y) = 1 for each x ∈ X .

In our frog example above, X consists of the integers 0, 1, 2, . . . , 999. Since the frog

starts at the point 0 with probability 1, the initial distribution is specified by µ0(0) = 1,

and µ0(x) = 0 for x 6= 0. Finally, the transition kernel is specified by P (x, y) = 1/3 if

x = y or x and y are adjacent in the circle, and P (x, y) = 0 otherwise.

Given the initial distribution µ0 and transition kernel P (x, dy), we can inductively

define distributions µk on X , representing the probabilities of where the Markov chain will

be after k steps, by

µk(A) =

∫
X

P (x,A)µk−1(dx), k = 1, 2, 3, . . . .

On a discrete space, this can be written more directly as

µk(y) =
∑
x

P (x, y)µk−1(x) .

If we write µk as a row-vector, and P as a matrix with [P ]xy = P (x, y), then this can be

written even more directly as

µk = µk−1P = . . . = µ0P
k .

There is nothing mysterious about these formulae. They simply say that to be at the point

y at time k, we must have been at some point x at time k− 1 (with probability µk−1(x)),

and then jumped from x to y on the next step (with probability P (x, y)).

Thus, in our frog example, we would have that µ2(998) = µ2(2) = 1/9, µ2(999) =

µ2(1) = 2/9, and µ2(0) = 1/3.

Once we have defined µk for all non-negative integers k, we can ask about convergence

properties. To be quantitative, we define the total variation distance between probability

measures ν1 and ν2 by ‖ν1 − ν2‖ := sup
A⊆X

|ν1(A) − ν2(A)| (where the supremum is taken
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over measurable subsets A). (For later reference, we mention two easily-verified facts.

Firstly, if X is finite, then ‖ν1 − ν2‖ = 1
2

∑
x
|ν1(x)− ν2(x)|. Secondly, for any X , we have

‖ν1 − ν2‖ = 1
2 sup

f:X→C
|f(x)|≤1

|Eν1(f)−Eν2(f)| where E stands for expected value). We may now

state our

Fundamental Questions.

(A) Does there exist a probability distribution π on X such that ‖µk−π‖ → 0 as k →∞?

(B) If so, then given ε > 0, how large should k be to ensure that ‖µk − π‖ ≤ ε?

Question (B) in particular represents a modern, “non-asymptotic” approach to Markov

chains, as pioneered by David Aldous, Persi Diaconis, and others. Rather than simply ask-

ing yes/no questions about eventual convergence of Markov chains, researchers now often

want quantitative bounds on the number of steps required until the chain has approximately

converged. Into this category falls the now-famous result (Bayer and Diaconis, 1992) that

seven ordinary shuffles are required to properly mix a deck of 52 cards. Similarly, much

of the analysis of stochastic algorithms in computer science (see e.g. Jerrum and Sin-

clair, 1989), and of Markov chain Monte Carlo (MCMC*) techniques in statistics (see e.g.

Gelfand and Smith, 1990; Tierney, 1994; Rosenthal, 1993b), asks the question, how long

must the algorithm be run until it converges to the correct answer? This is a very active

area of modern research.

3. The simplest non-trivial example.

To get a sense of what convergence properties a Markov chain can have, we consider

what might** be called the “simplest non-trivial example”. We consider the state space

X = {0, 1} consisting of just two points! Setting p = P (0, 1), and q = P (1, 0), we may

write P in matrix form as

P =

(
1− p p
q 1− q

)
.

(We leave p and q as arbitrary numbers between 0 and 1.) We further suppose that the

initial distribution is given by µ0(0) = 1, µ0(1) = 0, meaning that we start in state 0 with

probability 1.

* In 1992, Jim Fill hosted a workshop about Markov chain Monte Carlo techniques, and

observed that he was the MCMC MC!
** Raoul Bott says that a study of a new mathematical topic should always begin with

the simplest non-trivial example! He also says that when reading a new math book, you

should always begin in the middle, so that when you don’t understand something you are

able to search backwards for clarification!
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This example is simple enough that we can solve for µk explicitly. It is verified by

induction (see Hoel, Port, and Stone, 1972, Section 1.2) that (assuming p+ q > 0)

µk(0) =
q

p+ q
+

(
1− q

p+ q

)
(1− p− q)k .

It immediately follows that

µk(1) = 1 − µk(0) =
p

p+ q
−
(

1− q

p+ q

)
(1− p− q)k .

(Naturally, if p = q = 0, then µk(0) = 1 and µk(1) = 0 for all k.)

We wish to make a number of observations about this example, since they will general-

ize considerably. First, note that assuming |1−p−q| < 1, we will indeed have convergence.

Setting π(0) = q
p+q and π(1) = p

p+q , we have that

‖µk − π‖ =

(
1− q

p+ q

)
|1− p− q|k ,

which decreases exponentially quickly to 0, with rate governed by the quantity 1− p− q.
Second, note that this limiting distribution π is a stationary distribution in the sense

that πP = π, and thus corresponds to a left-eigenvector of the matrix P with eigenvalue

1. It is easily seen (by taking the limit k → ∞ in the equation µk = µk−1P ) that any

limiting distribution π for any Markov chain must be stationary in this sense.

Third, note that the only time this convergence fails to take place is if p = q = 0 or

p = q = 1. If p = q = 0 the Markov chain is decomposable, meaning that the state space X
can be partitioned into two non-empty subsets X1 and X2 such that P (x, y) = 0 whenever

x and y are not in the same subset. If p = q = 1 the Markov chain is periodic, meaning

that the state space X can be partitioned into non-empty subsets X1, . . . ,Xd (with d ≥ 2)

such that for x ∈ Xj , P (x,Xj+1) = 1 (where if j = d, then j + 1 is taken to mean 1).

The quantity d is the period of the Markov chain; in this example d = 2. However, if our

Markov chain is indecomposable and aperiodic, then it converges exponentially quickly. We

shall see in the next section that all finite Markov chains follow this rule.

Fourth, it is easily computed that the eigenvalues of the matrix P are 1 and 1− p− q.
The eigenvalue 1, of course, corresponds to the eigenvector π. This computation suggests

that the “non-trivial” eigenvalue 1− p− q is intimately connected with convergence of the

chain. We shall develop this connection in the next section.

Fifth, and perhaps even more intriguing, we compute that the quantity β defined by

β :=
∑
y

min
x
P (x, y)
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satisfies β = min(p + q, 2 − p − q), so that 1 − β = |1 − p − q| is the absolute value of

the non-trivial eigenvalue as above. This suggests that the convergence of the chain might

be related to the quantity 1− β, with β defined as above; this relationship is explored in

Section 6 via the method of “coupling”.

Sixth, we compute that π(0)P (0, 1) = π(1)P (1, 0). This is equivalent to saying that

this chain is “reversible”. Among other things, this guarantees that its eigenvalues will all

be real. However, not all Markov chains have this property. This issue is discussed briefly

in Section 7.

Finally, we consider the even more specialized case in which p = q. This corresponds

to a random walk on the group Z/(2) of integers modulo 2, because we step in the “same

manner” no matter where on X we are. Here the “step distribution” is given by Q(0) =

1− p, Q(1) = p (corresponding to the group element that we will add (modulo 2), at each

step, to our present position). We compute that EQ ((−1)x) = 1 − p − q, the eigenvalue

of the matrix P ! (Here (−1)x equals 1 when x = 0, and equals −1 when x = 1.) This

suggests that for random walks on groups, the eigenvalues can be computed simply by

taking certain expected values with respect to the step distribution Q(·). This is discussed

further in Section 5.

4. The eigenvalue connection.

We let X = {0, 1, . . . , n − 1} be a finite state space, µ0 an initial distribution on X ,

and P be a transition kernel on X . The fact that µk = µ0P
k suggests that we need to

control high powers of the transition matrix P . This in turn suggests that the eigenvalues

of P will play an important role. We develop this idea here, drawing heavily on work of

Diaconis and Shashahani (1981), Diaconis (1988), and Belsley (1993).

In studying these eigenvalues, we shall make use of the fact that P has the same

eigenvalues whether it operates on vectors from the right-side or the left-side. We begin

with

Fact 1. Any stochastic matrix P has an eigenvalue equal to 1.

Proof. Define the vector u by u(x) = 1 for all x ∈ X , then it is easily verified that

Pu = u.

We now write the (generalized) eigenvalues of P (counted with algebraic multiplicity)

as λ0, λ1, . . . , λn−1. Without loss of generality we take λ0 = 1. We further set λ∗ =

max
1≤j≤n−1

|λj |, the largest absolute value of the non-trivial eigenvalues of P .
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Fact 2. We have λ∗ ≤ 1. Furthermore, if P (x, y) > 0 for all x, y ∈ X , then λ∗ < 1.

Proof. Suppose Pv = λv. Choose an index x so that |v(x)| ≥ |v(y)| for all y ∈ X . Then

|λv(x)| = |(Pv)x| = |
∑
y

P (x, y)v(y)| ≤
∑
y

|v(y)|P (x, y) ≤
∑
y

|v(x)|P (x, y) = |v(x)| ,

so that |λ| ≤ 1. Hence λ∗ ≤ 1.

Now suppose P (x, y) > 0 for all x and y. It is then easily seen that the inequality

above can only be equality if v is a constant vector, i.e. v(0) = v(1) = . . . = v(n−1). This

shows that λ0 = 1 is the only eigenvalue of absolute value 1 in this case. Hence if P is

diagonalizable we are done.

If P is not diagonalizable, then we still need to prove that the eigenvalue λ0 = 1

is not part of a larger Jordan block. If it were, then for some vector v we would have

Pv = v + u, where u = (1, 1, . . . , 1)t as in the proof of Fact 1. But then, choosing x ∈ X
with <e v(x) ≥ <e v(y) for all y ∈ X , we have that

1 + <e v(x) = <e (Pv)x = <e
∑
y

P (x, y)v(y) ≤ <e
∑
y

P (x, y)v(x) = <e v(x) ,

a contradiction.

The importance of eigenvalues for convergence properties comes from the following.

Fact 3. Suppose P satisfies λ∗ < 1. Then, there is a unique stationary distribution π on

X and, given an initial distribution µ0 and point x ∈ X , there is a constant Cx > 0 such

that

|µk(x)− π(x)| ≤ Cxk
J−1(λ∗)

k−J+1 .

where J is the size of the largest Jordan block of P . (It follows immediately that ‖µk−π‖ ≤
CkJ−1(λ∗)

k−J+1, where C = 1
2

∑
Cx.) In particular, if P is diagonalizable (so that J = 1),

then

|µk(x)− π(x)| ≤
n−1∑
m=1

|amvm(x)||λm|k ≤

(
n−1∑
m=1

|amvm(x)|

)
(λ∗)

k ,

where v0, . . . , vn−1 are a basis of right-eigenvectors corresponding to λ0, . . . , λn−1 respec-

tively, and where am are the (unique) complex coefficients satisfying

µ0 = a0v0 + a1v1 + . . .+ an−1vn−1 .
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If the eigenvectors vj are orthonormal in L2(π), i.e. if
∑
x
vi(x)vj(x)π(x) = δij , then we get

the further bound

∑
x

|µk(x)− π(x)|2π(x) =

n−1∑
m=1

|am|2 |λm|2k ≤

(
n−1∑
m=1

|am|2
)

(λ∗)
k .

Proof. We begin by assuming that P is diagonalizable. Then, using that µk = µ0P
k,

that vmP = λmvm, and that λ0 = 1, we have that

µk = a0v0 + a1v1(λ1)k + . . .+ an−1vn−1(λn−1)k .

Since λ∗ < 1, we have (λm)k → 0 as k →∞ for 1 ≤ m ≤ n−1, so that µk → a0v0. It follows

that π = a0v0 must be a probability distribution. Hence in particular a0 = (
∑
y
v0(y))−1

so it does not depend on the choice of µ0. Thus,

µk(x)− π(x) = a1v1(x)(λ1)k + . . .+ an−1vn−1(x)(λn−1)k .

The stated bound on |µk(x)−π(x)| now follows from the triangle inequality. The expression

for the L2(π) norm of µk − π follows immediately from orthonormality.

For non-diagonalizable P , we must allow some of the vectors vm to be generalized

eigenvectors in the sense that we may have vmP = λmvm + λm+1. The only differ-

ence from the previous argument is that now µk may contain some additional terms. If

vj , vj+1, . . . , vj+`−1 form a Jordan block of size `, corresponding to the value λm, then we

may have to add to µk extra terms of the form arvs(λm)k0 , with j ≤ r < s ≤ j+ `− 1 and

k0 ≥ k − `+ 1. Keeping track of these extra terms, and bounding their number by kJ−1,

the stated conclusion follows.

We illustrate these ideas with a concrete example.

Example.

Consider the Markov chain on the state space X = {1, 2, 3, 4}, with transition proba-

bilities

P =


0.4 0.2 0.3 0.1
0.4 0.4 0.2 0
0.6 0.2 0.1 0.1
0.7 0.1 0 0.2


Suppose the Markov chain starts in the state 1, so that µ0 = (1, 0, 0, 0).
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We compute numerically that the matrix P has eigenvalues λ0 = 1, λ1 = 0.2618, λ2 =

0.0382, λ3 = −0.2, with corresponding left-eigenvectors

v0 = (0.4671, 0.2394, 0.2089, 0.0846)

v1 = (−0.4263, 0, 0.4263, 0)

v2 = (−0.0369, 0.2301,−0.5656, 0.3724)

v3 = (−0.2752, 0.4854, 0.0898,−0.3)

In terms of these eigenvectors, the initial state µ0 = (1, 0, 0, 0) can be written as

µ0 = v0 − 1.031 v1 − 0.4518 v2 − 0.2791 v3 .

Now, we have taken v0 to be a probability vector, so we immediately have π(·) = v0(·).
Also, by the eigenvector properties, we have for example that

µk(3) = v0(3)− 1.031(λ1)kv1(3)− 0.4518(λ2)kv2(3)− 0.2791(λ3)kv3(3)

= (0.2089)− 1.031(0.2618)k(0.4263)

− 0.4518(0.0382)k(−0.5656)− 0.2791(−0.2)k(0.0898) .

Thus, noting that |(1.031)(0.4263) + (0.4518)(0.5656) + (0.2791)(0.0898)| < 0.8, and that

λ∗ = 0.2618, we have that

|µk(3)− π(3)| < 0.8 (0.2618)k ,

from which we can deduce values of k which make µk(3) arbitrarily close to π(3). Other

points in the state space (besides 3) are handled similarly.

Fact 3 gives a nice picture of a Markov chain converging geometrically quickly to

a unique stationary distribution π. However, many Markov chains will not satisfy the

condition that P (x, y) > 0 for all x and y. This raises the question of necessary and

sufficient conditions to have λ∗ < 1. The answer is as follows.

Fact 4. A finite Markov chain satisfies λ∗ < 1 if and only if it is both indecomposable

and aperiodic.
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Proof. If the Markov chain is decomposable, leaving the disjoint subspaces X1 and X2

invariant, define vectors u1 and u2 by uj(x) = 1 if x ∈ Xj , 0 otherwise. Then it is easily

seen that Puj = uj , for j = 1, 2, so that P has multiple eigenvalues 1, and λ∗ = 1.

If the Markov chain is periodic, then there are subspaces X1, . . . ,Xd with P (x,Xj+1) =

1 for x ∈ Xj , 1 ≤ j ≤ d − 1, and P (x,X1) = 1 for x ∈ Xd. Define the vector v by

v(x) = e2πij/d for x ∈ Xj . Then it is easily verified that Pv = e2πi/dv. Thus, e2πi/d is an

eigenvalue of P , so that again λ∗ = 1.

For the converse, assume the Markov chain is indecomposable and aperiodic. Assume

first that the Markov chain contains no transient states, i.e. there is positive probability

of getting from any point x to any other point y (in some finite number of steps). We shall

argue that some power of P has all its entries positive, so that the result will follow from

our previous Fact.

Fix x ∈ X , and let Sx = {k |P k(x, x) > 0}. Our assumptions imply that Sx is infinite

and has gcd 1. The set Sx is also additive, in the sense that if a, b ∈ Sx then a + b ∈ Sx.

It is then a straightforward exercise to verify that there must be some kx > 0 such that

k ∈ Sx for all k ≥ kx.

Find such kx for each x ∈ X , and set k0 =
(

max
x

kx

)
+n. We claim that P k0(x, y) > 0

for all x, y ∈ X . Indeed, given x and y, by assumption there exists rxy such that

P rxy (x, y) > 0, and we may clearly take rxy ≤ n. But then P k0(x, y) ≥ P k0−rxy (x, x)P rxy (x, y) >

0, as desired.

It remains only to consider transient elements of the Markov chain. Suppose x ∈ X is

transient. Then there exists y ∈ X and r > 0 such that P r(x, y) = ε > 0, but Pm(y, x) = 0

for all m ≥ 0. Set T = {j ∈ X |Pm(j, x) > 0 for some m ≥ 0}, so y 6∈ T . It is then easily

computed that ∑
j∈T
|(vP r)j | ≤

∑
j∈T
|v(j)| − ε |v(x)| .

It follows that if vP = λv with |λ| = 1, then we must have v(x) = 0, so that λ is an

eigenvalue of the Markov chain restricted to X − {x}. This reduces the problem to the

previous case.

We close by observing that this discussion has relied heavily on the fact that the state

space X is finite. On infinite spaces, P is a linear operator, and the notion of eigenvalues

must be replaced by the more general notion of spectrum of an operator. Conclusions

about convergence are much more difficult in this case, but some progress has been made.

See for example Schervish and Carlin (1992).
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5. Random walks on groups.

There is a particular class of Markov chains for which the eigenvalues and eigenvectors

are often immediately available, namely random walks on groups. Here X is a group

(finite for most of the present discussion), and Q(·) is a probability distribution on X (to

be referred to as the “step distribution”). The transition probabilities are then defined

by P (x, y) = Q(x−1y); this has the interpretation that at each step we are multiplying

our previous group element x on the right by a new group element, chosen according to

the distribution Q(·); the probability that this brings us to y is the probability that we

multiplied by the group element x−1y.

Typically we take µ0(id) = 1. Then µ1 = Q, and µk+1 = µk ∗ Q, where ∗ stands for

the convolution of measures.

These random walks on groups are much easier to analyze in terms of convergence

to stationarity than are general Markov chains. The ideas presented here were pioneered

by Diaconis and Shashahani (1981), and were greatly advanced by Diaconis (1988) and

many others. This section draws heavily upon Chapter 3 of Diaconis (1988); in particular,

many of our examples are taken from there. The interested reader is urged to consult this

reference for a deeper treatment of this subject.

We begin with the elementary

Fact 5. Any random walk P on a finite group X satisfies πP = π, where π is defined

by π(x) = 1/n for all x ∈ X (and where n = |X |). In words, the uniform distribution is

stationary for any random walk on any finite group.

Proof. We have

(πP )y =
∑
x

π(x)P (x, y) = (1/n)
∑
x

Q(x−1y) = (1/n)
∑
z

Q(z) = 1/n = π(y) ,

as desired.

We begin our investigation with the abelian case, in which there are very complete

and satisfying results.
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5.1. Finite abelian groups.

All finite abelian (i.e. commutative) groups X are of the form

X = Z/(n1)× Z/(n2)× . . .× Z/(nr) ,

a direct product of cyclic groups. That is, they consist of elements of the form x =

(x1, . . . , xr), with the group operation being addition, done modulo nj in coordinate j. A

random walk on such X is defined in terms of a probability distribution Q(·) on X . This

induces transition probabilities defined by P (x, y) = Q(y − x). (We write y − x instead of

x−1y here simply because we are writing the group operation using additive notation, as

is standard for abelian groups.)

Example #1. Let X = Z/(2), the two-element group, and set Q(1) = p, Q(0) = 1− p.
This corresponds exactly to our “simplest non-trivial example” with q = p.

Example #2. Frog’s Walk. Let X = Z/(n), the integers mod n, and set Q(−1) =

Q(0) = Q(1) = 1/3. This corresponds to our frog’s walk from the Introduction, in which

there are n points arranged in a circle, and the frog either moves one step to the right, one

step to the left, or stays where she is, each with probability 1/3.

Example #3. Bit flipping. Let X = (Z/(2))
d
, a product of d copies of the two-element

group. Set Q(0) = Q(e1) = . . . = Q(er) = 1/(d+ 1), where er is the vector with a 1 in the

r’th spot and 0 elsewhere. This corresponds to a “bit-flipping” random walk on binary

d-tuples, where at each stage we do nothing (with probability 1/(d+ 1)) or change one of

the d coordinates (chosen uniformly) to its opposite value.

The usefulness of random walks on finite abelian groups comes from the fact that we

can explicitly describe their eigenvalues and eigenvectors. To do this, we need to introduce

characters. For m = (m1, . . . ,md) ∈ X , define

χm(x) = e2πi[(m1x1/n1)+...+(mdxd/nd)] , x ∈ X .

Thus, χm is a function from the state space X to the complex numbers. The following

facts are easily verified.

1. χm(x+ y) = χm(x)χm(y).

2. χm(0) = 1. |χm(x)| = 1. χm(−x) = χm(x).

3. 〈χm, χj〉 = δmj , where the inner product is defined by 〈f, g〉 = (1/n)
∑
x
f(x)g(x). In

words, the characters are orthonormal in L2(π). In particular, they form a basis for

all functions on X .

4.
∑
m
χm(x) = n δx0.

These properties imply the following key fact.

12



Fact 6. For each m ∈ X , we have

χm P = λm χm ,

where

λm = EQ(χm) .

In words, for each m, χm is an eigenvector of P corresponding to the eigenvalue EQ(χm).

Proof. We have

(χm P )y =
∑
x

χm(x)P (x, y) =
∑
x

χm(−x)Q(y − x) =
∑
z

χm(z − y)Q(z)

=
∑
z

χm(z)χm(−y)Q(z) = EQ(χm)χm(y) ,

as desired.

This fact immediately gives us all of the eigenvalues of the random walk, which is a

significant achievement. (For example, in the simplest non-trivial example with q = p, it

correctly predicts the eigenvalue EQ ((−1)x) = 1 − 2p.) Combining this with Fact 3, and

recalling that the characters are orthonormal in L2(π), we have

Fact 7. A random walk on a finite abelian group satisfies

‖µk − π‖ ≤
1

2

√∑
m6=0

|λm|2k ≤ (
√
n/2)(λ∗)

k ,

where λm = EQ(χm).

Proof. We have from Fact 3 (since the χm are orthonormal) that∑
x

|µk(x)− π(x)|2π(x) =
∑
m 6=0

|am|2 |λm|2k ,

where λm = EQ(χm) as in Fact 6. Recalling that π(x) = 1/n = am, this reduces to∑
x

|µk(x)− π(x)|2 = (1/n)
∑
m 6=0

|λm|2k .

13



The result now follows from

4 ‖µk − π‖2 =

(∑
x

|µk(x)− π(x)|

)2

≤ n
∑
x

|µk(x)− π(x)|2 ,

by the Cauchy-Schwarz inequality.

Let us now apply this bound to the second and third examples above. For the frog’s

walk, we have

λm = EQ(χm) = (1/3) + (2/3) cos (2πm/n) .

It follows that λ∗ = (1/3) + (2/3) cos (2π/n). Using just λ∗ in our bound above, we have

(assuming n ≥ 3, and using that cos(x) ≤ 1− x2/4 for 0 ≤ x ≤
√

6, and that 1− x ≤ e−x

for any x) that

‖µk − π‖ ≤ (
√
n/2)(λ∗)

k ≤ (
√
n/2)e−

2π2

3n2 k .

This bound is small if k is large compared to n2 log n. We can actually get rid of the log n

term by using the stronger bound with all the eigenvalues:

‖µk − π‖2 ≤
1

4

n−1∑
m=1

(λm)2k

≤
dn−1

4 e∑
m=1

e−
4π2m2

3n2 k

≤
∞∑
m=1

e−
4π2m
3n2 k

=
e−

4π2

3n2 k

1− e−
4π2

3n2 k
.

This last expression is small if k is large compared to n2.

One might wonder if the order n2 can be reduced still further. In fact, it cannot. To

see this, we produce a lower bound as follows. First note that

Eµk(χm) = (EQ(χm))
k
.

(This is similar to the fact that the characteristic function of a sum of independent random

variables is the product of the individual characteristic functions.) This statement can

easily be proved by induction. It can also be seen directly by noting that the quantity on

14



the left is the eigenvalue of P k corresponding to the eigenvector χm, and is thus the k’th

power of the corresponding eigenvalue for P .

It is further seen directly (or from the fact that χm is orthonormal to χ0 ≡ 1) that

Eπ(χm) = 0 for m 6= 0. It now follows from our third equivalent definition of variation

distance that

‖µk − π‖ ≥
1

2
|Eµk(χ1)| =

1

2
|EQ(χ1)|k =

1

2
|1
3

+
2

3
cos(

2π

n
)|k .

(We could have chosen any other character χm with m 6= 0 in place of χ1.)

Taking n =1000 and k =10,000, this equals 0.438. Thus, our frog would have to take

considerably more than 10,000 steps to have approximately equal chance of being at any

of her 1000 lily pads. To make this less than 0.1, we need k = 122, 302.

More generally, for n ≥ 5 this lower bound implies that

‖µk − π‖ ≥
1

2

(
1− 1

3

(
2π

n

)2
)k
≥ 1

2

(
1− k

3

(
2π

n

)2
)
.

It is easily seen that this quantity will be far from 0 unless k is large compared to n2. Thus,

O(n2) iterations are, for large n, both necessary and sufficient to converge to uniformity

for this process.

For the “bit-flipping” process, Example #3 above, we have χm(x) = (−1)m·x, where

m · x = m1x1 + . . .+mdxd. It is easily computed that

λm = EQ(χm) = 1− 2N(m)

d+ 1
,

where N(m) stands for the number of 1’s in the binary d-tuple m. Hence, λ∗ = 1 − 2
d+1 .

Using this directly, and recalling that n = |X | = 2d, we have

‖µk − π‖ ≤ 2d−1
(

1− 2

d+ 1

)k
≤ 2de−2k/(d+1) ,

which is small provided k is large compared to d2.

As in the previous example, we can do better by using all the eigenvalues. Indeed,

there are
(
d
j

)
choices for m which have N(m) = j. Hence, we have (cf. Diaconis, 1988,

15



Section 3C) that

‖µk − π‖2 ≤
1

4

d∑
j=1

(
d

j

)
|1− 2j

d+ 1
|2k

≤ 1

2

d d+1
2 e∑
j=1

(
d

j

)
(1− 2j

d+ 1
)2k

≤ 1

2

∞∑
j=1

dj

j!
e−

4j
d+1k

=
1

2

(
ede
− 4k
d+1 − 1

)
.

This last expression is small if k is of the form 1
4d log d + Cd with C large. This result is

in fact the “correct” answer. Indeed, it can be shown (Diaconis, 1988) that to first order

in d, precisely 1
4d log d iterations are required to get close to uniform. Such a sharp result

as this, giving the number of iterations exactly to first order in the size of the group, is

the essence of the “cut-off phenomenon”; see Diaconis and Shashahani (1981), Aldous and

Diaconis (1987), Diaconis (1988), and Rosenthal (1994c).

5.2. Finite non-abelian groups.

For non-abelian groups, the situation is more complicated, but we can still make use of

the “characters” of the group to find eigenvalues, at least under the additional assumption

that our step distribution is “conjugate-invariant”.

Let X be a finite, non-abelian group (such as the symmetric group S`, which cor-

responds to shuffling a deck of cards). Such a group has associated with it irreducible

representations ρ0, ρ1, . . . , ρr, where ρm : X → Mdm(C) is a function taking the group

X into the set of dm × dm complex matrices, which is multiplicative in the sense that

ρm(xy) = ρm(x)ρm(y) and that ρm(id) = Idm . (Here the multiplication on the left is in

the group, while the multiplication on the right is matrix multiplication.)

It is known that these irreducible representations satisfy
∑
m

(dm)2 = |X |, i.e. that there

are as many “representation entries” as there are elements of the group. Furthermore we

may assume that ρm(x−1) = ρm(x)∗, the conjugate transpose of ρm(x). (In words, we

may assume the matrices ρm(x) are unitary.) It is then true that these “representation

entries” are orthogonal under the appropriate inner product.

The connection with the abelian case comes as follows. The characters of the group

are given by χm = tr ρm, the trace of the matrix. For abelian groups, we have dm = 1 for

all m, so that the character and the representation are essentially the same; in that case,
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the current situation reduces to the previous one. In general, we have that
∑
m
dmχm(s) =

n δs,id; again, if dm = 1 for all m, this reduces to the previous case. Also, once again, the

characters are orthonormal in L2(π).

In this generality, one cannot obtain simple formulas for the eigenvalues of the transi-

tion kernel P . Indeed, the matrix for P need not even be diagonalizable. However, let us

assume that the step distribution Q(·) is conjugate-invariant, in the sense that Q(x−1yx) =

Q(y) for all x, y ∈ X . That is easily seen to imply that ρm(x−1)EQ(ρm)ρm(x) = EQ(ρm)

for all m and for all x ∈ X . In words, the matrix EQ(ρm) commutes with every matrix of

the form ρm(x), for x ∈ X . A well-known result from group representation theory, Schur’s

Lemma, then implies that EQ(χm) is a scalar matrix, i.e. a multiple of the identity. It

follows by taking traces that

EQ(ρm) = (EQ(χm)/dm) Idm ,

where Idm is the dm × dm identity matrix.

Under this “conjugate-invariant” assumption, we have

Fact 8. Let P correspond to a conjugate-invariant random walk on a finite group X as

above. For 0 ≤ m ≤ r, and 1 ≤ i, j ≤ dm, we have

ρm(ij) P = (EQ(χm)/dm) ρm(ij) .

In words, the vector whose value at the point x ∈ X is the complex conjugate of the ij

entry of the matrix ρm(x), is an eigenvector for P , with eigenvalue EQ(χm)/dm.

Proof. For g ∈ X , we have(
ρm(ij) P

)
g

=
∑
x∈X

ρm(ij)(x)P (g, x)

=
∑
x∈X

ρm(ij)(x)Q(x−1g)

=
∑
y∈X

ρm(ij)(gy−1)Q(y)

=
∑
y

Q(y)
∑
z

ρm(iz)(g)ρ∗m(jz)(y)

=
∑
z

(ρm(g))iz (EQ(ρm)∗)jz

= (EQ(χm)/dm)
(
ρm(g)

)
ij
,
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where we have used that EQ(ρm) is diagonal, with diagonal entries EQ(χm)/dm.

It follows immediately that the eigenvalues of P are precisely EQ(χm)/dm, each re-

peated (dm)2 times. It also follows that the vector χm is an eigenvector with this same

eigenvalue, which directly generalizes the abelian case. Furthermore, as mentioned above,

the characters χm are again orthonormal in L2(π). By exact analogy with our discussion

there, we have

Fact 9. The variation distance to the uniform distribution π satisfies

‖µk − π‖ ≤
1

2

√∑
m 6=0

(dm)2|λm|2k ≤ (
√
n/2)(λ∗)

k ,

with n = |X | and with λm = EQ(χm)/dm.

Example: Random Transpositions. Consider the symmetric group S`, with step

distribution given by Q(id) = 1/`, Q((ij)) = 2/`2 for all i 6= j. This corresponds to

shuffling a deck of cards by choosing a random card uniformly with the left hand, choosing

a random card uniformly with the right hand, and interchanging their positions in the

deck (and doing nothing if we happened to pick the same card with both hands). Bounds

on the distance to stationarity then correspond to bounds on how long the deck of cards

must be shuffled until it is well mixed.

This was the example that motivated Diaconis and Shashahani (1981) to develop

the modern, quantitative study of random walks on groups. To do a careful analysis

of this model requires detailed knowledge of the representation theory of the symmetric

group, which is rather involved. We note here simply that χ1 for the symmetric group

is the function that assigns to each group element, one less than the number of points

in {1, 2, . . . , `} that it leaves fixed. Thus, χ1(id) = ` − 1, and χ1((ij)) = ` − 3. Also,

d1 = `− 1. Hence, the eigenvalue corresponding to χ1 is given by

λ1 = EQ(χ1)/d1 =
(1/`)(`− 1) + (1− (1/`))(`− 3)

`− 1
= 1− 2

`
≤ e−2/` .

Now, it so happens (though we cannot prove it here) that for this random walk, λ∗ = λ1.

Thus, using our bound developed above, we have that

‖µk − π‖ ≤
√
`!/2(λ∗)

k ≤ e` log `e−2k/` ,

which is small if k is large compared to `2 log `. Diaconis and Shashahani (1981) did a much

more careful analysis of this process, using all the eigenvalues, and proved that to first or-

der in `, 1
2` log ` steps were necessary and sufficient, again proving a cut-off phenomenon.
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A number of other random walks on finite groups have been considered and shown

to exhibit a cut-off phenomenon, including Random Transvections (Hildebrand, 1992) and

Rank-One Deformations (Belsley, 1993). Bayer and Diaconis (1992) analyzed ordinary “rif-

fle” card shuffles on the symmetric group, and proved a cut-off phenomenon at (3/2) log2 `

iterations. In particular, for ` = 52, they showed that about 7 such shuffles were required

to get close to stationarity. This shuffle is not conjugate-invariant; thus, their methods

were somewhat different from the above, and involved deriving exact expressions for µk

for this random walk.

5.3. Compact Lie groups.

Similar analyses to the above have been carried out for conjugate-invariant random

walks on (infinite) compact Lie groups, In Rosenthal (1994a), a process of “random ro-

tations” on the orthogonal group SO(n) was shown to converge to Haar measure with a

cut-off at 1
2n log n. In Porod (1993), generalizations of a process of “random reflections”

were shown to exhibit the cut-off phenomenon on all of the classical compact Lie groups

(orthogonal, unitary, and symplectic). The basic method of proof in these examples is the

same as for finite groups. However, here the number of eigenvalues is infinite, so there is

the additional complication that bounds are required are infinite sums.

6. Coupling and minorization conditions.

There is another approach to bounding convergence of Markov chains, which does not

use eigenvalues at all. Rather, it uses probabilistic ideas directly.

6.1. Coupling.

The basic idea of coupling is the following. Suppose we have two random variables X

and Y , defined jointly on some space X . If we write L(X) and L(Y ) for their respective

probability distributions, then we can write

‖L(X)− L(Y )‖ = sup
A
|P (X ∈ A)− P (Y ∈ A)|

= sup
A
|P (X ∈ A,X = Y ) + P (X ∈ A,X 6= Y )

− P (Y ∈ A, Y = X)− P (Y ∈ A, Y 6= X)|

= sup
A
|P (X ∈ A,X 6= Y )− P (Y ∈ A, Y 6= X)|

≤ P (X 6= Y ) .

Thus, the variation distance between the laws of two random variables is bounded by the

probability that they are unequal.
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We shall make use of this fact as follows. Given a Markov chain P on a space X , with

initial distribution µ0, suppose we can find a new Markov chain (Xk, Yk) on X × X with

(i) X0 ∼ µ0;

(ii) Y0 ∼ π;

(iii) P (Xk+1 ∈ A | Xk) = P (Xk, A);

(iv) P (Yk+1 ∈ A | Yk) = P (Yk, A).

(v) There is a random time T such that Xk = Yk for all k ≥ T .

In words, the chain Xk starts in the distribution µ0 and proceeds according to the

transitions P (·, ·). The chain Yk starts in the distribution π and proceeds according to the

same transitions P (·, ·). However, the joint law of (Xk, Yk) is arbitrary, except that after

some time T (called the coupling time), the two processes become equal.

The benefit of the above “coupling” is as follows. Since Xk is updated from P (·, ·), we

have L(Xk) = µk. Also, since Yk is also updated from P (·, ·), and since the distribution π

is stationary, we have L(Yk) = π for all k. It follows that

‖µk − π‖ = ‖L(Xk)− L(Yk)‖ ≤ P (Xk 6= Yk) ≤ P (T > k) .

Thus, if we can find a coupling as above, we get an immediate bound on ‖µk − π‖ simply

in terms of the tail probabilities of the coupling time T .

There is a huge literature on coupling, and it has a long history in Markov chain theory.

See for example Aldous (1983), Lindvall (1992), and references therein. We shall here

concentrate on a particularly simple and elegant use of coupling, related to minorization

conditions.

6.2. Uniform minorization conditions.

Suppose a Markov chain satisfies an inequality of the form

P k0(x,A) ≥ β ζ(A) , x ∈ R, A ⊆ X

where k0 is a positive integer, R is a subset of the state space X , β > 0, and ζ(·) is some

probability distribution on X .

Such an inequality is called a minorization condition for a Markov chain, and says

that the transition probabilities from a set R all have common overlap of at least size β.

Minorization conditions were developed by Athreya and Ney (1978), Nummelin (1984),

and others. We shall see that they can help us define a coupling to get bounds on the

chain’s rate of convergence.
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We consider here the uniform case in which R = X , i.e. in which the minorization

condition holds on the entire state space. (This is sometimes called the Doeblin condition.)

We further assume for simplicity that k0 = 1.

We shall now use this minorization condition to define a coupling. First define (Xk, Zk)

jointly as follows. Choose X0 ∼ µ0 and Z0 ∼ π independently. Then, given Xk and Zk,

choose Xk+1 and Zk+1 by flipping an independent coin that has probability β of coming

up heads, and then

(a) If the coin is heads, choose a point z ∈ X distributed independently according to ζ(·),
and set Xk+1 = Zk+1 = z.

(b) If the coin is tails, then choose Xk+1 and Zk+1 independently with

P (Xk+1 ∈ A) =
P (Xk, A)− β ζ(A)

1− β
;

P (Zk+1 ∈ A) =
P (Zk, A)− β ζ(A)

1− β
.

These probabilities have been chosen precisely so that P (Xk+1 ∈ A | Xk) = P (Xk, A)

(and similarly for Zk+1). The point is, option (a) forces Xk+1 to be equal to Zk+1, and

this chance of becoming equal is good for getting coupling bounds.

Let T be the first time the coin comes up heads. Then define Yk by

Yk =

{
Zk, k ≤ T ;

Xk, k > T
.

Thus, Yk is essentially the same as Zk, except that after the Markov chains become equal

at time T , they will remain equal forever.

The combined chain (Xk, Yk) is now a coupling with coupling time T . Also, since we

had probability β of choosing option (a) each time, we see that P (T > k) = (1− β)k. Our

above inequality immediately gives the following.

Fact 10. Suppose a Markov chain satisfies P (x,A) ≥ β ζ(A), for all x ∈ X and for all

measurable subsets A ⊆ X , for some probability distribution ζ(·) on X . Then given any

initial distribution µ0 and stationary distribution π, we have

‖µk − π‖ ≤ (1− β)k .

This fact goes back to Doob (1953), and been used in Roberts and Polson (1994),

Rosenthal (1993a), and many other places. It is quite powerful. For example, it immedi-

ately generalizes our earlier result that, on a finite state space, if all entries are positive
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then the chain converges geometrically quickly. In fact, now we require only that some col-

umn of the matrix be all positive (and furthermore we immediately obtain a quantitative

bound on convergence in that case).

It is easily seen that, given a Markov chain P (x, ·), the largest value of β that we can

use as above should be given by

β =

∫
X

inf
x∈X

P (x, dy) ,

which on a discrete space reduces to

β =
∑
y∈X

min
x∈X

P (x, y) .

In words, we may take β to be the sum of the minimum values of the entries in each column

of P . We can then immediately conclude that ‖µk − π‖ ≤ (1 − β)k. Note that this was

precisely our finding in the simplest non-trivial example of Section 3.

Example. Consider the Markov chain on X = {1, 2, 3, 4, 5} with transition kernel

P =


0.2 0.2 0.3 0.3 0
0.4 0 0.3 0.3 0
0.2 0.2 0.4 0.1 0.1
0.2 0.1 0.3 0.1 0.3
0.2 0 0.5 0.3 0


We see by inspection that the column minimums are 0.2, 0, 0.3, 0.1, 0, respectively. Thus

we may take β = 0.6, and immediately conclude that ‖µk − π‖ ≤ (0.4)k. (Note that here

Q(1) = 1/3, Q(3) = 1/2, and Q(4) = 1/6.)

Example. Let X = [0, 1] (the interval from 0 to 1), and set

P (x, dy) =
1 + x+ y

3
2 + x

dy .

We see by inspection that P (x, dy) ≥ 2
3 dy for all x and y, so that we may take β = 2

3 to

conclude that ‖µk − π‖ ≤ (1/3)k. We can do even better by finding the best β as above:

β =

1∫
0

(
inf

0≤x≤1

1 + x+ y
3
2 + x

)
dy =

1
2∫

0

2

3
(1 + y)dy +

1∫
1
2

2

5
(2 + y)dy =

29

30
.
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Hence, we actually have ‖µk − π‖ ≤ (1/30)k. (Note that here Q(·) has density (with re-

spect to dy) given by 30
29

2
3 (1 + y) for 0 ≤ y ≤ 1

2 , and by 30
29

2
5 (2 + y) for 1

2 < y ≤ 1.)

These two examples will probably convince the reader that the minorization method is

sometimes very powerful. On the other hand, the best value of β above will often be 0; for

example, this is certainly true for the Frog’s Walk discussed in the introduction. One way

to get around this difficulty is to replace P by P k0 in the minorization condition, which

requires replacing k by [k/k0] in the conclusion (see exercise 6). In principle this approach

should usually work well, but in practice it may be very difficult to compute or estimate

quantities related to P k0 . See Rosenthal (1993a) for one attempt in this direction.

Another method is to restrict the values of x in the minorization condition to being

in some subset R ⊆ X , as we now discuss.

6.3. Minorization conditions on subsets.

Suppose that instead of the uniform minorization condition as above, we have a mi-

norization condition which holds only on a subset R ⊆ X . Then our above bound, which

was based on coupling with probability β at each step, cannot be applied. Various other

approaches have been used in this case. We very briefly outline them here.

If one allows the subset R to be arbitrarily large (in fact, to grow as a function of k),

then it may be possible to bound the probability of escaping from R, and draw conclusions

about ‖µk − π‖ in that way; see Rosenthal (1991).

In any case, each time our coupled process (Xk, Yk) visits the subset R × R, it has

probability β of coupling. Using “drift conditions”, it may be possible to bound the number

of such returns to R × R, and then use coupling as in the uniform case; see Rosenthal

(1993b).

A related approach is presented in Meyn and Tweedie (1993), who use minorizations,

drift conditions, splittings, and careful bounding to obtain bounds on ‖µk − π‖ directly,

without introducing a second, coupled chain.

Instead of trying to bound ‖µk − π‖ directly, or use coupling, another approach is as

follows. Consider a single Markov chain Xk, and each time it is in the subset R, with

probability β update it according to ζ(·). Call the times of such updatings regeneration

times. Then, it is easily seen that the distribution of Xk depends only on the time since the

last regeneration time. Thus, if these “times since the last regeneration” converge, then

the original chain Xk must also converge. This is the essential idea behind convergence

results in Athreya and Ney (1978), Nummelin (1984), Asmussen (1990), Mykland et al

(1992), and elsewhere.
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7. Other approaches.

There are many other methods of bounding convergence rates of Markov chains. We

briefly mention some of them here.

For certain Markov chains including birth-death chains (i.e. Markov chains on the

integers, which can move at most distance 1 on a given step), the eigenvalues and eigen-

vectors are related to the “orthogonal polynomials”. Classically known results can be used

to get good bounds on convergence rates. See Belsley (1993) and references therein.

Related to the coupling and minorization bounds presented herein is the method of

strong stopping times (Aldous and Diaconis, 1986, 1987). Essentially, if the reference

measure ζ(·) in the minorization condition happens to be the stationary distribution π(·),
then one can construct a random time τ such that the law of Xτ is precisely π(·), and such

that Xτ is independent of τ . Such a time τ is a strong stopping time, and it is easily seen

that ‖µk − π‖ ≤ P (τ > k). Another method of constructing strong stopping times is by

constructing a dual Markov chain that keeps track of “how stationary” the Markov chain

has become; see Diaconis and Fill (1990).

A different and very beautiful method of bounding convergence to certain specific

distributions (e.g. normal, poisson) is the method of Stein (1971) and Chen (1975). This

involves characterizing the distribution of interest through some “identity” that it satisfies,

and then seeing to what extent the distribution µk approximately satisfies that identity.

In certain cases the technique has been simplified to the point where it is very usable. See

Arratia et al. (1989) and Barbour et al. (1992).

Finally, geometric arguments involving “paths” on graphs have recently been used to

bound eigenvalues of Markov chains, with great success in certain examples; see Jerrum

and Sinclair (1989) and Diaconis and Stroock (1991). Geometric approaches have also

been used to allow different Markov chains to be “compared” to each other, so that known

information about one Markov chain can be used to obtain information about related

chains; see Diaconis and Saloff-Coste (1993).

Some of these approaches use reversibility of a Markov chain. A Markov chain is

reversible if the identity π(dx)P (x, dy) = π(dy)P (y, dx) holds for all x, y ∈ X . This is

equivalent to saying that, if the chain starts in the stationary distribution π(·), it has the

same law whether time runs forwards or backwards. This immediately implies that P is a

self-adjoint operator on L2(π). Such structure is exploited in Diaconis and Stroock (1991),

Fill (1991), and elsewhere.

Most of the above work has been concerned primarily with convergence in total varia-

tion distance (or the related separation distance). There are of course many other notions
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of distance between probability measures that could be used, such as relative entropy, etc.

See Su (1994) for a start in this direction.

Naturally, these few words scarcely begin to cover the depth of work that has been

applied to convergence questions. The reader is strongly encouraged to consult these and

other references for further information.

EXERCISES

To further the reader’s understanding, we provide here a number of exercises which

expand upon the material presented herein.

1. For each of the following transition matrices, determine (with explanation!) whether

λ∗ = 1 or λ∗ < 1.

(a)

P =

 1/4 1/4 1/2
1/3 1/3 1/3
0.01 0.01 0.98



(b)

P =

 1/4 1/4 1/2
0 0 1
0 0 1



(c)

P =

 0 1 0
0 0 1
1 0 0



2. Let X = {0, 1, 2, 3}, and let

P =


0.2 0.4 0 0.4
0.4 0.2 0.4 0
0 0.4 0.2 0.4

0.4 0 0.4 0.2

 .

Let µ0(0) = 1 give the initial distribution. Find an exponentially decreasing bound

on the variation distance ‖µk − π‖. (Hint: This is a random walk on a group!)
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3. Repeat question 2 with P replaced by

P =


0.2 0.4 0 0.4
0.4 0.2 0.4 0
0.3 0.4 0.2 0.1
0.4 0 0.4 0.2

 .

(Hint: Use a uniform minorization condition!)

4. Let P be a transition matrix on a state space X , with initial distribution µ0 and

stationary distribution π. Prove that the distance to stationarity is weakly decreasing,

in the sense that for any k ≥ 0,

‖µk+1 − π‖var ≤ ‖µk − π‖var .

5. Let X1 and X2 be finite state spaces. Let µ1 and ν1 be probability distributions on X1,

and let µ2 and ν2 be probability distributions on X2. Then µ1 × µ2 is a probability

distribution on X1 × X2, defined by µ1 × µ2 (x, y) = µ1(x)µ2(y) (and similarly for

ν1 × ν2).

Prove that

‖µ1 × µ2 − ν1 × ν2‖var ≤ ‖µ1 − ν1‖var + ‖µ2 − ν2‖var .

6. Multi-step minorization conditions. Suppose we are given that P k0(x, ·) ≥ βζ(·) for

all x ∈ X , for some positive integer k0. Prove that

‖µk − π‖ ≤ (1− β)[k/k0] ,

where [k/k0] means the greatest integer not exceeding k/k0. (Hint: First prove it for

k an integer multiple of k0, and then use exercise 4.)

7. Explicit O(n2) bounds. Consider random walk on the state space X = Z/(n), the

integers mod n, with initial distribution given by µ0(0) = 1, and with step distribution

given by Q(0) = 0.9, Q(1) = 0.1.

Find, with proof, explicit constants A,B, α, β, k0, n0 > 0 (independent of n and k)

such that

Ae−αk/n
2

≤ ‖µk − π‖ ≤ B e−βk/n
2

, for all n ≥ n0 , k ≥ k0 n2 .
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In particular, this proves that this random walk takes O(n2) steps to converge.

8. Numerical bounds on the circle. Consider random walk on Z/(n), with n = 100. For

each of the following step distributions Q(·), find (i) P (99, x) for all x ∈ Z/(n), (ii)

|λm| for 0 ≤ m ≤ 99 (simplified if possible), and (iii) λ∗. (Note: λm may be a complex

number!) Finally, (iv) find a value of k so that ‖µk − π‖var ≤ e−20. (Warning: Don’t

forget to compute appropriate cosines in radians, not in degrees!)

(a) Q(0) = Q(1) = 1/2, with Q(x) = 0 otherwise.

(b) Q(3) = Q(4) = 1/2, with Q(x) = 0 otherwise.

(c) Q(−3) = Q(3) = 1/4, and Q(0) = 1/2, with Q(x) = 0 otherwise.

9. Random walk with two-point support. Consider again random walk on Z/(n), but

with n arbitrary. Let j ∈ Z/(n) with j 6= 0, and define the step distribution by

Q(0) = Q(j) = 1/2.

(a) Under what conditions on n and j will we have λ∗ = 1?

(b) For what values of n can we be sure that λ∗ < 1, for any non-zero value of j?

10. Convergence of projections. Let X = Z/(80)×Z/(100) be the abelian group consisting

of pairs (x, y) with x ∈ Z/(80) and y ∈ Z/(100), with addition defined coordinate-wise

as usual. Let the step distribution Q(·) on X be defined by

Q(0, 0) = 1/2; Q(1, 1) = Q(−1, 1) = Q(1,−1) = Q(−1,−1) = 1/8 .

As usual, let P ((x1, x2), (y1, y2)) = Q(y1−x1, y2−x2), define µ0 by µ0(0, 0) = 1, and

let µk = µ0P
k be the distribution of the random walk after k steps.

Furthermore, let νk be the distribution of the first coordinate after k steps. Formally,

νk(x1) =
∑

x2∈Z/(100)

µk(x1, x2) .

Let π be the uniform distribution on X , and let π1 be the uniform distribution on

Z/(80). Prove or disprove each of the following assertions.

(a) ‖µk − π‖var → 0 as k →∞.
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(b) ‖νk − π1‖var → 0 as k →∞.

11. Convergence in a constant number of steps. Consider random walk on X = Z/(n)

with µ0(0) = 1. Let n be a multiple of 4, and set Q(x) = 1/(1 + (n/2)) for x =

−n/4,−(n/4) + 1, . . . ,−1, 0, 1, 2, . . . , (n/4) − 1, n/4, with Q(x) = 0 otherwise. In

words, at each step the random walk jumps to one of its (n/2) + 1 nearest neighbors

(including the point it’s already on), each with equal probability.

Prove that there are constants A,α > 0 (independent of n and k) such that

‖µk − π‖ ≤ Ae−αk , for all n, k .

In particular, this proves that this random walk converges in O(1) steps, i.e. in a

“constant” (bounded) number of steps. (This fact is generalized in Rosenthal (1994b).)

12. Random walk on the chessboard, Part I. Consider the group Z/(n)×Z/(m), thought

of as an n×m rectangular grid, to be used as a “chessboard”. (In this interpretation,

we must allow the chesspieces to “wrap around”, in the sense that a chesspiece at

(say) the right edge of the board could jump off to the right and re-appear on the

left.) For each of the following three step distributions, get upper and lower bounds

on the distance to stationarity for the corresponding random walk. (For simplicity, in

this exercise you may neglect lower-order terms as n,m→∞.)

(a) The factorable king moves: Q(a, b) = 1/9 for a, b = −1, 0, 1. (Hint: Write this

random walk as a “product” of two simpler random walks, and use exercise 5.)

(b) The non-factorable king moves: Q(0, 0) = 1/2, Q(a, b) = 1/16 for a, b = −1, 0, 1,

with (a, b) 6= (0, 0).

(c) The knight moves: Q(±1,±2) = Q(±2,±1) = Q(0, 0) = 1/9.

13. Random walk on a stick. Let X = {1, 2, . . . , n}, thought of as n points in a line (not

in a circle). Define the transition probabilities P by

P (x, x− 1) = P (x, x) = P (x, x+ 1) = 1/3, 2 ≤ x ≤ n− 1 ;

P (1, 1) = P (n, n) = 1/3; P (1, 2) = P (n, n− 1) = 2/3 .

In words, the Markov chain jumps left or right, or stays still, each with probability

1/3, except at the endpoints. At the endpoints, it stays still with probability 1/3 and
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jumps back towards the center with probability 2/3. (This corresponds to having

“reflecting barriers” at the endpoints.)

You are to bound the convergence of this Markov chain by lifting it to a random walk

on the group Z/(2n − 2) = {1′, 2′, 3′, . . . , (2n − 2)′}, as follows. Identify the point 1

with the point 1′, and the point n with the point n′. For 2 ≤ x ≤ n− 1, identify the

point x with the point x′ and with the point (2n− x)′.

(a) Argue that our “usual” random walk on Z/(2n − 2) (which at each step moves

left, right, or not at all, each with probability 1/3) “projects” (whatever that

means!) under this identification onto the Markov chain on X .

(b) Use this “projection” to determine the stationary distribution π of our Markov

chain on X .

(c) Argue that the variation distance to stationarity of the Markov chain on X is

bounded above by the corresponding variation distance on the “covering chain”

on Z/(2n− 2).

(d) Use this to derive upper bounds on the rate of convergence of the Markov chain

to the stationary distribution π.

14. Random walk on the chessboard, Part II. Redo the analysis of the non-factorable king

moves on a chessboard (exercise 12 (b)), but with the “wrap around” assumption

replaced by reflecting barriers on all sides. In other words, if the king is at one edge

of the chessboard, then the probabilities that would normally make it move off the

edge are instead added on to the probability of moving to the “reflected” point the

other way. (That is, the new probabilities are designed so they can “lift” to a random

walk on Z/(2n − 2) × Z/(2m − 2), similar to the previous question.) For example,

P ((0, 2), (1, 3)) = 2/16 = 1/8, because the probability of moving to (−1, 3) is instead

added on to the probability of moving to (1, 3). Also P ((0, 0), (1, 1)) = 4/16 = 1/4.

For this new, “reflecting barriers” king on the n×m chessboard, get upper bounds on

the rate of convergence to stationarity. (As in question 12, you may neglect lower-order

terms as n,m→∞.)
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