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certain high-dimensional limits. However, its practical relevance is uncertain
due to restrictive derivation conditions. We synthesize previous theoretical
advances in extending the 0.234 acceptance rate to more general settings, . .

N X o " X .. X chain Monte Carlo;
a'nd demonstrate its appllcabl!lty with a comprehensive empirical simula- Metropolis algorithm;
tion study on examples examining how acceptance rates affect Expected optimal scaling; Parallel
Squared Jumping Distance (ESJD). Our experiments show the optimality of tempering
the 0.234 acceptance rate for RWM is surprisingly robust even in lower
dimensions across various non-spherically symmetric proposal distributions,
multimodal target distributions that may not have an i.i.d. product density,
and curved Rosenbrock target distributions with nonlinear correlation
structure. Parallel tempering experiments also show that the idealized
0.234 spacing of inverse temperatures may be approximately optimal for
low dimensions and non i.i.d. product target densities, and that construct-
ing an inverse temperature ladder with spacings given by a swap accept-
ance of 0.234 is a viable strategy.
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1. Introduction

Markov chain Monte Carlo (MCMC) methods, such as the random-walk Metropolis algorithm,
are used to draw samples from complex high-dimensional target probability distributions. They
enjoy strong theoretical asymptotic guarantees of accuracy, converging to the target distribution
in stationarity (Brooks et al. 2011; Robert and Casella 2004). However, they may also be ineffi-
cient and prohibitively slow to provide a good approximation of the target distribution they are
sampling (Rosenthal 1995). Therefore, the analysis of their running time is an important practical
issue to consider.

Roberts, Gelman, and Gilks (1997) proved an important result for independently and identi-
cally distributed (i.i.d.) product target densities: in the state space high-dimensional limit d — oo,
the asymptotic acceptance rate of a Metropolis algorithm is central to its efficiency. Under their
assumptions, an asymptotic acceptance rate of approximately 0.234 maximizes the efficiency of a
random-walk Metropolis (RWM) algorithm with a Gaussian proposal distribution starting at sta-
tionarity. However, their assumptions on the target and proposals are very restrictive. Many prac-
tical scenarios often involve finite and relatively small dimensions. Additionally, many probability
distributions do not have densities of the i.i.d. product form, and for those that do, sampling a
one-dimensional target is much simpler than using RWM. A burgeoning active research area is
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dedicated to showing that this figure still applies beyond these assumptions, and much of this
focuses on weakening the i.i.d. product assumption.

Many papers have shown that the optimal average acceptance rate of 0.234 for RWM holds in
greater generality than the assumptions used in Roberts, Gelman, and Gilks (1997). For more
general theoretical results, Sherlock (2013) replaces the restrictive ii.d. product target and
Gaussian proposal setting of Roberts, Gelman, and Gilks (1997) with a set of “shell,” relative vari-
ability, and eccentricity conditions on the target, eccentricity condition on the jump distance
matrix, and shell condition on the proposal. This framework does not require a product form
and is based on the geometric properties of the (log) target distribution in high dimensions.
Yang, Roberts, and Rosenthal (2020) makes the 0.234 result applicable to targets with sparse
dependency structures, such as those arising from Bayesian graphical models, using a set of suffi-
cient conditions based on local dependencies and bounded asymptotic behavior of derivatives.
We expand on these results in Sec. 2. The 0.234 acceptance rate in optimal scaling has also been
shown to apply to the spacing and swapping between inverse temperatures in the parallel temper-
ing MCMC method (Atchadé, Roberts, and Rosenthal 2011; Roberts and Rosenthal 2014); we
describe this in greater detail in Sec. 4.

That being said, there are some cases in which 0.234 is not optimal, such as in the case of dis-
continuous targets (Neal, Roberts, and Yuen 2012) where the optimal acceptance rate is approxi-
mately 0.1353. Additionally, these results of optimality are still theoretical ideals, with required
assumptions that could be further relaxed, and in the limit of d — oo, where the Markov chain
converges to a diffusion process.

Other relaxations of the 0.234 assumptions include: non-Gaussian proposals (Neal and Roberts
2011), discrete hypercube target distributions (Roberts 1998), Gibbs random fields (Breyer and
Roberts 2000), perturbations from product targets using pre-conditioned proposals (Beskos,
Roberts, and Stuart 2009), independent target components with inhomogeneous scaling (Bédard
2007; Bédard and Rosenthal 2008; Roberts and Rosenthal 2001), partial updates where not all
components are updated at once (Neal and Roberts 2006), elliptical symmetric unimodal target
densities (Sherlock and Roberts 2009), and infinite-dimensional target distributions with non-
trivial dependence structures (Mattingly, Pillai, and Stuart 2012).

These results are of great interest to practitioners who would like to understand how to tune
their MCMC algorithms to maximize their efficiency. Previous simulation studies have been car-
ried out on more general target distributions like products of independent, non-identical compo-
nents (Bédard 2008; Roberts and Rosenthal 2001), and for the Markov modulated Poisson
process (Sherlock, Fearnhead, and Roberts 2010), but there is still a lack of thorough experimen-
tation and guidance for how applicable the 0.234 rule is on realistic target distributions that may
have lower or higher dimensionality and/or multimodality. Our research examines how necessary
these assumptions are for the theoretical result to remain relevant: where can we relax some
assumptions in lower dimensions and still have the optimal acceptance rate of approximately
0.234, and where can we not do this? And in the end, how applicable is the 0.234 figure for the
practitioner, who may want to use MCMC for complicated target distributions beyond the neces-
sary assumptions in finite dimensions? We thoroughly dissect various aspects of the Metropolis
algorithm and experiment with them, and in doing so, we show empirically where the theoretical
ideal value can still align with more realistic scenarios.

We begin our paper with a description of the RWM and its optimal scaling framework, as
well as formally stating sufficient theoretical conditions for the 0.234 rule that are most rele-
vant to our work in Sec. 2. In Sec. 3, we describe RWM experiments in low dimensions that
show where an acceptance rate of 0.234 can be optimal in the sense that it maximizes the
Expected Squared Jumping Distance (ESJD) for various proposal and target densities which
are not necessarily all i.i.d. product forms. Next, we describe the parallel tempering method
and its own optimal scaling framework in Sec. 4, and show using experiments in Sec. 5 that
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the 0.234 swap acceptance rate in parallel tempering may also be optimal in lower dimensions
for the multivariate Gaussian target density and a Gaussian mixture target density which is
not of an i.i.d. product form. Lastly, we discuss the implications of our findings in Sec. 6.

2. Random-Walk Metropolis background

We first introduce the Metropolis algorithm and the Optimal Scaling framework. We then discuss
measures to evaluate the efficiency of MCMC algorithms, such as the expected squared jumping
distance, and explain how the asymptotic acceptance rate of a MCMC algorithm is tied to the
algorithm’s efficiency. Finally, we discuss some of the conditions for the 0.234 acceptance rate to
be optimal that are most relevant to our work.

2.1. Metropolis algorithm

A Metropolis algorithm (Metropolis et al. 1953) constructs a Markov chain x(®,x(1), ..., x"). If the
chain is constructed to be irreducible and aperiodic, it is guaranteed to have the target distribu-
tion 7 as its unique stationary distribution. This means that as the number of steps t becomes
large, the distribution of x(®) converges to . Therefore, after an initial burn-in period, the subse-
quent states of this single, long chain can be used as a sample from the target distribution =.
When taking each step in the Markov chain, we generate a new state y from a proposal distribu-
tion Q(-|x(*)) that is conditional on the current state x) and is symmetric, meaning Q(y|x") =
Q(x"]y). We accept this new state with probability a(x,y) given by a = min{l,%}, where, by
a common abuse of notation, we let 7(-) also denote the probability density function of the target

distribution 7. If the proposed value is accepted, we set the next state x(**!)

set x(+D) = x(0),

=y. Otherwise, we

2.2. Optimal scaling framework

Optimal Scaling (Roberts, Gelman, and Gilks 1997; Roberts and Rosenthal 2001) is one of the
most successful frameworks for performing asymptotic analysis of high-dimensional MCMC
methods, and provides mathematically-grounded guidance on how to best optimize MCMC per-
formance by tuning the “scaling” parameter(s) of the proposal distribution. Typically, a multivari-
ate Gaussian distribution centered at the current state is used as the proposal distribution. The
scaling of the Gaussian proposal is then given by a scaling factor o, and this is often used as a
variance ¢? that is applied to the d x d identity matrix I;. So, € ~ N(0,d%l;). If the proposal’s
variance is too small, many proposed steps are accepted by the algorithm, but each step does not
explore the state space much. Vice versa, if the proposal’s variance is too large, too few proposed
steps are accepted, leading to slow exploration of the state space since the algorithm stays at a
state for too long. Therefore, the proposal’s variance is crucial to the performance of the algo-
rithm; the optimal scaling should balance the exploration of new areas in the state space with
exploiting high-density areas of the target distribution.

We next discuss how to evaluate the efficiency of an MCMC algorithm for determining opti-
mal scaling. A very popular measure of efficiency both theoretically (e.g. Sherlock (2013); Roberts
and Rosenthal (2014); Yang, Roberts, and Rosenthal (2020)) and in practice (e.g. Pasarica and
Gelman (2010); Sherlock et al. (2015)) is the Euclidean Expected Squared Jumping Distance
(ESJD) metric which we use for our experiments. The expected squared jumping distance meas-
ures how far, in expectation, the MCMC chain moves in a single iteration. For the standard
random-walk Metropolis algorithm, we define this as
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Where 7 is the total number of iterations of the algorithm. Maximizing the ESJD aligns with mini-
mizing the first-order auto-correlation of the Markov chain and subsequently maximizes efficiency
if each higher order auto-correlation is a monotonically increasing function of the first-order auto-
correlation (Pasarica and Gelman 2010; Yang, Roberts, and Rosenthal 2020). It is worth mentioning
that ESJD primarily measures local convergence performance. Because heavy-tailed targets disrupt the
monotonic relationship between first-order and higher-order autocorrelations, achieving global con-
vergence for heavy-tailed targets requires maximizing an adapted version of ESJD (Kamatani 2020).
However, we do not consider heavy-tailed targets in this work, so the working definition of ESJD is
sufficient.

There are other notions of efficiency of a Markov chain, but in the high-dimensional limit
d — oo, if the moment conditions in Assumption 2.1 hold, the chain converges to a diffusion
process, and all efficiency measures are effectively equivalent (Roberts, Gelman, and Gilks 1997;
Roberts and Rosenthal 2001). A key result of these referenced papers is that, given a Metropolis

algorithm with a Gaussian proposal distribution A (x(t),gld) where ¢ > 0 is a fixed scaling con-

stant and I; is the identity matrix, maximizing the diffusion’s speed measure h(¢), which is a
function of the scaling constant ¢, yields the most efficient asymptotic diffusion. Furthermore, the
speed measure has a clear relation to a much simpler quantity to tune for: the asymptotic accept-
ance rate of the proposed new states (moves) of the algorithm, defined as

# accepted moves

a = lim
n—oo n

Both the speed measure h(¢) and asymptotic acceptance rate a(¢) are functions of the scaling
constant /. Given the restrictive conditions mentioned in Sec. 2.3, the scaling constant ¢ that
maximizes the speed measure h({) corresponds to an asymptotic acceptance rate a(¢) of approxi-
mately 0.234. Hence, an asymptotic acceptance rate of approximately 0.234 should necessarily
optimize a measure of efficiency such as the ESJD of the algorithm.

2.3. Theoretical assumptions for optimality of a 0.234 acceptance rate

Certain work has shown that under restrictive assumptions, a 0.234 acceptance rate is asymptotic-
ally optimal for random-walk Metropolis algorithms in certain high-dimensional limits. We
briefly list the theoretical assumptions of these works that are most relevant to our simulations.
We first describe the seminal result of Roberts, Gelman, and Gilks (1997) alluded to in the intro-
duction in full.

Assumption Set 2.1. (Roberts, Gelman, and Gilks (1997)) Let x be a random variable from the
target density . The target distribution has an i.i.d. product density n(x) = Hf:]f(x,-). The compo-
nent density f : R — R™ satisfies the following regularity conditions:

1. fis positive and twice continuously differentiable on its support.
2. The derivative of its logarithm, f'/f, is Lipschitz continuous.
3. The following moment conditions hold:
”(X) 4
(f (X) >

()

Under the conditions in Assumption 2.1, Roberts, Gelman, and Gilks (1997) showed that for
an RWM algorithm with a Gaussian proposal distribution starting in stationarity, when the whole

< oo and Ef

< 00 (2)
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process is sped-up by a factor of d, the first component of the process converges to a limiting
Langevin diffusion. Maximizing the speed of this limiting process, in turn, corresponds to tuning
the algorithm to an asymptotic acceptance rate of approximately 0.234.

The Roberts, Gelman, and Gilks (1997) result works because an ii.d. product target looks
locally the same no matter which coordinate you observe. Then, the analysis of Sherlock (2013)
shows that a similar homogeneity emerges for a much wider class of targets once the dimension
is large.

Assumption Set 2.2. (Sherlock (2013)) Let x be a random variable from the target density m,
M(x) = ||Vlogn(x)|| denote the norm of the gradient of the log target, H(x) = —V?*logn(x)
denote the negative Hessian matrix of the log target, and A(x,u) = H(x + u) — H(x) denote the
matrix of perturbations of the negative Hessian. The primary conditions are:

1. Target weak shell. There exist sequences {M@} and {H?D}, as d — oo :

=1 (3)

M) H

2. Hessian relative variability. The Hessian is locally stable, meaning it does not vary signifi-
cantly on the scale of a typical proposal jump. Formally, for any fixed >0 and 6 > 0, and

for a standard Gaussian random vector 2@ ~ N(0,1;) independent of the target state x@), we
require that as d — oo,

1 T M@
IP)x,z <I‘I(d) (Z(d)) A (X<d>, tu (d)) Z(d)

H@*
3. Target eccentricity. The curvature is not disproportionately concentrated in any single direc-
tion. Denoting the eigenvalues of H(x) by f;(x) :

<6 for all t €0, 1]) — 1. (4)

max;| B (x'V)] »

y —0. (5)
B (d)
> i)

4. Proposal shell. There exists a sequence {KD} such that the sequence of d -dimensional spher-
ically symmetric proposals {Q@} satisfies this as d — oo :

1Q]]
@

u

. (6)

5. Jump distance matrix eccentricity. If the ES]D is defined with respect to a positive definite
symmetric matrix T as B[(Y)TTOYD), then the eigenvalues of this jump distance matrix
must be similarly well-behaved. Let t;(d) be the eigenvalues of T'Y). When d — oo :

max;T;(d)

i(d)

— 0. (7)

Put together, these geometric regularities recover the same result of the optimality of the 0.234
acceptance rate as Roberts, Gelman, and Gilks (1997) but with weaker assumptions on the target
and proposal.
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3. Random-Walk Metropolis simulations

In this section, we explore the applicability of the 0.234 acceptance rate figure for RWM algorithms
using several practical RWM examples in lower dimensions. We begin with simple examples where
the target densities meet all the key conditions in Roberts, Gelman, and Gilks (1997) (provided as
Assumption 2.1) required for the 0.234 acceptance rate to be optimal. Next, we investigate examples
that do not use Gaussian proposal distributions, and then we explore other target densities that may
lack these assumptions, such as smoothness or the iid. product form. We estimate the Expected
Squared Jumping Distance (ESJD) of the algorithm as a metric of the algorithm’s efficiency as men-
tioned in Sec. 2.2, and aim to see under what conditions an acceptance rate of approximately 0.234
maximizes the ESJD for various target and proposal distributions in lower dimensions.

Our experimental procedure is as follows: we run RWM simulations using (except for Sec. 3.2)
a Gaussian proposal distribution

Qylx) = N (ykx, 0’1) (®)

Where ¢ is a proposal scaling factor, or 6> can be thought of as a variance, and I; is the d-

dimensional identity matrix. We run 40 different RWM simulations where each simulation has a
different scaling factor, and each simulation has a burn-in of at least 1000 steps before taking at
least 200,000 steps. It is important to note that functions of acceptance rates are somewhat flat
around the optimal values and that the values and figures reported are still prone to random
error inherent in a Monte Carlo simulation. Therefore, we repeat this procedure over at least 20
computer seeds and average the results to reduce random error. This procedure is applied in
each subsection and specific simulation details may be mentioned in a subsection if the experi-
ment used more than these minimum values.

3.1. Simpler examples: Gamma and Beta i.i.d. targets

We begin with simpler examples demonstrating that the 0.234 acceptance rate is still roughly optimal
for lower dimensions with any iid. product target distribution and a Gaussian proposal. As men-
tioned in Sec. 2, Roberts, Gelman, and Gilks (1997) proved the 0.234 optimal acceptance rate for
iid. product target distributions with a standard Gaussian proposal distribution in the infinite-
dimensional limit, and Roberts and Rosenthal (2001) and Bédard (2008) extended this with MCMC
simulations showing that with a iid. product target distribution and Gaussian proposal, the 0.234
acceptance rate seems approximately optimal for dimensions as low as 10. Our experiment provides
further evidence for this being the case, and we extend this with simulations for d = 2,5. We pre-
sent two ii.d. target densities 7y, 7, with different single-dimension component densities fi, f2:

m(x) = Hfl (xi),  fi(x) = Gamma(x|3,2), 9)

T (x) = Hfz(x,-), f2(x) = Beta(x|3,2) (10)

The first example sets f; with shape parameter 3 and scale parameter 2, and the second example
sets f, with shape parameters 3 and 2. We use the multivariate Gaussian proposal distribution
defined in (8) in both examples. We run this experiment in dimensions d € {2, 5, 10, 30, 50, 100}.

The resulting ESJD-maximizing acceptance rates are summarized in Table 1 and the i.i.d. Beta
target has its trends of ESJD versus acceptance rate with different dimensions displayed in Figure 1.
For the Gamma target, the optimal acceptance rate drops from 0.304 at d = 2 to around 0.21 once
d > 10; for the Beta target they fall from 0.390 to around 0.22 over the same range. Figure 1 con-
firms that the ESJD curves have a moving plateau toward a center slightly below the classical 0.234
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Table 1. Empirical optimal RWM acceptance rates (i.e. maximizing ESJD) for i.i.d. product targets with a Gaussian proposal.

Target Density d=2 d=>5 d=10 d=30 d =50 d =100
m: ii.d. Gamma(3, 2) 0.3036 0.2378 0.2199 0.2101 0.2141 0.2140
ny: id.d. Beta(3, 2) 0.3903 0.2937 0.2561 0.2319 0.2248 0.2159

value as the dimension grows. Our simulation provides further evidence that the optimal acceptance
rate for maximizing ESJD is approximately 0.234 even in low dimensions.

Since most ESJD versus acceptance rate plots look fairly similar and have a similar progression
as dimension changes, the full set of curves for ESJD versus acceptance rate plots for other sub-
sections are in Appendix A, including the results for the ii.d. Gamma in Figure Al. As an aside,
in all dimensions, there is a relatively broad plateau where the acceptance rate is approximately
optimal; thus, the coarse 40-point grid pinpoints the optimum to approximately *=0.01.

3.2. Non-Gaussian proposal densities

Next, we investigate the efficacy of different proposal distributions for the Metropolis algorithm.
One of the conditions assumed by the 0.234 theorem of Roberts, Gelman, and Gilks (1997) is the
use of a multivariate Gaussian proposal distribution Q(y|x) = N (y|x, 62I;). The additional results
in Roberts and Rosenthal (2001) depend on the assumptions of light-tailed proposals. In contrast,
Jarner and Roberts (2002) extend this analysis by examining the behavior of the algorithms with
heavy-tailed proposals. They find that, unlike the diffusion behavior seen with light-tailed pro-
posals, heavy-tailed proposals lead to a different dynamic characterized by abrupt movements fol-
lowed by periods of inactivity. Furthermore, Neal and Roberts (2011) investigated optimal scaling
results for heavy-tailed proposal distributions such as the Cauchy distribution, and spherical pro-
posal distributions of fixed radius. In their RWM simulation study with three different continu-
ous iid. product target densities, both the Gaussian and Cauchy proposals had an estimated
asymptotically optimal acceptance rate of approximately 0.234 in d = 100, and a spherical pro-
posal with a fixed radius of 2.38 achieved an optimal acceptance rate of about 0.234 in d = 2 and
d > 10. Finally, Sherlock (2013) proved that spherically symmetric proposal distributions follow-
ing a geometric “shell” condition from Assumption 2.2 (6) should yield an optimal acceptance
rate of approximately 0.234 when sampling from a suitable target.

We experiment with two different proposal distributions in d € {2,5,10,20,50,100} and set
the target density 73 to a standard multivariate Gaussian:

3 (x) = N (x]0, 1)

< i — Xi d T|ly; — x| <% (11)
Qu(ylx) o [T exp (——'y ') Qulyl) =] lw
i=1 5

The first proposal distribution we consider is the multivariate Laplace distribution, which may
also be referred to as the double exponential distribution. We set the location parameter x4 = x and
scale parameter ¢ to be chosen to influence the acceptance rate of the algorithm. We also consider

an example with the uniform proposal distribution within the closed interval [xi —%,x,- —l—%} for

each component i, where b > 0 is the interval length.

As observed in Table 2 and the corresponding Figures A2, A3 in Appendix A, the optimal
acceptance rates for both the Laplace and Uniform proposals exhibit a clear trend. In low dimen-
sions, the optimal rate is significantly higher than 0.234, but converges toward 0.234 from above
as the dimension increases. For the Uniform proposal, the optimal rate is already approximately
0.239 at d =10, and for both proposals, the rates are close to the high-dimensional limit
for d > 20.
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Table 2. Empirical optimal RWM acceptance rates across dimensions for different proposal distributions targeting a standard
multivariate Gaussian.

Proposal d=2 d=5 d=10 d=20 d=150 d =100
Q;: Laplace 0.3780 0.3036 0.2841 0.2570 0.2429 0.2377
Qu: Uniform 03194 0.2516 0.2391 0.2368 0.2365 0.2316
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Figure 2. Histogram and traceplot of 10 million samples drawn from a multimodal single-dimensional target density. The true
density values are traced with the dotted lines.

These empirical findings provide strong validation for the generalized theory of optimal scal-
ing. While the foundational result of Roberts, Gelman, and Gilks (1997) was derived for Gaussian
proposals, the more general criteria from Sherlock (2013), summarized in Assumption 2.2, extend
this theory. The key requirement on the proposal is the shell condition (6) that requires the
norm of the proposal vector to concentrate around a constant in high dimensions. Interestingly,
although both the multivariate Laplace and Uniform distributions used here are not spherically
symmetric as required by (6), they still satisfy the spirit of the shell condition mentioned in the
previous sentence. If these more relaxed conditions still satisfy the necessary requirements for the
theory to work, the theory predicts that the 0.234 acceptance rate should indeed be asymptotically
optimal when using these proposals on a suitable target. Our results confirm this prediction, and
characterize the finite-dimensional behavior, demonstrating that convergence to the 0.234 opti-
mum occurs from above for these proposals. The lack of spherical symmetry in our proposals
also suggests that weaker conditions on the proposal than spherical symmetry may be sufficient
for the 0.234 rate to be optimal.

3.3. Multimodal target densities

In this subsection, we investigate target distributions with multimodal densities. Many real-world
probability and data distributions are multimodal, and standard RWM algorithms may struggle to
explore all the modes of a multimodal distribution in a reasonable amount of time particularly
when the modes are far apart. Additionally, multimodal densities may not necessarily fall under
the i.i.d. product umbrella of target densities, and even if they do, it is debatable how relevant the
0.234 rule is in these cases. For example, a RWM algorithm may achieve a 0.234 acceptance rate
in its run over many iterations and yet completely fail to escape a mode to explore other modes.
We illustrate this with Figure 2, where we attempt to draw 10 million samples from a multimodal
distribution with three modes but fail to escape the central mode.

When we have widely-separated modes, a RWM with the Gaussian proposal distribution strug-
gles to reach the other modes in finite time regardless of the proposal scaling and the dimension of
the target distribution. Therefore, for these multimodal target density experiments, we deliberately
set the modes to be close enough to each other so that a RWM still mixes between the modes rea-
sonably often. We list out the various target densities before detailing the experimental results.
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3.3.1. The “Rough Carpet” target density
First, we examine a simpler i.i.d. product density. Our first multimodal distribution has the form

d
m(x) = [[ax), filx) =05 Nxly, 1) +0.3 N (xlpp, 1) +0.2 M(xlps, 1) (12)

Where the single component density f; is a one-dimensional density with three modes at
(4 s, 113) = (=5,0,5) and N (x| 1) indicates the density of the univariate Gaussian distribu-
tion at point x with mean y; and variance 1. This forms a “rough carpet”-like appearance for the
target distribution when we take the product of this single-component density over many dimen-
sions (see the visualization of the first two components in Figure 3 for an example). Since we
have 3¢ modes, the density values at each mode may not be very high. Yet, since this is a i.i.d.
product form, the theoretical result of 0.234 being the optimal acceptance rate should also apply.

3.3.2. The “Rough Carpet” target density: inhomogeneously scaled components
Next, we examine a multimodal distribution with a density of the form

d
ns(x) = [ [Cfs(Cixi), f(x) = 0.5 N(xlay, 1) + 0.3 N (x[p5,1) + 0.2 N(x|us, 1), (13)
i=1
Note that fs = f4, so this density 75 is a more general form of m, by including inhomogeneous

component-wise scaling factors C;, where C; > 0 and E(C;) =1 and Var(C;) < oo. This is a spe-
cial case of a class of inhomogeneously-scaled i.i.d. product target densities discussed by Roberts
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Figure 3. Density of the first two dimensions of the “rough carpet” target distribution with MCMC samples from one RWM simu-
lation plotted in red. One out of every 200 MCMC samples drawn are plotted.
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and Rosenthal (2001), which proved the extension of the 0.234 asymptotically optimal acceptance rate
to this class. We independently sample the component scaling factors C; ~ Uniform[0.02,1.98].

3.3.3. A tale of three mixtures

The above “rough carpet” distributions are multimodal, but notice that they still follow the gen-
eral product form n(x) = H?Zlf (x;). Here, we examine a distribution that does not have this
product assumption at all; instead, we have a weighted sum of densities as our target density. We
examine a mixture of three Gaussians; a multimodal distribution with just three modes regardless
of the number of dimensions. The density is

m6(x) = wiN (x|py, Z1) + woN (x|, Zo) + wsV (x| ts, Z3) (14)

Where we have non-negative scalar weights w; > 0 such that w; +w, + w3 = 1, and A is the
density function of a multivariate Gaussian with mean g; € R? and covariance matrix PIYS R4,

For these experiments, we set the weights w; = w, = w; = %, the covariances X; = Xy = X35 =
I;, and set the means u; = (¢,0,0,...,0), 4, = (0,0,...,0), g3 = (—¢,0,0,...,0) for some constant
€ € R, i.e. just varying the first component of the means and setting the other components of the
means to 0. As mentioned (refer to Figure 2), we choose the constant ¢ = 5.0 in the first dimen-
sion after observing via traceplots that jumping between modes still happens frequently enough.
We refer the reader to Figure 4 for an example histogram and traceplot to illustrate how the
Markov chain explores the three modes.

3.3.4. A tale of three mixtures: inhomogenous scaling factors
We repeat our experiment with inhomogeneous scaling factors applied to each Gaussian mode.
Concretely, we instantiate our target density as

3 d
m(x) = wi- (HQ) N (x© Clue 1a) (15)
k=1 =1

Where C; ~ Uniform[0.2,1.8] and x® C denotes the Hadamard (element-wise) product
(%1C1, .., x4Cy). This allows each Gaussian mode to follow the functional form defined in Roberts
and Rosenthal (2001) Sec. 6; each mode has its own density of the functional form n(x) =
Hlec,f(c,-xi), where {C;} are ii.d. with E(C;) = 1 and E(C?) < o0.

3.3.5. Multimodal experiments and results

We conduct our experiments in d € {20,30,50} using the default experimental procedure
described. We summarize our results in Table 3, and refer the reader to Appendix A Figures A4-
A7 for plots of the trend of ESJD with acceptance rate.

The results for our multimodal experiments provide strong empirical support for the generaliz-
ability of the 0.234 acceptance rate heuristic. We observe that for all four target distributions, the
optimal acceptance rate converges toward 0.234 as the dimension increases, even for those that
lack an iid. product structure. Their optimal acceptance rates are already very close to 0.234
even in low dimensions (d = 10). Theoretically, the 0.234 value is likely to be justified by the gen-
eral criteria of Sherlock (2013) that are stated in Assumption 2.2. The three mixture targets
(76, m7), while not product densities, are constructed from isotropic Gaussians. In high dimen-
sions, they form a well-behaved geometric shell with low eccentricity, thus satisfying the target
conditions for the 0.234 rule to apply. The rough carpet targets m4, s are i.i.d. products of a
more complex multimodal density. The component-wise multimodality creates a more intricate
target landscape, which may require higher dimensions before the geometric properties average
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Table 3. Empirical optimal RWM acceptance rates for multimodal target distributions.

Target d=20 d=30 d=50
74 Rough Carpet (homogeneous) 0.2133 0.2202 0.2291
7s: Rough Carpet (inhomogeneous) 0.2009 0.2174 0.2351
mg: 3-Mixture (homogeneous) 0.2489 0.2454 0.2394
77: 3-Mixture (inhomogeneous) 0.2360 0.2334 0.2371

out to satisfy the shell and stability conditions as effectively; this may explain why their optimal
rates approach 0.234 from below.

There is an interesting note that for both families of targets, introducing inhomogeneous scal-
ing consistently pushes the optimal acceptance rate lower in smaller dimensions. This could be
explained by the Target Eccentricity condition of Sherlock (2013) (mentioned in Assumption 2.2
(5)). The inhomogeneous scaling factors introduce anisotropy into the target’s curvature, creating
directions with much higher curvature than others. With a standard isotropic proposal such as
the multivariate Gaussian, the optimal proposal scale must shrink to avoid constant rejections in
these high-curvature directions. This makes the sampler inefficient in the less-curved directions,
degrading the algorithm’s overall performance. This less efficient dynamic alters the tradeoff
between proposal size and acceptance probability, shifting the peak of the ESJD curve to the left.
Our results show that for such low-dimensional inhomogeneously scaled targets, the optimal bal-
ance is achieved at a lower acceptance rate than the 0.234 ideal. Then, as d grows, the law of large
numbers mitigates the effect of any single scaling factor, the target becomes effectively less eccen-
tric, and the optimal acceptance rate recovers to 0.234.

3.4. Rosenbrock target densities

The multimodal experiments in Sec. 3.3 demonstrated the effectiveness of the 0.234 acceptance
rate for multimodal distributions, where the main challenge is mode isolation. In practice, how-
ever, many posterior landscapes are not only multi-peaked but also have nonlinear correlation
structure, providing challenges for local proposals even when there is only a single global mode.
We examine this setting by sampling three different extensions of the two-dimensional
Rosenbrock target density to d-dimensions (Dixon and Mills 1994; Goodman and Weare 2010;
Pagani, Wiegand, and Nadarajah 2022), each of which have different curvature and therefore dif-
ferent difficulty from a MCMC perspective.

Rosenbrock (1960) originally introduced the Rosenbrock function as an optimization problem: a
non-convex function which has a global minimum inside a long, narrow parabolic canyon. The
Rosenbrock function can then be converted into a probability density that preserves these proper-
ties. Because the local correlation structure changes rapidly along the ridge, step sizes that work
near the mode are either rejected or become inefficient elsewhere. Consequently, Rosenbrock targets
have become common benchmarks to test MCMC algorithms (Haario, Saksman, and Tamminen
2001; Huijser, Goodman, and Brewer 2022; Hunt-Smith et al. 2024; Militzer 2025). Including these
targets in our empirical study extends our findings to targets with curved correlation structure.

We first describe the unnormalized Rosenbrock target densities, then describe our experimen-
tal procedure and results. We use the Rosenbrock kernels described by Pagani, Wiegand, and
Nadarajah (2022).

3.4.1. Full Rosenbrock
The d-dimensional Full Rosenbrock distribution (Goodman and Weare 2010) has the following
kernel for x € RY:

1

Tg(X) x exp {— 4_ [IOO(x,-H -2+ (1= xi)z} /20} (16)
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The original 2-dimensional Rosenbrock resembles a long banana-shaped valley whose floor fol-
lows the parabola x, = x%. As stated in Pagani, Wiegand, and Nadarajah (2022), as d increases,
the long, narrow ridge that makes sampling challenging becomes more concentrated around the
mode, decreasing the problem’s difficulty. However, the variance of x,; increases steeply as each
new random variable is directly dependent on the squared value of the previous variable.

3.4.2. Even Rosenbrock
The d-dimensional Even Rosenbrock distribution extended from the optimization function in
Dixon and Mills (1994) has the following kernel for x, u € R?, where d must be even:

2
o (X) o< exp _Z [(le'—l - ﬂ21—1)2 + 100(x2i — x%i—1)2:| /20 (17)
i=1

The Even Rosenbrock partitions the state into ¢ independent 2-dimensional Rosenbrock
blocks. Because the blocks do not interact, the global target is the product of smaller bananas; the
joint density still exhibits the same curved valleys within each block but lacks the long-range, ser-
ial dependence of the Full Rosenbrock. Consequently, we expect higher ESJD (and hence slightly
lower optimal acceptance rates) than in the fully coupled case.

Our experiments only use a single scaling factor applied to the whole covariance matrix of the
proposal, but it could be useful for a practitioner to note that it is possible to locally tune the
proposal for each 2-dimensional Rosenbrock block to make the RWM algorithm more efficient
on this distribution. For example, when using a Gaussian proposal, the covariance matrix could
be set as a block diagonal matrix where each 2 x 2 block on the diagonal of the Gaussian covari-

ance matrix is tailored to and achieves optimality on its own 2-dimensional Rosenbrock.

3.4.3. Hybrid Rosenbrock
The d-dimensional Hybrid Rosenbrock distribution introduced by Pagani, Wiegand, and
Nadarajah (2022) has the following kernel for x € R?, where y,x;; € R;a,bj; € R*(Vj, i):

Mio(X) o exp {_a(xl -’ - Zzbj,i<xj,i - xﬁi_l)z} (18)

=1 =2

The integers n; and n, describe a grid of blocks: there are n, vertical stacks, each containing
n; — 1 Rosenbrock-type links and a shared root coordinate x;. The total dimension is therefore
d = (n; = 1)ny + 1. Within every column j, the curvature coefficients b;; can vary with depth i,
producing steeper or flatter valleys as we move away from the root. Horizontally, however, col-
umns are independent, so the Hybrid form interpolates between the serial dependence of the Full
Rosenbrock (one long chain: n, = 1) and the independent blocks of the Even Rosenbrock
(n = 3, n, = d/2). This allows the difficulty of the distribution to be modified by setting #;, #1,;
larger n; increases non-linearity within a column, while larger n, raises overall dimension without
adding extra curvature.

3.4.4. Simulations and results

For our Rosenbrock simulations, we found that our initial settings of 200,000 Markov chain steps
and 20 seeds were insufficient to produce meaningful trends, so we ran more simulations for
more steps with the Rosenbrock targets. In this section, we continue using a Gaussian proposal
with 40 different variance values. However, we run each simulation for 1,000,000 steps and we
repeated each experiment with 30 different seeds instead of the usual 20. For the Full
Rosenbrock, we select d € {5,10,20,30}. For the Even Rosenbrock, we select d € {4,10,20,30}.
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Table 4. Empirical optimal RWM acceptance rates for three different d-dimensional Rosenbrock target distributions.

Target d=4or5 d=9 or 10 d=19 or 20 d =29 or 30
ng: Full Rosenbrock 0.2047 0.2359 0.2384 0.2337
m9: Even Rosenbrock 0.0646 0.1430 0.2003 0.2107
m0: Hybrid Rosenbrock 0.1394 0.2272 0.2349 0.2340

For the Hybrid Rosenbrock, we select (nj,n,) € {(3,2),(5,2),(7,3),(8,4)} which gives total
dimension d € {5,9,19,29} respectively.

We also provide a plot of the ESJD versus acceptance rate trend for the 2-dimensional
Rosenbrock. Note that for d = 2, each of the three Rosenbrocks reduce to the standard Rosenbrock
2-dimensional density, assuming g, = 1 for the Even Rosenbrock and n; =2,n, =1,a = %,b =
%,,u =1 for the Hybrid Rosenbrock. All other plots of ESJD versus acceptance rate trends for
these distributions are in Appendix A Figures A8-A10 for plots of the trend of ESJD with accept-
ance rate.

Our experiments with the Rosenbrock family of targets, presented in Table 4, demonstrate that
the 0.234 heuristic remains effective even for distributions with non-linear dependencies and
curvature. For the Full Rosenbrock (mg) and Hybrid Rosenbrock (7o) targets, the optimal accept-
ance rate robustly converges to approximately 0.234 as the dimension increases. Although these
targets are not i.i.d. and possess a highly anisotropic banana-shaped geometry, they should satisfy
the general criteria from Sherlock (2013) (stated as Assumption 2.2) in the high-dimensional
limit. As d grows, the complex local correlations become less influential relative to the global
structure, allowing the target’s geometric properties to stabilize in the manner required by
Assumption 2.2. On the other hand, the Even Rosenbrock (mg) has a significantly lower optimal
acceptance rate in low dimensions than the other Rosenbrocks, and the optimal acceptance rate
increases slowly toward 0.234 with increasing dimension. This seems reasonable and the analysis
of Beskos et al. (2018) is useful here.

The Even Rosenbrock is a product of independent 2-dimensional Rosenbrock blocks, and for a
small number of blocks, the standard high-dimensional scaling theory is less applicable. We elab-
orate on this in the next paragraph about the 2-dimensional Rosenbrock, but the key relevant
message from Beskos et al. (2018) is that in low dimensions, large proposed jumps and an accept-
ance rate closer to zero are most efficient, explaining the low optimal acceptance rate. As the
dimension d and thus the number of independent blocks grow, the dynamics transition from a
Markov jump process toward a limiting diffusion. While the theory for such targets suggests a
position-dependent diffusion speed and thus a “local” 0.234 rule (Beskos et al. 2018, see point
(iv), p. 2968), the growing number of independent blocks and therefore the growing number of
“large” components may induce a law of large numbers effect where position-dependent varia-
tions in diffusion speed average out across the many blocks. This would result in an approxi-
mately constant global diffusion speed and therefore a global 0.234 acceptance rate being
approximately optimal in high dimensions for the Even Rosenbrock.

The result for the 2-dimensional Rosenbrock target, shown in Figure 5, provides empirical evi-
dence for the low-dimensional sampling phenomena analyzed by Beskos et al. (2018). Unlike the
higher-dimensional cases, the ESJD does not exhibit a clear peak around a non-zero acceptance
rate. Instead, it appears to increase monotonically as the acceptance rate approaches zero.

As theoretically established by Beskos et al. (2018), the optimal sampling strategy for this low-
dimensional ridged target is not a diffusion process. They state that efficiency is maximized by
proposing extremely large jumps using a large proposal scaling ¢ and allowing the acceptance
rate to go to zero. A heuristic explanation for this is that in this case, the squared distance of a
proposal increases proportionally to ¢* but the fraction of accepted proposals decreases propor-
tionally to 1, and therefore ESJD increases proportionally to ¢ until the proposal scale becomes
comparable to the characteristic scale of the target distribution itself, at which point the
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Figure 5. ESJD vs. acceptance rate for the 2-dimensional Rosenbrock target distribution mg under RWM with a Gaussian pro-
posal. Red dotted line indicates an acceptance rate of 0.234.

Table 5. Empirical optimal RWM acceptance rates for the continuous hypercube target.
Target d=2 d=>5 d=10 d=20 d=30 d=150 d =100
m11: Hypercube [0,1]d 0.4316 0.2767 0.2027 0.1670 0.1525 0.1439 0.1423

acceptance probability begins to decay more rapidly. Taking the limit, as the thickness (scale ¢ in
Beskos et al. (2018)) of the support of the target distribution goes to zero, the algorithm’s dynam-
ics converge to a continuous-time Markov jump process rather than a diffusion. Our observation
for the 2-dimensional Rosenbrock target, and by extension the low-dimensional Even Rosenbrock
target (e.g. for d = 4, which consists of two independent 2-dimensional blocks), is an instance of
this theoretically-predicted behavior.

3.5. Non-smooth target densities: continuous hypercube

Now, consider a RWM using a Gaussian proposal and a target density still of the product form
n(x) = Hfl:l f(x;), but where the individual component density f is Uniform[a, b].

_Ta <x <]

d
T (x) = Hfll(xi)) fu(x) b (19)

—a

Unlike the previous examples, the component density f and its logarithm are not continuously
differentiable on R due to the discontinuities at the boundaries x; = a and x; = b. Since this is
one of the assumptions in Assumption 2.1, the asymptotic results where the optimal acceptance
rate is 0.234 may not apply. This discontinuous target density case has been explored by Neal,
Roberts, and Yuen (2012), which found that for product densities with a discontinuity at the
boundary, such as the unit hypercube [0, l]d, the efficiency of the RWM is maximized with an
asymptotic optimal acceptance rate of 0.1353 as d — co. We provide simulation studies in vari-
ous dimensions to investigate the applicability of this particular 0.1353 acceptance rate figure in
lower dimensions on the hypercube [0, l]d. We use 300,000 iterations instead of the typical
200,000 for this target to make the plots sufficiently smooth.

Compared to the previous examples (see Appendix A for their ESJD versus acceptance rate
curves, which tend to be smooth and gentle at the plateau), which seem to be fairly consistently
optimal with an acceptance rate of approximately 0.234, we find (refer to Table 5 and Figure 6)
that the optimal acceptance rate for the hypercube target changes significantly as the dimension
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increases, and notice that the plateau of the curve tends to get quite sharp as the dimension
increases. This is because discontinuities introduce additional complexity in the target distribu-
tion, affecting the behavior and performance of the RWM algorithm.

As the dimension d increases, the algorithm’s performance converges to the theoretical 0.1353
value. In this specific case, the shrinking optimal acceptance rate might be because of the unique
zero or non-zero form of the target density beyond the hypercube boundary. As discussed by
Neal, Roberts, and Yuen (2012), whether a proposed move is accepted depends completely on
whether the proposed state is inside the hypercube. Subsequently, when using a Gaussian pro-
posal, the probability that at least one proposed component will lie outside the boundary
increases as dimension increases, leading to a higher probability of instant rejection when the
proposal scaling factor independent of dimension is kept constant.

The trends in Figure 6 offer practical guidance for tuning. In high dimensions (e.g. d = 100), the
ESJD curve peaks sharply near the theoretical optimum of 0.1353, and tuning to 0.234 would result
in a significant loss of efficiency. However, in lower dimensions (e.g. d = 2,5,10), the optimal
acceptance rate is much closer to 0.234 than to 0.1353. The ESJD curve is also flatter, meaning the
penalty for slight mistuning is less severe. This suggests a mini-max strategy for practitioners unsure
of the dimensionality effects: tuning to an acceptance rate of approximately 0.234 is a robust choice
across all dimensions. While it could be suboptimal for very high dimensions, it is nearly empirically
optimal for low dimensions, whereas tuning to 0.1353 in these instances would be highly inefficient
even though theory supports it over the 0.234 rate for this specific target distribution.

3.6. Neal’s funnel target density

To probe the limits of the 0.234 heuristic, we now examine a target distribution that is canonical
for its challenging geometry: the funnel distribution introduced by Neal (2003). Unlike the
Rosenbrock target, which has localized curvature, Neal’s funnel possesses a global, non-linear
dependency structure that presents a severe challenge to standard MCMC algorithms. In this dis-
tribution, a single variable controls the variance of all other variables, creating an extreme, state-
dependent anisotropy. This structure should violate the geometric regularity conditions outlined
in Assumption 2.2, particularly the target eccentricity and Hessian stability.

The d-dimensional Neal’s funnel target density, which we denote 7, is defined for x =
(x1,%2, ..., x4). The density is given by the product of a marginal density for the first component
x; and conditional densities for the other components:

d
m12(x) = N (%10, 32)HN(x,»|O, exp (x1)) (20)

i=2

The key feature is that the variance of each x; after x; is exp (x1). This creates a funnel shape
in the state space: when x; is large and negative, the funnel is a very narrow neck where the x;'s
are tightly constrained; when x; is positive, the funnel opens into a wide mouth where the x;'s
can have enormous variance.

For our experiments, we follow the standard parameterization from Neal (2003). We test this
target in dimensions d € {5, 10,20,30}. Due to the difficulty of sampling this target, we increased
our simulation budget significantly, using 1,000,000 iterations per simulation (across 40 seeds, 40
million total Metropolis steps), a burn-in of 50,000 steps, and averaging the results over 30 ran-
dom seeds for each data point. We continue using the Gaussian proposal with variance as
described in (8). Our simulation results are shown in Figure 7.

Similarly to the 2-dimensional Rosenbrock, we find that the ESJD increases monotonically as
the acceptance rate reduces in lower dimensions. In higher dimensions (d = 20, 30), we observe a
similar trend, but at the extreme ends of the curve, we observe a complete failure of the RWM
algorithm to accept any reasonable number of steps as the average acceptance rate decreases
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Figure 7. ESJD vs. acceptance rate for the Neal's funnel target 71, under RWM with a Gaussian proposal in dimensions d €
{5,10,20,30} from top-left to bottom-right. Red dotted line indicates an acceptance rate of 0.234.

toward zero, leading to sudden random drops in ESJD. Notice that the curvature of the graph
gets steeper with increasing dimension: it is nearly a straight line at d =5 and is much more
curved by d = 30.

Opverall, this behavior indicates an extreme sensitivity to the proposal scaling in higher dimen-
sions. The practical implication is that even minor mistuning of the proposal variance will cause
the sampler’s efficiency to collapse to zero. This is a direct consequence of the target’s geometry
violating the conditions of Assumption 2.2; the target has extreme eccentricity, and the Hessian is
not locally stable. Consequently, the 0.234 acceptance rate is not a relevant or useful heuristic for
this target. The more important conclusion, which Neal (2003) himself meant to show with this
example, is that for targets with strong non-linear dependencies, no single proposal scale can be
efficient in both the narrow neck and the wide mouth of the funnel, leading to a sampler that
inevitably fails as dimensionality grows. This experiment effectively demonstrates a hard bound-
ary for the class of problems on which the 0.234 RWM heuristic can be successfully applied.

4. Parallel tempering background

This section offers a brief introduction to the parallel tempering method and its own optimal
scaling framework that we conduct experiments on in Sec. 5. Many of the terms in Sec. 2 are re-
used but have slightly different definitions for the parallel tempering context.

4.1. Parallel tempering method

The parallel tempering method (Geyer 1991), also known as the Metropolis-coupled Markov
chain Monte Carlo algorithm or the replica exchange method, is a version of the Metropolis
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algorithm that specializes in sampling from multimodal distributions. In this case, we sample
from a target distribution with density 7(x) on a state space X. We define a sequence of tem-
pered target densities 7”i(x) where 0 < 8, < f,_; < ... < B; < f, =1 are the inverse tempera-
ture values. We require that 7/ (x) = n(x) (that is, that f, = 1). Typically, the tempered target
densities are simply powers of the original density, and we assume this for all parallel tempering
experiments. Then, we run a Markov chain for each of the n + 1 values of f3, each with its own
tempered target density. Eventually, the f, = 1 chain, also called the “cold” chain, with its sta-
tionary density 7 (x)) should correspond to the original target density of interest 7(x), and the
idea is that using information from other chains with higher temperatures (lower f) will speed
up the mixing in the cold chain.

In each iteration of the algorithm, we alternate between within temperature and temperature
swap moves. The former indicates that each chain takes a standard RWM update within its
respective 7. The latter indicates that for two chains with B;» By inverse temperature values that
are adjacent in the sequence of 8 values, switch the chain values of x; and x; with probability

min{l w} (21)

"l () P ()

4.2. Optimal scaling for parallel tempering

Since the hot chains can explore the state space more quickly, we would like to maximize how
frequently we can swap values from the hottest chain to the coldest chain so that the cold chain
can mix faster and escape local modes. To do this, we maximize the effective speed with which
the chain values move along in the inverse temperature domain. The spacings of the inverse tem-
peratures f3;s are crucial to this efficiency. If f§; and f are too far apart, we usually reject these
swaps described by (21), but if they are too close, the swaps will not improve mixing. We would
like to swap just the right amount to maximize mixing in the temperature domain.

The expected squared jumping distance (ESJD) for parallel tempering thus refers to the expected
squared jump in inverse temperatures. Formalizing this, when we attempt to swap the chain values
between the inverse temperatures f§ and y := f§ + € where f,e > 0 and f8,y < 1, the swap is either
accepted, in which case the values move a squared distance of (y — )* = €, or the swap is rejected,
in which case the distance moved is 0. This leads to a very natural definition for ESJD, which is

ESID = E[(y — B)*] = € x E[Pr(swap accepted)]. (22)

Maximizing the asymptotic ESJD effectively maximizes the efficiency of the attempted swap
moves in providing mixing in the temperature space, or in other words, maximizes the speed
with which the chain values move in the inverse temperature space.

There is also a 0.234 swap acceptance rate theoretical result for parallel tempering. The
required assumptions for the result are the following:

Assumption Set 4.1. (Atchadeé, Roberts, and Rosenthal (2011)) Let x be a random variable from
the target density m.

1. The target density is an i.i.d. product n(x) = H?:Lf(xi) where f is a single-dimensional compo-
nent density. There are other smoothness and regularity restrictions on the target density taken
from the main results of Roberts, Gelman, and Gilks (1997); Roberts and Rosenthal (2001).

2. Thde tempereﬁd distributions are powers of the original density, so n'f)(x) = Hfl:]f(ﬁ)(x,») =
[Tiey (F(xi)"

3. The inverse-temperature spread e = d~"/*( for some positive constant {.
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Under these assumptions, choosing ¢ such that the inverse temperature spacing yields a swap
acceptance probability of approximately 0.234 is also optimal in the sense that it maximizes the
ESJD of a parallel tempering algorithm.

5. Parallel tempering simulations

In this section, we provide parallel tempering experiments that investigate how well the 0.234
optimal swap acceptance rate holds for the various multimodal target distributions in Sec. 3.3 in
finite dimensions. The parallel tempering method is highly effective for exploring multimodal dis-
tributions (Atchadé, Roberts, and Rosenthal 2011; Hastings 1970) and thus we aim our experi-
ments at these distributions to learn more about their applicability in practice.

5.1. Target distributions

5.1.1. Multivariate Gaussian distribution

We first give an example of the standard multivariate Gaussian distribution to verify the correct-
ness of our implementation. Note that the standard multivariate Gaussian as a target distribution
satisfies the necessary conditions of Atchadé, Roberts, and Rosenthal (2011) that are stated in
Assumption 4.1.

5.1.2. Rough carpet distribution

In this section, we use the same target distribution 74 from (12) as described in Sec. 3.3.1. Here,
we examine the simpler case with homogeneous scaling factors f;(x) = [[_,f(x;). In the individ-
ual component density f(x) definition, we set (u;, ft,, tt3) = (=15,0,15). We provide an example
traceplot of the cold chain from one of the experiment simulations in Appendix A Figure All to
demonstrate what mixing looks like in the first three components (all components are i.i.d.).
Unlike the standard random-walk Metropolis which cannot escape from the central mode in this
setting of the target distribution, the values in the cold chain swap between modes considerably
often due to the swapping of values between chains.

5.1.3. Three mixture distribution

In this section, we use the same target distribution as described in Sec. 3.3.3 (14). We set weights
WL =Wy = wz = %, means g, = (—15,0,0,...,0), u, = (0,0,...,0), gy = (15,0,0,...,0) and cova-
riances Z; = X, = X3 = I;. We provide an example traceplot of the cold chain in Appendix A
Figure A12 to demonstrate what mixing looks like in the first three components.

5.2. Methodology

We conduct experiments in dimension d € {10,20,30} that examine the trend of ESJD with
swap acceptance rate on these distributions. For each distribution, we run many simulations
where each simulation is a parallel tempering algorithm with 30 different average swap accept-
ance rate values. We explain how we set up these algorithms to match these swap rates (through
constructing a specific inverse temperature ladder) in Sec. 5.2.1. Each parallel tempering algo-
rithm runs for 500,000 iterations, so every individual chain in the algorithm takes 500,000 steps.
We attempt a temperature swap every 100 steps. Furthermore, we ran each algorithm instance
over 20 different seeds and average the results to reduce the effects of randomness caused by a
particular seed.
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For each experiment, we set the tempered target distribution to simply be the original distribu-
tion raised to the power of . We set the modes to be far away enough such that the other modes
were not reached by a standard random-walk Metropolis algorithm after 100,000 iterations, but
still reasonably close so that the parallel tempering method would show the cold chain values
would swap between modes somewhat frequently. The within-chain proposal distribution for
each chain is given by the multivariate Gaussian (8) with ¢ = 2.38%/d, which is suggested by
Roberts, Gelman, and Gilks (1997) to be optimal for high dimensions. We calculate the optimal
swap acceptance rate by finding each simulation’s specified swap acceptance rate used to con-
struct the iterative temperature ladder that maximizes the ESJD, and take the average of the max-
imizing acceptance rates over 20 seeds.

5.2.1. Constructing an inverse temperature ladder iteratively

The most common method to construct an inverse temperature ladder selects the inverse temper-
atures using a geometric series spacing. However, since we are examining the 0.234 swap accept-
ance rule, we need to have a way of constructing the inverse temperature spacings such that the
probability of a swap between adjacent chains is approximately 0.234 (or any other value). To
construct an inverse temperature ladder with a desired swap acceptance rate s, we use an iterative
procedure adapted from (Atchadé, Roberts, and Rosenthal 2011, Section 2.2). Starting with f;, =
1 and a minimum value f,;, = 0.01, we iteratively add f’s to the ladder. Let f8,,, denote the
most recent f3 in the ladder. We initialize p, = 0.5 (n = 1 initially) and set f* = f,,, (1 + e”)".
To determine if f* should be added to the ladder, we draw N samples (our GPU implementation
uses N =1,000,000) from the target distribution tempered by f* and f,,,,» and calculate the aver-
age swap probability a. If a is within s*=0.0001, we add f* to the ladder and set f,,, = .
Otherwise, we update p,,; = p, + n~%?*(a —s) and recalculate f*. This process continues until
B" < P> at which point we add f;, to the ladder and terminate.

5.3. Results

The empirical optimal swap acceptance rates for the three target distributions are summarized in
Table 6, and sample ESJD curves for d = 30 shown in Figure 8. The ESJD curves for PT are vis-
ibly more jagged than their RWM counterparts. This might be because the estimation of ESJD in
this context is more susceptible to Monte Carlo error even with a large number of simulation
steps, since the efficiency or acceptance rate of a swap move depends on the joint stationary dis-
tribution of two adjacent chains, and this is repeated for each temperature construction. Another
possible reason might be the determinism in the way p, changes. Future work could investigate
alternative algorithms to compute a fixed discrete temperature ladder that provides a certain
swap rate prior to running the PT algorithm, perhaps by computing each change in p, from a
distribution. Nonetheless, clear trends emerge from the results.

For both the standard Gaussian (7;) and the non-product Three-Mixture (7¢) targets, the opti-
mal swap acceptance rate is consistently in the neighborhood of 0.234. For the Three-Mixture tar-
get, the rate converges cleanly toward the theoretical value, from 0.261 in d =10 to 0.237 in
d = 30. The Gaussian target shows a similar pattern, with an optimal rate of 0.247 at d = 30.

Table 6. Empirical swap acceptance rates that maximize ESJD for various PT target densities.

Target d=10 d=20 d=30
7,: Standard Multivariate Gaussian 0.2618 0.2685 0.2474
74 Rough Carpet 0.2660 0.2803 0.2761
Tg: 3-Mixture 0.2609 0.2660 0.2372

Based on Fig 8, the jagged pattern of the ESID curves suggests that the true optimal acceptance
rates are in a neighborhood of these values. See Section 5.2 for calculation of optimal swap
acceptance rates.
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Figure 8. ESJD vs. swap acceptance rate for the parallel tempering algorithm with the =,, 74, 16 target distributions in dimen-
sion d = 30. Red dotted line indicates a swap acceptance rate of 0.234.

The standard Gaussian result provides a successful validation of our experimental setup against
the theory of Atchadé, Roberts, and Rosenthal (2011), as this target satisfies the i.i.d. product
form assumption. More importantly, the result for the Three-Mixture target suggests that the
0.234 heuristic for PT swaps is robust to violations of the ii.d. product assumption, much like its
RWM counterpart. Although the target is a sum of densities, its underlying geometric regularity
(a shell composed of three isotropic modes) seems sufficient for the optimal scaling 0.234 result
to hold. For a practitioner, this suggests that constructing a temperature ladder with a swap
acceptance probability of 0.234 is a viable and likely near-optimal strategy, even for complex,
non-product multimodal targets, provided they are not pathologically structured.

Notably, the Rough Carpet target (n4) shows a deviation. The optimal swap acceptance rate is
consistently higher than 0.234 and increases away from the theoretical value with increasing
dimension. This is surprising because the Rough Carpet target does satisfy the i.i.d. product form
and other conditions of Assumption 4.1 by Atchadé, Roberts, and Rosenthal (2011).

There are two plausible explanations that we favor here. The failure of the 0.234 rule here
could be because the extreme multimodality of the target could reduce the practical utility of the
hot” chains. The target possesses 37 modes, and its probability mass is spread thinly across this
vast landscape. For a hot chain where the inverse temperature f3 is close to 0, the tempered dens-
ity becomes extremely flat and loses the slight peak that a unimodal target would have.
Consequently, it fails to efficiently sample from the specific modal regions that are of interest to
the colder chains; the information flow from hot to cold chains is broken. To swap successfully
more often, the temperature steps must be made smaller, which forces the swap acceptance rate
to be higher.

An alternative and more simple explanation is that, due to the jaggedness of the ESJD vs swap
acceptance rate trend in Figure 8, the discrete temperature ladder is only approximately optimal,
and the true empirically optimal swap rate is somehow confounded by determinism in the ladder
construction algorithm. As mentioned previously, alternative methods to construct temperature
ladders yielding certain swap acceptance rates prior to running a PT algorithm could be an area
for future work.

6. Discussion

We have presented an extensive empirical investigation into the generalizability of the 0.234
acceptance rate heuristic for both Random-Walk Metropolis (RWM) and Parallel Tempering (PT)
algorithms, using a variety of target and proposal distributions. Our results demonstrate that the
0.234 rule’s utility extends beyond the classical i.i.d. product setting of Roberts, Gelman, and
Gilks (1997). The heuristic remains approximately optimal for: (i) non-Gaussian Laplace and
Uniform proposal distributions that satisfy a “shell” condition with a less stringent symmetry
requirement than spherical symmetry; (ii) multimodal targets such as the “rough carpet” ii.d
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product with 3¢ modes, and non-product targets constructed as a sum of isotropic components,
such as our Three-Mixture model; and (iii) even for highly correlated, non-linear targets like the
Full and Hybrid Rosenbrock in sufficiently high dimensions (d > 20). These findings provide
empirical validation for the generalized theory of Sherlock (2013), which predicts that as long as
the target’s geometry is sufficiently regular and isotropic in the high-dimensional limit, the 0.234
rule should hold. Our results in Sec. 3.2 even suggest that weaker conditions on the symmetry of
the proposal than those required by Sherlock (2013) could be sufficient.

That being said, there are cases where 0.234 does not seem as relevant. The main case is in
very low dimensions; in all our experiments with varying target densities, the optimal acceptance
rate strays from 0.234 below a certain threshold which varies for each target density. In particular,
targets composed of independent, low-dimensional anisotropic blocks (Even Rosenbrock) or those
that are globally anisotropic in low dimensions (2D Rosenbrock), have an optimal acceptance rate
significantly below 0.234. In these cases, we hypothesize the high-dimensional averaging effect
that stabilizes the target’s geometry has not occurred, and the sampler’s performance is dictated
by the challenging local geometry. As the dimension increases, the law of large numbers mitigates
the effect of any single scaling factor or local correlation, so the target becomes effectively less
eccentric, complying with the theory of Sherlock (2013), and the optimal acceptance rate recovers
toward 0.234. On the other hand, the continuous hypercube and Neal’s funnel completely fail the
0.234 heuristic. Although the hypercube is continuously differentiable everywhere except on its
boundary, which has zero measure, an intuitive argument is that as d increases, the probability
that the proposal has all the values inside the hypercube decreases. As for the funnel, no single
proposal scaling can be globally efficient, which is just a limitation of the RWM algorithm.

Next, we discuss the optimal swap acceptance rate figure for parallel tempering and compare
it with the optimal acceptance rate for random-walk Metropolis. On one hand, the results for the
multivariate Gaussian and three-mixture density examples show that the 0.234 swap acceptance
rate figure may be optimal even in lower dimensions. Although costly, if the practitioner is will-
ing and able to construct the inverse temperature ladder iteratively with a spacing given by a
swap acceptance probability, the spacing dictated by a 0.234 swap acceptance probability may be
optimal for the practitioner. However, the theoretical 0.234 figure may not always be applicable:
despite satisfying the i.i.d. conditions of the PT optimal scaling theory (Atchadé, Roberts, and
Rosenthal 2011), the extreme multimodality (37 modes) of the “rough carpet” product density
appears to render the hot chains ineffective in our experiments, with the caveat that the apparent
failure of the 0.234 rule could partly be due to the jaggedness of our experimental ESJD vs swap
acceptance rate curves. One hypothesis for this observed failure is that because the probability
mass is spread so thinly, the hot chains fail to sample from meaningful modal regions, breaking
the flow of information to the cold chain. This forces the algorithm to use smaller temperature
steps (and thus higher swap acceptance rates) to achieve mixing, representing a practical failure
of the 0.234 PT rule.

Not only that, constructing a temperature ladder iteratively with the “optimal spacing” is chal-
lenging and time-consuming. It requires the ability to draw samples from the target distribution,
which is itself the main goal of the parallel tempering algorithm. Without a direct way to sample
from the target, a practitioner could run an MCMC algorithm with the f value being proposed
for the new addition to the ladder, but this may be time-consuming with many attempts required
until a suitable f is found for each step of the ladder.

Since this optimal spacing may not yield the optimal ESJD in practice for finite, lower-
dimensional targets and with a finite number of runs, an alternative approach is to adaptively
adjust the spacings of the temperature ladder during the algorithm’s runs based on its recent
ESJD performance over a recent window as guidance to practitioners. This is known as adaptive
parallel tempering (Miasojedow, Moulines, and Vihola 2013). Previous literature shows that adap-
tive parallel tempering algorithms can achieve substantial efficiency gains over a standard
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geometric temperature spacing (Vousden, Farr, and Mandel 2016) while still converging to the
target distribution (Miasojedow, Moulines, and Vihola 2013) under the assumptions that the tar-
get distribution is sufficiently regular and has tails decaying faster than exponentially. Adaptive
parallel tempering may suffice to be “good enough” for most practitioners whilst avoiding the
costly temperature construction algorithm.

Lastly, while we have established that the 0.234 acceptance rate for RWM is still fairly good
even in lower dimensions and on some target distributions that may not have the ii.d. product
form, we provide some precautions to the practitioner. The 0.234 acceptance rate is a good heur-
istic to tune the algorithm to, yet there are still many cases where it is not optimal in terms of
efficiency, such as the continuous hypercube example in Sec. 3.5. Even if the 0.234 acceptance
rate is in fact optimal, the acceptance rate alone does not necessarily guarantee good samples, as
illustrated by Figure 2. What literature (Roberts and Rosenthal 2001; Sherlock, Fearnhead, and
Roberts 2010) indicates is that another very important thing in practice beyond just the accept-
ance rate is defining a good proposal covariance matrix X, that is approximately proportional to
the target covariance matrix X,; doing so can significantly increase the asymptotic relative effi-
ciency. Realistically, it may be impossible to know X, in advance or even provide a good estimate
for it. In fact, understanding how we can extend this result to correlated targets is an ongoing
challenge (Yang, Roberts, and Rosenthal 2020) and immediately relevant to the practitioner since
real-world data tends to have correlations between variables. Practitioners may consider using the
adaptive Metropolis algorithm (Haario, Saksman, and Tamminen 2001) to dynamically update
the algorithm’s proposal covariance matrix. This adaptive algorithm is very useful and yields sig-
nificant speed benefits in low and high dimensions (Craiu, Rosenthal, and Yang 2009; Roberts
and Rosenthal 2009), but an important potential pitfall to note is that adaptive methods are not
guaranteed to converge to the correct target density; in many cases, they may fail to converge or
converge to something completely different (Roberts and Rosenthal 2007, 2009).
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ESJD vs acceptance rate (dim=20) ESJD vs acceptance rate (dim=30) ESJD vs acceptance rate (dim=50)
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Figure A4. ESJD vs. acceptance rate for the i.i.d. rough carpet target distribution 74 (Equation 12) under RWM with a Gaussian
proposal in dimensions d € {20,30,50} from left to right. Red dotted line indicates an acceptance rate of 0.234.
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Figure A5. ESID vs. acceptance rate for the inhomogeneously scaled i.i.d. rough carpet target distribution 75 (Equation 13)
under RWM with a Gaussian proposal in dimensions d € {20,30,50} from left to right. Red dotted line indicates an acceptance
rate of 0.234.

ESJD vs acceptance rate (dim=20) ESJD vs acceptance rate (dim=30) ESJD vs acceptance rate (dim=50)
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Figure A6. ESJD vs. acceptance rate for the three mixture target distribution ng (Equation 14) under RWM with a Gaussian pro-
posal in dimensions d € {20, 30,50} from left to right. Red dotted line indicates an acceptance rate of 0.234.
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ESJD vs acceptance rate (dim=5)
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ES)D vs acceptance rate (dim=10)
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Figure A8. ESJD vs. acceptance rate for the Full Rosenbrock target mg (Equation 16) under RWM with a Gaussian proposal in
dimensions d € {5, 10,20,30} from top-left to bottom-right. Red dotted line indicates an acceptance rate of 0.234.
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dimensions d € {5, 10,20,30} from top-left to bottom-right. Red dotted line indicates an acceptance rate of 0.234.
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ESJD vs acceptance rate (dim=5)

ESJD vs acceptance rate (dim=9)
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Figure A10. ESJD vs. acceptance rate for the Hybrid Rosenbrock target 719 (Equation 18) under RWM with a Gaussian proposal

acceptance rate

in dimensions d € {5,9,19,29} from top-left to bottom-right. Red dotted line indicates an acceptance rate of 0.234.
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Figure A11. Traceplot of the first three dimensions of the cold chain from one of the parallel tempering simulations on the

rough carpet target distribution 74 (Equation 12).
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Figure A12. Traceplot of the first three dimensions of the cold chain from one of the parallel tempering simulations on the
three-mixture target distribution 7 (Equation 14).



