
An extension of Fill’s exact sampling algorithm

to non-monotone chains*

by

Duncan J. Murdoch** and Jeffrey S. Rosenthal***

University of Western Ontario and University of Toronto

(June 25, 1998; last revised August 4, 1998.)

Abstract. We provide an extension of Fill’s (1998) exact sampler algo-
rithm. Our algorithm is similar to Fill’s, however it makes no assump-
tions regarding stochastic monotonicity, discreteness of the state space,
the existence of densities, etc. We illustrate our algorithm on a simple
example.

1. Introduction.

Markov chain Monte Carlo (MCMC) methods have become extremely popular in

Bayesian inference problems as a way of approximately sampling from a complicated un-

known probability distribution π(·) (cf. Gelfand and Smith, 1990; Smith and Roberts,

1993; Tierney, 1994; Gilks et al., 1996). MCMC algorithms produce a Markov chain

P (x, ·) which has π(·) as its stationary distribution; if the chain is run long enough, then

under reasonably weak conditions (cf. Tierney, 1994) it will converge in distribution to

π(·), facilitating approximate sampling.

One difficulty with these methods is that it is difficult to assess their convergence to

stationarity. This necessitates the use of difficult theoretical analysis (Meyn and Tweedie,

1994; Rosenthal, 1995) or problematic convergence diagnostics (Cowles and Carlin, 1995;

Brooks and Roberts, 1997) to draw reliable samples and do proper inference.

* Supported in part by NSERC of Canada.

** Department of Statistical and Actuarial Sciences, University of Western Ontario,
London, Ontario, Canada N6G 2E9. Internet: dmurdoch@pair.com.

*** Department of Statistics, University of Toronto, Toronto, Ontario, Canada M5S 3G3.
Internet: jeff@utstat.toronto.edu.

1

An interesting alternative algorithm, called coupling from the past (CFTP), was in-

troduced by Propp and Wilson (1996, 1998) and has been studied and used by a number

of authors (Kendall, 1997; Møller, 1997; Murdoch and Green, 1997; Foss and Tweedie,

1997; Kendall and Thönnes, 1998; Corcoran and Tweedie, 1998; Green and Murdoch,

1998; Murdoch and Rosenthal, 1998). By searching backwards in time until paths from

all starting points have coalesced, this algorithm uses the Markov chain P (x, ·) to sample

exactly from π(·).
Another method of perfect simulation using monotonically coupled and uniformly

ergodic chains was proposed by Fill (1998). Fill’s algorithm is a form of rejection sampling.

This algorithm was later extended by Møller and Schladitz (1998) and Thönnes (1997) to

non-finite chains, motivated by applications to spatial point processes. Fill’s algorithm has

the advantage over CFTP of removing the correlation between the length of the run and

the returned value, which is sometimes very desirable. However, it has only been used for

stochastically monotone chains, making heavy use of the ordering of state space elements.

In this short paper, we extend Fill’s algorithm to general, non-monotone chains. Like

Fill, we justify our algorithm’s validity through a simple conditional probability calculation.

Since completing this paper, it was brought to our attention that in unpublished work

Fill (1995) had also extended his algorithm to non-monotone chains, for the case of finite

state spaces. He alludes to this work in Section 11.2 of Fill (1998), under the heading

‘Generalizability.’ We regret our oversight, and look forward to Fill publishing his work

on the subject.

2. The algorithm.

We assume that we are given a probability distribution π(·) on a state space X . We

also assume that we are given a Markov chain P (x, ·) on X , which we can simulate, and

which has π(·) as a stationary distribution.

For notation, we let Nx,t ∼ P (x, ·) be a random variable which represents the “next”

value of the chain (at time t + 1) in our particular method of simulation, given that the

chain was at the point x at time t. We require that Nx,t and Ny,s be independent for

s 6= t; however, the joint distribution of Nx,t and Ny,t, for two different points x and y

at the same time t, may be specified as convenient. Then, for s ≥ t, we let Ns
x,t be the

value the chain will obtain at time s, given that it starts at x at time t and then moves

consistently according to the Nx,i values. Thus, N t
x,t = x, N t+1

x,t = Nx,t, and in general

2

Ns
x,t = NNs−1

x,t ,s−1 for s ≥ t + 1.

We further assume that we may simulate the time reversal of the chain, using Markov

transition probabilities P̃ (x, ·), such that

π(dx)P̃ (x, dy) = π(dy)P (y, dx) . (1)

(In the common situation of a reversible chain, we’ll have P̃ (x, ·) = P (x, ·), so no further

information is required.) We shall write P t(x, dy) and P̃ t(x, dy), respectively, for the

forward and backward t-step transition probabilities.

Finally, we assume that we may sample from the conditional distribution of Nx,t

given a particular path, i.e. given that NX0,0 = X1, NX1,1 = X2, . . . , NXt−1,t−1 = Xt, we

know how to sample Nx,s for any x ∈ X and s = 0, . . . , t − 1. This may sometimes be a

difficult task in practice. However, typically auxiliary variables Ut are introduced so that

Nx,t = φ (x,Ut); and it is often the case that once we know Nx,t for some x, then we

know Ut, so that we can then easily compute Ny,t for other points y. Alternatively, if we

have decided to make Nx,t independent of Ny,t for all x 6= y, then this step is completely

straightforward.

Our algorithm proceeds as follows. We choose an arbitrary positive integer T , and

an arbitrary state Z ∈ X . We set XT = Z. Using P̃ (x, ·), we simulate fresh values

XT−1, . . . , X0 from the time reversed chain; and we correspondingly set NXs,s = Xs+1 for

s = 0, 1, . . . , T − 1. We then reverse direction, and simulate Nx,s, s = 0, . . . , T − 1 from

the conditional distribution described above, for all the different states x ∈ X . Finally, we

check whether NT
x,0 is independent of x, i.e. is the same for any x ∈ X . If it is, then the

algorithm succeeds and outputs X0 as its sample. If not, then the algorithm fails, and we

start again with an independent simulation (perhaps with a fresh choice of T and Z), and

keep repeating until we succeed.

(The careful reader will note that besides our other changes in notation, we have

reversed the direction of time compared to Fill. Furthermore, Fill’s original algorithm also

incorporated a search for a good value of T , e.g. by doubling the previous value of T after

each failure; we don’t consider such issues here, instead leaving the choice of T entirely up

to the user.)

The main result of this paper is the following:

Theorem. For any T ∈ N, and for π-almost every Z ∈ X such that the algorithm

has positive probability of succeeding, if we run the algorithm corresponding to T and Z,

3

then conditional on success of the algorithm, the output value X0 is distributed exactly

according to π(·).

That is, if the algorithm succeeds, then it produces an exact sample from π(·), just

as we wanted. Note in particular that no assumption is made regarding monotonicity,

discreteness of the state space, the existence of densities, etc.

Furthermore, the algorithm works from essentially any starting point Z, not just from

certain special points such as minimal or maximal elements. The starting point must be

such that the algorithm has positive probability of success, but this is not a difficulty in

practice: if the algorithm does not have positive probability of success then it will never

succeed, so it will never produce an incorrect value.

The algorithm also works only for π-almost every Z rather than every Z for which it

has positive probability of success. This is unavoidable since the transition probabilities

can be changed arbitrarily on a set of measure 0 without affecting stationarity. Of course,

on a discrete space in which π(x) > 0 for all x ∈ X , this puts absolutely no restriction on

Z. Similarly, if no point of the state space is unusual, e.g. if the T -step transitions have

densities which are continuous functions, then again the “π-almost every” condition can be

ignored. In addition, we note that it is also acceptable to choose Z randomly (provided it

is independent of the subsequent randomness of the algorithm). In this case, the “π-almost

every” condition can be ignored whenever the distribution of Z is absolutely continuous

with respect to π(·).

3. Proof of the theorem.

In this section, we prove the theorem, i.e. we prove the validity of our algorithm.

For ease of computation, we begin by assuming that XT ∼ π(·). We shall later

condition on the event XT = Z.

We define C to be the event that the Nx,t values coalesce, i.e. that NT
x,0 does not

depend on x so the algorithm is successful. We then define the measure ν(·) by

ν(dy) = P(C, XT ∈ dy) ,

so that ν(X) = P(C). Intuitively, ν(·)/P(C) is the conditional distribution of XT , condi-

tional on the event C.

Next, we note that for any x ∈ X , we must have ν(dy) ≤ PT (x, dy) (i.e., the chance

of coalescing and hitting dy is no more than the chance that the single path from x hits

4

dy). Hence, in particular ν(·) � PT (x, ·), so we can define the Radon-Nikodym derivative

hx(·) =
dν(·)

dPT (x, ·)
.

Our key computation is the following.

Lemma. Suppose XT ∼ π(·), and that we then compute XT−1, . . . , X0 and Nx,t as in our

algorithm. Let C be the event of coalescence as above. Then

P(XT ∈ dxT , X0 ∈ dx0, C) = hx0(xT) P̃T (xT , dx0) π(dxT) .

Proof. We have that

P(XT ∈ dxT , X0 ∈ dx0, C)

= P(C |XT ∈ dxT , X0 ∈ dx0) P(X0 ∈ dx0 |XT ∈ dxT) P(XT ∈ dxT)

=
(

P(C, XT ∈ dxT |X0 ∈ dx0)
P(XT ∈ dxT |X0 ∈ dx0)

)
P̃T (xT , dx0) π(dxT)

=
(

ν(dxT)
PT (x0, dxT)

)
P̃T (xT , dx0) π(dxT)

= (hx0(xT)) P̃T (xT , dx0) π(dxT) ,

as claimed.

To finish the proof, we now condition on the event XT = Z (in addition to conditioning

on the success event C). Using (1), we have that with probability one,

P(X0 ∈ dx0 |C, XT = Z) =
P(C, XT ∈ dZ, X0 ∈ dx0)

P(C, XT ∈ dZ)

=
hx0(Z) P̃T (Z, dx0) π(dZ)

ν(dZ)

=
hx0(Z) PT (x0, dZ) π(dx0)

ν(dZ)

=
hx0(Z) π(dx0)

hx0(Z)
= π(dx0) .

5

(Note that the Radon-Nikodym derivative ν(dZ)/π(dZ) is precisely the probability that

the algorithm succeeds when started at XT = Z; this probability is positive by assumption,

so it is acceptable to use its reciprocal in the above computation.)

Hence, it follows that, conditional on XT = Z, and conditional on the success of the

algorithm (the event C), the conditional distribution of the output value X0 is precisely

the target distribution π(·). The completes the proof of the validity of the algorithm.

4. A simple example.

We illustrate our algorithm for a very simple example. We suppose that the state space

is X = {0, 1, 2}, i.e. consists of just three points. We suppose that the target distribution

π(·) is uniform over these three points. We take as our Markov chain the Metropolis

algorithm which proposes from a simple symmetric random walk and rejects any moves

outside of X ; thus,

P (0, 0) = P (0, 1) = P (1, 0) = P (1, 2) = P (2, 1) = P (2, 2) =
1
2

.

Note that P is reversible with respect to π(·), so that P̃ = P .

To apply our algorithm, we need to specify the joint structure of the chain when

moving simultaneously from two different points, i.e. the joint distribution of Nx,t and

Ny,t for x 6= y. It is of course straightforward to do this in such a way that monotonicity

is preserved, i.e. so that Nx,t ≤ Ny,t whenever x ≤ y. However, let us instead specify that

Nx,t and Ny,t are independent when x 6= y, i.e. that simultaneous moves from x and from

y are independent.

This joint structure does not preserve monotonicity, e.g. there is probability 1
4 that

N1,t < N0,t even though 1 > 0. Thus, the original Fill (1998) algorithm can not be used

in this setting. However, our modified algorithm can indeed be used.

Specifically, our algorithm proceeds as follows. We choose T and Z; to be definite,

let us choose T = Z = 2. We then set X2 = 2, choose X1 ∼ P (X2, ·), and choose

X0 ∼ P (X1, ·). This automatically specifies NX0,0 and NX1,1. We then independently

choose Nx,t for the remaining four pairs (x, t), i.e. for t ∈ {0, 1} and x ∈ X \ {Xt}.
To conclude the algorithm, we compute whether or not the three paths starting from

0, 1, and 2 at time 0 have all coalesced by time 2, i.e. whether or not N2
0,0 = N2

1,0 = N2
2,0.

If yes then we output X0, otherwise we start the algorithm again.

6

This example is simple enough that we can analyze it exactly. We see that the al-

gorithm involves a total of six random events, each of which choose between two equally

likely outcomes. There are thus a total of 26 = 64 possible overall outcomes, each having

probability 1/64. We compute that, of the 64 possible outcomes, exactly 12 of them cause

coalescence. Of these 12 coalescing outcomes, exactly 4 have X0 = 0, another 4 have

X0 = 1, and the final 4 have X0 = 2.

We thus conclude that, for this algorithm, with independent joint updates and with

T = Z = 2, the algorithm will succeed with probability 12/64; and when it does succeed

it will provide an exact sample from the uniform distribution π(·). (An identical result is

true if instead Z = 1 or Z = 0.)

Of course, if the size of the state space were much larger, then the probability of

success might be quite small. In this case, it might be preferable to choose a more sophis-

ticated joint updating structure for the Nx,t (e.g. having the chains all increase/decrease

simultaneously, cf. Murdoch and Rosenthal, 1998), rather than having them all be inde-

pendent. In general, the question of how to choose a good joint updating structure for

a complicated Markov chain is quite difficult; for discussion see e.g. Propp and Wilson

(1996), Murdoch and Green (1998), Møller and Schladitz (1998), and Foss and Tweedie

(1997).

5. Discussion.

Fill (1998) assumed monotonicity of the Markov chain, i.e. that there is some partial

order � on X such that x � y implies Nx,t � Ny,t almost surely. With monotonicity and

unique minimal and maximal elements 0̂ and 1̂ respectively, testing whether or not NT
x,0

is independent of x becomes very simple: one need only check that NT
0̂,0

= NT
1̂,0

, since all

other values will be sandwiched between. In Fill’s context of a discrete state space, the

test could be even simpler: he chose Z = 0̂ and then only needed to test whether NT
1̂,0

= 0̂.

Møller and Schladitz (1998) and Thönnes (1997) noted that Z = 0̂ may not always be a

legal choice in a general state space, and they extended the algorithm to deal with this.

However, they too assumed monotonicity of the chain.

In this paper, we have presented a further extension of Fill’s algorithm, which no

longer requires monotonicity.

Of course, our algorithm still requires that we check for coalescence. Without mono-

tonicity, testing the values of NT
x,0 is more difficult. Murdoch and Green (1998) and Green

7

and Murdoch (1998) describe algorithms to achieve this in the context of coupling from

the past; these algorithms appear to be limited to fairly low dimensional state spaces.

How does Fill’s algorithm compare to CFTP? It has two main advantages. First, as

Fill (1998) showed, the independence between path length and the sampled value removes

the “user impatience bias” that would arise if a user gave up on long calculations and only

reported short ones. Second, for fixed T , Fill’s algorithm will often be implementable in

a fixed amount of storage space. (This may depend on how difficult it is to carry out the

test described in the previous paragraph.) Unfortunately, it is rare that a suitable value of

T is known in advance, so larger and larger values of T (e.g. from Fill’s doubling strategy)

will usually be needed, and this advantage will be partially lost.

There are two main disadvantages to Fill’s algorithm. First, the conditional sampling

of Nx,t given the initial path may be quite difficult to carry out. Second, it is sometimes

possible with CFTP algorithms to extract more information from the CFTP runs and

obtain correspondingly better estimators at little additional computational cost (Murdoch

and Rosenthal, 1998). However, this does not seem possible with Fill’s algorithm, because

the intermediate values are generally not drawn from π(·). In our simple example, if Z

were chosen at random from π(·), then X1 would also be drawn from π(·), but if we modify

the transition probabilities to favour states 0 and 2 over state 1, this is no longer true:

conditioning on coalescence forces X1 to visit state 1 too frequently.

Propp and Wilson’s CFTP algorithm has already shown its worth in simulating point

process models and large discrete models, and shows promise in Bayesian computations.

We hope that this discussion of Fill’s algorithm will stimulate further research into this

less-used alternative for exact MCMC sampling.

REFERENCES

Brooks, S.P. and Roberts, G.O. (1997). Assessing Convergence of Markov Chain Monte

Carlo Algorithms. Preprint, University of Bristol.

Corcoran, J. and Tweedie, R.L. (1998). Perfect simulation of Harris recurrent Markov

chains. Preprint, Colorado State University.

Cowles, M.K. and Carlin, B.P. (May, 1995). Markov Chain Monte Carlo Convergence

Diagnostics: A Comparative Review. Preprint, University of Iowa.

Fill, J.A. (1995). Unpublished.

8

Fill, J.A. (1998). An interruptible algorithm for perfect sampling via Markov chains.

Annals of Applied Probability, 8:131–162.

Foss, S.G. and Tweedie, R.L. (1997). Perfect simulation and backward coupling.

Stochastic Models, to appear.

Gelfand, A.E. and Smith, A.F.M. (1990). Sampling-based approaches to calculating

marginal densities. Journal of the American Statistical Association, 85:398–409.

Gilks, W.R., Richardson, S., and Spiegelhalter, D.J., editors (1996). Markov Chain

Monte Carlo in Practice. Chapman and Hall.

Green, P.J. and Murdoch, D.J. (1998). Exact sampling for Bayesian inference: towards

general purpose algorithms. Preprint.

Kendall, W. (1997). Perfect simulation for the area-interaction point process. In

Heyde, C.C. and Accardi, L., editors, Probability Perspective. World Scientific Press. To

appear.

Kendall, W. and Thönnes, E. (1998). Perfect simulation in stochastic geometry. Preprint,

University of Warwick.

Meyn, S.P. and Tweedie, R.L. (1994). Computable bounds for convergence rates of

markov chains. Annals of Applied Probability, 4:981–1011.

Møller, J. (1997). Perfect simulation of conditionally specified models. Journal of the

Royal Statistical Society, Series B, to appear.

Møller, J. and Schladitz, K. (1998). Extensions of Fill’s algorithm for perfect simula-

tion. Preprint.

Murdoch, D.J. and Green, P.J. (1997). Exact sampling from a continuous state space.

Scandinavian Journal of Statistics, to appear.

Murdoch, D.J. and Rosenthal, J.S. (1998). Efficient use of exact samples. Preprint.

Propp, J.G. and Wilson, D.B. (1996). Exact sampling with coupled Markov chains

and applications to statistical mechanics. Random Structures and Algorithms, 9:223–252.

Propp, J.G. and Wilson, D.B. (1998). How to get a perfectly random sample from a

generic Markov chain and generate a random spanning tree of a directed graph. Journal

of Algorithms, 27:170–217.

Rosenthal, J.S. (1995). Minorization conditions and convergence rates for Markov

chain Monte Carlo. Journal of the American Statistical Association, 90:558–566.

Smith, A.F.M. and Roberts, G.O. (1993). Bayesian computation via the gibbs sampler

and related markov chain monte carlo methods (with discussion). Journal of the Royal

9

Statistical Society, Series B, 55:3–24.

Thönnes, E. (1997). Perfect Simulation of some Point Processes for the Impatient

User. Preprint, University of Warwick.

Tierney, L. (1994). Markov chains for exploring posterior distributions (with discus-

sion). Annals of Statistics, 22:1701–1762.

10

