Errata for the SECOND EDITION of "A First Look at Rigorous Probability", by Jeffrey S. Rosenthal, World Scientific Publishing Co., 2006.

(Note: throughout, "line $-x$ " means x lines from the bottom.)

Errata to Eighth Printing, 2020:

[With thanks to Damir Ferizović, David Scott, Daniel de Souza Severo, and Robert Zimmerman.

- p. 31 , line 6: " $f_{2} \mathbf{1} I_{2}$ " should be " $f_{2} \mathbf{1}_{I_{2}}$ ".
- p. 40, Exercise 3.6.16 (c)-(e): "[. . .]" should be the floor function " $\lfloor.$.$] " (three times).$
- Page 103, proof of Theorem 9.1.1: Note that by replacing X_{n} by $X_{n}-C$, it suffices to assume that $X_{n} \geq 0$.
- Page 113, Exercise 9.5.8 line 2: " $F_{t}(\{1\})$ " should be " $F_{t}(1)$ ", and " $F_{t}(\{2\})$ " should be " $F_{t}(2)$ ".
- Page 126, line 1: " $E\left(|X|^{k}\right)$ " should be " $\mathbf{E}\left(|X|^{k}\right)$ ".
- Page 127, line -4: The double-integral is unnecessarily repeated twice.
- Page 127, line -1 : " $+\int_{0}^{\infty} "$ should be " $-\int_{0}^{\infty} "$.
- Page 145, line -1 : "Theorem 12.1.4" should be "Lemma 12.1.4".
- Page 159, Exercise 13.4.13: " $\sum_{j \in \mathcal{X}} "$ should be " $\sum_{j \in S}$ " (twice).
- Page 173 line 5: "Billingley" should be "Billingsley" (of course!).
- Page 185, Exercise 15.3.12: Omit the initial "(a)".
- Page 187 line 6: expand "shrunk" to "space has been shrunk".

Errata to Seventh Printing, 2016 (to be corrected in Eighth Printing, 2020):
[With thanks to Damir Ferizović, Daehyun Kim, and Martin Yang.]

- Page 33, line 7: after "for fixed Borel $S \subseteq \mathbf{R}$ ", add "with $\mathbf{P}(Y \in S)>0$ ".
- Page 36 middle: replace the second " $\sum_{k=1}^{\infty} \mathbf{P}\left(B_{2 k}\right)$ " with " $\sum_{k=1}^{\infty}(1 / 4)$ ".
- Page 40, Exercise 3.6.18, line 2: better to change "lim" to "lim inf" to avoid issues of the existence of the limit. (Alternatively, the current definition of S_{x} can be taken to mean the limit exists and is $\leq x$.)
- Page 53, Exercise 4.5.10, first line: replace "i.i.d." with "independent", to make the statement stronger, and also because i.i.d. hasn't been introduced yet.
- Page 76, equation (7.2.2): should end with a comma, not a period.
- Page 77, lines 11 and 12 (twice): replace the word "obtaining" with the word "reaching" (for greater clarity).
- Page 85 , line -6 : strictly speaking, " $\left\{I_{i j}^{(1)}\right\}_{i, j \in S}$ " should be " $\left\{I_{i j}^{(1)}\right\}_{j \in S}$ ".

Errata to Sixth Printing, 2013 (to be corrected in Seventh Printing, 2016):

[With thanks to Anthony Brooms, Geoffrey Brown, Julian Ziegler Hunts, Owen Lyne, Byron Schmuland, Adrian Torchiana, and Peter Tye.]

- Page 3 middle, change "not used elsewhere in this book" to "not required elsewhere in this book".
- Page 5 middle, change "mathematical rigorous" to "mathematically rigorous".
- Page 21, line 8: " $A \subseteq \mathcal{F}$ " should be " $A \in \mathcal{F}$ ".
- Page 23, line -3: "a algebra" should be "an algebra".
- Page 29, eqn (3.1.2): " $X(w)$ " should be " $X(\omega)$ ".
- Page 40, Exercise 3.6.13, line 2: " P " should be " \mathbf{P} ", and " X " should be " X_{n} ", and "for all i " should be "for all n ".
- Page 46: omit the last two sentences (since we are already assuming that the X_{n} are non-negative).
- Page 57, line -4: " μ_{y} " should be " μ_{Y} ".
- Page 87, second half:"Sterling" should be "Stirling" (twice).
- Page 71, Exercise 6.3.1: Replace the first sentence by, "Let μ have density $4 x^{3} \mathbf{1}_{0<x<1}$, and let ν have density $\frac{1}{2} x \mathbf{1}_{0<x<2}$."
- Page 119 , lines $1-2$: since Y is actually defined as a function on $(0,1)$, it is better to replace " $m(Y(n+1)-Y(n))<\infty$ discontinuities of size $\geq 1 / m$ within the interval ($n, n+1]$ " with " $m\left[Y\left(1-\frac{1}{n}\right)-Y\left(\frac{1}{n}\right)\right]<\infty$ discontinuities of size $\geq 1 / m$ within the interval $\left(\frac{1}{n}, 1-\frac{1}{n}\right)$ ".
- Page 121, Exercise 10.3.2, line 2: omit the comma just before the period.
- Page 134: the last three lines of the proof of Theorem 11.2.2 are poorly phrased, since $\phi_{n}(t)$ might be complex, and should be replaced by e.g.: " $n \rightarrow \infty$. This means that
for any $\epsilon>0$, for sufficiently large n we have $\left|n q_{n}\right| \leq \epsilon$. Hence, as $n \rightarrow \infty$ the limit is multiplied by $e^{n q_{n}}$, which becomes arbitrarily close to 1 and hence can be ignored."
- Page 147, lines 17-18: " μ " and " ν " should be interchanged (twice).
- Page $178,2 / 3$ of the way down the page: "only if" and "if" should be interchanged.
- Page 181, Exercise 15.2.7: change "a Markov chain" to "an irreducible Markov chain".
- Page 183, Exercise 15.3.3, line 3: change " A_{0} " to " A_{1} ".
- Page 187, line -12: " $\frac{1}{n} \mathbf{E}\left(Y_{\frac{\lfloor s n\rfloor}{n}}^{(n)} Y_{\frac{\lfloor t n\rfloor}{n}}^{(n)}\right)=\mathbf{E}\left(\left(Z_{1}+\ldots+Z_{\lfloor s n\rfloor}\right)\left(Z_{1}+\ldots+Z_{\lfloor t n\rfloor}\right)\right)$ " should be " $\mathbf{E}\left(Y_{\frac{\lfloor s n\rfloor}{n}}^{(n)} Y_{\frac{\lfloor t n\rfloor}{n}}^{(n)}\right)=\frac{1}{n} \mathbf{E}\left(\left(Z_{1}+\ldots+Z_{\lfloor s n\rfloor}\right)\left(Z_{1}+\ldots+Z_{\lfloor t n\rfloor}\right)\right)$ ".
- Page 192, Exercise 15.6.8, line 2: change " $\int_{0}^{t} b B_{s} d s "$ to " $\int_{0}^{t} b d B_{s}$ ".

Errata to Fifth Printing, 2011 (corrected in Sixth Printing, 2013):

[After teaching from this book again after a five-year break, and also with thanks to Daniel Firka, Julian Ziegler Hunts, Jianlin Zou, Luis Mendo Tomás, and Sebastiaan Janssens.]

- Page 19, Exercise 2.5.6: change "finite unions" to "finite disjoint unions", and note that \mathbf{P} is extended to A_{n} by finite additivity.
- Page 20: for clarity, replace "distributions" by "measures" (twice).
- Page 22, line 2: change "finite unions" to "finite disjoint unions".
- Page 25, line 1: "setset" should be "subset".
- Page 35, line 4: "considering" should be "consider".
- Page 36, line 9: missing "\}".
- Page 36, several places: omit extra $\{\ldots\}$, e.g. " $\left\{H_{n} \cap H_{n+1}\right\}$ " should be simply " $H_{n} \cap$ H_{n+1} ", etc.
- Page 39, Exercise 3.6.5: for clarity, assume $\mathcal{F}=2^{\Omega}$.
- Page 39, line 4: "P" should be "P".
- Page 40, Exercise 3.6.11: the notation " \sim " has not yet been introduced, so " $X_{n} \sim$ Uniform $(\{1,2, \ldots, n\})$ " should be replaced by " $\mathbf{P}\left(X_{n}=i\right)=1 / n$ for $i=1,2, \ldots, n$ ".
- Page 40, Exercise 3.6.13: should be moved to LATER (since it uses expectation), e.g. as Exercise 4.5.16. (And " E " should be " \mathbf{E} ", twice.) It could be replaced by e.g.

Let X_{1}, X_{2}, \ldots be defined jointly on some probability space (Ω, \mathcal{F}, P), with $\sum_{i=1}^{\infty} i^{2} \mathbf{P}(i \leq X<i+1) \leq C<\infty$ for all i. Prove that $\mathbf{P}\left[X_{n} \geq\right.$ n i.o. $]=0$.

- Page 46, statement of Theorem 4.2.2: assume the X_{n} are non-negative, and then omit " $\mathbf{E}\left(X_{1}\right)>-\infty$ " (since we haven't yet defined expected values of general random variables).
- Page 46, first line of proof: for greater clarity, replace "(3.1.6)" by "Proposition 3.1.5.(iii)" (Similarly page 107, line 5.)
- Page 46, lines -3 and -2 : "E" should be boldface (twice).
- Page 49, exercise 4.3.3(a): change " Z^{+}and $Z^{-"}$ to " $Z^{+}-Z^{-}$".
- Page 54, Exercise 4.5.13(d): replace " $\mathbf{E}(X)<\infty$ " by " $0<\mathbf{E}(X)<\infty$ ".
- Page 58, Lemma 5.2.1: note that the converse also holds.
- Page 60: introduce the abbreviations "WLLN" and "SLLN".
- Page 65, Exercise 5.5.9, Hint: specify that $y>0$ for the first part, too.
- Page 66, Exercise 5.5.13, Hint: " r different sums" should be " $r+1$ different sums".
- Page 71, Exercise 6.3.1 is a repeat of Exercise 4.5.1 (page 52), and should be replaced by e.g.:

Let μ have density $x^{3} \mathbf{1}_{0<x<1}$, and let ν have density $x \mathbf{1}_{0<x<2}$.
(a) Compute $\mathbf{E}(X)$ where $\mathcal{L}(X)=\frac{1}{3} \mu+\frac{2}{3} \nu$.
(b) Compute $\mathbf{E}\left(Y^{2}\right)$ where $\mathcal{L}(Y)=\frac{1}{6} \mu+\frac{1}{3} \delta_{2}+\frac{1}{2} \delta_{5}$.
(c) Compute $\mathbf{E}\left(Z^{3}\right)$ where $\mathcal{L}(Z)=\frac{1}{8} \mu+\frac{1}{8} \nu+\frac{1}{4} \delta_{3}+\frac{1}{2} \delta_{4}$.

- Page 76, Exercise 7.2.5(d): for clarity, prepend "Use the fact that $s(c)=1$ to".
- Page 85, statement of Theorem 8.1.1, displayed eqn: " $n u_{i_{0}}$ " should be " $\nu_{i_{0}}$ ".
- Page 114 , line -1 : " $\beta^{\alpha "}$ should be " $\beta^{-\alpha "}$.
- Page 115, line 1: " t^{x-1} " should be " $t^{\alpha-1}$ ".
- Page 117, line 2: for clarity, change "distributions" to "measures".
- Page 125 , middle of page, displayed equations: final inequality (\leq) is actually an equality ($=$).
- Page 144, line -5 : omit the second "then".
- Page 159, Exercise 13.4.5: Assume $\mathbf{P}\{1\}=\mathbf{P}\{2\}=\mathbf{P}\{3\}=1 / 3$.
- Page 159, Exercise 13.4.6: Change " $\mathbf{E}(X \mid \mathcal{G})$ and $\mathbf{E}(Y \mid \mathcal{G})$ need not be independent"
to "we might have $\mathbf{E}(X Y \mid \mathcal{G}) \neq \mathbf{E}(X \mid \mathcal{G}) \mathbf{E}(Y \mid \mathcal{G})$ ".
- Page 165, line 3: "Theorem 14.1.3" should be "Theorem 14.1.5".
- Page 171: for clarity, replace "for a submartingale, the same inequality holds" by "for submartingales, similarly inequalities hold".
- Page 172, line -2 :"Then follows" should be "It then follows".
- Page 173, Exercise 14.4.5: Assume $\mathbf{E}|Z|<\infty$.
- Page 181, Theorem 15.2.3: " $\rightarrow 0$ " should be " $=0$ ".
- Page 187: $O(1 / n)$ should be $O(1 / \sqrt{n})$ (three times).
- Page 192: Exercise 15.6.7: For greater generality, replace " $X_{t}=a t+b B_{t}$ " by " $X_{t}=$ $X_{0}+a t+b B_{t}$ " in part (a), and " $N\left(a t, b^{2} t\right)$ " by " $N\left(X_{0}+a t, b^{2} t\right)$ " in part (b).
- Page 192: Exercise 15.6.8: Replace " $\int_{0}^{t} s d s$ " by " $\int_{0}^{t} a d s "$.
- Page 206 middle, "it suffice to assume" should be "it suffices to assume".

Errata to Fourth Printing, 2010 (corrected in Fifth Printing, 2011):

[With thanks to David Alexander, Martin Hazelton, Andrea Lecchini-Visintini, Gareth Roberts, Igal Sason, Mohsen Soltanifar, and Albert Zevelev.]

- p. 13, line 3 of proof of Lemma 2.3.11: " \mathcal{B}_{m}^{C} " should be " B_{m}^{C} ".
- p. 23, Exercise 2.7.3, part (a): "an semialgebra" should be "a semialgebra".
- p. 31, line 5: " $f^{-1}((\infty, x])$ " should be " $f^{-1}((-\infty, x])$ ".
- p. 44 , line 1, and again on line 19: " $\sum_{j} y_{j} \mathbf{1}_{B_{i}}$ " should be " $\sum_{j} y_{j} \mathbf{1}_{B_{j}}$ ".
- p. 48 , line -5 : "non non-negative" should be "not non-negative".
- p. 66, line -8: "Holder" should be "Jensen".
- p. 69, first line of Proposition 6.2.1: " μ_{I} " should be " μ_{i} ".
- p. 74, line 7: " $F(z)$ for each $z \in \mathbf{R}$ " should be " $F(x)$ for each $x \in \mathbf{R}$ ".
- p. 85 , displayed equation in Theorem 8.1.1: " $X_{=} i_{1}$ " should be " $X_{1}=i_{1}$ ".
- p. 106, line 15: "integral" should be "integrable".
- p. 106, line 17: " $\mathbf{E}(X)$ " should be " $\mathbf{E}\left(X_{0}\right)$ ".
- p. 106 , line -1 : " $E(Y)$ " should be " $\mathbf{E}(Y)$ ".
- p. 136, Exercise 11.3.2: " Y_{n} " should be " Y_{k} " (twice).
- p. 137, conclusion of Theorem 11.4.1: " $\mu \Rightarrow \mu$ " should be " $\mu_{n} \Rightarrow \mu$ ".
- p. 146, line -6 : " $m u_{\text {sing }}$ " should be " $\mu_{\text {sing }}$ ".
- p. 155 , middle: " $\left\{\left\{X_{1} \leq a\right\} \cap\left\{X_{2} \leq b\right\}: a, b \in \mathbf{R}\right\}$ " should be " $\sigma\left(\left\{\left\{X_{1} \leq a\right\} \cap\left\{X_{2} \leq\right.\right.\right.$ $b\}: a, b \in \mathbf{R}\})$ ".
- p. 171, line 11: "E $\left(\lim _{M \rightarrow \infty} U_{M}^{(\alpha, \beta)}=\infty\right)=\infty$ " should be " $\mathbf{E}\left(\lim _{M \rightarrow \infty} U_{M}^{(\alpha, \beta)}\right)=$ ∞ ".
- p. 178, line -6 : " $\left.\left\{X_{t_{1}}, \ldots, X_{t_{k}}\right) \in H\right\}$ " should be " $\left\{\left(X_{t_{1}}, \ldots, X_{t_{k}}\right) \in H\right\}$ ".
- p. 192, Exercise 15.6.8: replace " $Z_{t}=\exp \left[-\left(a+\frac{1}{2} b^{2}\right) t+X_{t}\right]$ " with " $Z_{t}=\exp \left[-2 a X_{t} / b^{2}\right]$ ". (In fact, the first Z_{t} is also a martingale, but it is less useful than the second version.)
- p. 202, lines 14-15: to avoid subtleties about equivalent repeating decimals, perhaps replace " $c_{i}=4$ if $d_{i}=5$, while $c_{i}=5$ if $d_{i} \neq 5$ " with " $c_{i}=2$ if $d_{i} \geq 5$, while $c_{i}=7$ if $d_{i}<5$ ". (This is not strictly necessary, but it makes the argument a bit cleaner.)
- p. 204, Exercise A.3.8: change " $\sum_{i=1}^{\infty}$ " to " $\sum_{i=2}^{\infty}$ " (twice), and " $\int_{1}^{\infty} "$ to " \int_{2}^{∞} ".
- p. 204, Exercise A.3.9: change " $\sum_{i=1}^{\infty}$ " to " $\sum_{i=3}^{\infty}$ " (twice).
- p. 207, second line of Exercise A.5.1: "equivalence class" should be "equivalence relation".

Errata to Second Printing, 2007 (corrected in Fourth Printing, 2010):

[With thanks to Orn Arnaldsson, Bent Jørgensen, Chris Mansley, Kohei Nagamachi, Patrick Rabau, Mohsen Soltanifar, Hermann Thorisson.]

- p. 19, Exercise 2.5.6, and also p. 22, proof of Lemma 2.6.2: replace " $A_{1}, A_{2}, \ldots \in \mathcal{J}$ " by " A_{1}, A_{2}, \ldots are finite unions of elements of \mathcal{J} ".
- p. 23, Exercise 2.6.4: " $\mathbf{P}(\emptyset)=1 "$ should be " $\mathbf{P}(\Omega)=1$ ".
- p. 23, Exercise 2.7.3, part (b): interchange "semialgebra" and "algebra". (Also, for stylistic improvement, swap parts (a) and (b).)
- p. 30, last line of proof of Proposition 3.1.5: " $\{X \leq x\}$ " should be " $\{Z \leq x\}$ ".
- p. 33, line 7: second " $\mathbf{P}(X \in T)$ " should be " $\mathbf{P}(Y \in S)$ ".
- p. 39, Exercise 3.6.8: exercise is correct, but special cases like" $d \leq b+c-a$ " and " $d>b+c-a$ " should be modified.
- p. 40, Exercise 3.6.14: insert "independent" before "non-negative".
- p. 74, the proof of Lemma 7.1.2 is sloppily written and should be replaced by:

Since F is right-continuous, we have that $\inf \{x ; F(x) \geq u\}=\min \{x ; F(x) \geq$ $u\}$, i.e. the infimum is actually obtained. It follows that $\phi(u) \leq x$ if and only if $u \leq F(x)$. Hence, since $0 \leq F(x) \leq 1$, we obtain that $\mathbf{P}(\phi(U) \leq x)=\mathbf{P}(U \leq F(x))=F(x)$.

- pp. 113-114: "Example 9.5.9" should be "Exercise 9.5.9", and similarly for 9.5.11 and 9.5.12.
- p. 114, Exercise 9.5.12: "characteristic function" should be "moment generating function".
- p. 118 middle, the three lines following Figure 10.1.2: replace " g " by " f " (five times).
- p. 118, line -5 : " $F(w) \geq b$ " should be " $F(z) \geq b$ ".
- p. 121, Exercise 10.3.5: "four conditions" should be "five conditions".
- p. 126, statement of Lemma 11.1.2: " $\phi(t)$ " should be " $e^{i t x " .}$
- p. 128 , line -7 : " π " should be removed from the equation.
- p. 131, line 9: "lim" should be "lim" (twice); " F_{n} " should be " $F_{n_{k}}$ " (twice); and " μ_{n} " should be " $\mu_{n_{k}}$ ".
- p. 136, lines 3-4: the sentence in brackets is somewhat misleading and should be revised or omited.
- p. 136, eqn (11.3.1): "1 $\left.\right|_{\mid Z_{n k} \geq \epsilon s_{n}}$ " should be "1 $\left.\right|_{\left|Z_{n k}\right| \geq \epsilon s_{n}}$ "
- p. 166, lines 6-7: "bets $\$ 1$ on tails, then if they win they bet $\$ 2$ on heads" should be "bets $\$ 1$ on heads, then if they win they bet $\$ 2$ on tails".
- p. 173, Exercise 14.4.1: should say " $\mathbf{P}\left(Z_{i}=1\right)=\mathbf{P}\left(Z_{i}=0\right)=1 / 2$ ", and " $X_{1}=$ $2 Z_{1}-1$ ".
- p. 174, Execise 14.4.12(a), Hint:" $\mathbf{P}(\tau \geq 3 m)$ " should be " $\mathbf{P}(\tau>3 m)$ ".

Errata to First Printing, 2006 (corrected in Second Printing, 2007):

[With thanks to Joe Blitzstein, Saad Siddiqui, Emil Zeuthen.]

- p. 9, line -10: "all intervals" should be "all subsets".
- p. 18, eqn. (2.5.2): " $P(B)$ " should be " $\mathbf{P}(B)$ ".
- p. 19, the last sentence in the proof of corollary 2.5.4 is questionable (since we may have $\left.D_{n} \notin \mathcal{J}\right)$, and should be replaced by:

It then follows from (2.5.5) that

$$
\mathbf{P}\left(\bigcup_{n} B_{n}\right)=\mathbf{P}\left(\bigcup_{n} D_{n}\right)=\mathbf{P}\left(\bigcup_{n} \bigcup_{i=1}^{k_{n}} J_{n i}\right)=\sum_{n} \sum_{i=1}^{k_{n}} \mathbf{P}\left(J_{n i}\right)
$$

On the other hand,

$$
B_{n}=\bigcup_{m \leq n} \bigcup_{i=1}^{k_{m}}\left(J_{m i} \cap B_{n}\right)
$$

and the union is disjoint, with $J_{n i} \subseteq B_{n}$, so

$$
\mathbf{P}\left(B_{n}\right)=\sum_{m \leq n} \sum_{i=1}^{k_{m}} \mathbf{P}\left(J_{m i} \cap B_{n}\right) \geq \sum_{i=1}^{k_{n}} \mathbf{P}\left(J_{n i} \cap B_{n}\right)=\sum_{i=1}^{k_{n}} \mathbf{P}\left(J_{n i}\right)
$$

and hence

$$
\sum_{n} \mathbf{P}\left(B_{n}\right) \geq \sum_{n} \sum_{i=1}^{k_{n}} \mathbf{P}\left(J_{n i}\right)=\mathbf{P}\left(\bigcup_{n} B_{n}\right)
$$

- p. 20, eqn. (2.5.10): " $\infty, x]$ " should be " $(-\infty, x]$ ".
- p. 22, line -10 : " P_{1} " should be " \mathbf{P}_{1} ", and " P_{2} " should be " \mathbf{P}_{2} ".
- p. 151, first line of Section 13.1: "We being" should be "We begin".
- p. 162, last line: " $X_{n}=5$ " should be " $X_{n}=-5$ ".
- p. 205, Exercise A.4.5: "contraction" should be "contradiction".
- p. 206, line 4: " $g(x) / h(x)$ " should be " $|g(x) / h(x)| "$.
- p. 206, line 7: "limsup" should be "lim".

ERRATA FOR THE ONLINE SOLUTIONS FILE:

[With thanks to Danny Cao, Felix Pahl, Byron Schmuland, and David Scott.]
[CORRECTED AND UPDATED by Xinyu Huo, August 2023.]

- Exercise 2.7.14(a): "for all $a \neq b$ " should be "for all $\{a, b\} \in \mathcal{J}$ ".
- Exercise 2.7.22(a): add a description of Ω, and extend \mathcal{F} to allow for separate subsets A and B, not just a single subset A.
- Exercise 3.6.6(a): solution is not quite correct (and will be revised).
- Exercise 3.6.16(c): in the displayed equation, " $\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)^{2}$ " should be " $2 \sum_{n=1}^{\infty}\left(\frac{1}{n}\right)^{2}$ ".
- Exercise 3.6.18: in the first displayed equation, " $\cap_{s=1}^{\infty} \cup_{N=m}^{\infty} \cap_{n=N}^{\infty}\left\{\frac{1}{n} \sum_{i=m}^{n} \mathbf{1}_{A_{i}} \leq\right.$ $\left.x+\frac{1}{s}\right\}$ " should instead be " $\cap s=1 \cap_{N=m}^{\infty} \cup_{n=N}^{\infty}\left\{\frac{1}{n} \sum_{i=m}^{n} \mathbf{1}_{A_{i}} \leq x+\frac{1}{s}\right\}$ ".
- Exercise 4.5.10: solution is not correct, and should be replaced by the one at: http://probability.ca/jeff/ftpdir/Ex4.5.10sol.pdf
Also, in the first expression for $\mathbf{E}\left(S^{2}\right)$, omit the factor of " 2 ".
- Exercise 7.4.6: In the displayed formula for $s_{c}(a)$, each " W_{n} " should be " W_{1} ", and each " S_{c} " should be " s_{c} ".
- Exercise 8.5.8: In lines 4 and 5, the second " $P_{i}(\cdots)$ " should be " $\mathbf{P}\left(\cdots \mid X_{1}=k\right)$ ".
- Exercise 8.5.10(a): Replace all sentences after the first with: "So, $\mathbf{P}_{i}\left(X_{n}=i_{0}\right.$ i.o. $)>0$, i.e. $\lim _{k \rightarrow \infty} \mathbf{P}_{i}\left(\#\left\{n \geq 1: X_{n}=i_{0}\right\} \geq k\right)>0$. So, from Lemma 8.2.2, $\lim _{k \rightarrow \infty} f_{i i_{0}}\left(f_{i_{0} i_{0}}\right)^{k-1}>$ 0 . This is only possible if $f_{i_{0} i_{0}}=1$. Hence, i_{0} is recurrent."
- Exercise 8.5.20(c): this is not quite correct as stated, since the chain might not be irreducible even on the state spaces S_{r}. But it is still true that there is at least one stationary distribution on each S_{r}, hence at least two stationary distributions in total.
- Exercise 9.5.14(a): answer should be 1 , not ∞.
- Exercise 13.4.6: solution is incorrect (and will be revised).
- Exercise 13.4.10: solution is incorrect (and will be revised). For a better example, let $\mathbf{P}(X=1, Y=1)=\mathbf{P}(X=1, Y=-1)=\mathbf{P}(X=-1, Y=2)=\mathbf{P}(X=-1, Y=$ $-2)=1 / 4$. Then X and Y are clearly not independent, but $\mathbf{E}(Y \mid X)=0=\mathbf{E}(Y)$.

