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Abstract

A common tool in the practice of Markov Chain Monte Carlo is to
use approximating transition kernels to speed up computation when
the true kernel is slow to evaluate. A relatively limited set of quan-
titative tools exist to determine whether the performance of such ap-
proximations will be well behaved and to assess the quality of approx-
imation. We derive a set a tools for such analysis based on the Hilbert
space generated by the stationary distribution we intend to sample,
L2(π). The focus of our work is on determining whether the approxi-
mating kernel (i.e. perturbation) will preserve the geometric ergodicity
of the chain, and whether the approximating stationary distribution
will be close to the original stationary distribution. Our results di-
rectly generalise the results of [JMMD15] from the uniformly ergodic
case to the geometrically ergodic case. We then apply our results to
the class of ‘Noisy MCMC’ algorithms.

1 Introduction

The use of Markov Chain Monte Carlo (MCMC) arises from the need
to sample from probabilistic models when simple Monte Carlo is not possi-
ble. The procedure is to simulate a positive recurrent Markov process where
the stationary distribution is the model one intends to sample, so that the
dynamics of the process converge to the distribution required. Temporally
correlated samples may then be used to approximate the computation of
various expectations; see e.g. [BGJM11] and the many references therein.
Examples of common applications may be found in Hierarchical Models,
Spatio-Temporal Models, Random Networks, Finance, Bionformatics, etc.
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Often, however, the transition dynamics of the Markov Chain required
to run this process exactly are too computationally expensive, either due
to prohibitively large datasets, intractable likelihoods, etc. In such cases it
is tempting to instead approximate the transition dynamics of the Markov
process in question, either deterministically as in the Low-Rank Gaussian
Approximation from [JMMD15], or stochastically as in the Noisy Metropo-
lis Hastings procedure from [AFEB16]. It is important then to understand
whether these approximations will yield stable and reliable results. This pa-
per aims to provide quantitative tools for the analysis of these algorithms.
Since the use of approximation for the transition dynamics may be inter-
preted as a perturbation of the transition kernel of the exact MCMC algo-
rithm, we focus on bounds on the convergence of perturbations of Markov
chains.

The primary purpose of this paper is to extend existing quantitative
bounds on the errors of approximate Markov chains from the uniformly er-
godic case in [JMMD15] to the geometrically ergodic case (a weaker con-
dition, for which multiple equivalent definitions may be found in [RR97]).
Our work will replicate all of the theorectical results of [JMMD15], replac-
ing the total variation metric with L2 distances, and relaxing the uniform
contraction condition to L2(π)-geometric ergodicity. In exchange, our results
require that the approximating kernel be close in the operator norm induced
by L2(π), which is more restrictive than the total variation closeness required
by [JMMD15]. Thus, this paper’s assumptions are not uniformly weaker nor
stronger than those in [JMMD15].

1.1 Geometric Ergodicity

Since our results apply to geometrically ergodic Markov chains, we briefly
digress to motivate the notion of geometric ergodicity and its usefulness in
MCMC. When analysing the performance of exact MCMC algorithms, it
is natural to decompose the error in approximation of expectations into a
component for the ‘burn-in’ of the stochastic process and one for the Monte-
Carlo approximation error. The former may be interpreted as the bias due to
not having started the process in the stationary distribution. The geometric
ergodicity condition essentially dictates that the ‘burn-in’ error of the nth

sample is Cρn for some 0 < ρ < 1, where the constant C depends on the
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(suitable) initial distribution. (The chain is uniformly ergodic if C can be
chosen independently of the initial distribution.) Geometric ergodicity is a
desirable property as it ensures that cumulative ‘burn-in’ error asymptoti-
cally does not dominate the Monte-Carlo error, while being less restrictive
than the uniform ergodicity condition.

When using approximate MCMC methods, one desires that the approx-
imation preserves geometric ergodicity, so that convergence is still efficient
and the ‘burn-in’ error goes to zero quickly.

1.2 Outline of the Paper

The outline of this paper is as follows. Section 2 reviews previous related
work. Then Section 3 contains our main theoretical results and their proofs.
Proposition 3 there demonstrates sufficient conditions for the stationary dis-
tribution of the perturbed chain to be a member of L2(π), and the resulting
L2 bound is strengthened in Proposition 5. Proposition 7 shows that the
perturbed chain is L2(π)-geometrically ergodic, and provides an associated
geometric decay rate. Theorem 8 combines these results to give tight L2(π)
bounds. Then, in Theorem 11, we provide sufficient conditions for the per-
turbed chain to also be L1 and L2(πε)-geometrically ergodic (where πε is
the stationary distribution of the perturbed chain), with the same geometric
decay rate from Proposition 7. The remainder of Section 3 establishes the
analogues of the main results from [JMMD15] in our geometrically ergodic
context.

Finally, Section 4 considers Noisy Metropolis-Hastings algorithms. It
provides sufficient conditions for our results from Section 3 to hold for this
class of algorithms, in terms of bounding the operator norm of the differences
(Proposition 23) and the estimation error bounds (Theorem 24).

2 Previous Related Work

We first present a brief review of other related work, discussing conver-
gence of perturbed Markov chains in the uniformly ergodic and geometrically
ergodic cases with varying metrics and additional assumptions.
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Close to the present paper, Johndrow et al. [JMMD15] derive perturba-
tion bounds to assess the robustness of approximate MCMC algorithms. The
assumptions upon which their results rely are: the original chain is uniformly
contractive in the total variation norm (this implies uniform ergodicity); and
the perturbation is sufficiently small (in the operator norm induced by the to-
tal variation norm). The main results of their paper are: the perturbed kernel
is uniformly contractive in the total variation norm; the perturbed stationary
distribution is close to the original stationary distribution in total variation;
explicit bounds on the total variation distance between finite time approxi-
mate sampling distributions and the original stationary distribution; explicit
bounds on total variation difference between the original stationary distribu-
tion and the mixture of finite time approximate sampling distributions; and
explicit bounds on the MSE for integral approximation using approximate
kernel and the true kernel. The results derived by [JMMD15] are applied
within the same paper to a wide variety of approximate MCMC problems
including low rank approximation to Gaussian processes and subsampling
approximations.

Further results on perturbations for uniformly ergodic chains may be
found in Mitrophanov [Mit05]. This work is motivated in part by numer-
ical rounding errors. Various applications of these results may be found
in [AFEB16]. The only assumption of [Mit05] is that the original chain is
uniformly ergodic. The paper is unique in that it makes no assumption re-
garding the proximity of the original and perturbed kernel, though the level
of approximation error does still scale linearly with the total variation dis-
tance of the original and perturbed kernels. The main results are: explicit
bounds on the total variation distance between finite time sampling distribu-
tions; and explicit bounds on the total variation distance between stationary
distributions.

The work of Roberts et al. [RRS98] (see also [BRR01]) is also motivated
by numerical rounding errors. The perturbed kernel is assumed to be de-
rived from the original kernel by a round-off function, which e.g. maps the
input to nearest multiple of 2−31. In such cases, the new state space is at
most countable while old state space may have been uncountable and so the
resulting chains have mutually singular marginal distributions at all finite
times and mutually singular stationary distributions (if they have stationary
distributions at all). The results of [RRS98] require the analysis of Lyapunov
drift conditions and drift functions (which we will avoid by working in an ap-
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propriate L2 space). The key assumptions in [RRS98] are: the original kernel
is geometrically ergodic, and V is a Lyapunov drift function for the original
kernel; the original and perturbed transition kernels are close in the V -norm;
the perturbed kernel is defined via a round-off function with round-off error
uniformly sufficiently small; and log V is uniformly continuous. The main
results of the paper are: if the perturbed kernel is sufficiently close in the V -
norm then geometric ergodicity is preserved; if the drift function, V , can be
chosen so that log V is uniformly continuous and if the round-off errors can be
made arbitrarily small then the kernels can be made arbitrarily close in the
V -norm; explicit bounds on the total variation distance between the approx-
imate finite-time sampling distribution and the true stationary distribution;
and sufficient conditions for the approximating stationary distribution to be
arbitrarily close in total variation to the true stationary distribution.

Pillai and Smith [PS14] provide bounds in terms of the Wasserstein topol-
ogy (cf. [Gib04]). Their main focus is on approximate MCMC algorithms,
especially approximation due to subsampling from a large dataset (e.g., when
computing the posterior density). Their underlying assumtions are: the orig-
inal and perturbed kernels satisfy a series of drift-like conditions with shared
parameters; the original kernel has finite eccentricity for all states (where
eccentricity of a state is defined as the expected distance between the state
and a sample from the stationary distribution); the Ricci curvature of the
original kernel has a non-trivial uniform lower bound on a positive mea-
sure subset of the state space; and the transition kernels are close in the
Wasserstein metric, uniformly on the mentioned subset. Their main results
under these assumptions are: explicit bounds on the Wasserstein distance
between the approximate sampling distribution and the original stationary
distribution; explicit bounds on the total variation distance of the original
and perturbed stationary distributions and bounds on the mixing times of
each chain; explicit bounds on the bias and L1 error of Monte Carlo approx-
imations; decomposition of the error from approximate MCMC estimation
into components from Burn-In, Asymptotic Bias, and Asymptotic Variance;
and rigorous discussion of the trade-off between the above error components.

Lastly, Rudolf and Schweizer [RS15] also use the Wasserstein topology.
They focus on approximate MCMC algorithms, with applications to au-
toregressive processes and stochastic Langevin algorithms for Gibbs random
fields. Their results use the following assumptions: the original kernel is
Wasserstein ergodic; a Lyapunov drift condition for perturbed kernel is given,
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with drift function Ṽ ; Ṽ has finite expectation under the initial distribu-
tion; and the perturbation operator is uniformly bounded in a Ṽ -normalised
Wasserstein norm. Their main results are: explicit bounds on the Wasserstein
distance between the original and perturbed finite time sampling distribu-
tions; and explicit bounds on the Wasserstein distance between stationary
distributions.

Each of the above papers demonstrate bounds on various measures of
error from using approximate finite-time sampling distributions and approx-
imate ergodic distributions to calculate expectations of functions. On the
other hand, the assumptions underlying the results vary dramatically. The
results for uniformly ergodic chains are based on simpler and more intuitive
assumptions than those for geometrically ergodic chains. Our work extends
these results to geometrically ergodic chains and perturbations while preserv-
ing essentially the same level of simplicity in the assumptions.

3 Perturbation Bounds

This section extends the main results of [JMMD15] to the L2(π)-geometrically
ergodic case for reversible processes, assuming the perturbation P − Pε has
bounded L2(π) operator norm. We follow the derivation in [JMMD15] with
minimal structural modification, though the technicalities must be handled
differently and additional theoretical machinery is required. We use the fact
that the existence of a spectral gap for the restriction of P to L2(π) yields
an inequality of the same form as the uniform contractivity condition, but
in the L2(π)-norm as opposed to the total variation norm (cf. Theorem 2 of
[RR97]).

3.1 Assumptions and Notation

We assume throughout that P is the transition kernel for a Markov chain
on a countably generated state space X which is reversible with respect to
a stationary probability distribution π. We further assume that P is L2(π)-
geometrically ergodic, with geometric convergence rate 0 < ρ = (1− α) < 1.
We let ‖ · ‖2 denote the usual norm in L2(π), as well the corresponding
operator norm on B(L2(π)).
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We then assume that Pε is a second (“perturbed”) transition kernel, with
‖P−Pε‖2 ≤ ε for some fixed ε > 0. We assume that Pε has its own stationary
distribution, denoted πε. We assume throughout the technical condition that
πε � π, i.e. that πε is absolutely continuous with respect to the original
stationary distribution π. Many of our results below (where indicated) also
assume that π � πε (in addition to πε � π), so that π ≡ πε.

We shall write ‖ · ‖ε for the norm on L2(πε), as well as the corresponding
operator norm. We also write ‖·‖1 for the L1(π) norm, and ‖·‖TV for the total
variation norm. By convention we will use the version of the total variation
norm which is equal to the L1(π)-norm when restricted to L1(π), as opposed
to the version which equals one-half of this. On the other hand, ‖·‖TV applies
to all bounded measures, while ‖ · ‖1 applies only to the subspace of L1(π)
measures. We note also that if π ≡ πε, then the L1(π) and L1(πε) norms and
spaces are equal, so we make no distinction between them.

3.2 Preliminary Results

The following lemma is contained in the remark after Theorem 2 of
[RR97]; we prove it here for completeness.

Lemma 1. For any probability measure µ ∈ L2(π),

‖µ− π‖2
2 = ‖µ‖2

2 − 1

Proof.

0 ≤ ‖µ− π‖2
2 =

∫ ((
dµ

dπ

)
− 1

)2

dπ =

∫ ((
dµ

dπ

)2

− 2
dµ

dπ
+ 1

)
dπ

=

∫ (
dµ

dπ

)2

dπ − 2

∫
dµ+

∫
dπ = ‖µ‖2

2 − 1

We also have:

Proposition 2. Under the assumptions of Section 3.1,

‖ν1P
n − ν2P

n‖2 ≤ (1− α)n‖ν1 − ν2‖2
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for any probability distributions ν1, ν2 ∈ L2(π). In particular, taking ν1 = π,

‖π − ν2P
n‖2 ≤ (1− α)n‖π − ν2‖2 = (1− α)n

√
‖ν2‖2

2 − 1 < (1− α)n‖ν2‖2

and applying Cauchy-Schwarz yields

‖π − ν2P
n‖1 ≤ ‖π − ν2P

n‖2 ≤ (1− α)n‖π − ν2‖2 = Cν2(1− α)n

Proof. This statement follows from Theorem 2 of [RR97] and Lemma 1.

3.3 Bounds in the Original Norm

We begin with a first result giving conditions under which the stationary
distribution πε of the perturbed chain is in L2(π):

Proposition 3. Under the assumptions of Section 3.1, if in addition ε < α
and π � πε, then πε ∈ L2(π) with ‖πε‖2 ≤ α

α−ε

Proof. Since P n
ε (x, ·) converges in total variation to πε for πε-almost every x

and since π � πε, then P n
ε (x, ·) converges in total variation to πε for π-almost

every x. Thus, πP n
ε converges in total variation to πε. Also since π and πε

are equivalent measures, πε ∈ L1(π). Let Q = (Pε−P ). We will use the fact
that leading P ’s preserve π while Q maps π to a signed measure in L2(π)
which integrates to 0. Compositions of P and Q applied to L2(π) signed
measures which integrate to 0 yield L2(π) signed measures which integrate
to 0. When restricted to L2(π) signed measures which integrate to 0, P has
norm (1−α). Q has norm at most ε on all of L2(π). Let 2k = {0, 1}k for all
k ∈ N. We also note that ‖π‖2 = 1.

We complete the proof in two stages. First we show that {πP n
ε }n∈N is

an L2(π)-Cauchy sequence, thus from completeness it must have an L2(π)-
limit, say π̂ε. It will then be true that π̂ε = πε because L2 is a subspace of
L1(π) and convergence in L2(π) implies convergence in L1(π) from Cauchy-
Schwarz, which in turn implies convergence in total variation. Secondly we
will prove the upper bound on the norm of πε. In both stages we will expand
(P +Q)n, and then group by the number of leading P ’s.
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Let m,n ∈ N be arbitrary with m ≤ n.

‖πP n
ε − πPm

ε ‖2 = ‖π(P +Q)n − π(P +Q)m‖2

=

∥∥∥∥∥π
[(∑

b∈2n

n∏
j=1

P bjQ1−bj

)
−

(∑
b∈2m

m∏
j=1

P bjQ1−bj

)]∥∥∥∥∥
2

=

∥∥∥∥∥π
[(

P n +
n−1∑
k=0

P n−k−1Q
∑
b∈2k

k∏
j=1

P bjQ1−bj

)

−

(
Pm +

m−1∑
k=0

Pm−k−1Q
∑
b∈2k

k∏
j=1

P bjQ1−bj

)]∥∥∥∥∥
2

=

∥∥∥∥∥
(
π +

n−1∑
k=0

πQ
∑
b∈2k

k∏
j=1

P bjQ1−bj

)
−

(
π +

m−1∑
k=0

πQ
∑
b∈2k

k∏
j=1

P bjQ1−bj

)∥∥∥∥∥
2

=

∥∥∥∥∥π
n−1∑
k=m

Q
∑
b∈2k

k∏
j=1

P bjQ1−bj

∥∥∥∥∥
2

≤

(
ε
n−1∑
k=m

∑
b∈2k

k∏
j=1

(1− α)bjε1−bj

)

=

(
ε
n−1∑
k=m

(1− α + ε)k

)

≤ ε
(1− α + ε)m − (1− α + ε)n

α− ε

Since this upper bound on ‖πP n
ε −πPm

ε ‖2 decreases to 0 monotonically inm =
min(m,n) then the sequence must be L2(π)-Cauchy. As argued above, let π̂ε
be the L2(π) limit of this sequence (which exists and belongs to L2(π) from
completeness). Then, applying Cauchy-Schwarz, ‖πP n

ε −π̂ε‖1 ≤ ‖πP n
ε −π̂ε‖2,

so that since the right hand side converges to 0 then the left side must as
well. Since the sequence can have only one limit in L1(π) we must have that
πε = π̂ε and hence πε ∈ L2(π).

Now, we proceed to establish an upper bound on ‖πε‖2. Let n ∈ N be
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arbitrary. Then

‖πP n
ε ‖2 = ‖π(P +Q)n‖2

=

∥∥∥∥∥π
(∑

b∈2n

n∏
j=1

P bjQ1−bj

)∥∥∥∥∥
2

=

∥∥∥∥∥π
(
P n +

n−1∑
k=0

P n−k−1Q
∑
b∈2k

k∏
j=1

P bjQ1−bj

)∥∥∥∥∥
2

≤

(
1 + ε

n−1∑
k=0

∑
b∈2k

k∏
j=1

(1− α)bjε1−bj

)

=

(
1 + ε

n−1∑
k=0

(1− α + ε)k

)
≤ α

α− ε
.

From the continuity of norm, ‖πε‖2 ≤ supn∈N ‖πP n
ε ‖2 ≤ α

α−ε

Remark 4. The total variation norm of πε is ‖πε‖1 = ‖πε‖TV = 1. By
Lemma 1 and Cauchy-Schwarz, under the conditions of Proposition 3,

‖πε − π‖TV ≤ ‖πε − π‖2 ≤
ε

α− ε

√
2α

ε
− 1

The
√

2α
ε
− 1 term above grows without bound as ε → 0 for a fixed value

of α. Hence this bound is asymptotically worse than the bound on the
same quantity in [JMMD15], which equals ε

α
. Let b0(ε) = ε

α
and let b1(ε) =

ε
α−ε

√
2α
ε
− 1. We then have that b1(ε)

b0(ε)
= α

α−ε

√
2α−ε
ε

= O(ε−1/2) as ε↘ 0. The

following result allows us to improve our bound.

Proposition 5. Under the assumptions of Section 3.1, if in addition ε < α
and πε ∈ L2(π) then

1 ≤ ‖πε‖2 ≤
α√

α2 − ε2

and
0 ≤ ‖π − πε‖2 ≤

ε√
α2 − ε2
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Proof. The two lower bounds are immediate from Lemma 1 and the positivity
of norms:

0 ≤ ‖π − πε‖2
2 = ‖πε‖2

2 − 1

To derive the first upper bound, we apply Lemma 1, our assumptions about
the operators P and Pε, and triangle inequality, to ‖π − πε‖2:√

‖πε‖2
2 − 1 = ‖π − πε‖2 = ‖πP − πεP + πεP − πεPε‖2

≤ ‖πP − πεP‖2 + ‖πεP − πεPε‖2

≤ (1− α)‖π − πε‖2 + ε‖πε‖2

= (1− α)
√
‖πε‖2

2 − 1 + ε‖πε‖2

Collecting the square roots and squaring both sides yields

α2
(
‖πε‖2

2 − 1
)
≤ ε2‖πε‖2

2

which implies that

‖πε‖2
2 ≤

α2

α2 − ε2

Finally, the second upper bound is derived from the first one, again using
Lemma 1:

‖π − πε‖2
2 = ‖πε‖2

2 − 1 ≤ α2

α2 − ε2
− 1 =

ε2

α2 − ε2

Remark 6. This upper bound for ‖πε‖2 is tighter than the bound from

Proposition 3 by a factor of
√

α−ε
α+ε

< 1. By applying Cauchy-Schwarz again

we have ‖π − πε‖1 ≤ ε√
α2−ε2 . This result thus extends the bound from the

uniformly ergodic case with asymptotically no loss. That is, in the uniformly
ergodic case, the bound in [JMMD15] is ‖π− πε‖1 ≤ ε

α
. This compares with

our result, ‖π − πε‖1 ≤ ε√
α2−ε2 . Indeed, let b0(ε) = ε

α
as in Remark 4, and

let b2(ε) = ε√
α2−ε2 . Then the bounds b0 and b2 are asymptotically equivalent,

since limε↘0
b2(ε)
b0(ε)

= 1.
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We next observe that our assumptions imply that for small enough pertur-
bations, the perturbed chain Pε is geometrically ergodic in the L2(π) norm.
(It is, however, awkward to use the L2(π) norm when studying Pε; this is
corrected in Section 3.4 below.)

Proposition 7. Under the assumptions of Section 3.1, if ε < α and πε ∈
L2(π), then Pε is L2(π)-geometrically ergodic, with geometric contraction fac-
tor ≤ 1− (α− ε).

Proof. Suppose that ν ∈ L2(π) with ν(X ) = 0. Then

‖νPε‖2 ≤ ‖ν(Pε − P )‖2 + ‖νP‖2 ≤ ε‖ν‖2 + (1− α)‖ν‖2 = (1− (α− ε))‖ν‖2 .

Thus, for any probability measure µ ∈ L2(π), since πε ∈ L2(π), we have

‖µP n
ε − πε‖2 = ‖(µ− πε)P n

ε ‖2 ≤ (1− (α− ε))n‖µ− πε‖2 .

Combining Propositions 3 and 5 and 7 together immediately yields:

Theorem 8. Under the assumptions of Section 3.1, if in addition ε < α and
π � πε, then πε ∈ L2(π), and

1 ≤ ‖πε‖2 ≤
α√

α2 − ε2

and
0 ≤ ‖π − πε‖2 ≤

ε√
α2 − ε2

,

and also Pε is L2(π)-geometrically ergodic with geometric contraction factor
≤ 1− (α− ε).

Remark 9. [JMMD15] require the stronger condition that 2ε < α for their
corresponding result. However, this appears to be due to our defining ε as a
bound on L2(π) differences, as opposed to TV differences.
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3.4 Switching to the Perturbed Norm

The results of the previous section bound the perturbed chain Pε in terms
of the original norm L2(π). It would be more satisfying to demonstrate that
Pε is geometrically ergodic in the L2(πε) norm, and this would also allow us
to use the equivalences in [RR97]. We provide sufficient conditions for this
extension below. First, we introduce the notion of a hyper-small set.

Definition 10. Following [RR97], a subset S ⊂ X is called hyper-small for
the Markov kernel P if π(S) > 0 and there exists δS > 0 and k ∈ N such

that dPk(x,·)
dπ

≥ δS1S(x) or equivalently P k(x,A) ≥ δSπ(A) for all x ∈ S and
A ⊂ X measurable.

A main result of [JJ67] (see the discussion in [RR97]) is that on a count-
ably generated state space (as we have assumed herein), every set of positive
π measure contains a hyper-small subset. We will use this fact repeatedly in
the proof of the following theorem. Also of importance to us is the 〈i′′ ⇒ i〉
part of Proposition 1 of [RR97], which provides a characterisation of geomet-
ric ergodicity in terms of convergence to a hyper-small set.

Theorem 11. Under the assumptions of Section 3.1, if ε < α and π � πε,
then Pε is total variation geometrically ergodic and L1-geometrically ergodic
with geometric contraction factor ≤ (1 − (α − ε)). If Pε is reversible, then
Pε is also L2(πε)-geometrically ergodic, with geometric contraction factor ≤
(1− (α− ε)).

Proof. From [JJ67], there is a set R0 which is hyper-small for Pε. Since
πε � π then πε(R0) > 0 ⇒ π(R0) > 0, thus from [JJ67] again R0 contains
a hyper-small set, R1, for P . Since π(R1) > 0, and since by assumption
π � πε, then πε(R1) > 0 as well. Since any subset of a hyper-small set with
positive measure is also hyper-small, R1 is hyper-small for both P and Pε.
One may suppose that the smallness for the two chains comes with the same
lower bound constant by taking the smaller of the respective constants. R1

must contain a subset, S with πε(S) > 0 where either π(A) ≤ πε(A) for
all measurable A ⊂ S or π(A) ≥ πε(A) for all measurable A ⊂ S, since
one can partition R1 based on whether the Radon-Nikodym derivative of πε
with respect to π exceeds 1. We may then select S as a small set for both
chains and the smaller of the two measures on S as a minorizing measure for
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both chains. Now one may apply the Nummelin splitting technique yielding
versions of the two chains which share a hyper-small set, S1, with the same
ergodic probability when restricted to the hyper-small set.

We will be using the notation from [MT09], where the components of the
split chain are represented with a haček (̌·) and subsets of the split state space
are represented with a subscript of 0 indicating the original chain less the
minorizor and 1 indicating the minorizor. The probability measure defined by
restricting π̌ to S1 and renormalizing is clearly in L2(π̌) and has norm 1√

π̌(S1)
.

This measure is explicitly written as
1S1
π̌(S1)

(A) = π̌(A∩S1)
π̌(S1)

and is clearly equal to
the similar measure created by restricting π̌ε to S1 since π̌ and π̌ε are equal on
S1. The notation defined is illuminative of the restricted measure’s Radon-
Nikodym derivative with respect to π̌. Also since the pre-split perturbed
chain is L2(π)-geometrically ergodic, the split chain is L2(π̌)-geometrically
ergodic with the same convergence rate. Thus we can write∥∥∥∥∫

S1

π̌ε(dy)

π̌ε(S1)
P̌ n
ε (y, ·)− π̌ε

∥∥∥∥
TV

=

∥∥∥∥∫
S1

π̌(dy)

π̌(S1)
P̌ n
ε (y, ·)− π̌ε

∥∥∥∥
TV

=

∥∥∥∥ 1S1

π̌(S1)
P̌ n
ε − π̌ε

∥∥∥∥
TV

≤
∥∥∥∥ 1S1

π̌(S1)
P̌ n
ε − π̌ε

∥∥∥∥
2

≤ (1− (α− ε))n
∥∥∥∥ 1S1

π̌(S1)
− π̌ε

∥∥∥∥
2

,

where the first inequality comes from Cauchy-Schwarz, and the second comes
from the previous proposition. Therefore, from Proposition 1 of [RR97], the
post-split perturbed chain is π̌ε-almost everywhere geometrically ergodic.

As per [RT01], the L1(πε) and L2(πε)-geometric contraction factors, ρ1

and ρ2 respectively, may be expressed as:

ρ1 = exp

(
sup

µ∈b(πε)
lim
n→∞

log ‖µP n
ε − πε‖1

n

)
ρ2 = exp

(
sup

µ∈b(πε)
lim
n→∞

log ‖µP n
ε − πε‖2

n

)
where b(πε) = {µ ∈ L1(πε) : dµ

dπε
is bounded}. We see that b(πε) ⊂ L2(π),

since for any µ ∈ b(πε) there is an M > 0 such that dµ
dπε
≤M so that

‖µ‖2
2 =

∫ (
dµ

dπ

)2

dπ =

∫ (
dµ

dπε

dπε
dπ

)2

dπ ≤M2

∫ (
dπε
dπ

)2

dπ = M2‖πε‖2
2 <∞

14



Hence, applying Proposition 7, we have that

ρ1 ≤ exp

(
sup

µ∈b(πε)
lim
n→∞

logCµ(1− (α− ε))n

n

)
= (1− (α− ε)) ,

where Cµ = Mε√
α2−ε2 . It then follows from the main result of [RT01] that if

the chain Pε is reversible, then L1(πε)-geometric ergodicity implies L2(πε)-
geometric ergodicity with the same geometric contraction factor.

Corollary 12. If α < ε and π � πε then for any probability measure µ ∈
L2(π),

‖µP n
ε − π‖2 ≤ (1− (α− ε))n‖µ− πε‖2 +

ε√
α2 − ε2

,

and for every ν ∈ L1(π) there is Cν <∞ with

‖νP n
ε − π‖1 ≤ (1− (α− ε))nCν +

ε√
α2 − ε2

.

If additionally ‖Pε − P‖ε < ε, and Pε is reversible, then

‖µP n
ε − π‖ε ≤ (1− (α− ε))n‖µ− πε‖ε +

ε√
α2 − ε2

.

Proof. The first result follows from Theorem 8 and the triangle inequality,
since

‖µP n
ε −π‖2 ≤ ‖µP n

ε −πε‖2 +‖π−πε‖2 ≤ (1− (α− ε))n‖µ−πε‖2 +
ε√

α2 − ε2
.

The second result follows similarly from the triangle inequality and Theo-
rems 8 and 11. The third result then follows similarly by symmetry under
the additional assumptions.

3.5 Covariance Bounds

We next turn our attention to the covariance structure of the original and
perturbed chains.

We define the class of functions L′2(π) as the collection of Radon-Nikodym
derivatives of measures in L2(π) with respect to π. Let Xt and Xε

t denote
the original and perturbed chains run from some initial measure ν ∈ L2(π).

15



Corollary 13. Let f and g be in L′2(π). Then under the assumptions of
Section 3.1,

Cov[f(Xt), g(Xs)] ≤ (1− α)|t−s|‖f‖?‖g‖?
and if ε < α

Cov[f(Xε
t ), g(Xε

s)] ≤ (1− (α− ε))|t−s|‖f‖?‖g‖? ,

where ‖h‖? = ‖h−π(h)‖2, and π(h) is the constant function equal to
∫
h(s)π(ds)

everywhere.

Proof. The proof of this result follows the proof of Corollary B.5 in [JMMD15].
We only show the proof for the original chain, however the proof for the per-
turbed chain is the same mutatis mutandis. Define the subspace L′2,0(π) =
{h ∈ L′2(π) :

∫
h(s)π(ds) = 0}, and define the forward operator, F ∈

B(L′2,0(π)), by

[Ff ](x) =

∫
P (x, dy)f(y) = E[f(X1)|X0 = x]

From Lemma 12.6.4 of [Liu08],

sup
f,g∈L′2(π)

corr(f(X0), g(Xt)) = sup
‖f‖2=1=‖g‖2
f,g∈L′2,0(π)

〈f, F tg〉 = ‖F t‖2

Consider the canonical isomorphism between L2(π) and L′2(π). The re-
striction of this isomorphism (on the right) to elements of L′2,0(π) yields
L2,0(π) on the left – the signed measures with total measure 0. The image
of F under the restricted isomorphism is the adjoint operator of P restricted
to L2,0(π). The adjoint of an operator has the same norm as the original
operator, hence

‖F t‖2 ≤ ‖F‖t2 = ‖P
∣∣
L2,0(π)

‖t2 ≤ (1− α)t

Therefore

sup
f,g∈L′2(π)

Cov(f(X0), g(Xt)) ≤ ‖f‖?‖g‖?(1− α)t

16



Since this holds for any initial measure and since Cov is symmetric, the
shifted and symmetrized result holds for any f, g ∈ L′2(π):

Cov[f(Xt), g(Xs)] ≤ (1− α)|t−s|‖f‖?‖g‖?

Remark 14. Note in Corollary 13 that ‖h‖? ≤ ‖h‖2 + |π(h)| = ‖h‖2 +

|
∫
hdπ| ≤ ‖h‖2 +

∫
|h|dπ ≤ ‖h‖2 +

√∫
h2dπ = 2‖h‖2. Also note that

‖h‖ ≤ ‖h− π(h)‖2 + |π(h)|.

3.6 Estimation Error Bounds for the Exact Chain

Finally, we turn our attention to bounds on the error of estimation mea-
sures of the form 1

t

∑t−1
k=0 µP

k, and estimates of the form 1
t

∑t−1
k=0 f(Xk). We

begin with:

Theorem 15. Under the assumptions of Section 3.1, for any probability
distribution µ ∈ L2(π),∥∥∥∥∥π − 1

t

t−1∑
k=0

µP k

∥∥∥∥∥
2

≤ 1

t

t−1∑
k=0

∥∥π − µP k
∥∥

2

≤ 1

t

t−1∑
k=0

(1− α)k‖π − µ‖2

=
1− (1− α)t

tα
‖π − µ‖2

and for any ν ∈ L1(πε) there is a Cν > 0 such that∥∥∥∥∥π(·)− 1

t

t−1∑
k=0

[νP k](·)

∥∥∥∥∥
1

≤ Cν
1− (1− α)t

tα

Proof. The first inequality is just the triangle inequality, the second inequal-
ity follows from Proposition 2, and the equality follows from direct algebra.
The second statement follows from the equivalence of L1 and L2-geometric
contraction factors for reversible chains from [RT01].

17



We then have:

Theorem 16. Under the assumptions of Section 3.1, for any initial proba-
bility distribution µ ∈ L2(π),

E

(π(f)− 1

t

t−1∑
k=0

f(Xk)

)2


≤ ‖f‖2
2

(
1− (1− α)t

tα
‖π − µ‖2

)2

+ ‖f‖2
?

(
2− α
αt
− 2(1− α)

α2t2
+

2(1− α)t+1

α2t2

)
Proof. The proof proceeds by partitioning the MSE via the bias-variance
decomposition then bounding the bias and variance terms respectively. We
compute that

E

(π(f)− 1

t

t−1∑
k=0

f(Xk)

)2


= E

(π(f)− 1

t

t−1∑
k=0

[µP k](f)− 1

t

t−1∑
k=0

(f(Xk)− [µP k](f))

)2


=

(
π(f)− 1

t

t−1∑
k=0

[µP k](f)

)2

+ E

(1

t

t−1∑
k=0

(f(Xk)− [µP k](f))

)2


=

(
π(f)− 1

t

t−1∑
k=0

[µP k](f)

)2

+
1

t2

t−1∑
j=0

t−1∑
k=0

Cov(f(Xj), f(Xk))

The bias term is bounded by applying Corollary 13:(
π(f)− 1

t

t−1∑
k=0

[µP k](f)

)2

≤ ‖f‖2
2

∥∥∥∥∥π − 1

t

t−1∑
k=0

µP k

∥∥∥∥∥
2

2

≤ ‖f‖2
2

(
1− (1− α)t

tα
‖π − µ‖2

)2

18



Next, the variance term is bounded using Theorem 15:

1

t2

t−1∑
j=0

t−1∑
k=0

Cov(f(Xj), f(Xk)) =
‖f‖2

?

t2

t−1∑
j=0

(
j∑

k=0

(1− α)j−k +
t−1∑

k=j+1

(1− α)k−j

)

=
‖f‖2

?

t2

t−1∑
j=0

(
1− (1− α)j+1

α
+

(1− α)− (1− α)t−j

α

)

=
‖f‖2

?

αt2

t−1∑
j=0

(
1 + (1− α)− (1− α)j+1 − (1− α)t−j

)
=
‖f‖2

?

αt2

(
(2− α)t− 2

(1− α)− (1− α)t+1

α

)
= ‖f‖2

?

(
2− α
αt
− 2(1− α)

α2t2
+

2(1− α)t+1

α2t2

)
Putting these together yields the desired result.

Remark 17. We note that, as per Remark 14, ‖f‖? ≤ 2‖f‖2, and like-
wise ‖f‖2 ≤ ‖f‖? + |π(f)|. Also in the case that f is is π-essentially
bounded, ‖f‖2 ≤ ‖f‖∞ and ‖f‖? ≤ ‖f − midrange(f)‖∞, and ‖f‖∞ ≤
2‖f −midrange(f)‖∞, and ‖f −midrange(f)‖∞ ≤ ‖f‖∞. These alternative
norms may be substituted into the result as necessary in order to make the
bounds tractable for a given application.

Remark 18. Comparing our above geometrically ergodic results to the L1

results of [JMMD15] in the uniformly ergodic case, we see that the L2 and
L1 bounds we establish above differ from the corresponding L1 bound of
[JMMD15] only by a factor, which is constant in time, but varies with the
initial distribution (as is to be expected when moving from uniform ergodicity
to geometric ergodicity). For the Mean-Squared-Error results, the ‖ · ‖?-
norm in that paper is based on the midrange-centred infinity norm, which as
per Remark 17 is an upper bound on what we have taken to be the ‖ · ‖?-
norm. (Also, the bias term in our MSE bound decreases as O(t−2), while
in [JMMD15] it apparently decreases as just O(t−1), but we believe this is
simply due to their accidentally dropping a square on their TV norm in
their calculation Section B.2.) Other than these differences, the bounds are
essentially the same.
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3.7 Error Bounds for the Perturbed Chain

We next turn our attention to the perturbed chain Pε. We have:

Theorem 19. Under the assumptions of Section 3.1, suppose ε < α and
πε ∈ L2(π). Then for any probability distribution µ ∈ L2(π),∥∥∥∥∥π − 1

t

t−1∑
k=0

µP k
ε

∥∥∥∥∥
2

≤ 1

t

t−1∑
k=0

∥∥π − µP k
ε

∥∥
2

≤ 1

t

t−1∑
k=0

[
(1− (α− ε))k‖πε − µ‖2 +

ε√
α2 − ε2

]
=

1− (1− (α− ε))t

t(α− ε)
‖πε − µ‖2 +

ε√
α2 − ε2

If, in addition, π � πε then for any ν ∈ L1(π) ≡ L1(πε) there is a C
(ε)
ν > 0

such that∥∥∥∥∥π(·)− 1

t

t−1∑
k=0

[νP k](·)

∥∥∥∥∥
1

≤ C(ε)
ν

1− (1− (α− ε))t

t(α− ε)
+

ε√
α2 − ε2

and if in addition ‖P − Pε‖ε < ε, Pε is reversible, then the first result holds
in the ‖ · ‖ε-norm.

Proof. Again, the first result is a direct consequence of the triangle inequality
applied to previous propositions, the second result follows from the triangle
inequality and Theorem 11, and the third result follows from symmetry in
conjunction with Theorem 11.

We then have:

Theorem 20. Under the assumptions of Section 3.1, suppose ε < α. For
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any initial probability distribution µ ∈ L2(π),

E

(π(f)− 1

t

t−1∑
k=0

f(Xε
k)

)2


≤ ‖f‖2
2

(
ε√

α2 − ε2
+

(
1− (1− (α− ε))t

t(α− ε)
‖πε − µ‖2

))2

+ ‖f‖2
?

(
2− (α− ε)

(α− ε)t
− 2(1− (α− ε))

(α− ε)2t2
+

2(1− (α− ε))t+1

(α− ε)2t2

)
.

If in addition ‖P − Pε‖ε < ε and π � πε, then the same inequality holds in
the ‖ · ‖ε norm, and also in the ‖ · ‖ε? norm.

Proof. We again proceed via bias-variance decomposition, as in the corre-
sponding result for the exact chain. However, now the bias under consider-
ation is itself decomposed as the square of a sum of two components. The
squared sum is expanded simultaneously with the bias-variance expansion.
(And, Remark 17 regarding alternative norms for the exact chain holds here
as well.) We compute that

E

(π(f)− 1

t

t−1∑
k=0

f(Xε
k)

)2


= E

(π(f)− πε(f) +
1

t

t−1∑
k=0

[
πε − µP k

ε

]
(f)− 1

t

t−1∑
k=0

(f(Xε
k)− [µP k

ε ](f))

)2


= ([π − πε](f))2 + 2 ([π − πε](f))

(
πε(f)− 1

t

t−1∑
k=0

[µP k
ε ](f)

)

+

(
πε(f)− 1

t

t−1∑
k=0

[µP k
ε ](f)

)2

+ E

(1

t

t−1∑
k=0

(f(Xε
k)− [µP k

ε ](f))

)2


= ([π − πε](f))2 + 2 ([π − πε](f))

(
πε(f)− 1

t

t−1∑
k=0

[µP k
ε ](f)

)

+

(
πε(f)− 1

t

t−1∑
k=0

[µP k
ε ](f)

)2

+
1

t2

t−1∑
j=0

t−1∑
k=0

Cov(f(Xε
j ), f(Xε

k))

21



We bound the first component of the bias term using Proposition 5:

([π − πε](f))2 ≤ ‖π − πε‖2
2‖f‖2

2 ≤
ε2‖f‖2

2

α2 − ε2

We bound the third component of the bias term using Theorem 19:(
πε(f)− 1

t

t−1∑
k=0

[µP k
ε ](f)

)2

≤ ‖f‖2
2

∥∥∥∥πε− 1

t

∑
µP k

ε

∥∥∥∥2

2

≤ ‖f‖2
2

(
1− (1− (α− ε))t

t(α− ε)
‖πε − µ‖2

)2

We bound the variance term using Corollary 13:

1

t2

t−1∑
j=0

t−1∑
k=0

Cov(f(Xε
j ), f(Xεk))

=
‖f‖2

?

t2

t−1∑
j=0

(
j∑

k=0

(1− α)j−k +
t−1∑

k=j+1

(1− (α− ε))k−j
)

=
‖f‖2

?

t2

t−1∑
j=0

(
1− (1− (α− ε))j+1

(α− ε)
+

(1− (α− ε))− (1− (α− ε))t−j

(α− ε)

)

=
‖f‖2

?

(α− ε)t2
t−1∑
j=0

(
1 + (1− (α− ε))− (1− (α− ε))j+1 − (1− (α− ε))t−j

)
=

‖f‖2
?

(α− ε)t2

(
t(2− (α− ε))− 2

(1− (α− ε))− (1− (α− ε))t+1

(α− ε)

)
= ‖f‖2

?

(
2− (α− ε)

(α− ε)t
− 2(1− (α− ε))

(α− ε)2t2
+

2(1− (α− ε))t+1

(α− ε)2t2

)
Finally, we bound the second bias term using Proposition 5 and Theo-

rem 19:

2 ([π − πε](f))

(
πε(f)− 1

t

t−1∑
k=0

[µP k
ε ](f)

)
≤ ε‖f‖2√

α2 − ε2
‖f‖2

(
1− (1− (α− ε))t

t(α− ε)
‖πε − µ‖2

)
Putting these together yields the desired result in the ‖ · ‖-norm. The ‖ · ‖ε
versions follow by symmetry.
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Remark 21. Comparing the above results to the corresponding uniform L1

result of [JMMD15], we see that the burn-in bias part of our L2 and L1 bounds
differ from their L1 burn-in bias part only by a factor which is constant in
time, but vary with the initial distribution (as is, again, to be expected when
moving from uniform ergodicity to geometric ergodicity). The asymptotic-
bias component of our L2 and L1 bounds are equivalent asymptotically as
ε → 0, as in Remark 6. For the Mean-Squared-Error results, the ‖ · ‖?-
norm in that paper is based on midrange-centred infinity norm, which again
is an upper bound on what we have taken to be the ‖ · ‖?-norm. (Also,
the bias terms again differ as O(t−2) versus O(t−1), as previously discussed
in Remark 18 above.) Again, other than these differences, the bounds are
essentially the same.

4 Application to Noisy MCMC

The Noisy Metropolis Hastings algorithm (nMH), as found in [AFEB16],
is defined below along with the classical Metropolis Hastings (MH) algorithm.
Note that the main difference between these algorithms is the acceptance
ratio, α. Given the current state and the proposed next state, the acceptance
ratio is deterministic for classical MH while it is stochastic for nMH. While
the acceptance ratio has a generic formula for the MH algorithm, there are
various expressions found in different types of nMH algorithms – hence our
use of ambiguous notation in this case.

Algorithm 1 Metropolis Hastings

1: x0 ← sample ν0

2: for i = 1 to N do
3: yi ← sample q(yi|xi−1)

4: αi ← α(yi|xi−1) = π(yi)q(xi−1|yi)
π(xi−1)q(yi|xi−1)

5: ui ← sample unif[0, 1]
6: if ui ≤ αi then
7: xi ← yi
8: else
9: xi ← xi−1

10: end if
11: end for
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Algorithm 2 Noisy Metropolis Hastings

1: x0 ← sample ν0

2: for i = 1 to N do
3: yi ← sample q(yi|xi−1)
4: zi ← sample f(zi|yi)
5: α̂i ← α̂(yi|xi−1, zi)
6: ui ← sample unif[0, 1]
7: if ui ≤ α̂i then
8: xi ← yi
9: else

10: xi ← xi−1

11: end if
12: end for

For our analysis of these algorithms, P will represent the transition ker-
nel for the classical MH algorithm while P̂ will represent the kernel for the
corresponding nMH chain. The key will be to show the L2(π) closeness of
the nMH transition kernel to the MH transition kernel. Again, ‖ · ‖2 is the
norm on L2(π) and the corresponding operator norm. We will assume that
π and {q(·|x)}x∈X are all absolutely continuous with respect to the Lebesgue
measure and have densities symbolised appropriately. All arguments below
would follow identically if there were an arbitrary dominating measure in
place of the Lebesgue measure. Let Q be the operator notation for the pro-
posal kernel. We define the following functions for notational convenience.
The conventions are that underbars represent the minimum of the quan-
tity with 1, and primes denote signed quantities, and capitals denote linear
operators on the space of signed measures.

¯
α(y|x) = 1 ∧ α(y|x)

¯
α̂(y|x, z) = 1 ∧ α̂(y|x, z)

δ(y|x) = Ez∼fy |α(y|x)− α̂(y|x, z)| =
∫
|α(y|x)− α̂(y|x, z)|fy(z)dz

δ′(y|x) = Ez∼fy (
¯
α(y|x)−

¯
α̂(y|x, z)) =

∫
(
¯
α(y|x)−

¯
α̂(y|x, z)) fy(z)dz
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γ(x) = Ey∼q(y|x)δ(y|x) =

∫
δ(y|x)q(y|x)dy [νΓ′](dy) = ν(y)γ′(y)dy

γ′(x) = Ey∼q(y|x)δ
′(y|x) =

∫
δ′(y|x)q(y|x)dy [νZ ′](dy) =

[∫
δ′(y|x)q(y|x)ν(x)dx

]
dy

Then |δ′(y|x)| ≤ δ(y|x) for all (x, y) from monotonicity and since (1 ∧ ·) is
Lipshitz with constant 1.

Lemma 22.
(
P − P̂

)
= (Z ′ − Γ′)

Proof. We first give expressions for the elements of measure for transitions of
the original chain. The first formula is the element of measure for transition
from an arbitrary, fixed initial point. It is defined for us by the mechanics
of the Metropolis Hastings algorithm. The second expression is the element
of measure for transition from a sample from an initial distribution, ν. It is
derived from the first expression by integrating over the sample from ν.

P (x, dx′) = δx(dx
′)

[
1−

∫
(
¯
α(y|x)q(y|x)dy

]
+

¯
α(x′|x)q(x′|x)dx′

[νP ] (dx′) =

∫ (
δx(dx

′)

[
1−

∫
¯
α(y|x)q(y|x)dy

]
+

¯
α(x′|x)q(x′|x)dx′

)
ν(x)dx

=

[
1−

∫
¯
α(y|x′)q(y|x′)dy

]
ν(x′)dx′ +

[∫
¯
α(x′|x)q(x′|x)ν(x)dx

]
dx′

The second form of the second expression is an application of Fubini’s the-
orem. The exchange of the order of integration for the second term in the
expression is immediately obvious and is ‘safe’ since the integrand for this
term is non-negative. The exchange of the order of integration for the first
term of the expression is less obvious, however it follows from the realization
that for arbitrary non-negative functions f and g,∫
s

∫
t

f(s)g(t)δt(ds)dt =

∫
t

∫
s

f(s)g(t)δt(ds)dt =

∫
t

f(t)g(t)dt =

∫
s

f(s)g(s)ds

Where the first equality is Fubini’s theorem, the second comes from inte-
grating with respect to s, and the third comes from a change of dummy
variable.
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Similarly, the elements of measure for transitions from the approximating
kernel are expressed below. The first expression, as above, is the element of
measure for transition from an arbitrary, fixed initial point. It is defined for
us by the mechanics of the Noisy Metropolis Hastings algorithm. The second
expression is again derived by integrating the first against an initial sampling
measure, ν.

P̂ (x, dx′) = δx(dx
′)

[
1−

∫∫
¯
α̂(y|x, z)q(y|x)fy(z)dzdy

]
+

∫
¯
α̂(x′|x, z)q(x′|x)fx′(z)dzdx′[

νP̂
]

(dx′) =

∫ (
δx(dx

′)

[
1−

∫∫
¯
α̂(y|x, z)q(y|x)fy(z)dzdy

]
+

∫
¯
α̂(x′|x, z)q(x′|x)fx′(z)dzdx′

)
ν(x)dx

=

[
1−

∫∫
¯
α̂(y|x′, z)q(y|x′)fy(z)dzdy

]
ν(x′)dx′

+

[∫∫
¯
α̂(x′|x, z)q(x′|x)fx′(z)ν(x)dzdx

]
dx′

The same applications of Fubini’s theorem occur as above, however for triple
integrals.

We may now leverage our notation defined above to simplify the difference
of these elements of measure.[
ν(P − P̂ )

]
(dx′) =

[∫∫ (
¯
α̂(y|x′, z)−

¯
α(y|x′)

)
q(y|x′)fy(z)dzdy

]
ν(x′)dx′

+

[∫∫ (
¯
α(x′|x)−

¯
α̂(x′|x, z)

)
q(x′|x)fx′(z)ν(x)dzdx

]
dx′

=

[∫
δ′(x′|x)q(x′|x)ν(x)dx

]
dx′ −

[∫
δ′(y|x′)q(y|x′)dy

]
ν(x′)dx′

= [ν(Z ′ − Γ′)](dx′)

From this one may conclude that
(
P − P̂ = Z ′ − Γ′

)
as operators.

Proposition 23. If ‖Q‖2 < ∞ and supx,y δ(y|x) ≤ δ then ‖P̂ − P‖2 ≤
δ(1 + ‖Q‖2).

26



Proof. It is obvious that if δ(y|x) ≤ δ uniformly in (x, y) then (‖Z ′‖2 ≤ δ‖Q‖2),
and (‖Γ′‖2 ≤ δ). By applying the previous lemma, given the assumptions
stated, ‖P − P̂‖2 ≤ δ(1 + ‖Q‖2).

Theorem 24. If ‖Q‖2 < ∞, and supx,y δ(y|x) ≤ δ, and P is geometrically
ergodic with geometric contraction factor (1−α), and δ(1 + ‖Q‖2) < α, then∥∥∥∥∥π − 1

t

t−1∑
k=0

µP̂ k

∥∥∥∥∥
2

≤ 1− (1− (α− ε))t

t(α− ε)
‖π̂ − µ‖2 +

ε√
α2 − ε2

,

where ε = δ(1 + ‖Q‖2), and π̂ is the stationary distribution for P̂ .

The above theorem provides an explicit alternative to the analogous re-
sult of Corollary 2.3 from [AFEB16], relaxing the uniform ergodicity as-
sumption by putting constraints on Q and δ. In particular, it requires that
Q ∈ B(L2(π)) and that δ(1 + ‖Q‖2) < α. The first of these requirements is
not dramatically limiting since the user has control over the choice of Q, but
the user should be aware that proposal distributions with sufficiently heavy
tails relative to π are likely to present issues in this regard. The second of
these requirements is also not dramatically limiting as control over δ may be
interpreted as limiting the amount of noise in the nMH algorithm and such
control is required regardless in order to ensure the accuracy of approxima-
tion in both the geometrically ergodic and uniformly ergodic cases.
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