Errata for FIRST edition of "A First Look at Rigorous Probability"

NOTE: the corrections below (plus many more improvements) were all encorporated into the second edition:

> J.S. Rosenthal, A First Look at Rigorous Probability Theory. World Scientific Publishing Company, Singapore, 2006. 221 pages. ISBN 981$270-370-5$ / 981-270-371-3(pbk).

Errata for Third Printing, 2005:

- In Exercise 2.7.8, condition (ii) refers to finite intersections only.
- Exercise 14.4.8 requires an additional assumption, and is not correct as stated.

Errata to Second Printing, 2003 (already corrected in Third Printing):

[With thanks to Samuel Hikspoors, Bin Li, Mahdi Lotfinezhad, Ben Reason, Jay Sheldon, and Zemei Yang.]

- p. 18, Exercise 2.7.1: The phrase "together with the singleton set $\{0\}$ " should be at the end of the first sentence, not the second. That is, \mathcal{J}^{\prime} also includes the singleton set $\{0\}$.
- p. 30, Exercise 3.6.8, condition (i) should read: "(i) $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{k}}$ are independent provided that $i_{j+1} \geq i_{j}+2$ for $1 \leq j \leq k-1$ ".
- p. 41, Exercise 4.5.7: It should be assumed that X and Y are independent.
- p. 41, Exercise 4.5.9(c): append the words "with finite means".
- p. 123, Exercise 12.1.7: For definiteness, we should assume that $\Omega=\mathbf{R}$ (together with the Borel subsets).
- p. 127, lines 3 and 5: These calculations implicitly assume that $S \subseteq[0,2]$. So, to make them valid, we should either explicitly assume that $S \subseteq[0,2]$, or replace S by $S \cap[0,2]$ where required.
- p. 138, Exercise 14.4.2: Assume $\mathbf{E}\left[Y_{n}\right]<\infty$ for all n.
- p. 138, Exercise 14.4.3: Assume $\mathbf{E}\left(\left|\phi\left(X_{n}\right)\right|\right)<\infty$ for all n. Also, you may assume the conditional form of Jensen's inequality, i.e. that $\mathbf{E}[\phi(X) \mid \mathcal{G}] \geq \phi(\mathbf{E}[X \mid \mathcal{G}])$.
- p. 138, Exercise 14.4.5 is awkwardly written; a better version is:
"Let $\left\{X_{n}\right\}$ be simple symmetric random walk on the integers, with $X_{0}=0$. Let $\tau=\inf \left\{n \geq 5: X_{n+1}=X_{n}+1\right\}$ be the first time after 4 which is just before the
chain increases. Let $\rho=\tau+1$.
(a) Is τ a stopping time? Is ρ a stopping time?
(b) Use Theorem 14.1.3 to compute $\mathbf{E}\left[X_{\rho}\right]$.
(c) Use the result of part (b) to compute $\mathbf{E}\left[X_{\tau}\right]$."
- Index: Add entry "Fatou's Lemma, 86".

Errata to First Printing, 2000 (already corrected in Second Printing):

[With thanks to Tom Baird, Meng Du, Avery Fullerton, Longhai Li, Hadas Moshonov, Nataliya Portman, and Idan Regev.]

- p. 4, replace Exercise 1.3 .2 by: "Suppose $\Omega=\{1,2,3\}$ and \mathcal{F} is the collection of all subsets of Ω. Find (with proof) necessary and sufficient conditions on the real numbers x, y, and z, such that there exists a countably additive probability measure \mathbf{P} on \mathcal{F}, with $x=\mathbf{P}\{1,2\}, y=\mathbf{P}\{2,3\}$, and $z=\mathbf{P}\{1,3\}$."
- pp. 9-10, in Exercise 2.3.2 parts (d) and (e), " \leq " should be " \geq ". Also, in parts (c), (d), and (e), the word "disjoint" should be omitted.
- p. 11, line 5: " $B_{n} \subseteq C_{n k}$ " should be " $B_{n} \subseteq \bigcup_{k} C_{n k}$ ".
- p. 13, line 10 from bottom: "since $\mathbf{P} \leq \mathbf{P}^{*}$ on \mathcal{F}_{0} " should be "since $\mathbf{P}^{*} \leq \mathbf{P}$ on \mathcal{F}_{0} "
- p. 17 , line 4 , expand "then by additivity ..." to "then \mathcal{B}_{0} is an algebra, and by additivity ...".
- p. 17 middle, "since $B_{n} \in \mathcal{J}$ " should be "since $B_{n} \in \mathcal{B}_{0}$ ". Also, " A_{n} " should be " A_{i} " (four times).
- p. 18, Exercise 2.7.1, expand "all finite disjoint unions of elements of \mathcal{J}^{\prime}." to "all finite disjoint unions of elements of \mathcal{J}^{\prime}, together with the single set $\{0\}$."
- p. 19, Exercise 2.7.4: " $P(A)$ " should be " $\mathbf{P}(A)$ " (twice).
- p. 19, Exercise 2.7.7: "P $\{1\}=\frac{1}{3}, \mathbf{P}\{2\}=\frac{2}{3}$ " should be " $\mathbf{P}_{2}\{1\}=\frac{1}{3}, \mathbf{P}_{2}\{2\}=\frac{2}{3}$ ".
- p. 24, the end of the proof of Proposition 3.3.1, replace "... $=\lim _{n \rightarrow \infty} \mathbf{P}(A)$, where \ldots nested sequence." by " $\ldots=\lim _{n \rightarrow \infty} \mathbf{P}\left(A_{n}\right)$, where the last equality is the only time we use that the $\left\{A_{m}\right\}$ are a nested sequence."
- p. 26, final displayed equation: Final sum should be $\sum_{k=m}^{\infty} \mathbf{P}\left(A_{k}\right)$.
- p. 27 bottom, " $B_{n}=\left\{r_{n+1}=r_{n+2}=\ldots=r_{\left.n+\left[\log _{2} \log _{2} n\right]\right\}=1 " \text { should be " } B_{n}=}^{\text {" }}\right.$ $\left\{r_{n+1}=r_{n+2}=\ldots=r_{n+\left[\log _{2} \log _{2} n\right]}=1\right\}$ ".
- p. 32 bottom, in definition of Y :"irrational" should be "rational".
- p. 41, Exercise 4.5.9(a): " $Z^{+}-Z^{-}$" should be " Z^{+}and Z^{-}".
- p. 49 eqn. (5.3.9), " $k+1$ " should be " $\ell+1$ ".
- p. 49 eqn. (5.3.11), " u_{k} " should be " k ".
- p. 49, lines 4-6 from bottom, replace "Hence, for all sufficiently large n we have ... for all sufficiently large k." by "Hence, for any $\alpha>1$ and $\delta>0$, with probability 1 we have $m /(1+\delta) \alpha \leq \frac{S_{k}}{k} \leq(1+\delta) \alpha m$ for all sufficiently large k."
- p. 50, Exercise 5.4.1: "variables" should be "variable".
- p. 65, Exercise 7.4.3, Hint: Omit the word "two".
- pp. 65, 66, 68, and 72: "Subsection 7.2.0" should be "Subsection 7.2".
- p. 69, line 8 from bottom:"Thus" should be "This".
- p. 72, line 4: " $X_{n}=j$ " should be " $X_{n}=i$ ".
- p. 74 towards bottom, " $\binom{n}{i} \frac{1}{2^{d} "}$ " should be " $\binom{d}{i} \frac{1}{2^{d} "}$.
- p. 75, Definition 8.3.3: "Give" should be "Given".
- p. 76, line 12: "divisor of $\left\{n \in \mathbf{N} ; p_{j j}^{(n)}\right\}$ " should be "divisor of $\left\{n \in \mathbf{N} ; p_{j j}^{(n)}>0\right\}$ ".
- p. 78, line 5: "indeed, we have $p_{(i j),(k \ell)}>0$ " should be "indeed, we have $p_{(i j),(k \ell)}^{(n)}>0$ ".
- p. 83, line 10, Exercise 8.5.2: "for all states i and j " should be "for some states i and $j "$.
- p. 83, Exercise 8.5.3: replace "with distinct states i and j " by "and some distinct states i and j ".
- p. 86, line 8 from bottom, "bounded convergence theorem" should be "monotone convergence theorem".
- p. 90 middle: after "repeatedly apply Proposition 9.2 .1 ", add in parentheses "(or use Proposition 9.3.2 below)".
- p. 100, Exercise 10.1.2: Replace " $\mu(A)=\int f \mathbf{1}_{A} d \lambda "$ by " $\mu(A)=\int_{0}^{1} f \mathbf{1}_{A} d \lambda$ ".
- p. 100, Exercise 10.1.4: Replace the last sentence by "Construct a sequence $\left\{\mu_{n}\right\}$ of probability measures, each absolutely continuous with respect to Lebesgue measure, such that $\mu_{n} \Rightarrow \mu$."
- p. 100: Omit Exercise 10.1.7.
- p. 102 middle, "Like for characteristic functions, ..." should be "Like for moment generating functions, ...".
- p. 103, line 4 from bottom, the two consecutive factors of " $\left|\frac{e^{-i t a}-e^{-i t b}}{i t} \phi(t)\right|$ " should both be omitted.
- p. 104 middle, " $\int_{0}^{\infty} e^{u x} d u "$ should be " $\int_{0}^{\infty} e^{-u x} d u$ ".
- p. 110, line 9 from bottom: " $\sqrt{2}$ " should be " \sqrt{n} ", and the entire expansion should be raised to the power n.
- p. 112, lines 8 and 11: " $x \rightarrow \infty$ " should be " $x \rightarrow-\infty$ " (twice).
- p. 112, line 6 from bottom: add extra closing parenthesis just before " \Rightarrow " symbol.
- p. 114, line 4: " $(-\infty, R)$ " should be " $(-\infty,-R)$ ".
- p. 123, Exercise 12.1.2 (a), "Subsection 9.4.0" should be "Subsection 9.4".
- p. 127, line 6 from bottom: $" \mathbf{E}(Y \mid \mathcal{G})=\mathbf{E}(X)$ " should be $" \mathbf{E}(Y \mid \mathcal{G})=\mathbf{E}(Y)$ ".
- p. 128, line 8: for clarity, "out of the conditioning" should be "out of the conditional expectation".
- p. 129, Exercise 13.1.1: Expand "where $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is" to "where $d x d y$ is twodimensional Lebesgue measure, and where $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is".
- p. 133, line 10: ". . extremely high that $\tau \leq 10^{12}$ " should be "... extremely high that $\tau<10^{12 "}$. In the following line, "the rare case that $\tau>10^{12}$ " should be "the rare case that $\tau=10^{12 "}$.
- p. 133, end of Subsection 14.1: Add Addendum (at end).
- p. 135, end of proof of Lemma 14.2.3: Add "Finally, note that replacing $\left\{X_{n}\right\}$ by $\left\{\max \left(X_{n}, \alpha\right)\right\}$ can only decrease $\left|X_{M}-X_{0}\right|$, so the inequality still holds as written."
- p. 137, line 4 from bottom: $" \mathbf{E}\left(X^{2}\right)=\ldots$ " should be " $\operatorname{Var}(X)=\ldots$ "
- p. 144, Exercise 15.2.6(b), "Related this" should be "Relate this".
- p. 149, Exercise 15.4.3: Replace " $|f(x)-f(y)| \leq|x-y| "$ by " $|f(x)-f(y)| \leq \alpha|x-y|$ ".
- p. 151, Exercise 15.6.4: " $\pi(x) \geq 0$ " should be " $\pi(x)>0$ ".
- p. 156, line 2: "assume" should be "assumed".
- On p. 157 bottom, after "Recall that here r is the risk-free interest rate", add "and σ is the volatility".
- p. 161, lines 4 and 5: "it's" should be "its" (twice).
- p. 161, middle, in definition of \mathbf{Q} : " $m \neq 0$ " should be " $n \neq 0$ ".
- p. 171, Index, add reference to page 22 for "Borel-measurable".

ADDENDUM: Extra material for end of Section 14.1, on page 133:

(Already included in Second and Third Printings.)

Theorem 14.1.3. Let $\left\{X_{n}\right\}_{n=0}^{\infty}$ be a martingale with stopping time τ. Suppose $\mathbf{P}(\tau<$ $\infty)=1$, and $\mathbf{E}\left|X_{\tau}\right|<\infty$, and $\lim _{n \rightarrow \infty} \mathbf{E}\left[X_{n} \mathbf{1}_{\tau>n}\right]=0$. Then $\mathbf{E}\left[X_{\tau}\right]=\mathbf{E}\left[X_{0}\right]$.

Proof. Let $Z_{n}=X_{\min (\tau, n)}$ for $n=0,1,2, \ldots$. Then $Z_{n}=X_{\tau} \mathbf{1}_{\tau \leq n}+X_{n} \mathbf{1}_{\tau>n}=X_{\tau}-$ $X_{\tau} \mathbf{1}_{\tau>n}+X_{n} \mathbf{1}_{\tau>n}$, so $X_{\tau}=Z_{n}-X_{n} \mathbf{1}_{\tau>n}+X_{\tau} \mathbf{1}_{\tau>n}$. Hence,

$$
\mathbf{E}\left[X_{\tau}\right]=\mathbf{E}\left[Z_{n}\right]-\mathbf{E}\left[X_{n} \mathbf{1}_{\tau>n}\right]+\mathbf{E}\left[X_{\tau} \mathbf{1}_{\tau>n}\right] .
$$

Since $\min (\tau, n)$ is a bounded stopping time, $\mathbf{E}\left[Z_{n}\right]=\mathbf{E}\left[X_{0}\right]$ for all n by Corollary 14.1.2. As $n \rightarrow \infty$, the second term goes to 0 by assumption. Also, the third term goes to 0 by the Dominated Convergence Theorem, since $E\left[X_{\tau}\right]<\infty$, and $\mathbf{1}_{\tau>n} \rightarrow 0$ w.p. 1 since $\mathbf{P}[\tau<\infty]=1$. Hence, letting $n \rightarrow \infty$, we obtain that $\mathbf{E}\left[X_{\tau}\right]=\mathbf{E}\left[X_{0}\right]$.

Corollary 14.1.4. Let $\left\{X_{n}\right\}_{n=0}^{\infty}$ be a martingale with stopping time τ, such that $\mathbf{P}[\tau<$ $\infty]=1$. Assume $\left|X_{n}\right| \leq M$ whenever $n \leq \tau$, for all n and some fixed $M<\infty$. Then $\mathbf{E}\left[X_{\tau}\right]=\mathbf{E}\left[X_{0}\right]$.

Proof. Clearly $\left|X_{\tau}\right| \leq M$, so that $\mathbf{E}\left|X_{\tau}\right| \leq M<\infty$. Also $\left|\mathbf{E}\left(X_{n} \mathbf{1}_{\tau>n}\right)\right| \leq \mathbf{E}\left(\left|X_{n}\right| \mathbf{1}_{\tau>n}\right) \leq$ $M \mathbf{P}(\tau>n)$, which converges to 0 as $n \rightarrow \infty$ since $\mathbf{P}[\tau<\infty]=1$. Hence, the result follows from Theorem 14.1.3.

Exercise 14.1.5. Let $0<a<c$ be integers. Let $\left\{X_{n}\right\}$ be simple symmetric random walk (i.e., with parameter $p=1 / 2$), started at $X_{0}=a$. Let $\tau=\inf \left\{n \geq 1 ; X_{n}=0\right.$ or $\left.c\right\}$.
(a) Prove that $\left\{X_{n}\right\}$ is a martingale.
(b) Prove that $\mathbf{E}\left[X_{\tau}\right]=a$. [Hint: Use Corollary 14.1.4.]
(c) Use this fact to derive an alternative proof of the gambler's ruin formula given in Section 7.2 , for the case $p=1 / 2$.

Exercise 14.1.6. Let $0<p<1$ with $p \neq 1 / 2$, and let $0<a<c$ be integers. Let $\left\{X_{n}\right\}$ be simple random walk with parameter p, started at $X_{0}=a$. Let $\tau=\inf \left\{n \geq 1 ; X_{n}=0\right.$ or $c\}$. Let $Z_{n}=((1-p) / p)^{X_{n}}$ for $n=0,1,2, \ldots$.
(a) Prove that $\left\{Z_{n}\right\}$ is a martingale.
(b) Prove that $\mathbf{E}\left[Z_{\tau}\right]=((1-p) / p)^{a}$. [Hint: Use Corollary 14.1.4.]
(c) Use this fact to derive an alternative proof of the gambler's ruin formula given in Section 7.2 , for the case $p \neq 1 / 2$.

