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Abstract

A new technique for improving the efficiency of propositional reasoning procedures is presented.
The meta-search procedure, ND, is parameterised by a search procedure � and a real number for con-
trolling the way in which � is applied to the given problem. Experiments using SATO on the domain
of Crossword Puzzle Construction (CPC) illustrate the potential for ND. The weakness of and future
experiments with ND are discussed.1
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1 Introduction

Finding effective strategies for controlling propositional inference systems continues to be a challenging re-
search issue. Control strategies such as set-of-support [Wos et al., 1965] and semantic restrictions represent
a limited form of informed search [Russell and Norvig, 1995], whereby restriction and guidance of search
is based on knowledge of the underlying problem domain. For the most part, current research directions in
the field have continued to rely on knowledge-intensive techniques for restricting as well as for directing
reasoning programs [McCune and Wos, 1992, Bundy et al., 1993, Wos and Pieper, 1999].

On the other hand, promising compute-intensive search techniques, for example those introduced in
[Selman et al., 1992] and [Gomes et al., 1998], have recently been applied to solve, successfully, many prob-
lems that are beyond the current capabilities of knowledge-intensive reasoning procedures. These compute-
intensive techniques, as described by Selman, attack the inherent combinatorics of problems from first prin-
ciples, with little or no domain-specific knowledge.

In this paper, we describe a meta-reasoning technique for improving the efficiency of propositional
reasoning procedures. The new technique, ND, contains elements of compute-intensive search techniques.
It also relates to the work of [Bessière and Régin, 1999] in the use of subproblems to obtain performance
improvement. Informally, ND assumes the existence of a base procedure � and a domain-specific method�

for reducing a problem instance � to a related subproblem. ND first finds the solutions of the subproblem��� ��� using � . It then directs the search for a solution of � by, using � repeatedly, attempting to extend the
solutions of

��� ��� . The interesting idea here is that the way ND affects the performance of � is based on a
real number, which indicates the percentage of solutions of

��� ��� to consider in each repetition.
Note that the decomposition method plays a role that is analogous to the domain-specific heuristic func-

tion of the �
	 search (see for example [Poole et al., 1998] for a good exposition of ��	 ). A good decompo-
sition method can yield significant performance payoff. However, as with good heuristic function, finding a
decomposition may not always be easy.

As a case-study of the effectiveness of ND, we apply ND to the domain of randomly generated prob-
lem instances of Crossword Puzzle Construction (CPC). In spite of its long history (dating back to before
1976 [Mazlack, 1976]) as a test bed for automated reasoning techniques, CPC still presents considerable
challenges to both complete and stochastic search procedures [Konolige, 1994]. We demonstrate, for two
complete search strategies implemented in SATO [Zhang, 1997, Zhang and Stickel, 2000], substantial per-
formance improvement for the computationally most difficult problem instances of CPC.

To maintain the flow of the paper, a number of the technical details and side issues have been included
in appendices. In Section 2, the meta-search procedure ND is formalised. We then discuss the result of
applying ND to the problem of Crossword Puzzle Construction in Section 3. In Section 4, the weakness of
ND and future research are discussed.

2 The Meta-Procedure ND

Given a problem instance � (represented as a set of propositional clauses) and a propositional reasoning
procedure � for determining the models of � , consider a decomposition of � into a smaller but related
subproblem � � ��� . Suppose 
�
 � � � ����� is the set of all models of � � ��� . Then, for each 
�����
�
 � � � ����� , 
��
can be used as additional constraints to prune the search for a solution to � by the procedure � . Now in
general, if � is a critically constrained instance, � � ��� will be an instance of a different problem distribution
that is not critically constrained. Therefore the time it takes to discover the models of � � ��� using � is
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considerably less than the time it takes to discover a model of � . Hence, the overall time for solving � may
potentially be improved. The idea is described more formally below in the procedure SD.

Input: a problem instance � , a propositional reasoning procedure
� , and a decomposition method �

Output: a model of � or the answer ’no’

1. Compute � � ��� .
2. Generate 
 
 � � � ����� using � .

3. while 
 
 � � � ����� is non-empty

(a) Remove a model 
 � from 
�
 � � � ����� .
(b) Let � � = ��� 
 � .
(c) If � � � � � is solvable, stop and return the solution.

4. Stop and return ’no’.

Procedure SD( � , � , � )

If the time it takes to solve a problem instance � using a procedure � is represented by the function���	��

�
, then our hope from SD is that, for a sufficiently large number of instances � over the problem domain,��������
�� ��� ���

will be smaller than
������
��

.
In the worst-case, the running time for SD is

��� � 
�
 ���! �"$#% & ���'��

�(� � � ����

)  �" � ��*
where

�
and

� 
 
 are the times required to decompose � and generate 
 
 � � � ����� , respectively.
Unfortunately, experiments suggest that, on average, the time required by SD is in fact larger than the

time needed to simply run � on the original problem instances. For the computationally hard problem in-
stances, however, the problem does not rest with Step 2 of the algorithm. Indeed, [Bessière and Régin, 1999]
show that the cost of solving subproblems can be compensated by reductions in the search space of the orig-
inal problem. Thus, the poor performance of SD lies in the large number of times Step 3 is repeated on
average, due to the size of 
 
 � � � ����� .

On the other hand, we will show that if the solution space of � � ��� is explored not one element at a
time, but a group at a time, then the average time required for finding a solution to � can be improved
dramatically, in some cases outperforming � by a large margin. The idea is described more precisely in
the procedure ND below. It is adapted from SD to allow for groups of models in 
�
 � � � ����� to be added as
constraints to � .2 To ensure correctness, additional constraints are included since models of 
 
 � � � ����� are
not pairwise consistent. The constraints, therefore, will assure that given a set of models 
 � *,+-+-+-* 
/. , one and
only one of the 
10 s can be true, 24365'387 . We denote the additional constraints by mutex( 
��%*,+-+-+-* 
/. ).

2Hence, the name SD stands for Single Decomposition, reflecting the fact that a single solution of the subproblem is used in
each iteration of Step 3. ND, on the other hand, indicates that multiple solutions are considered simultaneously.
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Input: a problem instance � , a propositional reasoning procedure
� , a decomposition method � , and a number ��� � 2 * � 2 2��

Output: a model of � or ’no’

1. Compute � � ��� .
2. Generate 
 
 � � � ����� using � . Let � denote the cardinality of 
�
 � � � ����� .
3. while 
 
 � � � ����� is non-empty

(a) Remove models 
 � *,+-+-+-* 
/. from 
�
 � � � ����� , where 7 �
� 5�� � ��� *
	��
 ��� � and ��� is the current size of 
�
 � � � ����� .

(b) Let � � = � � mutex( 
 � *,+-+-+-* 
1. ).
(c) If � � is solvable using � , then stop and return the solution.

4. Stop and return ’no’.

Procedure ND( � , � , � , � )

The parameter � controls the number of solutions of � � ��� to be added to � at Step 3(b). It is specified
as a percentage. We call � the control variable.

ND is a meta-reasoning procedure because it does not perform any inference itself, and its effectiveness
on a particular problem is intimately tied to the effectiveness of the given procedure � . Experiments suggest,
however, that for a variety of procedures, there appears to be a range of values for � for which the average
time it takes for ND( � , � , � , � ) to complete is faster than � � ��� .

3 Crossword Puzzle Construction

The problem of CPC can be stated as follows: given a finite set of words � and an ����� grid for which
some squares in the grid are shaded in while others are open for letters, can all the open squares be filled
with letters such that every horizontal and vertical maximal group of adjacent letters forms a word from � ?
In some of our experiments, we also require that no word from � can appear in the grid more than once.
This is to examine possible effects of ‘imperfect decompositions’, as will be explained later.

The general problem of CPC is complex and a complete understanding of the nature of the problem
is beyond the scope here. To make the problem instances more amenable to analysis, we considered the
modified problem of Open CPC (OCPC) — CPCs with the assumption that no square is shaded. Intuitively,
OCPC are the most difficult CPC problems to solve since every square on the grid is an intersection of two
words.

For the experiments, we fix an ����� open grid and an alphabet of size � . Strings of length � are
randomly generated from elements of the alphabet to form the set � . For a particular � , the puzzle is
encoded into a set of propositional clauses as follows.3 Each propositional variable in the clauses represents

3Instances of CPC can be encoded as propositional clauses in different ways (e.g. [Konolige, 1994, Ginsberg et al., 1990]).
The letter-based encoding that we choose does not necessarily result in the optimal computational behaviour, Appendix D shows,
however, that it is a better representation scheme than word-based encoding.
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a triple (r,c,let), which indicates that the letter let is placed in the grid position (r,c). Hence, the
total number of variables equals ��� � .

There are four types of constraints on the placements of the letters on the squares.
unique letter constraint: The requirement that no two letters can occupy the same square is indicated by
binary clauses. For example, if the alphabet contains distinct letters a and b, then for each row, column pair
(r,c), the constraint

��� ��� * � *�� �
	 ��� ��� * � *�� �
states that (r,c) cannot be simultaneously filled with a and b.
shaded square constraint: Shaded squares cannot be occupied at all. This is represented as negative
unit clauses. In the case of OCPC, such a constraint does not arise. We include it here for the sake of
completeness.
acceptable word constraint: There are clauses to constrain the placement of the letters according to the
word set. For instance, suppose that all words in the given word set begin with either the letter d or e in an
open 3x3 puzzle (e.g. dog, egg, and eat). Then, we know that

� ��
 * 
 *�� ��	 � ��
 * 
 *�� �
That is, either d or e must occupy row 1, column 1.

Next, if c(1,1,e) is true and that eat and egg are the only words beginning with the letter e, then,
either c(1,2,a) or c(1,2,g)must hold. That is,

��� ��
 * 
 *�� �
	 � ��
 *���*�� �
	 � ��
 *�� *�� � +
Finally, there will be a clause which states, given c(1,1,e) and c(1,2,a), that c(1,3,t) holds
(assuming eat is the only word in the word set which begins with ea in its first two letters). This is
captured as the clause

��� ��
 * 
 *�� ��	 ��� ��
 *���*�� ��	 � ��
 *���*�� ��+
unique word constraint: As mentioned above, in some instances we require that no word from � is used
more than once in a solution. Therefore if c(1,1,e), c(1,2,a), and c(1,3,t) hold in an open 3x3
grid, then eat cannot appear in any other row or column. So, for instance, for the second row, at least one
of c(2,1,e), c(2,2,a), or c(2,3,t)must be false. As a propositional clause, this is written

��� ��
 * 
 *�� �
	 ��� ��
 *�� *�� �
	 ��� ��
 *���*�� ��	
��� � � * 
 *�� �
	 ��� � � *���*�� �
	 ��� � ��*���*�� ��+

Four more clauses similar to this one are needed for each of the other four word slots.
Proof of the next theorem can be found in Appendix A.

Theorem. Given a CPC instance � , let � ��� � � � denote the set of clauses obtained as described, then � has a
solution iff � ��� � � � has a model.

3.1 Applying SATO to Open CPC

Experiments with randomly generated OCPC instances exhibit the phase transition phenomenon found in
other combinatorial search problems [Cheeseman et al., 1991, Mitchell et al., 1992]. For instance, phase
transitions for randomly generated open ����� puzzles, where duplicate words are disallowed, are shown
in Figure 1 for alphabet sizes ranging from 2 to 12. Various properties of the open ����� puzzles can be
investigated based on the data. As an example, for a given alphabet, the word set size needed to achieve
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Figure 1: Open � � � CPC

50% solvable instances can be modeled by the equation
� � � 
�� � 
�� � �	+�� . Projected to a 26 letter alphabet —

the size of the English Alphabet, this yields an expected word set size of 143.67.4

Consistent with other explorations into combinatorial search problems, the computationally most diffi-
cult problem instances of CPC occur during the phase transition. These problem instances are the critically
constrained ones. That is, they occur at a critical ratio of variables to clauses. Figure 2 plots the phase
transition for open 	��
	 , 12 letter alphabet puzzles where duplicate words are disallowed, along with the
average solving time (in seconds) using SATO — an efficient implementation of the Davis-Putnam model
finding procedure [Zhang and Stickel, 2000]. The data are based on over 100 trials for each word set size.
Remark. In spite of their relative small sizes, encodings for 	���	 , 12 letter alphabet puzzles produce
propositional representations of non-trivial sizes ranging from 8000 to 10000 clauses over 192 variables,
depending on the word set size. As in [Konolige, 1994], most of these instances are quite difficult for GSAT
[Selman et al., 1992]. Appendix B compares in greater detail the runtime of GSAT and SATO.

3.2 Decomposing Open CPC

A number of possibilities exist for decomposing an OCPC into related subproblems. The one we consider
can be described as follows. As before, given an Open ��� � CPC instance � , we denote by � the set of
words. Then, the decomposition is the puzzle whose grid is the upper left-hand � �
� grid of � , � � � ,
and whose word set is obtained from � by removing the last ����� letters from each word in � . We will
denote this method of decomposition for Open CPC ������� .

Given solutions 
 � *,+-+-+-* 
1. of ������� � ��� , computing mutex( 
 � *,+-+-+-* 
1. ) is relatively straightforward. The
key is to ensure, if � is the sub-collection of 
 � *,+-+-+-* 
1. that assign true to an atom � ����� � * � ��! * ! � � � (and
more generally a set of atoms), then for each pair

� 365 *#" 3$� , the only possible assignments of letters to
4This says, given an open %'&(% grid and 3-letter words formed over a 26 letter alphabet, we need roughly 144 words to have a

50% chance of constructing a puzzle. This assumes of course, that all letters in the alphabet occur with equal probability.
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Figure 2: Phase Transition

the square
� 5�*#" � are restricted to the assignments made by members of � . There are a number of ways to

encode this condition as constraints. The following example illustrates one encoding.
Suppose we have the three solutions:


 
 ��� � ��
 * 
 *�� ��* � ��
 *���*�� ��* � ��
 *���* � ��*,+-+-+��

 � ��� � ��
 * 
 *�� ��* � ��
 *���* � ��* � ��
 *���* � ��*,+-+-+��

�� ��� � ��
 * 
 *�� ��* � ��
 *���*�� ��* � ��
 *���* � ��*,+-+-+��

Either a or d, but not both, must occupy the square
� � * � � . This is captured via the two constraints:

� ��
 * 
 *�� ��	 � ��
 * 
 *�� �
��� ��
 * 
 *�� �
	 ��� ��
 * 
 *�� �

When adding these constraints to the original problem � , the second constraint is redundant as it is an
instance of the unique letter constraint.

Next, if c(1,1,a) holds, then either c(1,2,b) or c(1,2,c) will be true according to 
 
 and 
 � .
Thus, we add the constraint

��� ��
 * 
 *�� ��	 � ��
 *�� *�� ��	 � ��
 *���* � �
On the other hand, if c(1,1,d) holds, then c(1,2,e)must be true according to 
 � .

��� ��
 * 
 *�� �
	 � ��
 *���*�� �
Similar constraints are needed for each of the remaining � � ��� squares:

� � *�����*,+-+-+-* � � *�� ��* � �	* � ��* +-+-+ * � � *�� � *,+-+ +-* � � * � � *,+-+(+-* � � *�� � +
Indeed, the resulting constraints are very similar in form to the acceptable word constraints in the represen-
tation of the original puzzle.
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Figure 3: ND vs. SATO

3.3 Performance Improvement

Experiments were conducted to compare the solving times on a variety of puzzle sizes using SATO and
ND. Recall first that when ND is applied, a value for the control variable � must be specified. This value
indicates the number of subsolutions of the decomposed problem to be inserted simultaneously into the
overall problem. Different choices in the value of the control variable result in different solving time. In
most cases, however, fixing the control variable value at a small constant (e.g. 1.5) yields very good results.

The graph shown in Figure 3 compares the runtime of SATO and ND for open 	 � 	 puzzles, where
duplicate words are permitted. Words are constructed over a 26 letter alphabet and the decomposition
applied while running ND is ����� � .

Some observations about Figure 3: When problem instances can be easily determined to be unsatisfi-
able, ND achieves speed ups of over 80 percent of the time required by SATO. For the computationally
most difficult instances (word set sizes between 160 and 220), the speed up ranges between 80 to 92 per-
cent of the time required by SATO. Noteworthy also is that the increase in solving time by ND is rela-
tively stable in the word set size of the problem. While a direct application of SATO shows a dramatic
increase and variability in time requirements during the phase transition, the increase rate in ND almost
appears to be unaffected by the same threshold phenomenon that affects SATO. The unpredicatability of
complete search procedures has been recognised as a consequence of the ‘heavy-tailed cost distributions’
[Gomes et al., 2000]. In this respect, the behaviour of ND resembles the behaviours of randomised complete
algorithms [Gomes et al., 1998].

The data in Figure 3 is representative. Similar speed ups are obtained when different grid and alphabet
sizes are tried. Note that since we do not require words appearing in the solutions to be unique, correctness
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is not an issue. In other words, any solution of the original problem, if one exists, must be an extension of
a solution of the decomposed problem. In the next section, we consider the problems where correctness is
not guaranteed by adding the unique word constraint.

3.4 Unique Word Constraint Revisited

In some situation, it may be that a decomposition yields a subproblem whose solutions cannot extend to
any solution in the original problem. Depending on the accuracy of the decomposition, our case study with
OCPC shows that ND may still be quite useful.

Suppose no duplicate words are permitted in the solutions. Then two or more words of � with the
same initial � characters will map onto the same word in the decomposition through ����� � . There are
two consequences of this effect. First, ������� � ��� may have no solution even though solutions exist for � .
Second, the models of ����� � � ��� do not necessarily extend to any model of � . Appendix C illustrates two
simple examples.

In spite of the possible inconsistencies between the solution spaces of a puzzle and its decomposition,
such inconsistencies appear to occur infrequently over the space of randomly generated puzzle instances
even for small puzzles. The analysis and proof of the following theorem is given in Appendix E as Theorem
2.
Theorem. Of all solutions of the � � � Open CPC problem, the expected fraction which are extensions of
solutions of the � � � upper-left-hand-corner problem is at least

� �
�
� �
��� ��� � � � � � ���� �

�
� �
���	� �
��� +

(This bound does not depend on the value of � , though of course we need � 
�� � for the statement to
make sense).

For example, if there are � � � � letters in the alphabet, and � � 	 is the size of the grid, and � � �
is the size of the sub-grid, then the fraction described in the theorem is at least 0.997304. Even if � ���
(keeping � � 	 and � � � ), the fraction is at least 0.967529. On the other hand, if � � 	 then the bound
of Theorem 2 is only 0.714844, and for � � � is it just 0.283951. (By comparison, if � � � and � ���
with � � � , then the fraction is 0.95397.)

Clearly, as either ����� with � *�� fixed, or as � *�� ��� with � fixed, the fraction of Theorem 2
converges to 1. Figure 4 shows experimental results confirming the relative small loss in correctness when
using ����� . The data are based on an open 	 � 	 grid, 12 letter alphabet puzzles when decomposition is to
its upper left-hand � � � corner. In the figure, the � symbols denote the percentage of solvable instances,
computed by SATO, for each word set size between 100 and 220 (as shown previously in Figure 2), while
the x symbols represent the percentage of solvable instances over the same puzzles, computed by ND, by
first solving the upper left-hand � � � subproblems. As can be seen from the figure, for each word set size,
the ratio of the x value to the � value adheres closely to the value that is bounded by the Theorem which,
for the given parameters, is at least 0.9573.

For the 	 � 	 grid, 12 letter alphabet puzzle, we chose to decompose each problem instance with ����� �
as well as ����� � . From Figure 4, we know that satisfiability is preserved to a large extent even in the case
of the � � � decomposition, and the less than 5 percent loss in accuracy is easily justified by the speed ups
shown in Figure 5.A. Figure 5.B demonstrate the speed up for ����� � .

The same ‘flattening out’ of the computation time as in Figure 3 can be seen in both graphs. A more
detailed look at the improvement (for Figure 5) is to examine the speed up with respect to both the satisfiable
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Figure 4: Satisfiability Comparison
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Figure 6: Solving time breakdown for SATO

and unsatisfiable problem instances. Figure 6 shows the break down in solving time using SATO for the
satisfiable and unsatisfiable instances. Not surprisingly, the time requirements for the unsatisfiable instances
over the same problem space are considerably larger than for the satisfiable instances. Using ND, solving
times for both satisfiable and unsatisfiable instances are decreased. Figure 7 shows that the speed ups
obtained for the satisfiable instances are less noticeable and they occur only during the phase transition.
Even so, the data is revealing as it shows that the increase in runtime for ND is quite stable, compared to
the runtime for SATO. On the other hand, Figure 8 shows that for the unsatisfiable instances, the speed ups
obtained are substantial and they occur across a wide range of word sets. Indeed, the ability to recognise
unsatisfiability quickly appears to be a major strength of ND.

3.5 Other OCPC Experiments

Highlights of other experiments with OCPCs are summarised here.
Puzzle Independence. Experiments were conducted for OCPCs of varying sizes and speed ups similar to
the ones discussed so far were obtained. Figure 9 illustrates speed ups between 40 to 80 percent when ND is
applied to open � ��� , 6 letter alphabet puzzles where duplicate words are disallowed. The experiment uses
����� � for decomposition. The value of 1.5 is fixed for the control variable. For these parameters, Theorem
2 tells us that at least 92.67 percent of all solutions to the � ��� grid are extensions of solutions of the � � �
upper-left-hand grid.
Control Variable Variance. As mentioned, varying the value of the control variable can affect the amount
of speed up. In fact, data shown in Figure 5.B were obtained with a control-variable value that varies as a
function of the size of the word set. However in most instances, fixing the control value to a small constant
(around 1.5) gives nearly optimal performance. Clearly, the determination of an optimal control value is an
important research topic for gaining further insights into the behaviour of ND.
Base Procedure Independence. SATO has several different search strategies built in, including a form
of intelligent backjumping (IB). A number of experiments were conducted using both the default search
strategy of SATO as well as IB, and in each case, solving time was improved. This provides evidence that
the effectiveness of ND is independent of the techniques employed in the base search procedure.
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Figure 9: Open � � � Puzzles

Note that it is not the case IB should automatically be used. Typically, IB leads to shorter proofs but
there is no guarantee that the time required will be less.

4 Weakness of ND: Beyond Crosswords

While the data for CPC provide evidence for ND as a promising meta-reasoning technique, experimentation
with other problem domains will certainly be necessary for validation. First, we discuss an important issue
with using ND.

Even though ND itself does not contain any knowledge of the underlying problem, its effectiveness
relies heavily on a good user-supplied decomposition method, the discovery of which requires non-trivial
insights. Certainly it is not the case that any decomposition will yield a speed up. For instance, preliminary
experiments with graph colouring shows that randomly removing nodes from the original graph does not
give good performance since the decomposed graph is likely to have disjoint components, and attempts to
match the solutions to these components consume any savings that might have resulted from computing
solutions to the decomposed graph in the first place.

Of course, the reliance on a good domain-specific decomposition
�

should not be construed as a weak-
ness of ND. As mentioned in the introduction, other well known AI techniques, for example the � 	 search
algorithm, also depend on procedures that contain domain-specific knowledge. In the case of � 	 , having
an admissible heuristic function that does not grossly underestimate the true cost of moves is the key to
success. What is currently missing with ND, however, is any understanding of general characteristics that
might be required of the decomposition if speed up of ND over the base procedure is to be guaranteed. In
other words, some notion (or notions) for decomposition that is analogous to the notion of admissibility of
heuristic functions in � 	 would help to guide the development of decomposition. Critical to this analysis
appears to be being able to estimate the ratio of 
 
 � � � ����� to 
�
 � ��� . The larger the ratio, the more time it
will take ND to complete.

As for experiments beyond crossword puzzles, preliminary experiments have also been conducted for
graph colouring as well as random 3SAT. For graph colouring, the development of an ‘admissible’ decom-
position has been the primary obstacle. In the case of random 3SAT, a more basic issue exists. Instances
of OCPCs and the graph colouring problem possess structures that make it easy to construct, given solu-
tions 
 � *,+-+-+-* 
/. to a subproblem, clauses which correspond to mutex( 
 � *,+-+-+-* 
/. ). Such is not the case for
randomly generated 3SAT, however. The general problem of generating a set of clauses that correspond
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to mutex( 
��%*,+-+-+-* 
1. ) from 
�� *,+-+-+-* 
/. is similar to transforming a formula in DNF to an equivalent CNF, with
some additional constraints. On the other hand, below we discuss some promising preliminary experimental
results based on SD.

The first decision that needs to be made is how an instance of 3SAT can be decomposed. Since the
complexity of 3SAT is a function of the number of variables in the input problem, a natural choice for
decomposition is to reduce this number. In the experiments, 30 percentage of the variables are randomly
selected from the given problem � . Then,

� � ��� is defined to be those clauses in � that contain only those
variables in the selected variables.

Experiments with clause sets defined over 200 variables are attempted with clause sizes in the critically
constrained region — between 840 and 870. As explained in Section 2, however, the direct application of
SD is prohibitively expensive on reasonable sized problems due to the size of 
 
 � � � ����� . In order to keep the
number of subsolutions to a relatively small number, only 10 clauses are chosen from

� � ��� . Experimentally
this generates close to 400 solutions on average. On the other hand, it is important to note that it is not the
case that the smaller the solution set of

��� ��� , the better. It is a delicate balance between having not too many
solutions, and having solutions that will direct the search for a solution of � in a purposeful way. When the
solution set of

� � ��� becomes too small, usually each solution assigns a value only to a few variables which
does not help much to guide the search for a solution of � . The data in the next table shows encouraging
results for some of the computationally most difficult instances.

clause set size satisfiable SATO SD

840 yes 214.12 1.32
845 yes 1548.07 487.56
845 yes 728.96 10.44
850 yes 360.69 92.4
855 yes 591.88 72.7
855 no 293.54 149.73
860 yes 151.9 13.39
870 yes 768.72 125.77

Perhaps not so surprising is that seldom does SD outperform SATO on unsatisfiable instances. As previously
mentioned, the strength of ND comes in large part from its ability to determine unsatisfiability quickly (see
for example Figure 8). The next table shows some of the more dramatic failures of SD.

clause set size satisfiable SATO SD

845 no 422.86 1203.36
850 yes 0.25 117.46
855 no 781.18 1157.64
860 yes 66.41 380.88
865 yes 190.64 529.56
870 no 471.97 1179.67
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APPENDIX A.

The correctness of the encoding is proved in the next theorem for the more restrictive case where duplicate
words are disallowed. When duplicate words are permitted, a simpler proof can be adapted easily. The
formal statement of the CPC problem is adapted from [Papadimitriou, 1994].
Definition. A CPC is a triple

� � * � * � � where � � � 	 and � an � x � matrix of 1s and 0s. Let � denote
the set of pairs

� 5�*#" � such that � 0�� � � . A sequence 
 of pairs from � is a subword slot if


 ��� � 5 *$7 ��* � 5 *$7 � � ��*,+-+-+-* � 5 *$7 � � ���
where

� 3�5�*$7 3 � *�243 � *$7 � ��3 � and � 0�� � � for 7 3 " 387 � � , or


 ��� � 7
*#" ��* � 7 � � *#" ��*,+-+-+-* � 7 � � *#" ���
where

� 3�" *$7 3 � *�2 3 � *$7 � � 3 � and � 0�� � � for 7 3 5 3 7 � � . A subword slot 
 is called word
slot if one of the following holds.

1. If 
 is a subword slot � � 5�*$7 ��* � 5 *$7 � � ��*,+-+-+-* � 5�*$7 � � ��� , then either 7�� � or � 0 � . � 
 � � 2 , and either
7 � � � � or � 0 � . � 	 � 


� � 2 .

2. If 
 is a subword slot � � 7
*#" ��* � 7 � � *#" ��*,+-+-+-* � 7 � � *#" ��� , then either 7 � � or � � . � 
 � � � 2 , and either
7 � � � � or � � . � 	 � 


� � � 2 .

A function 	�
�� � �
is a solution of the CPC if both of the following conditions hold.

1. For each word slot 
 ��� 
 
 *,+-+-+-* 
�
�� , the string

	 � 
 
 ��	 � 
 � ��+-+-+�	
� 
 
 �

is a member of � .

2. If 
 ��� 
 
 *,+-+-+-* 
 
 � and
� ��� � 
 *,+-+-+-* � 
 � are two word slots such that

	 � 
 
 ��	 � 
 � ��+-+-+�	
� 
�
 � ��	 � � 
 ��	 � � � ��+-+-+�	

� � 
 ��*
then 
 � �

.

Theorem. Given a CPC instance � , let � ��� � � � denote the set of clauses obtained as described, then � has a
solution iff � ��� � � � has a model.
Proof. Suppose 	 is a solution of � . It suffices to show that there is a model � for each of the four types of
constraints produced under � ��� � � � .
Construct � as follows, if 	 � 5 *#" � ��� , then put � � 5 *#" *�� � in � . Recall that � � 5 *#" *�� � represents the
propositional variable associated with row 5 , column " , and letter � in the encoding.
unique letter constraint: Since 	 associates at most one element of

�
with each

� 5�*#" � , � cannot contain
two propositions, say � � 5 *#" *�� � and � � 5 *#" *�� � , where ������ . It follows that each clause belonging to the
unique letter constraint is satisfied by � .
shaded square constraint: As 	 is defined only for those pairs

� 5 *#" � where � 0�� � � , � does not contain
any proposition related to shaded squares. Thus, each of the negative unit belonging to the shaded square
constraint is satisfied by � .
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acceptable word constraint: We introduce a few simplifying notations. Given
� 3�5 ,

len
� � *�5 � ����� � � � � � � � 5 � +

Given a string � ,
suf
� � *��
� ����� � � *�� � � 	 *���� � � � +

Finally,
pre
� � � ����� � � � � *���� � � for some � � � 	 � +

Now consider a particular word slot 
 � � 
 
 *,+-+-+-* 
 	 � . Suppose

pre
�
len
� � * � ��� ��� � 
 *,+-+-+-*���� � *

then according to the encoding, there is a clause associated with 
 of the form

� � 
 
 *�� 
 �
	 +-+-+ 	 � � 
 
 *���� �
Since 	 � 
 
 ��	 � 
 � ��+-+-+�	

� 
 	 � , by definition, is an element of � , it must be the case that for some
� 3 5 3
	 ,

	 � 
 
 � ��� 0 . It follows that � contains � � 
 
 *�� 0 � and the above clause is satisfied.
There is also a set of conditional clauses of the forms� � � 
 
 *�� 
 �
	 +-+-+

+-+-+
� � � 
 
 *�� 0 ��	 � � 
 � *�� 
 �
	 +-+-+ 	 � � 
 � *���� �+-+-+
� � � 
 
 *�� � ��	 +-+-+

where the set � � 
 *,+-+-+-*�� � � is pre
�
suf
�
len
� � * � ��*�	 � 
 
 ����� . Each literal � � � 
 .�*�� . ��*$7 � � � *,+-+-+-*�5 � � *�5 �� *,+-+-+-*�	 � is satisfied and therefore the corresponding clause from above is also satisfied under � . For 5 ,

	 � 
 
 ��	 � 
 � ��+-+-+�	
� 
 	 � is an element of � as before, and 	 � 
 
 � ��� 0 from the assumption above. It follows that

	 � 
 � � must belong to an element of pre
�
suf
�
len
� � * � ��*�	 � 
 
 ����� . Thus, the clause beginning with � � � � 
 *�� 0 �

is satisfied in � .
Next, for prefixes of length 2 in the set len

� � * � � , there will be clauses constraining the possible charac-
ters for position 
 � based on pre

�
suf
�
len
� � * � ��*�	 � 
 
 ��	 � 
 � ����� . The argument for their satisfiability follows

similarly.
unique word constraint: The satisfiability of the clauses under unique word constraint follows immediately
from the existence of 	 , since 	 is a function.

Conversely, suppose � is a model of � ��� � � � . We construct a solution of � as follows. Define 	 to be
the function

	 � 5 *#" � ��� if � � 5 *#" *�� � � �
��
 otherwise

The fact that 	 is a function is guaranteed by the unique letter constraints. The construction in the
acceptable word constraints ensures that 	 satisfies the first condition required for 	 to be a solution of � :

Consider a word slot 
 ��� 
 
 *,+-+-+-* 
�
�� , and suppose each 
 	 *
� 3 � 3 � is of the form

� 5 	 *#" 	 � . By the
construction of acceptable word constraints, there is a clause

� � 5 
 *#" 
 *�� 

 ��	 � � 5 
 *#" 
 *�� 
� �
	 +-+-+ 	 � � 5 
 *#" 
 *�� 
��� �
where � 
 *,+-+-+-*�� � correspond to the first letters of all the � -letter words in � . Suppose � assigns true to
� � 5 
 *#" 
 *�� 
 � . Then for each constraint of the form:

� � � 5 
 *#" 
 *�� 

 ��	 � � 5 � *#" � *�� � 
 �
	 +-+-+ 	 � � 5 � *#" � *�� ���� ��*
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� must assign true to one of the positive literals as it is a model of � ��� � � � . Without loss of generality,
assume it is � � 5 � *#" � *�� � 
 � . By similar argument, there is a constraint of the form

� � � 5 
 *#" 
 *�� 

 �
	 � � � 5 � *#" � *�� � 
 �
	 � � 5 � *#"��%*�� � 
 ��	 +-+-+ 	 � � 5 � *#" � *�� ���� �
for which � satisfies one of the positive literals. Continuing the argument to � , there is a constraint of the
form

� � � 5 
 *#" 
 *�� 

 ��	 � � � 5 � *#" � *�� � 
 ��	 � � � 5 �%*#"��%*�� � 
 ��	 +-+-+ 	 � � � 5 
 � 
 *#" 
 � 
 *�� 
 � 

 ��	 � � 5 
 *#" 
 *�� 
 
 �
where � assigns each of the atoms in the constraint true. In other words, 	 � 5 	 *#" 	 � ��� 	 
 , for

� 3 ��3 � .
As � 

 � � 
 +-+-+�� 
 
 is a word in the given word set, the first condition required for 	 to be a solution of � is holds.

The second condition required for 	 to be a solution � is guaranteed by the unique word constraints:
Suppose 
 ��� 
 
 *,+-+-+-* 
 
 � and

� � � � 
 *,+-+-+-* � 
 � are two word slots such that

	 � 
 
 ��	 � 
 � ��+-+-+�	
� 
 
 � ��	 � � 
 ��	 � � � ��+-+-+�	

� � 
 �
and 
 �� �

. We denote each 
 	
� 5
 
	 *#"

 
	 � and each

�
	
� 5 �	 *#"

�

	 � . By similar arguments as the first condition,
there are constraints of the form:

� � � 5
 

 *#"

 

 *�� 
 �
	 � � � 5

 
� *#"

 
� *�� � �
	 +-+-+ 	 � � � 5

 

 � 
 *#"  
 � 
 *�� 
 � 
 ��	 � � 5

 

 *#"

 

 *�� 
 �

and
� � � 5 � 
 *#" �
 *�� 
 �
	 � � � 5 � � *#"

�

� *�� � ��	 +-+-+ 	 � � � 5 �
 � 
 *#" �
 � 
 *�� 
 � 
 ��	 � � 5 �
 *#" �
 *�� 
 �
where � satisfies each of the atoms in both constraints. As we assume 
 �� �

, there is a unique word
constraint

� � � 5
 

 *#"

 

 *�� 
 ��	 � � � 5

 
� *#"

 
� *�� � �
	 +-+-+ 	 � � � 5

 

 � 
 *#"  
 � 
 *�� 
 � 
 ��	 � � � 5

 

 *#"

 

 *�� 
 ��	

� � � 5 � 
 *#" �
 *�� 
 ��	 � � � 5 � � *#"
�

� *�� � ��	 +-+-+ 	 � � � 5 �
 � 
 *#" �
 � 
 *�� 
 � 
 �
	 � � � 5 �
 *#" �
 *�� 
 �
which is falsified, contradicting the fact that � is a model of � ��� � � � .
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APPENDIX B.

GSAT implements a stochastic algorithm for propositional model finding [Selman et al., 1992]. It has been
applied successfully to solve large scale search problems. Here, we give a few illustrations of the difficulties
GSAT has in computing OCPC. For the open 4x4 grid, 12-letter puzzles, Figures 5.A and B show that in the
worst case (between 160 and 165 words), the average runtime of SATO is between 70 to 80 CPU seconds.
On the same machine (SUN Ultra 10) as the one used for the data gathered for Figure 5.B, the table below
shows the average GSAT runtime out of 10 trials for various word set sizes. Also shown are the number
of satisfiable instances for each word set size, and the number of satisfiable instances solved by GSAT. The
parameters for GSAT were set at the suggested values.

word set size average CPU seconds # trials # satisfiable # solved

150 138.74 10 4 0
160 150.12 10 6 0
170 169.14 10 6 0
180 191.07 10 8 0
190 214.00 10 10 0
200 235.48 10 10 0
210 261.58 10 10 0
220 262.49 10 10 1

Not only are the average GSAT runtimes higher than SATO, but also that the number of times that GSAT
correctly solves a problem (1 out of 64) is unacceptably low. Much more extensive analysis of GSAT has
been carried out by other authors. See for example [Gent and Walsh, 1993] and [East and Truszczynski, 1999].
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APPENDIX C.

Consider the problem instance, � 
 , consisting of an open 4x4 grid and the word set

� aaaa abcd abce abcf abcg bbbb cccc defg �
There exists exactly one solution of � 
 , modulo transpose, in which all four words beginning with abc
occur in the horizontal word positions, and the remaining four words fill in the vertical word positions. This
is shown below.

gcba

fcba

ecba

dcba

The decomposed problem, ����� � � 
 � , consists of an open 3x3 grid and the following word set.

� aaa abc bbb ccc def �
The four words which begin with abc in the original word set are mapped into a single word in the decom-
position. No solution exists for the decomposition since there are only five words when six word slots are to
be filled with distinct words in the open 3x3 grid.

On the other hand, consider the puzzle � � consisting of an open 4x4 grid and the word set

� aaaa abcd abce abcf abcg bbbb cccc defg adax beax cfax �
� 
 and � � have the same solutions. The additional three words for � � : adax, beax, and cfax, do not
add solutions to the puzzle. The decomposition, ����� � � � � has the following word set

� aaa abc ada bbb bea ccc cfa def �
and it possesses exactly one solution, as shown below.

aaa

fed

cba

It is easy to see, however, that the solution cannot be extended to the solution for � � .
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APPENDIX D.

Choosing an appropriate knowledge representation is the key to success in many search problems. While the
purpose of our research in this article is not in trying to find the optimal propositional encoding of crossword
puzzles for SATO, a comparison — even if limited — to a second encoding choice would be useful in setting
the results in a broader context.

For Open CPC problems, the letter-based encoding, as presented in Section 3, appears to yield a slightly
better performance using SATO than a word-based encoding. The next graph illustrates this point for the
open 4x4, 12-letter alphabet puzzles, where duplicate words not disallowed.
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In the word-based encoding, each propositional variable represents a pair (ws,w) where ws is a word slot
in the grid (i.e. a maximal contiguous sequence of open squares), and w is a word from the word set.
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APPENDIX E.

Mathematical bounds for Open CPC disallowing duplicate words

Fix an � ��� open square grid, an alphabet size � 
 � , and a number � of distinct words (to be chosen
uniformly at random from the � � possible words). The expected (i.e. average) number of solutions, � ,
satisfies the following.
Theorem 1. The quantity � satisfies

� � ����� �
where

�
satisfies � � ��� � ��� � ��
	 � ���
� 3 � 3 � � � * where

� � �
��� � � �� � � � 	 * and where � � �
���� 	 +
Here � � . 	 � ���. � � � � . � � is the usual binomial coefficient.
Proof. Clearly � can be computed as

� ��� � ��+
Here � is the total number of ways of choosing the � distinct words. Also � is the total number of ways
of filling up the grid and choosing the � distinct words, in such a way that the grid is indeed filled with
proper words.

Now, clearly

� �
�
� �
� � +

That is, of the � � possible different length- � words, we get to choose any distinct W of them any way we
want.

As for Q, we can write � � ��� +
Here

�
is the number of different ways of filling up the ��� � grid with letters, so that no two ‘across’ or

‘down’ readings have exactly the same word. Also
�

is the total number of ways, once the grid has been
so filled, of choosing the � words in such a way that they include the � � words required for the grid to
contain only correct words (plus � ��� � additional words chosen arbitrarily).

Now,
�

is easy to compute: � � of the words are already specified, and we only get to choose the
remaining � ��� � words, from the � � ��� � words not yet taken, in any way that we want. Thus,

� �
�
� � ��� �
� ��� � �

As for
�

: The total number of ways of filling the grid with letters, without regard to whether the same
word is chosen twice, is of course � � � . It follows that

�
must be less than � � � . But for each way of filling

the grid, there are � � �� 	 different pairs of words that we want to be different, and each one will in fact be
identical a fraction � ��� of the time. Thus, the total fraction of grid fillings that will have at least one pair
identical is less than �

� �
� � � ���

so that the value of
�

is at least

� � � � � � � � �� � � ��� � +
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This completes the proof.
Remark. This theorem provides bounds on the ‘slugging percentage’ or ‘expected value’, � , as a function
of � , � , and � . The bounds are not 100% sharp because of the uncertainty in the range of

�
. However

they get more and more sharp, on a relative scale, as either the grid size � or the alphabet size � increases.
Even for moderate values of � and � they provide fairly useful bounds.

Consider a numerical example. If the grid size is � � � , and the alphabet size is � � ��� , and if
the number of words is � � � 	 	 (to give, as shown previously, approximately a probability of 2 + � of
having at least one solution), then this Theorem says that the expected number of solutions, � , satisfies� + 	 � � � � 3 � 3 � + 	 ����� � +

We thus see that the theorem gives very tight bounds on � . Furthermore the resulting values are rea-
sonable; they indicate when there is a probability of about 0.5 of having at least one solution, the average
number of multiple solutions is about � .

Extensions of Sub-solutions

The primary question we are interested in answering is, suppose we fix � and � , and let � � � be two
positive integers. Then, of all possible solutions of Open CPC on the � � � grid, what expected fraction of
them are extensions of solutions on the � � � grid formed by considering just the upper-left-hand corner
of the � � � grid? (The point is that, to be extensions of � � � solutions, they must have their upper-left
� � words be distinct somewhere in the first � letters.)

We have the following result.
Theorem 2. Of all solutions of the � ��� Open CPC problem (disallowing duplicate words), the expected
fraction which are extensions of solutions of the � � � upper-left-hand-corner problem is at least

� �
�
� �
� � � � � � � � � �� � �

�
� �
� �	� � ��� +

Proof. Call this expected fraction � . Then we can write

� � � ��� +
Here

�
is the total number of ways of filling the ��� � grid such that each of the � � different ‘down’ and

‘across’ words in the full � � � grid is distinct. Also � is the total number of ways of filling the � ���
grid such that each of the � � different ‘down’ and ‘across’ words in the full � ��� grid is distinct, and
also each of the first � � upper-left ‘down’ and ‘across’ words is distinct somewhere in the first � letters.

Now, from the proof of Theorem 1, we see that

� � � � � � � � �� � � ��� � 3 � 3 � � � +
Using similar reasoning, we conclude that� � ���
	��
����� ��� ����� ������������ ������� � �"! �#� � �%$'&)(

(Indeed, of the � � �� 	 pairs of length- � words which must be distinct, � � � � 	 of the pairs are required to be
distinct in one of the first � letters, which happens a fraction � � � of the time; the other � � �� 	 � � � � � 	 pairs
can be distinct in any of the full � letters, which happens a fraction � ��� of the time.)
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Putting these two bounds together, we conclude that

� � � 
 � �
�
� �
� � � � � � � � � �� � �

�
� �
� �	� � ��� *

which completes the proof.
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