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Abstract

For random-walk Metropolis (RWM) and parallel tempering (PT) algorithms,
an asymptotic acceptance rate of around 0.234 is known to be optimal in cer-
tain high-dimensional limits. However, its practical relevance is uncertain due to
restrictive derivation conditions. We synthesise previous theoretical advances in
extending the 0.234 acceptance rate to more general settings, and demonstrate its
applicability with a comprehensive empirical simulation study on examples exam-
ining how acceptance rates affect Expected Squared Jumping Distance (ESJD).
Our experiments show the optimality of the 0.234 acceptance rate for RWM is
surprisingly robust even in lower dimensions across various proposal, multimodal
distributions that may not have an i.i.d. product density, and curved Rosen-
brock target distributions with nonlinear correlation structure. Parallel tempering
experiments also show that the idealized 0.234 spacing of inverse temperatures
may be approximately optimal for low dimensions and non i.i.d. product tar-
get densities, and that constructing an inverse temperature ladder with spacings
given by a swap acceptance of 0.234 is a viable strategy.

Keywords: Markov chain Monte Carlo, Metropolis algorithm, optimal scaling,
acceptance rate, parallel tempering
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1 Introduction

Markov chain Monte Carlo (MCMC) methods, such as the random-walk Metropolis
algorithm, are used to draw samples from complex high-dimensional target proba-
bility distributions. They enjoy strong theoretical asymptotic guarantees of accuracy,
converging to the target distribution in stationarity (Brooks et al., 2011; Robert and
Casella, 2004). However, they may also be inefficient and prohibitively slow to pro-
vide a good approximation of the target distribution they are sampling (Rosenthal,
1995). Therefore, the analysis of their running time is an important practical issue to
consider.

Roberts et al. (1997) proved an important result for independently and identically
distributed (i.i.d.) product target densities: in the state space high-dimensional limit
d → ∞, the asymptotic acceptance rate of a Metropolis algorithm is central to its
efficiency. Under their assumptions, an asymptotic acceptance rate of approximately
0.234 maximises the efficiency of a random-walk Metropolis (RWM) algorithm with
a Gaussian increment proposal distribution starting at stationarity. However, their
assumptions on the target and proposals are very restrictive. Many practical scenarios
often involve finite and relatively small dimensions. Additionally, many probability
distributions do not have densities of the i.i.d. product form, and for those that do,
sampling a one-dimensional target is much simpler than using RWM. A burgeoning
active research area is dedicated to showing that this figure still applies beyond these
assumptions, and much of this focuses on the i.i.d. product assumption.

Many papers have shown that the optimal average acceptance rate of 0.234 for
RWM holds greater generality than the assumptions used in Roberts et al. (1997). For
more general theoretical results, Sherlock (2013) replaces the restrictive i.i.d. product
target and Gaussian proposal setting of Roberts et al. (1997) with a set of “shell”,
relative variability, and eccentricity conditions on the target, eccentricity condition on
the jump distance matrix, and shell condition on the proposal. This framework does
not require a product form and is based on the geometric properties of the (log) target
distribution in high dimensions. Yang et al. (2020) makes the 0.234 result applicable to
targets with sparse dependency structures, such as those arising from Bayesian graphi-
cal models, using a set of sufficient conditions based on local dependencies and bounded
asymptotic behaviour of derivatives. We expand on these results in Section 2. The
0.234 acceptance rate in optimal scaling has also been shown to apply to the spacing
and swapping between inverse temperatures in the parallel tempering MCMC method
(Atchadé et al., 2011; Roberts and Rosenthal, 2014). That being said, there are some
cases in which 0.234 is not optimal, such as in the case of discontinuous targets (Neal
et al., 2012) where the optimal acceptance rate is approximately 0.1353. Additionally,
these results of optimality are still theoretical ideals, with required assumptions that
could be further relaxed, and in the limit of d → ∞ where the Markov chain converges
to a diffusion process.

Other relaxations of the 0.234 assumptions include: non-Gaussian proposals (Neal
and Roberts, 2011), discrete hypercube target distributions (Roberts, 1998), Gibbs
random fields (Breyer and Roberts, 2000), perturbations from product targets using
pre-conditioned proposals (Beskos et al., 2009), independent target components with
inhomogeneous scaling (Bédard, 2007; Bédard and Rosenthal, 2008; Roberts and
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Rosenthal, 2001), partial updates where not all components are updated at once
(Neal and Roberts, 2006), elliptical symmetric unimodal target densities (Sherlock
and Roberts, 2009), and infinite-dimensional target distributions with non-trivial
dependence structures (Mattingly et al., 2012).

These results are of great interest to practitioners who would like to understand
how to tune their MCMC algorithms to maximise their efficiency. Previous simulation
studies have been carried out on more general target distributions like products of
independent, non-identical components (Bédard, 2008; Roberts and Rosenthal, 2001),
and for the Markov modulated Poisson process (Sherlock et al., 2010), but there is
still a lack of thorough experimentation and guidance for how handy the 0.234 rule is
on realistic target distributions that may have lower or higher dimensionality and/or
multimodality. Our research examines how necessary these assumptions are for the
theoretical result to remain relevant: where can we relax some assumptions in lower
dimensions and still have the optimal acceptance rate of approximately 0.234, and
where can we not do this? And in the end, how applicable is the 0.234 figure for
the practitioner, who may want to use MCMC for complicated target distributions
beyond the necessary assumptions in finite dimensions? We thoroughly dissect various
aspects of the Metropolis algorithm and experiment with them, and in doing so, we
show empirically where the theoretical ideal value can still align with more realistic
scenarios.

We begin our paper with a description of the RWM and its optimal scaling frame-
work, as well as formally stating sufficient theoretical conditions for the 0.234 rule that
are most relevant to our work in Section 2. In Section 3, we describe RWM experiments
in low dimensions that show where an acceptance rate of 0.234 can be optimal in the
sense that it maximises the Expected Squared Jumping Distance (ESJD) for various
proposal and target densities which are not necessarily all i.i.d. product forms. Next,
we describe the parallel tempering method and its own optimal scaling framework in
Section 4, and show using experiments in Section 5 that the 0.234 swap acceptance
rate in parallel tempering may also be optimal in lower dimensions for the multivari-
ate Gaussian target density and a Gaussian mixture target density which is not of an
i.i.d. product form. Lastly, we discuss the implications of our findings in Section 6.

2 Random-Walk Metropolis Background

We first introduce the Metropolis algorithm and the Optimal Scaling framework. We
then discuss measures to evaluate the efficiency of MCMC algorithms, such as the
expected squared jumping distance, and explain how the asymptotic acceptance rate
of a MCMC algorithm is tied to the algorithm’s efficiency. Finally, we discuss some of
the conditions for the 0.234 acceptance rate to be optimal that are most relevant to
our work.

2.1 Metropolis Algorithm

A Metropolis algorithm (Metropolis et al., 1953) constructs a Markov chain
x(0),x(1), . . . . If the chain is constructed to be irreducible and aperiodic, it is guaran-
teed to have the target distribution π as its unique stationary distribution. This means
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that as the number of steps t becomes large, the distribution of x(t) converges to π.
Therefore, after an initial burn-in period, the subsequent states of this single, long
chain can be used as a sample from the target distribution π. When taking each step
in the Markov chain, we generate a new state y = x(t) + ϵ where ϵ is sampled from
an increment “proposal” density Q having Q(ϵ) = Q(−ϵ) for all ϵ in its domain and

accept this new state with probability α(x,y) given by α = min

{
1,

π(y)

π(x)

}
, where, by

a common abuse of notation, we let π(·) also denote the probability density function
of the target distribution π. If the proposed value is accepted, we set the next state
x(t+1) = y. Otherwise, we set x(t+1) = x(t).

2.2 Optimal Scaling Framework

Optimal Scaling (Roberts et al., 1997; Roberts and Rosenthal, 2001) is one of the most
successful frameworks for performing asymptotic analysis of high-dimensional MCMC
methods, and provides mathematically-grounded guidance on how to best optimise
MCMC performance by tuning the “scaling” parameter(s) of the proposal distribution.
Typically, a multivariate Gaussian distribution with mean 0 is used as the increment
proposal distribution. The scaling of the Gaussian proposal is then given by a scaling
factor σ, and this is often used as a variance σ2 that is applied to the d × d identity
matrix Id. So, ϵ ∼ N (0, σ2Id). If the proposal’s variance is too small, many proposed
steps are accepted by the algorithm, but each step does not explore the state space
much. Vice versa, if the proposal’s variance is too large, too few proposed steps are
accepted, leading to slow exploration of the state space since the algorithm stays at
a state for too long. Therefore, the proposal’s variance is crucial to the performance
of the algorithm; the optimal scaling should balance the exploration of new areas in
the state space with exploiting high-density areas of the target distribution. Different
Metropolis algorithms have shown to have different optimal choices of the proposal
distribution variance, σ2.

We next discuss how to evaluate the efficiency of an MCMC algorithm for deter-
mining optimal scaling. A very popular measure of efficiency both theoretically (e.g.
Sherlock (2013); Roberts and Rosenthal (2014); Yang et al. (2020)) and in practice (e.g.
Pasarica and Gelman (2010); Sherlock et al. (2015)) is the Euclidean Expected Squared
Jumping Distance (ESJD) metric which we use for our experiments. The expected
squared jumping distance measures how far, in expectation, the MCMC chain moves
in a single iteration. For the standard random-walk Metropolis algorithm, we define
this as

E
[∥∥∥x(t+1) − x(t)

∥∥∥2] ≈ 1

n− 1

n−1∑
i=1

∥∥∥x(t+1) − x(t)
∥∥∥2 (1)

where n is the total number of iterations of the algorithm. Maximising the ESJD
aligns with minimizing the first-order auto-correlation of the Markov chain and sub-
sequently maximises efficiency if the higher-order auto-correlations are monotonically
increasing relative to the first-order auto-correlation (Pasarica and Gelman, 2010;
Yang et al., 2020). It is worth mentioning that ESJD primarily measures local conver-
gence performance. Because heavy-tailed targets disrupt the monotonic relationship
between first-order and higher-order autocorrelations, achieving global convergence
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for heavy-tailed targets requires maximising an adapted version of ESJD (Kamatani,
2020). However, we do not consider heavy-tailed targets in this work, so the working
definition of ESJD is sufficient.

There are other notions of efficiency of a Markov chain, but in the high-dimensional
limit d → ∞, if the moment conditions in Assumption 2.1 holds, the chain converges
to a diffusion process, and all efficiency measures are effectively equivalent (Roberts
et al., 1997; Roberts and Rosenthal, 2001). A key result of these referenced papers is
that, given a Metropolis algorithm with a Gaussian increment proposal distribution

Q = N (0, ℓ2

d Id) where ℓ > 0 is a fixed scaling constant and Id is the identity matrix,
maximising the diffusion’s speed measure h(ℓ), which is a function of the scaling con-
stant ℓ, yields the most efficient asymptotic diffusion. Furthermore, the speed measure
has a clear relation to a much simpler quantity to tune for: the asymptotic acceptance
rate of the proposed new states (moves) of the algorithm, defined as

a = lim
n→∞

# accepted moves

n
.

Both the speed measure h(ℓ) and asymptotic acceptance rate a(ℓ) are functions of
the scaling constant ℓ. Given the restrictive conditions mentioned in Section 2.3, the
scaling constant ℓ that maximises the speed measure h(ℓ) corresponds to an asymptotic
acceptance rate a(ℓ) of approximately 0.234. Hence, an asymptotic acceptance rate of
approximately 0.234 should necessarily optimise a measure of efficiency such as the
ESJD of the algorithm.

2.3 Theoretical Assumptions for Optimality of a 0.234
Acceptance Rate

Certain work has shown that under restrictive assumptions, a 0.234 acceptance rate
is asymptotically optimal for random-walk Metropolis algorithms in certain high-
dimensional limits. We briefly list the theoretical assumptions of these works that are
most relevant to our simulations. We first describe the seminal result of Roberts et al.
(1997) alluded to in the introduction in full.
Assumption Set 2.1. (Roberts et al. (1997)) Let x be a random variable from the tar-

get density π. The target distribution has an i.i.d. product density π(x) =
∏d

i=1 f(xi).
The component density f : R → R+ satisfies the following regularity conditions:

1. f is positive and twice continuously differentiable on its support.
2. The derivative of its logarithm, f ′/f , is Lipschitz continuous.
3. The following moment conditions hold:

Ef

[(
f ′(X)

f(X)

)8
]
< ∞ and Ef

[(
f ′′(X)

f(X)

)4
]
< ∞ (2)

Under the conditions in Assumption 2.1, Roberts et al. (1997) showed that for an
RWM algorithm with a Gaussian proposal distribution starting in stationarity, the
sped-up process converges to a limiting Langevin diffusion. Maximizing the speed of
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this limiting process, in turn, corresponds to tuning the algorithm to an asymptotic
acceptance rate of approximately 0.234.

The Roberts et al. (1997) result works because an i.i.d. product target looks locally
the same no matter which coordinate you observe. Then, the analysis of Sherlock
(2013) shows that a similar homogeneity emerges for a much wider class of targets
once the dimension is large.
Assumption Set 2.2. (Sherlock (2013)) Let x be a random variable from the target
density π, M(x) = ||∇ log π(x)|| be the norm of the gradient of the log target, and
H(x) = −∇2 log π(x) be the negative Hessian matrix of the log target. The primary
conditions are:

1. Target weak shell. There exist sequences {M (d)} and {H(d)}, as d → ∞:

M (d)(x(d))

M (d)

p−→ 1 and
H(d)(x(d))

H(d)

p−→ 1 (3)

2. Hessian relative variability. The Hessian is locally stable, meaning it does not
vary significantly on the scale of a typical proposal jump. Formally, for any fixed
µ > 0 and δ > 0, and for a standard Gaussian random vector z(d) ∼ N (0, Id)
independent of the target state x(d), we require that as d → ∞,

Px,z

(
1

H(d)

∣∣∣∣(z(d))T

∆

(
x(d), tµ

M (d)

H(d)
z(d)

)
z(d)

∣∣∣∣ < δ for all t ∈ [0, 1]

)
→ 1. (4)

3. Target eccentricity. The curvature is not disproportionately concentrated in any
single direction. Denoting the eigenvalues of H(x) by βi(x):

maxi |βi(x
(d))|∑d

j=1 βj(x(d))

p−→ 0. (5)

4. Proposal shell. There exists a sequence {k(d)u } such that the sequence of d-
dimensional spherically symmetric proposals {Q(d)} satisfies this as d → ∞:

||Q(d)||
k
(d)
u

m.s.−−−→ 1. (6)

5. Jump distance matrix eccentricity. If the ESJD is defined with respect to a
positive definite symmetric matrix T(d) as E[(Y(d))TT(d)Y(d)], then the eigenval-
ues of this jump distance matrix must be similarly well-behaved. Let τi(d) be the
eigenvalues of T(d). When d → ∞:

maxi τi(d)∑d
j=1 τj(d)

→ 0. (7)

Put together, these geometric regularities recover the same weak-convergence proof
as Roberts et al. (1997) but with weaker assumptions on the target.
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3 Random-Walk Metropolis Simulations

In this section, we explore the applicability of the 0.234 acceptance rate figure for RWM
algorithms using several practical RWM examples in lower dimensions. We begin with
simple examples where the target densities meet all the key conditions in Roberts
et al. (1997) (provided as Assumption 2.1) required for the 0.234 acceptance rate to
be optimal. Next, we investigate examples that do not use Gaussian proposal distri-
butions, and then we explore other target densities that may lack these assumptions,
such as smoothness or the i.i.d. product form. We estimate the Expected Squared
Jumping Distance (ESJD) of the algorithm as a metric of the algorithm’s efficiency as
mentioned in Section 2.2 and aim to see under what conditions an acceptance rate of
approximately 0.234 maximises the ESJD for various target and proposal distributions
in lower dimensions.

Our experimental procedure is as follows: we run RWM simulations using (except
for Section 3.2) a Gaussian proposal distribution

Q(y | x) = N (y | x, σ2Id) (8)

where σ is a proposal scaling factor, or σ2 can be thought of as a variance, and Id
is the d-dimensional identity matrix. We run 40 different RWM simulations where
each simulation has a different scaling factor, and each simulation has a burn-in of
at least 1,000 steps before taking at least 200,000 steps. It is important to note that
functions of acceptance rates are somewhat flat around the optimal values and that
the values and figures reported are still prone to random error inherent in a Monte
Carlo simulation. Therefore, we repeat this procedure over at least 20 computer seeds
and average the results to reduce random error. This procedure is applied in each
subsection and specific simulation details may be mentioned in a subsection if the
experiment used more than these minimum values.

3.1 Simpler Examples: Gamma and Beta i.i.d. Targets

We begin with simpler examples demonstrating that the 0.234 acceptance rate is still
roughly optimal for lower dimensions with any i.i.d. product target distribution and a
Gaussian proposal. As mentioned in Section 2, Roberts et al. (1997) proved the 0.234
optimal acceptance rate for i.i.d. product target distributions with a standard Gaussian
proposal distribution in the infinite-dimensional limit, and Roberts and Rosenthal
(2001) and Bédard (2008) extended this with MCMC simulations showing that with
a i.i.d. product target distribution and Gaussian proposal, the 0.234 acceptance rate
seems approximately optimal for dimensions as low as 10. Our experiment provides
further evidence for this being the case, and we extend this with simulations for
d = 2, 5. We present two i.i.d. target densities π1, π2 with different single-dimension
component densities f1, f2:

π1(x) =

n∏
i=1

f1(xi), f1(x) = Gamma(x | 3, 2), (9)
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π2(x) =

n∏
i=1

f2(xi), f2(x) = Beta(x | 3, 2) (10)

The first example sets f1 with shape parameter 3 and scale parameter 2, and the
second example sets f2 with shape parameters 3 and 2. We use a multivariate Gaussian
with a mean of 0 as the increment proposal distribution in both cases. We run this
experiment in dimensions d ∈ {2, 5, 10, 30, 50, 100}.

Table 1: Empirical optimal RWM acceptance rates (i.e., maximizing
ESJD) for i.i.d. product targets with a Gaussian proposal.

Target Density d = 2 d = 5 d = 10 d = 30 d = 50 d = 100

π1: i.i.d. Gamma(3, 2) 0.3036 0.2378 0.2199 0.2101 0.2141 0.2140
π2: i.i.d. Beta(3, 2) 0.3903 0.2937 0.2561 0.2319 0.2248 0.2159

The resulting ESJD-maximising acceptance rates are summarised in Table 1 and
the i.i.d. Beta target has its trends of ESJD versus acceptance rate with different
dimensions displayed in Figure 1. For the Gamma target, the optimal acceptance rate
drops from 0.304 at d = 2 to around 0.21 once d ≥ 10; for the Beta target they fall
from 0.390 to around 0.22 over the same range. Figure 1 confirms that the ESJD
curves have a moving plateau towards a centre slightly below the classical 0.234 value
as the dimension grows. Our simulation provides further evidence that the optimal
acceptance rate for maximizing ESJD is approximately 0.234 even in low dimensions.

Fig. 1: ESJD vs. acceptance rate for the i.i.d. Beta(3, 2) target distribution π2 under
RWM with a Gaussian proposal in dimensions d ∈ {2, 5, 10, 30, 50, 100} from top-left
to bottom-right. Red dotted line indicates an acceptance rate of 0.234.

Since most ESJD versus acceptance rate plots look fairly similar and have a similar
progression as dimension changes, the full set of curves for ESJD versus acceptance
rate plots for other subsections are in Appendix A, including the results for the i.i.d.
Gamma in Figure 9. As an aside, because the plateau widens appreciably in higher
dimensions, the coarse 40-point grid pinpoints the optimum to approximately ±0.01.
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3.2 Non-Gaussian Proposal Densities

Next, we investigate the efficacy of different proposal distributions for the Metropolis
algorithm. One of the conditions assumed by the 0.234 theorem of Roberts et al. (1997)
is the use of a multivariate Gaussian increment proposal distribution Q = N (0, σ2Id).
The additional results in Roberts and Rosenthal (2001) depend on the assumptions
of light-tailed proposals. In contrast, Jarner and Roberts (2002) extend this analy-
sis by examining the behaviour of the algorithms with heavy-tailed proposals. They
find that, unlike the diffusion behaviour seen with light-tailed proposals, heavy-tailed
proposals lead to a different dynamic characterized by abrupt movements followed
by periods of inactivity. Furthermore, Neal and Roberts (2011) investigated optimal
scaling results for heavy-tailed proposal distributions such as the Cauchy distribu-
tion, and spherical proposal distributions of fixed radius. In their RWM simulation
study with three different continuous i.i.d. product target densities, both the Gaus-
sian and Cauchy proposals had an estimated asymptotically optimal acceptance rate
of approximately 0.234 in d = 100, and a spherical proposal with a fixed radius of 2.38
achieved an optimal acceptance rate of about 0.234 in d = 2 and d ≥ 10. Finally, Sher-
lock (2013) proved that proposal distributions following a geometric “shell” condition
from Assumption 2.2 (6) should yield an optimal acceptance rate of approximately
0.234 when sampling from a suitable target. As both the Laplace and Uniform pro-
posals satisfy this condition, the 0.234 rule should hold for high dimensions, and our
experiments serve to verify this theoretical prediction in lower dimensions.

We experiment with two different proposal distributions in d ∈ {2, 5, 10, 20, 50, 100}
and set the target density π3 to a standard multivariate Gaussian:

π3(x) = N (x | 0, Id)

QL(y | x) ∝
d∏

i=1

exp

(
−|xi|

σ

)
, QU (y | x) =

d∏
i=1

I
[
|yi − xi| ≤ b

2

]
b

(11)

The first proposal distribution we consider is the multivariate Laplace distribution,
which may also be referred to as the double exponential distribution. We use location
parameter µ = 0 and covariance parameter Σ = σ2Id, with σ to be chosen. We also
consider an example with the uniform proposal distribution within the closed interval[
xi − b

2 , xi +
b
2

]
for each component i, where b > 0 is the interval length.

Table 2: Empirical optimal RWM acceptance rates across dimen-
sions for different proposal distributions targeting a standard
multivariate Gaussian.

Proposal d = 2 d = 5 d = 10 d = 20 d = 50 d = 100

QL: Laplace 0.3780 0.3036 0.2841 0.2570 0.2429 0.2377
QU : Uniform 0.3194 0.2516 0.2391 0.2368 0.2365 0.2316

As observed in Table 2 and the corresponding Figures 10, 11 in Appendix A,
the optimal acceptance rates for both the Laplace and Uniform proposals exhibit a
clear trend. In low dimensions, the optimal rate is significantly higher than 0.234,
but converges towards 0.234 from above as the dimension increases. For the Uniform
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proposal, the optimal rate is already approximately 0.239 at d = 10, and for both
proposals, the rates are close to the high-dimensional limit for d ≥ 20.

These empirical findings provide strong validation for the generalized theory of
optimal scaling. While the foundational result of Roberts et al. (1997) was derived for
Gaussian proposals, the more general criteria from Sherlock (2013), summarized in
Assumption 2.2, extend this theory. The key requirement on the proposal is the shell
condition (6) that requires the norm of the proposal vector to concentrate around a
constant in high dimensions. Both the multivariate Laplace and Uniform distributions
used here are spherically symmetric and satisfy this condition. The theory therefore
predicts that the 0.234 acceptance rate should indeed be asymptotically optimal when
using these proposals on a suitable target. Our results confirm this prediction, and
characterize the finite-dimensional behaviour, demonstrating that convergence to the
0.234 optimum occurs from above for these proposals.

3.3 Multimodal Target Densities

In this subsection, we investigate target distributions with multimodal densities. Many
real-world probability and data distributions are multimodal, and standard RWM
algorithms may struggle to explore all the modes of a multimodal distribution in a
reasonable amount of time particularly when the modes are far apart. Additionally,
multimodal densities may not necessarily fall under the i.i.d. product umbrella of
target densities, and even if they do, it is debatable how relevant the 0.234 rule is in
these cases. For example, a RWM algorithm may achieve a 0.234 acceptance rate in
its run over many iterations and yet completely fail to escape a mode to explore other
modes. We illustrate this with Figure 2, where we attempt to draw 10 million samples
from a multimodal distribution with three modes but fail to escape the central mode.

Fig. 2: Histogram and traceplot of 10 million samples drawn from a multimodal single-
dimensional target density. The true density values are traced with the dotted lines.

When we have widely-separated modes, a RWM with the Gaussian proposal dis-
tribution struggles to reach the other modes in finite time regardless of the proposal
scaling and the dimension of the target distribution. Therefore, for these multimodal
target density experiments, we deliberately set the modes to be close enough to each
other so that a RWM still mixes between the modes reasonably often. We list out the
various target densities before detailing the experimental results.
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3.3.1 The “Rough Carpet” Target Density

First, we examine a simpler i.i.d. product density. Our first multimodal distribution
has the form

π4(x) =

d∏
i=1

f4(xi), f4(x) = 0.5N (x|µ1, 1) + 0.3N (x|µ2, 1) + 0.2N (x|µ3, 1) (12)

where the single component density f3 is a one-dimensional density with three modes
at (µ1, µ2, µ3) = (−5, 0, 5) and N (x|µi, 1) indicates the density of the univariate
Gaussian distribution at point x with mean µi and variance 1. This forms a “rough
carpet”-like appearance for the target distribution when we take the product of this
single-component density over many dimensions (see the visualization of the first two
components in Figure 3 for an example). Since we have 3d modes, the density val-
ues at each mode may not be very high. Yet, since this is a i.i.d. product form, the
theoretical result of 0.234 being the optimal acceptance rate should also apply.

Fig. 3: Density of the first two dimensions of the “rough carpet” target distribution
with MCMC samples from one RWM simulation plotted in red. One out of every 200
MCMC samples drawn are plotted.

3.3.2 The “Rough Carpet” Target Density: Inhomogeneously
Scaled Components

Next, we examine a multimodal distribution with a density of the form

π5(x) =

d∏
i=1

Cif5(Cixi), f5(x) = 0.5N (x|µ1, 1)+0.3N (x|µ2, 1)+0.2N (x|µ3, 1). (13)

Note that f5 = f4, so this density π5 is a more general form of π4 by including
inhomogeneous component-wise scaling factors Ci, where Ci > 0 and E(Ci) = 1 and
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Var(Ci) < ∞. This inhomogeneously-scaled i.i.d. product target density was discussed
by Roberts and Rosenthal (2001), which proved the extension of the 0.234 asymptot-
ically optimal acceptance rate to this case. We independently sample the component
scaling factors Ci ∼ Uniform[0.02, 1.98].

3.3.3 A Tale of Three Mixtures

The above “rough carpet” distributions are multimodal, but notice that they still
follow the general product form π(x) =

∏d
i=1 f(xi). Here, we examine a distribution

that does not have this product assumption at all; instead, we have a weighted sum of
densities as our target density. We examine a mixture of three Gaussians; a multimodal
distribution with just three modes regardless of the number of dimensions. The density
is

π6(x) = w1N (x|µ1,Σ1) + w2N (x|µ2,Σ2) + w3N (x|µ3,Σ3) (14)

where we have non-negative scalar weights wi ≥ 0 such that w1+w2+w3 = 1, and N
is the density function of a multivariate Gaussian with mean µi ∈ Rd and covariance
matrix Σj ∈ Rd×d.

Fig. 4: A histogram and traceplot of the first component from one of the simulations
in the three mixture target distribution experiment after 100,000 iterations.

For these experiments, we set the weights w1 = w2 = w3 = 1
3 , the covariances

Σ1 = Σ2 = Σ3 = Id, and set the means µ1 = (ϵ, 0, 0, . . . , 0),µ2 = (0, 0, . . . , 0),µ3 =
(−ϵ, 0, 0, . . . , 0) for some constant ϵ ∈ R, i.e. just varying the first component of the
means and setting the other components of the means to 0. As mentioned (refer to
Figure 2), we choose the constant ϵ = 5.0 in the first dimension after observing via
traceplots that jumping between modes still happens frequently enough. We refer the
reader to Figure 4 for an example histogram and traceplot to illustrate how the Markov
chain explores the three modes.

3.3.4 A Tale of Three Mixtures: Inhomogenous Scaling Factors

We repeat our experiment with inhomogeneous scaling factors applied to each
Gaussian mode. Concretely, we instantiate our target density as

π7(x) =

3∑
k=1

wk · (
d∏

j=1

Cj) · N (x⊙C|µk, Id) (15)
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where Ci ∼ Uniform[0.2, 1.8] and x⊙C denotes the Hadamard (element-wise) product
(x1C1, ..., xdCd). This allows each Gaussian mode to follow the functional form defined
in Roberts and Rosenthal (2001) Section 6; each mode has its own density of the

functional form π(x) =
∏d

i=1 Cif(Cixi), where {Ci} are i.i.d. with E(Ci) = 1 and
E(C2

i ) < ∞.

3.3.5 Multimodal Experiments and Results

We conduct our experiments in d ∈ {20, 30, 50} using the default experimental proce-
dure described. We summarize our results in Table 3, and refer the reader to Appendix
A Figures 12, 13, 14, and 15 for plots of the trend of ESJD with acceptance rate.

Table 3: Empirical optimal RWM acceptance rates for
multimodal target distributions.

Target d = 20 d = 30 d = 50

π4: Rough Carpet (homogeneous) 0.2133 0.2202 0.2291
π5: Rough Carpet (inhomogeneous) 0.2009 0.2174 0.2351
π6: 3-Mixture (homogeneous) 0.2489 0.2454 0.2394
π7: 3-Mixture (inhomogeneous) 0.2360 0.2334 0.2371

The results for our multimodal experiments provide strong empirical support for
the generalizability of the 0.234 acceptance rate heuristic. We observe that for all
four target distributions, the optimal acceptance rate converges towards 0.234 as the
dimension increases, even for those that lack an i.i.d. product structure. Their optimal
acceptance rates are already very close to 0.234 even in low dimensions (d = 10).
Theoretically, the 0.234 value is likely to be justified by the general criteria of Sherlock
(2013) that are stated in Assumption 2.2. The three mixture targets (π6, π7), while
not product densities, are constructed from isotropic Gaussians. In high dimensions,
they form a well-behaved geometric shell with low eccentricity, thus satisfying the
target conditions for the 0.234 rule to apply. The rough carpet targets π4, π5 are i.i.d.
products of a more complex multimodal density. The component-wise multimodality
creates a more intricate target landscape, which may require higher dimensions before
the geometric properties average out to satisfy the shell and stability conditions as
effectively; this may explain why their optimal rates approach 0.234 from below.

There is an interesting note that for both families of targets, introducing inho-
mogeneous scaling consistently pushes the optimal acceptance rate lower in smaller
dimensions. This could be explained by the Target Eccentricity condition of Sher-
lock (2013) (mentioned in Assumption 2.2 (5)). The inhomogeneous scaling factors
introduce anisotropy into the target’s curvature, creating directions with much higher
curvature than others. With a standard isotropic proposal such as the multivariate
Gaussian, the optimal proposal scale must shrink to avoid constant rejections in these
high-curvature directions. This makes the sampler inefficient in the less-curved direc-
tions, degrading the algorithm’s overall performance. This less efficient dynamic alters
the trade-off between proposal size and acceptance probability, shifting the peak of
the ESJD curve to the left. Our results show that for such low-dimensional inhomo-
geneously scaled targets, the optimal balance is achieved at a lower acceptance rate
than the 0.234 ideal. Then, as d grows, the law of large numbers mitigates the effect of
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any single scaling factor, the target becomes effectively less eccentric, and the optimal
acceptance rate recovers to 0.234.

3.4 Rosenbrock Target Densities

The multimodal experiments in Section 3.3 demonstrated the effectiveness of the 0.234
acceptance rate for multimodal distributions, where the main challenge is mode isola-
tion. In practice, however, many posterior landscapes are not only multi-peaked but
also have nonlinear correlation structure, providing challenges for local proposals even
when there is only a single global mode. We examine this setting by sampling three
different extensions of the two-dimensional Rosenbrock target density to n-dimensions
(Goodman and Weare, 2010; Dixon and Mills, 1994; Pagani et al., 2022), each of which
have different curvature and therefore different difficulty from a MCMC perspective.

Rosenbrock (1960) originally introduced the Rosenbrock function as an optimiza-
tion problem: a non-convex function which has a global minimum inside a long, narrow
parabolic canyon. The Rosenbrock function can then be converted into a probabil-
ity density that preserves these properties. Because the local correlation structure
changes rapidly along the ridge, step sizes that work near the mode are either rejected
or become inefficient elsewhere. Consequently, Rosenbrock targets have become com-
mon benchmarks to test MCMC algorithms (Haario et al., 2001; Huijser et al., 2022;
Hunt-Smith et al., 2024; Militzer, 2025). Including these targets in our empirical study
extends our findings to targets with curved correlation structure.

We first describe the unnormalized Rosenbrock target densities, then describe
our experimental procedure and results. We use the Rosenbrock kernels described by
Pagani et al. (2022).

3.4.1 Full Rosenbrock

The d-dimensional Full Rosenbrock distribution (Goodman and Weare, 2010) has the
following kernel for x ∈ Rd:

π8(x) ∝ exp

{
−

d−1∑
i=1

[
100(xi+1 − x2

i )
2 + (1− xi)

2
]
/20

}
(16)

The original 2-D Rosenbrock resembles a long banana-shaped valley whose floor follows
the parabola x2 = x2

1. As stated in Pagani et al. (2022), as d increases, the long, narrow
ridge that makes sampling challenging becomes more concentrated around the mode,
decreasing the problem’s difficulty. However, the variance of xd increases steeply as
each new random variable is directly dependent on the squared value of the previous
variable.

3.4.2 Even Rosenbrock

The d-dimensional Even Rosenbrock distribution extended from the optimization func-
tion in (Dixon and Mills, 1994) has the following kernel for x,µ ∈ Rd, where d must
be even:
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π9(x) ∝ exp

−
d/2∑
i=1

[
(x2i−1 − µ2i−1)

2 + 100(x2i − x2
2i−1)

2
]
/20

 (17)

The Even Rosenbrock partitions the state into d
2 independent 2-D Rosenbrock

blocks. Because the blocks do not interact, the global target is the product of smaller
bananas; the joint density still exhibits the same curved valleys within each block
but lacks the long-range, serial dependence of the Full Rosenbrock. Consequently, the
optimal proposal scale can adapt locally to each block, and we expect higher ESJD
(and hence slightly lower optimal acceptance rates) than in the fully coupled case.

3.4.3 Hybrid Rosenbrock

The n-dimensional Hybrid Rosenbrock distribution introduced by Pagani et al. (2022)
has the following kernel for x ∈ Rd, where µ, xj,i ∈ R; a, bj,i ∈ R+(∀j, i):

π10(x) ∝ exp

{
−a(x1 − µ)2 −

n2∑
j=1

n1∑
i=2

bj,i(xj,i − x2
j,i−1)

2

}
(18)

The integers n1 and n2 describe a grid of blocks: there are n2 vertical stacks, each
containing n1−1 Rosenbrock-type links and a shared root coordinate x1. The total
dimension is therefore d = (n1 − 1)n2 + 1. Within every column j, the curvature
coefficients bj,i can vary with depth i, producing steeper or flatter valleys as we move
away from the root. Horizontally, however, columns are independent, so the Hybrid
form interpolates between the serial dependence of the Full Rosenbrock (one long
chain: n2 = 1) and the independent blocks of the Even Rosenbrock (n1 = 3, n2 = d/2).
This allows the difficulty of the distribution to be modified by setting n1, n2; larger
n1 increases non-linearity within a column, while larger n2 raises overall dimension
without adding extra curvature.

3.4.4 Simulations and Results

For our Rosenbrock simulations, we found that our initial settings of 200,000 Markov
chain steps and 20 seeds were insufficient to produce meaningful trends, so we ran more
simulations for more steps with the Rosenbrock targets. In this section, we continue
using a Gaussian proposal with 40 different variance values. However, we run each
simulation for 1,000,000 steps and we repeated each experiment with 30 different seeds
instead of the usual 20. For the Full Rosenbrock, we select d ∈ {5, 10, 20, 30}. For the
Even Rosenbrock, we select d ∈ {4, 10, 20, 30}. For the Hybrid Rosenbrock, we select
(n1, n2) ∈ {(3, 2), (5, 2), (7, 3), (8, 4)} which gives total dimension d ∈ {5, 9, 19, 29}
respectively. We also provide a plot of the ESJD versus acceptance rate trend for the
2-dimensional Rosenbrock. All other plots of ESJD versus acceptance rate trends for
these distributions are in Appendix A Figures 16, 17, and 18 for plots of the trend of
ESJD with acceptance rate.

Our experiments with the Rosenbrock family of targets, presented in Table 4,
demonstrate that the 0.234 heuristic remains effective even for distributions with
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Table 4: Empirical optimal RWM acceptance rates for three different
d-dimensional Rosenbrock target distributions.

Target d = 4or 5 d = 9or 10 d = 19 or 20 d = 29 or 30

π8: Full Rosenbrock 0.2047 0.2359 0.2384 0.2337
π9: Even Rosenbrock 0.0646 0.1430 0.2003 0.2107
π10: Hybrid Rosenbrock 0.1394 0.2272 0.2349 0.2340

non-linear dependencies and curvature. For the Full Rosenbrock (π8) and Hybrid
Rosenbrock (π10) targets, the optimal acceptance rate robustly converges to approx-
imately 0.234 as the dimension increases. Although these targets are not i.i.d. and
possess a highly anisotropic banana-shaped geometry, they should satisfy the gen-
eral criteria from Sherlock (2013) (stated as Assumption 2.2) in the high-dimensional
limit. As d grows, the complex local correlations become less influential relative to the
global structure, allowing the target’s geometric properties to stabilize in the manner
required by Assumption 2.2. On the other hand, the Even Rosenbrock (π9) has a sig-
nificantly lower optimal acceptance rate that increases slowly with dimension. This
seems reasonable, as π9 is a product of independent 2-dimensional Rosenbrock blocks.
The proposal scale can then be fit to the local geometry of each 2-dimensional block
where the high-dimensional scaling theory is less applicable.

Fig. 5: ESJD vs. acceptance rate for the 2-dimensional Rosenbrock target distribution
π8 under RWM with a Gaussian proposal. Red dotted line indicates an acceptance
rate of 0.234.

The result for the 2-dimensional Rosenbrock target, shown in Figure 5, would add
support for this hypothesis. Unlike the higher-dimensional cases, the ESJD does not
exhibit a clear peak around a non-zero acceptance rate. Instead, it appears to increase
monotonically as the acceptance rate approaches zero. This behaviour indicates that
for this low-dimensional, highly anisotropic target, the highest efficiency is achieved
by proposing extremely large jumps. Such jumps are almost always rejected, but the
rare accepted jump is so large that it dominates the ESJD calculation.

3.5 Non-smooth Target Densities: Continuous Hypercube

Now, consider a RWM using a Gaussian proposal and a target density still of the
product form π(x) =

∏d
i=1 f(xi), but where the individual component density f is

16



Uniform[a, b].

π11(x) =

d∏
i=1

f11(xi), f11(x) =
I [a ≤ x ≤ b]

b− a
(19)

Unlike the previous examples, the component density f and its logarithm are not
continuously differentiable on R due to the discontinuities at the boundaries xi = a and
xi = b. Since this is one of the assumptions in Assumption 2.1, the asymptotic results
where the optimal acceptance rate is 0.234 may not apply. This discontinuous target
density case has been explored by Neal et al. (2012), which found that for product
densities with a discontinuity at the boundary, such as the unit hypercube [0, 1]d, the
efficiency of the RWM is maximised with an asymptotic optimal acceptance rate of
0.1353 as d → ∞. We provide simulation studies in various dimensions to investigate
the applicability of this particular 0.1353 acceptance rate figure in lower dimensions
on the hypercube [0, 1]d. We use 300,000 iterations instead of the typical 200,000 for
this target to make the plots sufficiently smooth.

Table 5: Empirical optimal RWM acceptance rates for the continuous hypercube
target.

Target d = 2 d = 5 d = 10 d = 20 d = 30 d = 50 d = 100

π11: Hypercube [0,1]d 0.4316 0.2767 0.2027 0.1670 0.1525 0.1439 0.1423

Compared to the previous examples (see Appendix A for their ESJD versus accep-
tance rate curves, which tend to be smooth and gentle at the plateau), which seem to
be fairly consistently optimal with an acceptance rate of approximately 0.234, we find
(refer to Table 5 and Figure 6) that the optimal acceptance rate for the hypercube
target changes significantly as the dimension increases, and notice that the plateau
of the curve tends to get quite sharp as the dimension increases. This is because dis-
continuities introduce additional complexity in the target distribution, affecting the
behaviour and performance of the RWM algorithm.

As the dimension d increases, the algorithm’s performance converges to the theo-
retical 0.1353 value. In this specific case, the shrinking optimal acceptance rate might
be because of the unique zero or non-zero form of the target density beyond the
hypercube boundary. As discussed by Neal et al. (2012), whether a proposed move
is accepted depends completely on whether the proposed state is inside the hyper-
cube. Subsequently, when using a Gaussian proposal, the probability that at least
one proposed component will lie outside the boundary increases, leading to a higher
probability of instant rejection.

The trends in Figure 6 offer practical guidance for tuning. In high dimensions
(e.g., d = 100), the ESJD curve peaks sharply near the theoretical optimum of 0.1353,
and tuning to 0.234 would result in a significant loss of efficiency. However, in lower
dimensions (e.g., d = 2, 5, 10), the optimal acceptance rate is much closer to 0.234
than to 0.1353. The ESJD curve is also flatter, meaning the penalty for slight mistun-
ing is less severe. This suggests a mini-max strategy for practitioners unsure of the
dimensionality effects: tuning to an acceptance rate of approximately 0.234 is a robust
choice across all dimensions. While it could be suboptimal for very high dimensions,
it is nearly empirically optimal for low dimensions, whereas tuning to 0.1353 in these
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Fig. 6: ESJD vs. acceptance rate for the i.i.d. Hypercube [0, 1]d target distribution π11

under RWM with a Gaussian proposal in dimensions d ∈ {2, 5, 10, 30, 50, 100} from
top-left to bottom-right. Red dotted line indicates an acceptance rate of 0.234. Purple
dotted line indicates an acceptance rate of 0.135.

instances would be highly inefficient even though theory supports it over the 0.234
rate for this specific target distribution.

3.6 Neal’s Funnel Target Density

To probe the limits of the 0.234 heuristic, we now examine a target distribution that
is canonical for its challenging geometry: the funnel distribution introduced by Neal
(2003). Unlike the Rosenbrock target, which has localized curvature, Neal’s funnel
possesses a global, non-linear dependency structure that presents a severe challenge to
standard MCMC algorithms. In this distribution, a single variable controls the variance
of all other variables, creating an extreme, state-dependent anisotropy. This struc-
ture should violate the geometric regularity conditions outlined in Assumption 2.2,
particularly the target eccentricity and Hessian stability.

The d-dimensional Neal’s funnel target density, which we denote π12, is defined for
x = (x1, x2, . . . , xd). The density is given by the product of a marginal density for the
first component x1 and conditional densities for the other components:

π12(x) = N (x1 | 0, 32)
d∏

i=2

N (xi | 0, exp(x1)) (20)

The key feature is that the variance of each xi after x1 is exp(x1). This creates a funnel
shape in the state space: when x1 is large and negative, the funnel is a very narrow
neck where the xi’s are tightly constrained; when x1 is positive, the funnel opens into
a wide mouth where the xi’s can have enormous variance.

For our experiments, we follow the standard parameterization from Neal (2003).
We test this target in dimensions d ∈ {5, 10, 20, 30}. Due to the difficulty of sampling
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this target, we increased our simulation budget significantly, using 1,000,000 iterations
per simulation (across 40 seeds, 40 million total Metropolis steps), a burn-in of 50,000
steps, and averaging the results over 30 random seeds for each data point. We continue
using the Gaussian proposal with variance as described in (8).

Fig. 7: ESJD vs. acceptance rate for the Neal’s funnel target π12 under RWM with a
Gaussian proposal in dimensions d ∈ {5, 10, 20, 30} from top-left to bottom-right. Red
dotted line indicates an acceptance rate of 0.234.

Similarly to the 2-dimensional Rosenbrock, we find that the ESJD increases mono-
tonically as the acceptance rate reduces in lower dimensions. In higher dimensions
(d = 20, 30), we observe a similar trend, but at the extreme ends of the curve, we
observe a complete failure of the RWM algorithm to accept any reasonable number of
steps as the average acceptance rate decreases towards zero, leading to sudden random
drops in ESJD. Notice that the curvature of the graph gets steeper with increasing
dimension: it is nearly a straight line at d = 5 and is much more curved by d = 30.

Overall, this behaviour indicates an extreme sensitivity to the proposal scaling
in higher dimensions. The practical implication is that even minor mistuning of the
proposal variance will cause the sampler’s efficiency to collapse to zero. This is a direct
consequence of the target’s geometry violating the conditions of Assumption 2.2; the
target has extreme eccentricity, and the Hessian is not locally stable. Consequently,
the 0.234 acceptance rate is not a relevant or useful heuristic for this target. The more
important conclusion, which Neal (2003) himself meant to show with this example,
is that for targets with strong non-linear dependencies, no single proposal scale can
be efficient in both the narrow neck and the wide mouth of the funnel, leading to
a sampler that inevitably fails as dimensionality grows. This experiment effectively
demonstrates a hard boundary for the class of problems on which the 0.234 RWM
heuristic can be successfully applied.
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4 Parallel Tempering Background

This section offers a brief introduction to the parallel tempering method and its own
optimal scaling framework that we conduct experiments on in Section 5. Many of the
terms in Section 2 are re-used but have slightly different definitions for the parallel
tempering context.

4.1 Parallel Tempering Method

The parallel tempering method (Geyer, 1991), also known as the Metropolis-coupled
Markov chain Monte Carlo algorithm or the replica exchange method, is a version of
the Metropolis algorithm that specialises in sampling from multimodal distributions.
In this case, we sample from a target distribution with density π(x) on a state space
X . We define a sequence of tempered target densities πβj (x) where 0 ≤ βn < βn−1 <
· · · < β1 < β0 = 1 are the inverse temperature values. We require that πβ0(x) = π(x)
(that is, that β0 = 1). Typically, the tempered target densities are simply powers of the
original density, and we assume this for all parallel tempering experiments. Then, we
run a Markov chain for each of the n+1 values of β, each with its own tempered target
density. Eventually, the β0 = 1 chain, also called the “cold” chain, with its stationary
density πβ0(x0) should correspond to the original target density of interest π(x), and
the idea is that using information from other chains with higher temperatures (lower
β) will speed up the mixing in the cold chain.

In each iteration of the algorithm, we alternate between within temperature and
temperature swap moves. The former indicates that each chain takes a standard RWM
update within its respective πβj . The latter indicates that for two chains with βj , βk

inverse temperature values that are adjacent in the sequence of β values, switch the
chain values of xj and xk with probability

min

{
1,

πβj (xk)π
βk(xj)

πβj (xj)πβk(xk)

}
. (21)

4.1.1 Optimal Scaling for Parallel Tempering

Since the hot chains can explore the state space more quickly, we would like to max-
imise how frequently we can swap values from the hottest chain to the coldest chain
so that the cold chain can mix faster and escape local modes. To do this, we maximise
the effective speed with which the chain values move along in the inverse temperature
domain. The spacings of the inverse temperatures βi’s are crucial to this efficiency. If
βj and βk are too far apart, we usually reject these swaps described by (21), but if
they are too close, the swaps will not improve mixing. We would like to swap just the
right amount to maximise mixing in the temperature domain.

The expected squared jumping distance (ESJD) for parallel tempering thus refers
to the expected squared jump in inverse temperatures. Formalising this, when we
attempt to swap the chain values between the inverse temperatures β and γ := β + ϵ
where β, ϵ > 0 and β, γ ≤ 1, the swap is either accepted, in which case the values
move a squared distance of (γ − β)2 = ϵ2, or the swap is rejected, in which case the
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distance moved is 0. This leads to a very natural definition for ESJD, which is

ESJD = E[(γ − β)2] = ϵ2 × E[Pr(swap accepted)]. (22)

Maximising the asymptotic ESJD effectively maximises the efficiency of the attempted
swap moves in providing mixing in the temperature space, or in other words, maximises
the speed with which the chain values move in the inverse temperature space.

There is also a 0.234 swap acceptance rate theoretical result for parallel tempering.
The required assumptions for the result are the following:
Assumption Set 4.1. (Atchadé et al. (2011)) Let x be a random variable from the
target density π.

1. The target density is an i.i.d. product π(x) =
∏d

i=1 f(xi) where f is a single-
dimensional component density.

2. The tempered distributions are powers of the original density, so π(β)(x) =∏d
i=1 f

(β)(xi) =
∏d

i=1(f(xi))
β.

3. The inverse-temperature spread ϵ = d−1/2ℓ for some positive constant ℓ.

Under these assumptions, choosing ℓ such that the inverse temperature spacing
yields a swap acceptance probability of approximately 0.234 is also optimal in the
sense that it maximises the ESJD of a parallel tempering algorithm.

5 Parallel Tempering Simulations

In this section, we provide parallel tempering experiments that investigate how well
the 0.234 optimal swap acceptance rate holds for the various multimodal target dis-
tributions in Section 3.3 in finite dimensions. The parallel tempering method is highly
effective for exploring multimodal distributions (Atchadé et al., 2011; Hastings, 1970)
and thus we aim our experiments at these distributions to learn more about their
applicability in practice.

5.1 Target Distributions

5.1.1 Multivariate Gaussian Distribution

We first give an example of the standard multivariate Gaussian distribution to verify
the correctness of our implementation. Note that the standard multivariate Gaussian
as a target distribution satisfies the necessary conditions of Atchadé et al. (2011) that
are stated in Assumption 4.1.

5.1.2 Rough Carpet Distribution

In this section, we use the same target distribution π4 from (12) as described in
Section 3.3.1. Here, we examine the simpler case with homogeneous scaling factors
fd(x) =

∏n
i=1 f(xi). In the individual component density f(x) definition, we set

(µ1, µ2, µ3) = (−15, 0, 15). We provide an example traceplot of the cold chain from one
of the experiment simulations in Appendix A Figure 19 to demonstrate what mixing
looks like in the first three components (all components are i.i.d.). Unlike the standard
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random-walk Metropolis which cannot escape from the central mode in this setting of
the target distribution, the values in the cold chain swap between modes considerably
often due to the swapping of values between chains.

5.1.3 Three Mixture Distribution

In this section, we use the same target distribution as described in Section 3.3.3 (14).
We set weights w1 = w2 = w3 = 1

3 , means µ1 = (−15, 0, 0, . . . , 0), µ2 = (0, 0, . . . , 0),
µ3 = (15, 0, 0, . . . , 0) and covariances Σ1 = Σ2 = Σ3 = Id. We provide an example
traceplot of the cold chain in Appendix A Figure 20 to demonstrate what mixing looks
like in the first three components.

5.2 Methodology

We conduct experiments in dimension d ∈ {10, 20, 30} that examine the trend of ESJD
with swap acceptance rate on these distributions. For each distribution, we run many
simulations where each simulation is a parallel tempering algorithm with 30 different
average swap acceptance rate values. We explain how we set up these algorithms to
match these swap rates (through constructing a specific inverse temperature ladder) in
Section 5.2.1. Each parallel tempering algorithm runs for 500,000 iterations, so every
individual chain in the algorithm takes 500,000 steps. We attempt a temperature swap
every 100 steps. Furthermore, we ran each algorithm instance over 20 different seeds
and average the results to reduce the effects of randomness caused by a particular
seed.

For each experiment, we set the tempered target distribution to simply be the orig-
inal distribution raised to the power of β. We set the modes to be far away enough
such that the other modes were not reached by a standard random-walk Metropolis
algorithm after 100,000 iterations, but still reasonably close so that the parallel tem-
pering method would show the cold chain values would swap between modes somewhat
frequently. The within-chain proposal distribution for each chain is given by the mul-
tivariate Gaussian (8) with σ2 = 2.382/d, which is suggested by Roberts et al. (1997)
to be optimal for high dimensions. We calculate the optimal swap acceptance rate by
finding each simulation’s specified swap acceptance rate used to construct the iterative
temperature ladder that maximises the ESJD, and take the average of the maximising
acceptance rates over 20 seeds.

5.2.1 Constructing an Inverse Temperature Ladder Iteratively

The most common method to construct an inverse temperature ladder selects the
inverse temperatures using a geometric series spacing. However, since we are examining
the 0.234 swap acceptance rule, we need to have a way of constructing the inverse
temperature spacings such that the probability of a swap between adjacent chains
is approximately 0.234 (or any other value). To construct an inverse temperature
ladder with a desired swap acceptance rate s, we use an iterative procedure adapted
from (Atchadé et al., 2011, Section 2.2). Starting with β0 = 1 and a minimum value
βmin = 0.01, we iteratively add β’s to the ladder. Let βcurr denote the most recent β
in the ladder. We initialize ρn = 0.5 (n = 1 initially) and set β∗ = βcurr(1 + eρn)−1.

22



To determine if β∗ should be added to the ladder, we draw N samples (our GPU
implementation uses N =1,000,000) from the target distribution tempered by β∗ and
βcurr, and calculate the average swap probability a. If a is within s± 0.0001, we add
β∗ to the ladder and set βcurr = β∗. Otherwise, we update ρn+1 = ρn + n−0.25(a− s)
and recalculate β∗. This process continues until β∗ ≤ βmin, at which point we add
βmin to the ladder and terminate.

5.3 Results

The empirical optimal swap acceptance rates for the three target distributions are
summarized in Table 6, and sample ESJD curves for d = 30 shown in Figure 8. The
ESJD curves for PT are visibly more jagged than their RWM counterparts. This might
be because the estimation of ESJD in this context is more susceptible to Monte Carlo
error even with a large number of simulation steps, since the efficiency or acceptance
rate of a swap move depends on the joint stationary distribution of two adjacent
chains, and this is repeated for each temperature construction. Nonetheless, clear
trends emerge from the results.

Table 6: Empirical swap acceptance rates that maximize
ESJD for various PT target densities. Based on Fig 8,
the jagged pattern of the ESJD curves suggests that the
true optimal acceptance rates are in a neighbourhood of
these values. See Section 5.2 for calculation of optimal swap
acceptance rates.

Target d = 10 d = 20 d = 30

π2: Standard Multivariate Gaussian 0.2618 0.2685 0.2474
π4: Rough Carpet 0.2660 0.2803 0.2761
π6: 3-Mixture 0.2609 0.2660 0.2372

For both the standard Gaussian (π2) and the non-product Three-Mixture (π6)
targets, the optimal swap acceptance rate is consistently in the neighbourhood of
0.234. For the Three-Mixture target, the rate converges cleanly towards the theoretical
value, from 0.261 in d = 10 to 0.237 in d = 30. The Gaussian target shows a similar
pattern, with an optimal rate of 0.247 at d=30.

The standard Gaussian result provides a successful validation of our experimen-
tal setup against the theory of Atchadé et al. (2011), as this target satisfies the i.i.d.
product form assumption. More importantly, the result for the Three-Mixture tar-
get suggests that the 0.234 heuristic for PT swaps is robust to violations of the i.i.d.
product assumption, much like its RWM counterpart. Although the target is a sum
of densities, its underlying geometric regularity (a shell composed of three isotropic
modes) seems sufficient for the optimal scaling 0.234 result to hold. For a practitioner,
this suggests that constructing a temperature ladder with a swap acceptance probabil-
ity of 0.234 is a viable and likely near-optimal strategy, even for complex, non-product
multimodal targets, provided they are not pathologically structured.

Notably, the Rough Carpet target (π4) shows a significant deviation. The optimal
swap acceptance rate is consistently higher than 0.234 and increases away from the
theoretical value with increasing dimension. This is surprising because the Rough
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(a) π2: Gaussian (b) π4: Rough Carpet (c) π6: 3-Mixture

Fig. 8: ESJD vs. swap acceptance rate for the parallel tempering algorithm with the
π2, π4, π6 target distributions in dimension d = 30. Red dotted line indicates a swap
acceptance rate of 0.234.

Carpet target does satisfy the i.i.d. product form and other conditions of Assumption
4.1 by Atchadé et al. (2011). The failure of the 0.234 rule here could be because the
extreme multimodality of the target could reduce the practical utility of the ”hot”
chains. The target possesses 3d modes, and its probability mass is spread thinly across
this vast landscape. For a hot chain where the inverse temperature β is close to 0, the
tempered density becomes extremely flat and loses the slight peak that a unimodal
target would have. Consequently, it fails to efficiently sample from the specific modal
regions that are of interest to the colder chains; the information flow from hot to cold
chains is broken. To swap successfully more often, the temperature steps must be made
smaller, which forces the swap acceptance rate to be higher.

6 Discussion

We have presented an extensive empirical investigation into the generalizability of the
0.234 acceptance rate heuristic for both Random-Walk Metropolis (RWM) and Par-
allel Tempering (PT) algorithms, using a variety of target and proposal distributions.
Our results demonstrate that the 0.234 rule’s utility extends beyond the classical i.i.d.
product setting of Roberts et al. (1997). The heuristic remains approximately optimal
for: (i) non-Gaussian proposals that satisfy a spherical symmetry (shell) condition,
such as the Laplace and Uniform distributions; (ii) multimodal targets such as the
“rough carpet” i.i.d product with 3d modes, and non-product targets constructed as
a sum of isotropic components, such as our Three-Mixture model; and (iii) even for
highly correlated, non-linear targets like the Full and Hybrid Rosenbrock in sufficiently
high dimensions (d ≥ 20). These findings provide empirical validation for the general-
ized theory of Sherlock (2013), which predicts that as long as the target’s geometry is
sufficiently regular and isotropic in the high-dimensional limit, the 0.234 rule should
hold.

That being said, there are cases where 0.234 does not seem as relevant. The main
case is in very low dimensions; in all our experiments with varying target densities, the
optimal acceptance rate strays from 0.234 below a certain threshold which varies for
each target density. In particular, targets composed of independent, low-dimensional
anisotropic blocks (Even Rosenbrock) or those that are globally anisotropic in low
dimensions (2D Rosenbrock), have an optimal acceptance rate significantly below
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0.234. In these cases, we hypothesize the high-dimensional averaging effect that stabi-
lizes the target’s geometry has not occurred, and the sampler’s performance is dictated
by the challenging local geometry. As the dimension increases, the law of large num-
bers mitigates the effect of any single scaling factor or local correlation, so the target
becomes effectively less eccentric, complying with the theory of Sherlock (2013), and
the optimal acceptance rate recovers towards 0.234. On the other hand, the continuous
hypercube and Neal’s funnel completely fail the 0.234 heuristic. Although the hyper-
cube is continuously differentiable everywhere except on its boundary, which has zero
measure, an intuitive argument is that as d increases, the probability that the pro-
posal has all the values inside decreases. As for the funnel, no single proposal scaling
can be globally efficient, which is just a limitation of the RWM algorithm.

Next, we discuss the optimal swap acceptance rate figure for parallel tempering
and compare it with the optimal acceptance rate for random-walk Metropolis. On one
hand, the results for the multivariate Gaussian and three-mixture density examples
show that the 0.234 swap acceptance rate figure may be optimal even in lower dimen-
sions. Although costly, if the practitioner is willing and able to construct the inverse
temperature ladder iteratively with a spacing given by a swap acceptance probabil-
ity, the spacing dictated by a 0.234 swap acceptance probability may be optimal for
the practitioner. However, the theoretical 0.234 figure may not always be applicable:
despite satisfying the i.i.d. conditions of the PT optimal scaling theory (Atchadé et al.,
2011), the extreme multimodality (3d modes) of the “rough carpet” product density
appears to render the hot chains ineffective. We hypothesize that because the proba-
bility mass is spread so thinly, the hot chains fail to sample from meaningful modal
regions, breaking the flow of information to the cold chain. This forces the algorithm
to use smaller temperature steps (and thus higher swap acceptance rates) to achieve
mixing, representing a practical failure of the 0.234 PT rule.

Not only that, constructing a temperature ladder iteratively with the “optimal
spacing” is challenging and time-consuming. It requires the ability to draw samples
from the target distribution, which is itself the main goal of the parallel tempering
algorithm. Without a direct way to sample from the target, a practitioner could run
an MCMC algorithm with the β value being proposed for the new addition to the
ladder, but this may be time-consuming with many attempts required until a suitable
β is found for each step of the ladder.

Since this optimal spacing may not yield the optimal ESJD in practice for finite,
lower-dimensional targets and with a finite number of runs, an alternative approach is
to adaptively adjust the spacings of the temperature ladder during the algorithm’s runs
based on its recent ESJD performance over a recent window as guidance to practition-
ers. This is known as adaptive parallel tempering (Miasojedow et al., 2013). Previous
literature shows that adaptive parallel tempering algorithms can achieve substantial
efficiency gains over a standard geometric temperature spacing (Vousden et al., 2015)
while still converging to the target distribution (Miasojedow et al., 2013) under the
assumptions that the target distribution is sufficiently regular and has tails decaying
faster than exponentially. Adaptive parallel tempering may suffice to be “good enough”
for most practitioners whilst avoiding the costly temperature construction algorithm.
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Lastly, while we have established that the 0.234 acceptance rate for RWM is still
fairly good even in lower dimensions and on some target distributions that may not
have the i.i.d. product form, we provide some precautions to the practitioner. The
0.234 acceptance rate is a good heuristic to tune the algorithm to, yet there are still
many cases where it is not optimal in terms of efficiency, such as the continuous hyper-
cube example in Section 3.5. Even if the 0.234 acceptance rate is in fact optimal, the
acceptance rate alone does not necessarily guarantee good samples, as illustrated by
Figure 2. What literature (Roberts and Rosenthal, 2001; Sherlock et al., 2010) indi-
cates is that another very important thing in practice beyond just the acceptance rate
is defining a good proposal covariance matrix Σd that is approximately proportional
to the target covariance matrix Σπ; doing so can significantly increase the asymptotic
relative efficiency. Realistically, it may be impossible to know Σπ in advance or even
provide a good estimate for it. In fact, understanding how we can extend this result to
correlated targets is an ongoing challenge (Yang et al., 2020) and immediately relevant
to the practitioner since real-world data tends to have correlations between variables.
Practitioners may consider using the adaptive Metropolis algorithm (Haario et al.,
2001) to dynamically update the algorithm’s proposal covariance matrix. This adaptive
algorithm is very useful and yields significant speed benefits in low and high dimen-
sions (Craiu et al., 2009; Roberts and Rosenthal, 2009), but an important potential
pitfall to note is that adaptive methods are not guaranteed to converge to the cor-
rect target density; in many cases, they may fail to converge or converge to something
completely different (Roberts and Rosenthal, 2007, 2009).
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A Plots for RWM simulations

Fig. 9: ESJD vs. acceptance rate for the i.i.d. Gamma(3, 2) target distribution π2

(Eq 10) under RWM with a Gaussian proposal in dimensions d ∈ {2, 5, 10, 30, 50, 100}
from top-left to bottom-right. Red dotted line indicates an acceptance rate of 0.234.
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Fig. 10: ESJD vs. acceptance rate for the standard multivariate Gaussian target
distribution π3 under RWM with a multivariate Laplace proposal QL (Eq 11) in
dimensions d ∈ {2, 5, 10, 30, 50, 100} from top-left to bottom-right. Red dotted line
indicates an acceptance rate of 0.234.

Fig. 11: ESJD vs. acceptance rate for the standard multivariate Gaussian target
distribution π3 under RWM with a multivariate Uniform proposal QU (Eq 11) in
dimensions d ∈ {2, 5, 10, 30, 50, 100} from top-left to bottom-right. Red dotted line
indicates an acceptance rate of 0.234.
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Fig. 12: ESJD vs. acceptance rate for the i.i.d. rough carpet target distribution π4

(Eq 12) under RWM with a Gaussian proposal in dimensions d ∈ {20, 30, 50} from
left to right. Red dotted line indicates an acceptance rate of 0.234.

Fig. 13: ESJD vs. acceptance rate for the inhomogeneously scaled i.i.d. rough carpet
target distribution π5 (Eq 13) under RWM with a Gaussian proposal in dimensions
d ∈ {20, 30, 50} from left to right. Red dotted line indicates an acceptance rate of
0.234.

Fig. 14: ESJD vs. acceptance rate for the three mixture target distribution π6 (Eq
14) under RWM with a Gaussian proposal in dimensions d ∈ {20, 30, 50} from left to
right. Red dotted line indicates an acceptance rate of 0.234.
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Fig. 15: ESJD vs. acceptance rate for the inhomogeneously scaled three mixture
target distribution π7 (Eq 14) under RWM with a Gaussian proposal in dimensions
d ∈ {20, 30, 50} from left to right. Red dotted line indicates an acceptance rate of
0.234.

Fig. 16: ESJD vs. acceptance rate for the Full Rosenbrock target π8 (Eq 16) under
RWM with a Gaussian proposal in dimensions d ∈ {5, 10, 20, 30} from top-left to
bottom-right. Red dotted line indicates an acceptance rate of 0.234.
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Fig. 17: ESJD vs. acceptance rate for the Even Rosenbrock target π9 (Eq 17) under
RWM with a Gaussian proposal in dimensions d ∈ {5, 10, 20, 30} from top-left to
bottom-right. Red dotted line indicates an acceptance rate of 0.234.

Fig. 18: ESJD vs. acceptance rate for the Hybrid Rosenbrock target π10 (Eq 18)
under RWM with a Gaussian proposal in dimensions d ∈ {5, 9, 19, 29} from top-left
to bottom-right. Red dotted line indicates an acceptance rate of 0.234.

34



Fig. 19: Traceplot of the first three dimensions of the cold chain from one of the
parallel tempering simulations on the rough carpet target distribution π4 (Eq 12).

Fig. 20: Traceplot of the first three dimensions of the cold chain from one of the
parallel tempering simulations on the three-mixture target distribution π6 (Eq 14).

35


	Introduction
	Random-Walk Metropolis Background
	Metropolis Algorithm
	Optimal Scaling Framework
	Theoretical Assumptions for Optimality of a 0.234 Acceptance Rate

	Random-Walk Metropolis Simulations
	Simpler Examples: Gamma and Beta i.i.d. Targets
	Non-Gaussian Proposal Densities
	Multimodal Target Densities
	The ``Rough Carpet'' Target Density
	The ``Rough Carpet'' Target Density: Inhomogeneously Scaled Components
	A Tale of Three Mixtures
	A Tale of Three Mixtures: Inhomogenous Scaling Factors
	Multimodal Experiments and Results

	Rosenbrock Target Densities
	Full Rosenbrock
	Even Rosenbrock
	Hybrid Rosenbrock
	Simulations and Results

	Non-smooth Target Densities: Continuous Hypercube
	Neal's Funnel Target Density

	Parallel Tempering Background
	Parallel Tempering Method
	Optimal Scaling for Parallel Tempering


	Parallel Tempering Simulations
	Target Distributions
	Multivariate Gaussian Distribution
	Rough Carpet Distribution
	Three Mixture Distribution

	Methodology
	Constructing an Inverse Temperature Ladder Iteratively

	Results

	Discussion
	Plots for RWM simulations

