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Preface

The following text is an overview and summary of the supervised reading

course I took with Professor Rosenthal at the University of Toronto in fall 2005.

The �rst part should be considered as an introduction to MCMC on �nite state

spaces since I hadn't worked on MCMC before. My studies on this part were

largely based on a book by Häggström [3] and lecture notes from Schmidt [7].

The second part summarizes my work on more advanced topic in MCMC

on general state spaces. I focused on papers by Rosenthal [4],[6] and Tierney

[8]. Finally, the reader will �nd a couple of simulation algorithms I implemented

using the free statistical software R.

Outlines and references for important proofs or proofs using techniques that

are worthwhile to be studied are included. Nevertheless, many propositions are

stated without proof since I already went through them with my supervisor Pro-

fessor Rosenthal and anything else would - more or less directly - be reusing

material from the sources I cited above.

Throughout the whole term I had regular meetings with Professor Rosenthal.

He encouraged me to study the theoretical background necessary for MCMC as

well as to implement several examples. My �rst exposure to probability theory

and statistics were courses with Professor Schmidt at the University of Ulm who

also encouraged me to focus on MCMC.

Johannes M. Hohendor�

Toronto, December 2005
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Part I

MCMC on Finite State Spaces

1 Introduction

Markov chains are a general class of stochastic models. In combination with

computer simulation methods they are widely used in various scienti�c areas

such as �nance and insurance or even in physics, chemistry or biology where

one might wouldn't expect it at the �rst place. Since the resulting models are

often too di�cult to be analyzed analytically, computers are used for inference.

In this �rst part we will introduce the concept of Markov chains and common

algorithms for their simulation. Since �nite models are easier to follow, we will

limit the discussion to this case and postpone the introduction of more general

concepts to the second part.

1.1 De�nition and Basic Properties

De�nition 1 Let {X0, X1, X2, . . . } : Ω → S be a sequence of random variables

de�ned on a probability space (Ω,F , P ) and mapping to a �nite state space S =

{s1, . . . , sk} . The sequence is said to be a (homogeneous) Markov chain with

initial distribution µ = (µ1, . . . , µk)
T and transition matrix P = (pi,j) if

P (X0 = s0, X1 = s1, . . . , Xn = sn) = µs0ps0,s1 . . . psn−1,sn

holds for all n = 0, 1, . . . and all s0, s1, . . . , sn ∈ S.

Proposition 1 The above sequence of random variables {X0, X1, X2, . . . } : Ω →
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S is a Markov chain if and only if there exists a stochastic matrix1 P = (pi,j)

such that

P (Xn = sn|Xn−1 = sn−1, . . . , X0 = s0) = psn−1,sn

for all n = 0, 1, . . . and all s0, s1, . . . , sn ∈ S with P (Xn−1 = sn−1, . . . , X0 = s0) >

0.

Corollary 1 Let {X0, X1, X2, . . . } be a Markov chain. Then it holds:

P (Xn = sn|Xn−1 = sn−1, . . . , X0 = s0) = P (Xn = sn|Xn−1 = sn−1)

where P (Xn−1 = sn−1, . . . , X0 = s0) > 0. This is frequently referred to as the

Markov property.

1.2 A First Example

To demonstrate the concept of Markov chains we consider the classical example

of random walks. The setup is as follows:

• Let Z,Z1, Z2, · · · : Ω → ZZ be a sequence of iid random variables with

values in the set of all integers.

• Assume that X0 : Ω → ZZ is a random variable that is independent from

Z1, Z2, . . . and set

Xn := Xn−1 + Zn ∀ n ≥ 1.

Then the random variables {X0, X1, X2, . . . } form a Markov chain with state

space S=ZZ, initial distribution µ = (µ1, . . . , µk)
T (where µi = P (X0 = i)) and

transition probability pi,j = P (Z = j − i). Such a model could for example

1i.e. pi,j ≥ 0 ∀ i, j ∈ {1, . . . , k} and the sum of each of the matrix's row equals 1
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describe the risk reserves of an insurance �rm where X0 is the initial reserve and

Z is the di�erence between the insurance premium and damage payments (this is

why I used the set of all integers as state space).

2 Important Properties of Markov Chains

In the following section we will summarize some of the most common properties

of Markov chains that are used in the context of MCMC. We always refer to a

Markov chain {X0, X1, X2, . . . } with transition matrix P on a �nite state space

S = {s1, . . . , sk} .

Assume we are interested in the distribution of the Markov chain after n steps.

The following proposition tells us that we can receive this information by simple

matrix multiplication.

Proposition 2 Consider a Markov chain with transition matrix P, initial dis-

tribution µ and denote the chain's distribution after the nth transition with µ(n).

Then it holds:

µ(n),T = µTP n.

Note: We will also consider the transition matrix P (n) for n transitions. In

analogy to the above proposition it holds: P (n) = P n which is also referred to as

the Chapman-Kolmogorov-Equation.

Some further de�nitions have to follow:

De�nition 2

• A matrix A is called non-negative if all its elements ai,j are non-negative.

• A non-negative matrix A is called quasi-positive if there exists an n0 ≥ 1

such that all elements of An0 are positive.
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De�nition 3 A Markov chain {X0, X1, X2, . . . } is called ergodic if the limit

πj = lim
n→∞

p
(n)
i,j

1. exists for all j ∈ {1, . . . , k}

2. is positive and does not depend on i

3. π = (π1, . . . , πk)
T is a probability distribution on S.

Proposition 3 A Markov chain with transition matrix P is ergodic if and only

if P is quasi-positive.

Theorem 1 Consider an ergodic Markov chain. Then the vector π = (π1, . . . , πk)
T

where πj = limn→∞ p
(n)
i,j it the unique solution of

πT = πTP

and π is a probability distribution on S.

At this point, we just state the theorem but will return to this important

property of the distribution π later on this chapter because it is the foundation

for MCMC algorithms. But before we can characterize π in a di�erent way, we

need to introduce some more concepts.

De�nition 4 A Markov chain is said to be irreducible if all states si, sj ∈ S

communicate, that is, there exists an n such that

P (Xm+n = sj|Xm = si) > 0

(due to the homogeneity independent of m).
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De�nition 5 The period of a state si ∈ S is de�ned as

d(si) := gcd{n ≥ 1 : (P n)i,i > 0}.

A Markov chain is aperiodic if all its states have period 1.

Theorem 2 A transition matrix P is irreducible and aperiodic if and only if P

is quasi-positive.

Note: On general state spaces, a irreducible and aperiodic Markov chain is

not necessarily ergodic.

Since it is used in proofs, we note the following property:

Proposition 4 Suppose we have an aperiodic Markov chain. Then there exists

an N <∞ such that

(P n)i,i > 0

for all i ∈ {1, . . . , k} and all n ≥ N .

Proposition 5 Now suppose our Markov chain is aperiodic and irreducible. Then

there exists an M <∞ such that

(P n)i,j > 0

for all i, j ∈ {1, . . . , k} and all n ≥M .

In the context of MCMC a question of particular interest is the question of

the long-term behavior of a Markov chain. Given certain conditions, can we hope

that the distribution of the chain converges to a well de�ned and unique limit?

The concept of irreducibility and aperiodicity will provide an answer.

De�nition 6 A vector π = (π1, . . . , πk)
T is said to be a stationary distribu-

tion for the Markov chain {X0, X1, X2, . . . } if:
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1. π ≥ 0 ∀ i ∈ {1, . . . , k} and
∑k

i=1 πi = 1

2. πTP = πT

So if we use π as initial distribution, the distribution of X1 will also be π (and of

course of any Xn, n ≥ 1).

3 Convergence Theorems

Using the above concepts, we can formulate important convergence theorems.

We will combine this with expressing the result of the �rst theorem in a di�erent

way. This helps to understand the main concepts.

3.1 A Markov Chain Convergence Theorem

Theorem 3 For any irreducible and aperiodic Markov chain, there exists at least

one stationary distribution.

Proof: We will only give the main ideas of the proof here. A complete proof can

be found in [3], pp. 29-33. The �rst step in proo�ng this theorem is to show that

for any irreducible and aperiodic Markov chain we have

P (Ti,j <∞) = 1

and

E[Ti,j] <∞

where T is a hitting time for a Markov chain {X0, X1, X2, . . . } starting in si ∈ S

and

Ti,j := min{n ≥ 1 : Xn = sj}.
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We then propose a candidate for the stationary distribution. For a Markov

chain starting in s1 and for i = 1, . . . , k set

ρi :=
∞∑

n=0

P (Xn = si, T1,1 > n).

With τ1,1 := E[T1,1] our candidate is:

π = (π1, . . . , πk) =

(
ρ1

τ1,1

, . . . ,
ρk

τ1,1

)
.

We would then simply need to check that π is a probability distribution on S =

{s1, . . . , sk} with the desired property. �

To achieve our �nal goal - a Markov chain convergence theorem - we need to

introduce a metric on probability distributions.

De�nition 7 Let µ = (µ1, . . . , µk)
T and ν = (ν1, . . . , νk)

T be two probability

distributions on the state space S = {s1, . . . , sk} . The total variation distance

between µ and ν is de�ned as2

dTV (µ, ν) =
1

2

k∑
i=1

|µi − νi|.

A sequence of probability distributions π(i) converges in total variation to a

distribution π if

lim
i→∞

dTV (π(i), π) = 0.

Shorthand we write π(i) TV−→ π.

Theorem 4 (Markov chain convergence theorem) Consider an irreducible

and aperiodic Markov chain {X0, X1, X2, . . . }. If we denote the chains distribu-

tion after the nth transition by µ(n) we have for any initial distribution µ(0) and

2This is equivalent to max |µ(A)− ν(A)| where A ⊂ S.
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a stationary distribution π:

µ(n) TV−→ π.

In words: If we run the Markov chain for a long time, its distribution will be very

close to the stationary distribution π.

Proof: A complete proof of the theorem is rather long and wouldn't �t in a

summary like this. A proof in full length can be found in [3] pp. 34-37. Nev-

ertheless, it is very important to outline the main idea that could be applied to

achieve an elegant proof. The following coupling technique is widely used. We

compare the sequence of unknown distributions µ(n) to the distribution of inter-

est which is of course π. To do so, we consider a Markov chain {X0, X1, X2, . . . }

who's initial distribution already is the stationary distribution π and an arbitrary

other Markov chain {X ′
0, X

′
1, X

′
2, . . . }. It would then be possible to show that the

hitting time

T := min
n≥1

{Xn = X ′
n}

is �nite with probability 1. Since we started the �rst chain according to π, we

can conclude that µ(n) is the same distribution after the chains met. �

Theorem 5 Any irreducible and aperiodic Markov chain has exactly one station-

ary distribution.

Proof: We just learned that an irreducible and aperiodic Markov chain has at

least one stationary distribution. So assume the chain {X0, X1, X2, . . . } has more

than one stationary distribution, say π and π′. Then the chains distribution after

n transitions is µ(n) = π′. On the other hand we have got

µ(n) TV−→ π.
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Since µ(n) = π′

lim
n→∞

dTV (π′, π) = 0.

As this does not depend on n at all we conclude

π′ = π.

�

De�nition 8 A probability distribution π on the state space S = {s1, . . . , sk} is

reversible for the Markov chain {X0, X1, X2, . . . } with transition matrix P if for

all i, j ∈ 1, . . . , k we have

πiPi,j = πjPj,i.

The next simple property will help us with constructing MCMC algorithms

that (approximately) sample from a given distribution π.

Proposition 6 If the probability distribution π is reversible for a Markov chain,

then it is also a stationary distribution for the chain.

Proof: The proof is very short and a nice illustration of the properties we

introduced on the last few pages and though it is worthwhile to have quick look

at it. We just have to proof the second property of 6 since the �rst one is really

obvious. We compute:

πj = πj

k∑
i=1

Pj,i =
k∑

i=1

πjPj,i =
k∑

i=1

πjPi,j ∀ j ∈ {1, . . . , k}.

�

We �nish this section with some notes about Markov chains and eigenvalues.

This is important in the context of the convergence speed of a Markov chain to

a limiting distribution (if it exists, of course).
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3.2 Markov Chains and Eigenvalues

Consider the following setup:

• A quasi-positive transition matrix P with k di�erent eigenvalues

• A stationary distribution π = (π1, . . . , πk)
T on S

• An initial distribution µ on S

• Order the eigenvalues of the transition matrix according to their absolute

value, starting with the larges one: |θ1| ≥ |θ2| ≥ · · · ≥ |θk|

We can then formulate:

Proposition 7 (Perron-Frobenius)

sup
j∈{1,...,k}

|µ(n)
j − πj| = O(|θ2|n)

Note: If π is reversible, the basis of the second largest eigenvalue cannot be

improved. But we can state more precisely:

sup
j∈{1,...,k}

|µ(n)
j − πj| ≤

1√
mini∈{1,...,k} πi

|θ2|n.

For several reasons, this bound is of limited practical use since:

• given interesting cases of large sample spaces, it can become infeasible to

determine θ2

• the Markov chain needs to be reversible

• the bound does not depend on the initial distribution µ.

An alternative is to use so called χ2-contrasts. To outline this concept we need

the following de�nitions:



4 MARKOV CHAIN MONTE CARLO 11

De�nition 9 The matrix M := PP̃ is called the multiplicative reversible version

of the transition matrix P if we set

p̃i,j :=
πjpi,j

πi

As one can check easily, M is indeed reversible.

De�nition 10 The χ2-contrast of µ given ν is then de�ned as

χ2(µ, ν) :=
∑
i∈S

(µi − νi)
2

νi

where we require νi > 0 ∀i ∈ S.

It would then be possible to proof the following property:

Proposition 8 Using the notation we just introduced it holds:

d2
TV ((µTP n)T , π) ≤ χ2(µ, π)

4
θn

M,2

4 Markov Chain Monte Carlo

In this chapter we will consider algorithms that help us with sampling from

potentially complicated and high dimensional distributions. We start by looking

at the more classical approaches. The last section then deals with an alternative,

very di�erent approach.

4.1 The Hard-Core Model

Let us start by discussing a common example. Consider a graph G=(V,E). We

randomly assign 0 or 1 to every vertex vi ∈ V = {v1, . . . , vk} in such a way that

no two neighbors, i.e. two vertices that share an edge ei ∈ E = {e1, . . . , ek} both
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take the value 1. If a con�guration ful�lls this condition, it is called feasible.

We now pick a feasible con�guration from the set of all feasible con�gurations

uniformly at random. What number of 1's should we expect? We can formulate

this problem in a more precise way: Let ξ ∈ {0, 1}V be any con�guration, set ZG

to the total number of feasible con�gurations and de�ne a probability function

µG on {0, 1}V by

µG(ξ) =

 1
ZG

, ξ is feasible

0 , otherwise

Using this notation and denoting the number of 1's in a con�guration by n(ξ) we

are interested in

Eµg(n(X)) =
∑

ξ∈{0,1}V

n(ξ)µG(ξ) =
1

ZG

∑
ξ∈{0,1}V

n(ξ)I{ξ is feasible}

Even for moderately sized graphs it is obviously impossible to evaluate this sum.

But using an MCMC algorithm we will be able to generate samples from µg. We

can then apply the law of large numbers and estimate the expected number of 1's

in a con�guration. We approach the problem by constructing an irreducible and

aperiodic Markov chain {X0, X1, X2, . . . } with reversible distribution µG on the

state space S = {ξ ∈ {0, 1}V : ξ is feasible}. A Markov chain with the desired

properties can be obtained using the following algorithm.

1. Pick a vertex v ∈ V uniformly at random

2. Toss a fair coin

3. If the coin heads and if all neighbors of v take the value 0 in Xn, then set

Xn+1 = 1. Otherwise, Xn+1 = 0.

4. Leave the value for all other vertices unchanged, that is: Xn+1(w) =

Xn(w) ∀ w 6= v.
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The resulting Markov chain is irreducible for the following reason: Given a feasible

con�guration ξ, we can reach the "all 0" con�guration in a �nite number of

steps. From there on we can reach any other feasible con�guration ξ′. Moreover,

the chain is aperiodic since we can go from ξ to ξ in one step. It remains to

show that µG is reversible (and hence stationary for the chain). For two feasible

con�gurations ξ and ξ′ we need to check that

µG(ξ)Pξ,ξ′ = µg(ξ
′)P (ξ′, ξ).

We split the problem into three di�erent cases. If the con�gurations are exactly

the same, the equation is trivial. Secondly, if the con�gurations di�er in more than

two vertices, the equation is also obvious since the algorithm changes only one

vertex at a time. Finally, assume the con�gurations di�er at a single vertex v. All

neighbors of ξ and ξ′ must then be 0 because we deal with feasible con�gurations.

We then get:

µG(ξ)Pξ,ξ′ =
1

ZG

1

2k
= µg(ξ

′)Pξ′,ξ.

Hence our chain is reversible with respect to µG and µG is also the stationary

distribution. �

This example is one of the models I implemented using R. The source code

can be found in the appendix, page 32.

4.2 The Metropolis-Hastings-Algorithm

The method used in the above example can be generalized. Again, suppose we

would like to sample from a potentially di�cult distribution π that lives on a

sample space of high dimension. If we could �nd a Markov chain whose unique

stationary distribution is π we could run this chain long enough and then take

the result as an approximate sample form π.
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A very general way to construct such a Markov chain is the Metropolis-

Hastings-Algorithm. Alternatively, one could use the so called Gibbs-Sampler

which turns out to be a special case of the Metropolis-Hastings-Algorithm. The

above example of the hard core model uses such a Gibbs sampler.

The algorithm now works as follows. It constructs - as the next theorem will

show - a Markov chain that has π even as its reversible distribution:

1. Consider the distribution of interest π and an arbitrary other Markov chain

on S with transition matrix Q = (qi,j).

2. Choose a starting value X0.

3. Given the current state Xn generate a proposal Zn+1 from qXn,.

4. Perform a Bernoulli experiment with probability of success α(Xn, Yn+1)

where

α(i, j) = min

{
1,
πjqj,i
πiqi,j

}
and set α = 1 in case of π(i)qi,j = 0.

5. If the experiment is successful, set Xn+1 = Yn+1. Otherwise leave Xn un-

changed, i.e. Xn+1 = Xn.

6. Continue the procedure with n+1.

Theorem 6 The Metropolis-Hastings-Algorithm produces a Markov chain {X0, X1, X2, . . . }

which is reversible with respect to π.

Proof: First recall that we have to show πipi,j = πjpj,i. We assume i 6= j
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(the other case is obvious) and can write:

πipi,j = πiqi,jαi,j

= πiqi,j min

{
1,
πjqj,i
πiqi,j

}
= min{πiqi,j, πjqj,i}

The fact that this equation is symmetric in i and j completes the proof. �

So this approach is indeed very general. Some choices for the transition prob-

abilities qi,j are common:

• Original Metropolis algorithm: qi,j = qj,i

• Random walk Metropolis-Hastings: q(i, j) = q(j − i)

• Independence sampler: q(i, j) = q(j) independent of i

Finally, let us remark that we receive the (k(th) component)Gibbs-Sampler if we

set α(i, j) ≡ 1.

To demonstrate the algorithm, I implemented an example (random walk

Metropolis-Hastings). The complete source code for this example can be found

in the appendix on page 32.

4.3 Convergence rates of MCMC algorithms

Let us continue the current section by demonstrating how di�cult and labor-

intensive it can be to give useful bounds on convergence rates of Markov chains.

Consider a graph G = (V,E). Use k to denote the number of vertices in G and

suppose that a vertex v ∈ V has at most d neighbors. The problem of q-colorings

is well-known from graph theory. In short, the problem is to assign one of q colors

(or one of q integers) to every vertex v such that no two adjacent vertices have the
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same color. For our setup assume that q > 2d2. If we would use a Gibbs-sampler

to solve this problem and if we expect from this algorithm to produce a solution

with total variation distance less than ε from the distribution that puts equal

probability mass on all valid q-colorings, we need at most

k

(
log(k)− log(ε)− log(d)

log(q)− log(2d2)
+ 1

)
iterations. This is indeed a quite useful bound since in essence it stats that the

number of iterations needed behaves as O(k(log(k) − log(ε))). Note that it is

possible to improve this result in the sense that the bound holds for q > 2d.

Proof: As done earlier, we consider the main ideas of the proof (in this case a

coupling argument) and leave the technical details to [3] pp. 57-62 (indeed almost

six pages!). The proof considers two coupled Markov chains {X0, X1, X2, . . . }

and {X ′
0, X

′
1, X

′
2, . . . }. The �rst one is started in a �xed state and the second

one according to the (stationary) distribution which gives equal weight to all

valid q-colorings. The chains are linked in such a way that if they coincide at a

certain time T they will stay the same for all times t ≥ T . The proof continues

by showing that the total variation distance between the distribution µ(n) of the

chain {X0, X1, X2, . . . } after n transitions and the stationary distribution ρG,q

gets smaller as P (Xn = X ′
n) gets closer to 1. The probability P (Xn = X ′

n) is

examined in several steps. First, the probability that the con�gurations Xn and

X ′
n coincide at a certain vertex v is discussed. This is then generalized to the

case of interest where all vertices coincide. It turns out that

P (Xn 6= X ′
n) ≤ k

d

(
2d2

q

)m

where m = n/k (use bmc if not an integer). The total variation distance

dTV (µn, ρG,q) can then be derived using the remark on page 6. �
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4.4 The Propp-Wilson-Algorithm

The algorithms we considered so far have two major drawbacks in common. First

of all, the samples generated were only close to the real distribution but in general

never exact. Furthermore, we had di�culties in determining what the phrase

�close� means and when we have actually reached that level of accuracy. The

following algorithm was developed by Jim Propp and David Wilson at the MIT

in the mid 1990's. It's main idea is running not just one Markov chain at a

time but several copies of it. The algorithm stops as soon as a perfect sample

is achieved. Let us also note, that the algorithm starts in the past, that is, it

doesn't run the Markov chain from time 0 on into the future but rather starts

in the past and stops at time 0. For a more speci�c description of how the

Propp-Wilson-Algorithm works, consider the following setup:

• A �nite state space S = {s1, . . . , sk}

• We want to sample from a probability distribution π.

• For the algorithm itself we need a sequence of iid random numbers that are

uniformly distributed on [0, 1].

• Let N1, N2, . . . be an increasing sequence of positive integers. A broadly

used sequence is {1, 2, 4, 8, . . . }.

Now here is how the algorithm works:

1. Set m=1

2. For each possible state si, i = 1, . . . , k simulate a Markov chain starting in

state si at time −Nm and run it up to time 0. To do so use an update
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function3 φ : S × [0, 1] → S and the random numbers U−Nm+1, . . . , U−1, U0.

It is important to note that these random numbers are the same for all k

chains! We also have to reuse the random numbers U−Nm−1 , . . . , U−1, U0 for

the mth step. Otherwise the algorithm will not produce correct results.

3. If at time 0 all k chains end in the same state ŝ stop the algorithm and use

ŝ as a sample. Otherwise increase m by 1 and continue with step 2.

Two interesting questions arise immediately: Will the algorithm terminate

and if it does so, will it give a correct, unbiased sample? As far as the �rst part

of this question is concerned, we will only note that there are cases when the

algorithm doesn't stop. But there is a 0-1 law: Either the algorithm terminates

almost surely or the probability that it stops is 0. An obvious consequence is that

it su�ces to show that P(algorithm terminates)>0 holds.

The second part of the question will be answered by the next theorem:

Theorem 7 Consider an irreducible and aperiodic Markov chain with state space

S = {s1, . . . , sk} and stationary distribution π = (π1, . . . , πk). As above, let φ be

an update function and N1, N2, . . . an increasing sequence of positive integers. If

the Propp-Wilson algorithm terminates, then we have

P (Y = si) = πi ∀ i ∈ 1, . . . , k

where Y represents the algorithms output.

Proof:

Let us �x ε > 0 and si ∈ S. We have to show that

|P (Y = si)− πi| < ε

3An update function helps us to get form the current state Xn into the next state Xn+1.

For si ∈ S it's a piecewise constant function of x and for si, sj ∈ S the length of the interval

where φ(si, x) = sj equals pi,j .
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holds. By assumption the algorithm terminates with probability 1 and by picking

M large enough we can achieve:

P (algorithm doesn't need starting times earlier than−NM) ≥ 1− ε

If we �x such an M we can apply a coupling argument: We run a �rst chain

from time−NM up to 0 and, using the same update function and random numbers

Ui, we also run a second chain with the initial state chosen according to the

stationary distribution π. Let us denote the state of this second, imaginary chain

at time 0 with Ỹ . It is important to keep in mind that Ỹ has distribution π since

this is the stationary distribution. Furthermore,

P (Y 6= Ỹ ) ≤ ε

since we chose M large. Hence we can write:

P (Y = si)− πi = P (Y = si)− P (Ỹ = si)

≤ P (Y = si, Ỹ 6= si)

≤ P (Y 6= Ỹ ) ≤ ε

Similarly, we get πi − P (Y = si) ≤ ε and by combining these two results we

obtain

|P (Y = si)− πi| < ε

�

Before we work through a detailed example, we should discuss one more point.

In general, we would use MCMC for complicated models that make an analytical

analysis infeasible; for example, if we need to analyze a model with a large sample

space. Using the above Propp-Wilson-Algorithm, this inevitably means running a
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large number of Markov chains. An important technique for considerably reducing

the number of chains that need to be simulated is the sandwiching technique. It

can be used for Markov chains that have certain monotonicity properties. Assume

we can order the state space and we could also �nd a transition function that

preserves this ordering. Then it would be enough to run two Markov chains.

One starting in the smallest possible state and one in the largest. If the two

chains coincide at time 0, we can stop the algorithm since all other chains remain

between the smallest and largest possible value.

4.5 The Ising Model

Let G = (V,E) be a graph. The Ising model is a certain way of picking a

random element of {−1, 1}V . It's physical interpretation might be to think of

the vertices as atoms in a ferromagnetic material and of -1 and 1 as possible spin

orientations of the atoms. To describe the probability distribution of all possible

con�gurations, we introduce two parameters:

• The inverse temperature β ≥ 0 which is a �xed non-negative number

• The energyH(ξ where ξ ∈ {−1, 1}V is a spin con�guration and H is de�ned

as:

H(ξ) := −
∑

(x,y) inE

ξ(x)ξ(y)

Here, ξ(x) is the orientation of the chosen con�guration at vertex x.

A certain spin con�guration X ∈ {−1, 1}V is chosen according to the proba-

bility distribution πG,β with

πG,β(ξ) :=
1

ZG,β

exp(−βH(ξ))
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ZG,β is nothing but a normalizing constant to ensure that we end up with a

probability measure.

In order to make the Propp-Wilson-Algorithm work for this problem, we need

to introduce an ordering. We can then use the sandwiching technique and thereby

reduce the number of Markov chains necessary from 2k to 2 (where k is the

number of vertices). For two spin con�gurations ξ and η we shall write ξ � η if

ξ(x) ≤ η(x) ∀ x ∈ V . Of course, this is not a total ordering but it allows us to

de�ne a smallest and largest spin con�guration (-1 everywhere and 1 everywhere

respectively).

As a last step, we need to specify how to simulate the two remaining Markov

chains. We will use a simple Gibbs sampler. Given Xn ∈ −1, 1V we obtain Xn+1

by picking a vertex x at at random. We leave all vertices except x unchanged

and the spin of Xn+1(x) is determined using a random number Un+1 where Un+1

is uniformly distributed on [0,1]. We set:

Xn+1 :=

 1 , Un+1 <
exp[2β(k+(x,ξ)−k−(x,ξ))]

exp[2β(k+(x,ξ)−k−(x,ξ))]+1

−1 , otherwise

Here, k+(x,Xn) denotes the neighbors of x having positive spin and k−(x,Xn)

the number of neighbors having negative spin.

We can now implement the algorithm. The reader will �nd the complete

source code using R in the appendix on page 32. Figure 1 on page 22 shows a

possible sample from the model. It was computed using a quadratic grid of 100

times 100 and β = 0.3. Note the signi�cant clustering.
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Figure 1: A sample from the Ising model with β = 0.3. Note the signi�cant

clustering
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Part II

MCMC on General State Spaces

Most of the concepts and ideas we have studied so far can be applied to the case

of a general state space E ⊂ Rk, E measurable. Nevertheless, we need some

measure theory to generalize the de�nitions.

5 De�nitions and Basic Properties

5.1 De�nition

De�nition 11 From measure theory we recall the concept of a kernel. Consider

two measure spaces (Ω,A) and (Ω′,A′). The function

K : Ω×A′ → [0,∞]

is a kernel from (Ω,A) to (Ω′,A′) if

• ω 7→ K(ω,A′) is A-measurable ∀ A′ ∈ A′

• A′ 7→ K(ω,A′) is a measure on A′ ∀ ω ∈ Ω.

If K(ω,Ω′) = 1, the kernel is a also called Markov kernel.

Loosely spoken, a kernel gives the probability of ending up somewhere in A' if

starting in ω.

De�nition 12 A sequence of random variables {X0, X1, X2, . . . } with values in

E is called (homogeneous) Markov chain if

P (Xn+1 ∈ A|Xn = x) = P (x,A) ∀ n ≥ 1.

We will denote P (. . . |X0 = x) with Px(. . . ).



5 DEFINITIONS AND BASIC PROPERTIES 24

5.2 Important Properties

De�nition 13 A Markov chain is ϕ− irreducible for a probability measure ϕ on

E if for all measurable sets A ⊂ E with ϕ > 0 we have the possibility of �nite

return times, that is for the time of �rst return to A

τA := inf{n ∈ N : Xn ∈ A}

it holds

Px(τA <∞) > 0 ∀ x ∈ E.

A Markov Chain is irreducible if it is ϕ− irreducible for a probability dis-

tribution ϕ.

We could say that irreducibility means that all �interesting� sets can be reached.

Note that a Markov chain might have many irreducibility distributions; but there

exists a maximal irreducibility distribution ϕ0 in the sense that all other irre-

ducible distributions ϕ are absolutely continuous with respect to ϕ0.

The way we de�ne aperiodicity in case of the general state space is slightly

more technical than in part 1 but is in essence still the same:

De�nition 14 A m-cycle for an irreducible Markov chain with transition kernel

P is a collection {E0, . . . , Em−1} of disjoint sets such that

P (x,Ej) = 1

for i = 0, . . . ,m − 1; j = (i + 1)mod d and ∀ x ∈ Ei. The period d of

the chain is the largest m for which an m-cycle exists. The chain is aperiodic if

d = 1.
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De�nition 15 A probability distribution π on E is a stationary distribution

for the Markov chain {X0, X1, X2, . . . } with transition kernel P (x,A) if

π(A) =

∫
E

π(dx)P (x,A) ∀ A ⊂ E measurable.

Again, before we can consider the behavior of a Markov chain after many

transitions, we need to introduce a metric.

De�nition 16 Given two probability distributions µ and ν on E we de�ne the

total variation distance of the two measures by

sup
A⊂E

|µ(A)− ν(A)|

where we require A to be measurable and write ||µ− ν|| short-hand.

6 Markov Chain Convergence Theorem

Theorem 8 Suppose {X0, X1, X2, . . . } is an irreducible, aperiodic Markov chain

on the state space E with transition kernel P and stationary distribution π. Denote

the nth transition probabilities4 by P n(x, ·). Then we have

||P n(x, ·)− π(·)|| → 0

for π− a.e. x ∈ E.

Proof: The proof of this theorem is based on several lemmas, that describe

properties of Markov chains related to irreducibility and aperiodicity. As in the

discrete case, we would use a coupling technique and return times to complete

the proof. A proof in full length can be found in [5]

4To be precise: P 1(x,A) := P (x,A) and Pn+1 :=
∫

E
Pn(x, dy)P (y, A) n = 1, 2, . . .
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7 The Metropolis-Hastings-Algorithm

In this last section, let us consider how our theoretical results could be used for

simulation purposes. As in the discrete case we turn to the general ideas of the

Metropolis-Hastings-Algorithm. As it turns out, the algorithm works in almost

the same way and even the proof of convergence is closely related to the discrete

case.

7.1 The Algorithm

Suppose we are interested in properties of a distribution π with density πd and

want to sample from this distribution. Such problems arise for example in

Bayesian statistical inference.

As we already learned, the bottom-line of MCMC algorithms is to construct

a Markov chain with reversible distribution π. Now in the given case of a general

state space the Metropolis-Hastings-algorithm works as follows:

• Choose an arbitrary Markov chain with Markov kernel of the formQ(x, dy) =

q(x, y)dy.

• Choose a starting point X0.

• Given the state Xn, generate a proposal Yn+1 from Q(Xn, ·)

• Perform a Bernoulli experiment with probability of success α(Xn, Yn+1)

where

α(x, y) = min

{
1,
πd(y)q(y, x)

πd(x)q(x, y)

}
and set α = 1 in case of πd(x)q(x, y) = 0.
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• If the experiment is successful, set Xn+1 = Yn+1. Otherwise leave Xn un-

changed, i.e. Xn+1 = Xn.

• Continue the procedure with n+1.

Theorem 9 This algorithm produces a Markov chain {X0, X1, X2, . . . } which is

reversible with respect to π.

Proof: First recall that we have to show π(dx)P (x, dy) = π(dy)P (y, dx). We

assume i 6= j (the other case is obvious) and can write:

π(dx)P (x, dy) = πd(x)dxq(x, y)dyα(x, y)

= πd(x)q(x, y)dxdxmin

{
1,
πd(y)q(y, x)

πd(x)q(x, y)

}
= min{πd(x)q(x, y), πd(y)q(y, x)}dxdy

The fact that this equation is symmetric in i and j completes the proof. �

For special choices of α(x, y) see the discrete version on page 15.

7.2 Convergence Bounds

As one of the last points of this notes let us state a theorem dealing with con-

vergence bounds. I studied the theorem and its proof since it uses a coupling

technique and also allowed me to revise my knowledge about martingales. Now

here is the theorem:

Theorem 10 For a Markov chain on a state space E with transition kernel P

consider the following objects:

• Two copies of the Markov chain: {X0, X1, X2, . . . } and {X ′
0, X

′
1, X

′
2, . . . }

started from initial distributions L(X0) and L(X ′
0)
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• A probability measure ν(·) on E

• A minorisation condition5

P (x,A) ≥ εν(A) ∀ x ∈ C

for some subset C ⊂ E and a ε > 0

• A drift condition

P̄ h(x, y) ≤ h(x, y)

α
∀ (x, y) /∈ C × C

where α > 1 and h is a function H : E × E → [1,∞) with

P̄ h(x, y) ≡
∫

E

∫
E

h(z, w)P (x, dz)P (y, dw).

• Finally, de�ne

B = max{1, α(1− ε) sup
C×C

{(R̄)h(x, y)}}

where

(R̄)h(x, y) =

∫
E

∫
E

(1− ε)−2h(z, w)(P (x, dz)− εν(dz)))(P (y, dw)− εν(dw))

for (x, y) ∈ C × C.

For our Markov chains {X0, X1, X2, . . . } and {X ′
0, X

′
1, X

′
2, . . . } started ac-

cording to a joint initial distribution L(X0, X
′
0) and integers 1 ≤ j ≤ k we

can then say that:

||L(Xk)− L(X ′
k)|| ≤ (1− ε)j + α−kBj−1E[h(X0, X

′
0)].

5See De�nition 19 for a detailed and formal de�nition.
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8 Outlook and a CLT for Markov Chains

I'd like to close the notes with a short outlook on some further topics I've already

been looking at but without following the proofs to a deeper extend:

De�nition 17 An irreducible Markov chain with maximal irreducibility distribu-

tion ψ is recurrent if ∀ A ⊂ E measurable with ψ(A) > 0 we have:

• Px(Xn ∈ A in�nitely often) > 0 ∀ x

• Px(Xn ∈ A in�nitely often) = 1 ψ-a.s..

If we recall that irreducibility meant that all �interesting� sets can be reached,

recurrence means that all such sets will be reached in�nitely often from at least

almost all starting points.

In addition we can be slightly stricter and say that a Markov chain is Harris

recurrent if ∀ A ⊂ E measurable with ψ(A) > 0 we have

Px(Xn ∈ A in�nitely often) = 1 ∀ x ∈ E.

As in the discrete case, we can also de�ne ergodicity (compare Proposition 3

and Theorem 2) but need to add one more condition.

De�nition 18 A Markov chain {X0, X1, X2, . . . } with stationary distribution π

is ergodic if it is irreducible, aperiodic and Harris recurrent. It is geometrically

ergodic if there exists r < 1 and a non-negative (possibly extended real-valued)

function M such that M(x) is Lebesgue-integrable with respect to π and

||P n(x, ·)− π(·)|| ≤M(x)rn ∀ x ∀n ≥ 1.

The chain is uniformly ergodic if there exist constants M > 0 and r < 1 such

that ∀ x ∀n ≥ 1

||P n(x, ·)− π(·)|| ≤Mrn.
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So the total variation distance is of order O(rn).

Easier to verify is the following condition:

De�nition 19 A π-irreducible Markov chain with transition kernel P satis�es a

minorisation condition if we �nd a measure ν on σ(E), m ≥ 1, β ≥ 0 and a

measurable set C ⊂ E of positive ν-measure such that

P (x,A) ≥ βν(A) ∀ x ∈ C and ∀ A ⊂ E measurable.

Finally, we can close the notes with a nice central limit theorem.

Theorem 11 Consider an uniformly ergodic Markov chain {X0, X1, X2, . . . } with

stationary distribution π and a real valued function f with f 2 is integrable with

respect to π. Using

fn :=
1

n+ 1

n∑
i=0

f(Xi).

Then √
(n)(fn − E(f))

d−→Y ∼ N(0, σ2
f ).

Proof: A proof can be found in [2].
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A The Hard-Core Model

# Supervised reading in MCMC with Professor Rosenthal

# October 2005

# This function creates a single feasible configuration

# and returns the number of vertices that are marked "1"

# The function takes the size of the graph and the number

# of simulation steps as arguments.

# Furthermore, the current configuration can be plotted

getConfiguration<-function(size,steps,plotResult=FALSE) {

graph<-matrix(0,size,size) # Construct initial graph

for(i in 1:steps) {

x<-trunc(runif(1,1,size+1)) # Choose one vertex uniformly at random

y<-trunc(runif(1,1,size+1))

coin<-trunc(runif(1,0,2)) # Toss a fair coin

if(coin) { # Coin comes up heads?

change<-TRUE # Then see if we change our configuration

if(x+1<=size) {

if(graph[x+1,y]==1) change<-FALSE # Check right neighbor

}

if(x>=2 & change) {

if(graph[x-1,y]==1) change<-FALSE # Check left neighbor

}

if(y+1<=size & change) {

if(graph[x,y+1]==1) change<-FALSE # Check upper neighbor

}

if(y>=2 & change) {

if(graph[x,y-1]==1) change<-FALSE # Check lower neighbor

}

if(change) graph[x,y]<-1 # All neighbors are still marked "0"?

}

else graph[x,y]<-0

}

# Plot configuration?

if(plotResult) {

print(graph)

plot(0:size,0:size,type="n")

for(i in 1:size) {

for(j in 1:size) {

if(graph[i,j]==0) points(j,size-i+1,pch=21)
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else points(j,size-i+1,pch=19,col="red")

}

}

}

return(sum(graph)) # Return number of vertices marked "1"

}

B Example: The Metropolis-Hastings-Algorithm

# Supervised Reading in MCMC with Prof. Rosenthal; fall 2005

# The following code is a small application of the Metropolis-Hastings algorithm

# MCMC is used to sample from a inverse gamma distribution

# The densitiy function of an inverse gamma distribution with parameter alpha and beta at x

dinvgamma<-function(alpha,beta,x){

if(x<=0) return(0) # Support is x > 0

return(beta^alpha/gamma(alpha)*x^(-alpha-1)*exp(-beta/x))

}

# The function does the simulation and takes the number of steps as its first argument

# The second and third arguments are the parameters for the inverse gamma distribution

MCMC<-function(n,alpha,beta) {

state<-1 # Start simulation by defining a starting value

for(i in 1:n) { # Simulate n steps

proposal<-runif(1,state-1,state+1) # Make a suggestion for the next state

pi.y<-dinvgamma(alpha,beta,proposal) # Evaluate density of destination distriubtion

pi.x<-dinvgamma(alpha,beta,state)

if(pi.x==0) p.success<-1

else p.success<-min(1,pi.y/pi.x) # Probability of accepting the suggestion

if(runif(1)<=p.success) state<-proposal # Accept suggestion?

}

return(state) # Return the last state, i.e. an approximate inverse gamma sample

}

C The Ising Model

# Supervised reading in MCMC with Professor Rosenthal

# November 2005
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# The Ising model using the Propp-Wilson algorithm

# to obtain spin-configurations.

# The function receives a spin configuration and a specified element

# of this configuration. It then returns the number of neigbours

# with positiv and negativ spin as well as the difference

# between these two numbers. Finally, size is the size of the

# quadratic grid.

neighbours<-function(spin.conf,x,y,size) {

counter<-vector("numeric",2) # Count positive and negativ neighbours

if(x+1<=size) { # Check right neighbour

if(spin.conf[x+1,y]==1) counter[1]<-1 else counter[2]<-1

}

if(x>=2) { # Check left neighbor

if(spin.conf[x-1,y]==1) counter[1]<-counter[1]+1 else counter[2]<-counter[2]+1

}

if(y+1<=size) { # Check lower neighbor

if(spin.conf[x,y+1]==1) counter[1]<-counter[1]+1 else counter[2]<-counter[2]+1

}

if(y>=2) { # Check upper neighbor

if(spin.conf[x,y-1]==1) counter[1]<-counter[1]+1 else counter[2]<-counter[2]+1

}

return(list(counter=counter,diff=(counter[1]-counter[2])))

}

# The function takes the size of the (quadratic) graph

# and the inverse temperature beta as parameters.

# Furthermore, the current configuration can be plotted.

getSpinConfiguration<-function(size,beta,plotResult=FALSE) {

conf.bottom<-matrix(-1,size,size) # Configutaion with -1 everywhere

conf.top<-matrix(1,size,size) # Configutaion with +1 everywhere

m<-1 # Counter

x.cord<-trunc(runif(1,1,size+1)) # x-coordinates of vertices chosen

y.cord<-trunc(runif(1,1,size+1)) # y-coordinates of vertices chosen

uniformRV<-runif(1) # Uniform RVs drawn

repeat { # Loop until configurations coalesce

for(i in 2^(m-1):1) { # Perform 2^(m-1) steps on the spin configurations

exp.bottom<-exp(2*beta*neighbours(conf.bottom,x.cord[i],y.cord[i],size)$diff)

exp.top<-exp(2*beta*neighbours(conf.top,x.cord[i],y.cord[i],size)$diff)

if(uniformRV[i]<exp.bottom/(exp.bottom+1)) conf.bottom[x.cord[i],y.cord[i]]<-1
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else conf.bottom[x.cord[i],y.cord[i]]<-(-1) # Update bottom chain

if(uniformRV[i]<exp.top/(exp.top+1)) conf.top[x.cord[i],y.cord[i]]<-1

else conf.top[x.cord[i],y.cord[i]]<-(-1) # Update top chain

}

# Exit loop if both configurations coalesce

if(sum(conf.bottom==conf.top)==size*size) break

# Generate new random variables and append to list.

# Choose vertices uniformly at random.

x.cord<-c(x.cord,trunc(runif(2^(m-1),1,size+1)))

y.cord<-c(y.cord,trunc(runif(2^(m-1),1,size+1)))

uniformRV<-c(uniformRV,runif(2^(m-1)))

# Reset both configurations

conf.bottom[]<-(-1)

conf.top[]<-1

m<-m+1

}

# Plot configuration?

if(plotResult) {

# print(conf.top)

plot(0:size,0:size,type="n")

for(i in 1:size) {

for(j in 1:size) {

if(conf.top[i,j]==-1) points(j,size-i+1,pch=21,cex=1.1)

else points(j,size-i+1,pch=19,cex=1.1)

}

}

}

return(list(conf=conf.top,steps=2^m))

}
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