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This paper considers how to obtain MCMC quantitative convergence
bounds which can be translated into tight complexity bounds in high-
dimensional settings. We propose a modified drift-and-minorization approach,
which establishes generalized drift conditions defined in subsets of the state
space. The subsets are called the “large sets”, and are chosen to rule out some
“bad” states which have poor drift property when the dimension of the state
space gets large. Using the “large sets” together with a “fitted family of drift
functions”, a quantitative bound can be obtained which can be translated into
a tight complexity bound. As a demonstration, we analyze several Gibbs sam-
plers and obtain complexity upper bounds for the mixing time. In particular,
for one example of Gibbs sampler which is related to the James–Stein esti-
mator, we show that the number of iterations required for the Gibbs sampler
to converge is constant under certain conditions on the observed data and the
initial state. It is our hope that this modified drift-and-minorization approach
can be employed in many other specific examples to obtain complexity bounds
for high-dimensional Markov chains.

1. Introduction. Markov chain Monte Carlo (MCMC) algorithms are extremely widely
used and studied in statistics, e.g. [5, 19], and their running times are an extremely important
practical issue. They have been studied from a variety of perspectives, including convergence
“diagnostics” via the Markov chain output (e.g. [18]), proving weak convergence limits of
speed-up versions of the algorithms to diffusion limits [39, 40], and directly bounding the
convergence in total variation distance [34, 44, 46, 42, 24, 47, 16, 3, 25]. Furthermore, there
is a recent trend focusing on quantitative mixing time bounds in terms of either total variation
distance or Wasserstein distance for certain types of MCMC methods (such as Langevin
Monte Carlo) and targets (such as strongly log-concave targets), see e.g. [9, 11]. Among the
work of directly bounding the total variation distance, most of the quantitative convergence
bounds proceed by establishing a drift condition and an associated minorization condition for
the Markov chain in question (see e.g. [35]). One approach for finding quantitative bounds
has been the drift and minorization method set forth by [44].

Computer scientists take a slightly different perspective, in terms of running time complexity
order as the “size” of the problem goes to infinity. Complexity results in computer science
go back at least to [7], and took on greater focus with the pioneering NP-complete work of
[8]. In the Markov chain context, computer scientists have been bounding convergence times
of Markov chain algorithms since at least [52], focusing largely on spectral gap bounds for
Markov chains on finite state spaces. More recently, attention has turned to bounding spectral
gaps of modern Markov chain algorithms on general state spaces, again primarily via spectral
gaps, such as [29, 53, 30, 54, 55] and the references therein. These bounds often focus on the
order of the convergence time in terms of some particular parameter, such as the dimension
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of the corresponding state space. In recent years, there is much interest in the “large p, large
n” or “large p, small n” high-dimensional settings, where p is the number of parameters and
n is the sample size. [38] use the term convergence complexity to denote the ability of a
high-dimensional MCMC scheme to draw samples from the posterior, and how the ability to
do so changes as the dimension of the parameter set grows.

Direct total variation bounds for MCMC are sometimes presented in terms of the conver-
gence order, for example, the work by [45] for a Gibbs sampler for a variance components
model. However, current methods for obtaining total variation bounds of such MCMCs typ-
ically proceed as if the dimension of the parameter, p, and sample size, n, are fixed. It is
thus important to bridge the gap between statistics-style convergence bounds, and computer-
science-style complexity results.

In one direction, [41] connect known results about diffusion limits of MCMC to the
computer science notion of algorithm complexity. They show that any weak limit of a Markov
process implies a corresponding complexity bound in an appropriate metric. For example,
under appropriate assumptions, in p dimensions, the Random-Walk Metropolis algorithm
takes O(p) iterations (see also [56]) and the Metropolis-adjusted Langevin algorithm (MALA)
takes O(p1/3) iterations to converge to stationarity.

This paper considers how to obtain MCMC quantitative convergence bounds that can
be translated into tight complexity bounds in high-dimensional settings. At the first glance,
it may seem that an approach to answering the question of convergence complexity may
be provided by the drift-and-minorization method of [44]. However, [38] demonstrate that,
somewhat problematically, a few specific upper bounds in the literature obtained by the
drift-and-minorization method tend to 1 as n or p tends to infinity. For example, by directly
translating the existing work by [6, 26], which are both based on the general approach of [44],
[38] show that the “small set” gets large fast as the dimension p increases. And this seems to
happen generally when the drift-and-minorization approach is applied to statistical problems.
[38] also discuss special cases when the method of [44] can still be used to obtain tight bounds
on the convergence rate. However, the conditions proposed in [38] are very restrictive. First, it
requires the MCMC algorithm to be analyzed is a Gibbs sampler. Second, the Gibbs sampler
must have only one high-dimensional parameter which must be drawn in the last step of the
Gibbs sampling cycle. Unfortunately, other than some tailored examples [38], most realistic
MCMC algorithms do not satisfy these conditions. It is unclear whether some particular drift
functions lead to bad complexity bounds or the drift-and-minorization approach itself has
some limitations. It is therefore the hope by [38] that proposals and developments of new ideas
analogous to those of [44], which are suitable for high-dimensional settings, can be motivated.

In this paper, we attempt to address concerns about obtaining quantitative bounds that can
be translated into tight complexity bounds. We note that although [38] provide evidence for the
claim that many published bounds have poor dependence on n and p, the statistics literature
has not focused on controlling the complexity order on n and p. We give some intuition why
most directly translated complexity bounds are quite loose and provide advice on how to obtain
tight complexity bounds for high-dimensional Markov chains. The key ideas are (1) the drift
function should be small near the region of concentration of the posterior in high dimensions;
(2) “bad” states which have poor drift property when n and/or p gets large should be ruled
out when establishing the drift condition. In order to get tight complexity bounds, we propose
a modified drift-and-minorization approach by establishing generalized drift conditions in
subsets of the state space, which are called the “large sets”, instead of the whole state space;
see Section 2. The “large sets” are chosen to rule out some “bad” states which have poor drift
property when the dimension of the state space gets large. By establishing the generalized drift
condition, a new quantitative bound is obtained, which is composed of two parts. The first
part is an upper bound on the probability the Markov chain will visit the states outside of the
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“large set”; the second part is an upper bound on the total variation distance of a constructed
restricted Markov chain defined only on the “large set”. In order to obtain good complexity
bounds for high-dimensional settings, as the dimension increases, the family of drift functions
should be chosen such that the function values are small near the region of concentration of
the posterior, which we will define formally as a “fitted family of drift functions”, and the
“large sets” should be adjusted depending on n and p to balance the complexity order of the
two parts.

As a demonstration, we prove three Gibbs samplers to get complexity bounds. In the first
two examples, we demonstrate how to choose the “fitted family of drift functions”. In the
third example, we demonstrate the use of “fitted family of drift functions” together with
“large sets”. More specifically, we show in Section 3.3 that a certain realistic Gibbs sampler
related to the James–Stein estimator converges in O(1) iterations; see Theorem 3.7. As far as
we know, this is the first successful example for analyzing the convergence complexity of a
non-trivial realistic MCMC algorithm using the (modified) drift-and-minorization approach.
Several months after we uploaded this manuscript to arXiv, [37] successfully analyzed another
realistic MCMC algorithm using the drift-and-minorization approach. Although the analysis
by [37] does not make use of the “large set” technique proposed in this paper, they do make use
of a “fitted family of drift functions”, which they use an informal concept called “a centered
drift function”. We explain in this paper that when there exists some “bad” states, using a
“fitted family of drift functions” might not be enough to establish a tight complexity bound.
For example, for the Gibbs sampler we successfully analyze in Section 3.3, it is unknown
how to obtain tight complexity bound by the traditional drift-and-minorization approach or
other approaches. This is confirmed in a later study by [10]. To the best of our knowledge, our
approach using the “large set” is the only successful approach so far to get the tight complexity
bound of this example. For another successful example using the “large set”, we refer to
recent work in [57] for high-dimensional Bayesian variable selection. An important message
from the successful analysis of several MCMC examples using the “large set” together with a
“fitted family of drift functions” is that complexity bounds can be obtained even without any
particular form of non-deteriorating convergence bounds. Previous attempts in the literature on
studying how the geometric convergence rate behaves as a function of p and n are incomplete.
It is our hope that our approach can be employed to many other specific examples for obtaining
quantitative bounds that can be translated to complexity bounds in high-dimensional settings.

Notation: We use d−→ for weak convergence and π(·) to denote the stationary distribution of
the Markov chain. The total variation distance is denoted by ‖ · ‖var and the law of a random
variable X denoted by L(X). We adopt the Big-O, Little-O, Theta, and Omega notations.
Formally, T (n) = O(f(n)) if and only if for some constants c and n0, T (n) ≤ cf(n) for
all n≥ n0; T (n) = Ω(f(n)) if and only if for some constants c and n0, T (n)≥ cf(n) for
all n ≥ n0; T (n) is Θ(f(n)) if and only if both T (n) = O(f(n)) and T (n) = Ω(f(n));
T (n) = o(f(n)) if and only if T (n) =O(f(n)) and T (n) 6= Ω(f(n)).

2. Generalized Geometric Drift Conditions and Large Sets. Scaling classical MCMCs
to very high dimensions can be problematic. Even if a chain is geometrically ergodic for fixed
n and p, the convergence of Markov chains may still be quite slow as p→∞ and n→∞.
Throughout the paper, we assume the Markov chain is positive Harris recurrent, aperiodic,
and π-irreducible, where π denotes the unique stationary distribution. For a Markov chain
{X(i), i= 0,1, . . .} on a state space (X ,B) with transition kernel P (x, ·), defined by

P (x,B) = P(X(i+1) ∈B |X(i) = x), ∀x ∈ X ,B ∈ B(1)

the general method of [44] proceeds by establishing a drift condition

E(f(X(1)) |X(0) = x)≤ λf(x) + b, ∀x ∈ X ,(2)
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where f : X → R+ is the “drift function”, some 0 < λ < 1 and b <∞; and an associated
minorization condition

P (x, ·)≥ εQ(·), ∀x ∈R,(3)

where R := {x ∈ X : f(x)≤ d} is called the “small set”, and d > 2b/(1− λ), for some ε > 0
and some probability measure Q(·) on X . Then [44, Theorem 12] states that under both drift
and minorization conditions, if the Markov chain starts from an initial distribution ν, then for
any 0< r < 1, we have

‖L(X(k))− π‖var ≤ (1− ε)rk + α−k(αΛ)rk
[
1 +Eν(f(x)) +

b

1− λ

]
,(4)

where α−1 = 1+2b+λd
1+d , Λ = 1 + 2(λd+ b) and Eν [f(x)] denotes the expectation of f(x) over

x∼ ν(·). However, it is observed, for example, in [38, 37], that for many specific bounds
obtained by the drift-and-minorization method, when the dimension gets larger, the typical
scenario for the drift condition of Eq. (2) seems to be λ going to one, and/or b getting much
larger. This makes the “size” of the small set R grow too fast, which leads to the minorization
volume ε go to 0 exponentially fast. In the following, we give an intuitive explanation of what
makes a “good” drift condition in high-dimensional settings.

2.1. Intuition. It is useful to think of the drift function f(x) as an energy function [24].
Then the drift condition in Eq. (2) implies the chain tends to “drift” toward states which have
“lower energy” in expectation. It is well-known that a “good” drift condition is established
when both λ and b are small. Intuitively, λ being small implies that when the chain is in a
“high-energy” state, then it tends to “drift” back to “low-energy” states fast; and b being small
implies that when the chain is in a “low-energy” state, then it tends to remain in a “low-energy”
state in the next iteration too. In a high-dimensional setting as the dimension grows to infinity,
for a collection of drift conditions to be “good”, we would like it to satisfy the following two
properties:

P1. λ is small, in the sense that it converges to 1 slowly or is bounded away from 1;

P2. b is small, in the sense that it grows at a slower rate than do typical values of the drift
function.

We explain the intuition behind the properties and define a new notion of “fitted family of
drift functions” in this subsection and later demonstrate how to establish the properties using
examples in Section 3. One way to understand this intuition is to think of it as controlling the
complexity order of the size of the “small set”,R= {x ∈ X : f(x)≤ d}. Since d > 2b/(1−λ),
if λ converges to 1 slowly or is bounded away from 1, and if b is growing at a slower rate than
typical values of f(x) (we will illustrate the meaning of “typical values” later in examples),
then the size of the small set parameter d can be chosen to have a small complexity order on n
and/or p. This in turn makes the minorization volume ε converge to 0 sufficiently slowly (or
even remain bounded away from 0).

Next, we define the notion of “fitted family of drift functions”, which is somewhat related
to the informal concept of “centered drift function” in [37].

DEFINITION 2.1. Let πp be the target distributions when the dimension of the state space
is p. We call a collection of non-negative functions, {fp(·)}∞p=1, a fitted family if

lim
p→∞

Eπp [fp(x)] = 0.(5)
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Then a fitted family of drift functions is just a fitted family of functions which also satisfy
a family of (generalized) drift conditions. Note that the fitted family of functions can also
depend on n if n is a function of p. In the rest of the paper, we may simply write πp as
π and fp(x) as f(x) for simplicity. However, we should keep in mind that the notation π
and f(x) are actually a family of target distributions and a fitted family of drift functions in
high-dimensional settings when we study the behavior of the Markov chains for p→∞.

Now we explain the intuition on why we should use a fitted family of drift functions
in high-dimensional settings. For clarity, we first assume that λ is bounded away from 1,
and focus on conditions required for b to grow at a slower rate than typical values of f(x).
Assume for definiteness that p is fixed and n→∞, and the drift function is scaled in such
a way that f(x) =O(1) and there is a fixed typical state x̃ with f(x̃) = Θ(1) regardless of
dimension. Then, to satisfy property P2 above, we require that b= o(1). On the other hand,
taking expectation over x ∼ π(·) on both sides of Eq. (2) yields b ≥ Eπ[f(x)]/(1− λ), so
b= Ω(Eπ[f(x)]). To make b= o(1) implies that the drift function should be chosen such that
Eπ[f(x)]→ 0, which is exactly the definition of the fitted family of drift functions. Therefore,
to get a small b in a high-dimensional setting, we require a (properly scaled) drift function
f(·) whose values f(x), where x∼ π(·), concentrate around 0, which is guaranteed by the
fitted family of drift functions.

Note that the fitted family of drift functions for high-dimensional settings can be very
different than traditional “good” drift functions. For example, to study a Markov chain {X(k)}
sampling a fixed-dimensional target π, one might think f(x) = π(x)−α for some fixed number
α > 0 is a good candidate for the drift function. However, this is not a good intuition for
choosing the fitted family of drift functions for the high-dimensional settings. The following
is a toy example.

EXAMPLE 2.2. Consider π is the standard multivariate Gaussian N (0, Ip). One choice
for the drift function could be f(x) = exp(‖x‖2)− 1 or f(x) = ‖x‖2/p (which is similar to
the one used in [44, Example 1]). However, a better fitted family of drift functions in high
dimensional settings could be

f(x) = (‖x‖2/p− 1)2.(6)

This is because that under X ∼ N (0, Ip), we know ‖X‖2/p concentrates around 1. The
family of drift functions {(‖x‖2/p− 1)2}∞p=1 exactly fits this concentration phenomenon. The
traditional popular choices of drift functions do not have this property.

Note that in the existing literature, the drift functions used to establish the drift condition
usually don’t satisfy the definition of fitted family of drift functions. This is because in the
traditional setting where n and p are fixed, a “good” drift condition is established whenever λ
and b are small enough for specific fixed values of n and p. The complexity orders of λ and b
as functions of n and/or p are not essential, so fitting the concentration region of the posterior
as dimension increases is not necessary. As a result, many existing quantitative bounds cannot
be directly translated into tight complexity bounds, since the size of the small set does not
have a small complexity order on n and/or p. At the very least, one has to re-analyze such
MCMC algorithms using a fitted family of drift functions.

Next, we focus on establishing λ that is either bounded away from 1 or converges to 1
slowly, assuming a fitted family of drift functions is already chosen. Intuitively, λ describes
the behavior of the Markov chain when its current state has a “high energy”. If λ goes to 1
very fast when n and/or p goes to infinity, this may suggest the existence of some “bad” states,
i.e. states which have “high energy”, but the drift property becomes poor as n and/or p gets
large. Therefore, in high dimensions, once the Markov chain visits one of these “bad” states,
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it only slowly drifts back toward to the corresponding small set. Since the drift condition in
Eq. (2) must hold for all x ∈ X , the existence of “bad” states forces λ go to 1 very fast. And
since the small set is defined as R= {x ∈ X : f(x)≤ d} where d > 2b/(1− λ), the scenario
λ→ 1 very fast forces R to become very large, and hence the minorization volume ε goes
to zero very fast. One perspective on this problem is that the definition of drift condition in
Eq. (2) is too restrictive, since it must hold for all states x, even the bad ones.

In summary, we are able to establish a small b as in P2 above by using a fitted family
of drift functions. However, the other difficulty in establishing a small λ as in P1 above is
the existence of some “bad” states when n and/or p gets large. Since the traditional drift
condition defined in Eq. (2) is restrictive, the traditional drift-and-minorization method is not
flexible enough to deal with these “bad” states. In the following, we instead propose a modified
drift-and-minorization approach using a generalized drift condition, where the drift function is
defined only in a “large set”. This allows us to rule out those “bad” states in high-dimensional
cases.

2.2. New Quantitative Bound. We first relax the traditional drift condition and define a
generalized drift condition which is established only on a subset of the state space. Recall
that {X(k)} denotes the Markov chain on a state space (X ,B) with a transition kernel
P (x, ·),∀x ∈ X . Let P k(x, ·) be the k-step transition kernel. Denote R0 as the “large set”, i.e.,
R0 ∈ B is a subset of X .

DEFINITION 2.3. (Generalized drift condition on a large set) There exists a drift function
f :X →R+ such that for some λ < 1 and b <∞,

E(f(X(1)) |X(0) = x)≤ λf(x) + b, ∀x ∈R0,(7)

and (C1) or (C1’) holds.

(C1). The “large set” R0 is defined by R0 = {x ∈ X : f(x)≤ d0} for some d0 > 0.

(C1’). The transition kernel P (x, ·) is a composition of reversible (with respect to π) steps
P =

∏I
i=1Pi, i.e. , P (x,dy) =

∫
(x1,...,xI−1)∈X×···×X P1(x,dx1)P2(x1,dx2) · · ·PI(xI−1,dy),

where I ≥ 1 is a fixed integer, and

E(f(X̃(1)) | X̃(0) = x)≤ E(f(X(1)) |X(0) = x), ∀x ∈R0,(8)

where {X̃(k)} denotes a restricted Markov chain with a transition kernel
∏I
i=1 P̃i where

P̃i(x,dy) := Pi(x,dy) for x, y ∈R0, x 6= y, and P̃i(x,x) := 1− Pi(x,R0\{x}),∀x ∈R0.

REMARK 2.4. Note that only one of (C1) and (C1’) is required. For (C1’), the Markov
chain needs to be either reversible or can be written as a composition of reversible steps.
This condition is very mild since it is satisfied by most realistic MCMC algorithms. For
example, full-dimensional and random-scan Metropolis-Hastings algorithms and random-
scan Gibbs samplers are reversible, and their deterministic-scan versions can be written as
a composition of reversible steps. For (C1), it is required that the “large set” is constructed
using the drift function in a certain way but there is no restriction for the transition kernel
P . If R0 is constructed as in (C1) then Eq. (8) automatically holds. Therefore, one should
verify (C1’) if one hopes to have more flexibility for constructing R0 than the particular way
in (C1). Particularly, if the drift function f(x) depends on all coordinates, it might be hard to
control all the states in {x ∈ X : f(x)≤ d0} as the dimension increases. Then (C1’) might be
preferable.



COMPLEXITY RESULTS FOR MCMC DERIVED FROM QUANTITATIVE BOUNDS 7

REMARK 2.5. To verify (C1’) in Definition 2.3, one has to check a new inequality
E(f(X̃(1)) | X̃(0) = x)≤ E(f(X(1)) |X(0) = x). This inequality in (C1’) implies the “large
set” R0 should be chosen such that the states in R0 have “lower energy” on expectation. This is
intuitive since we assume the “bad” states all have “high energy” and poor drift property when
n and/or p gets large. One trick is to choose R0 by ruling out some (but not too many) states
with “high energy” even if the states are not “bad”. In Section 3.3, we demonstrate the use of
this trick to select the “large set” R0 so that E(f(X̃(1)) | X̃(0) = x)≤ E(f(X(1)) |X(0) = x)
can be easily verified. The constructed R0 in Section 3.3 satisfies (C1’) but not (C1).

Next, we propose a new quantitative bound, which is based on the generalized drift condition
on a “large set”.

THEOREM 2.6. Suppose the Markov chain satisfies the generalized drift condition in
Definition 2.3 on a “large set” R0. Furthermore, for a “small set” R := {x ∈ X : f(x)≤ d}
where d > 2b/(1− λ), the Markov chain also satisfies a minorization condition:

P (x, ·)≥ εQ(·), ∀x ∈R,(9)

for some ε > 0, some probability measure Q(·) on X . Finally, suppose the Markov chain
begins with an initial distribution ν such that ν(R0) = 1. Then for any 0< r < 1, we have

‖L(X(k))− π‖var ≤ (1− εQ(R0))rk +
(αΛ)rk

[
1 +Eν [f(x)] + b

1−λ

]
− αrk

αk − αrk

+ k π(Rc0) +

k∑
i=1

νP i(Rc0),

(10)

where α−1 = 1+2b+λd
1+d , Λ = 1 + 2(λd+ b), and νP i(·) :=

∫
X P

i(x, ·)ν(dx).

PROOF. See Appendix A.

REMARK 2.7. Note that the new bound in Theorem 2.6 assumes the Markov chain begins
with an initial distribution ν such that ν(R0) = 1. This assumption is not very restrictive
since the “large set” ideally should include all “good” states. In high-dimensional settings, the
Markov chain is not expected to converge fast beginning with any state (see Section 3.3.2 for
discussions on initial states). Furthermore, the use of “warm start” becomes popular recently,
see e.g. [12]. However, it doesn’t directly relate to the large set. We only require that the initial
distribution µ is supported in the large set. For example, µ can be a point mass. For the term
Q(R0) in Eq. (10), it can be replaced by any lower bound of Q(R0). Since the “large set” is
ideally chosen to include all “good” states, one can expect Q(R0) is at least bounded away
from 0. In particular, if we have established an upper bound for P (x,Rc0) with x ∈R, then
we can apply εQ(Rc0)≤ P (x,Rc0) to get an upper bound of Q(Rc0) which can be turned into a
lower bound on Q(R0).

REMARK 2.8. In the proof of Theorem 2.6, the generalized drift condition in Definition 2.3
essentially implies a traditional drift condition in Eq. (2) for a constructed “restricted” Markov
chain only on the “large set” R0. The first two terms in the upper bound Eq. (10) are indeed an
upper bound on the total variation distance of this constructed “restricted” Markov chain. Note
that the general idea of studying the restriction of a Markov chain to some “good” subset of the
state space has appeared in the literature, such as [32, 13, 21, 15, 31, 51, 33] and the references
therein, in which different ways of restrictions have been considered for different reasons. For



8

example, [4] studied the rate of convergence of the MALA algorithm by a similar argument,
which is later extended in [14] to study contraction rate in Wasserstein distance w.r.t. Gaussian
reference measure. However, the argument in [4] is only for the MALA algorithm and the
proof technique is by constructing a restricted chain. Comparing with [4], our Theorem 2.6 is
for general MCMC algorithms with weaker conditions in (C1) and (C1’). In the proof, we
use either a trace chain or a restricted chain depending on which condition is satisfied. Most
importantly, the motivation of this work is to obtain tight complexity bound which is quite
different from [4]. In Theorem 2.6, the goal of considering a “good” subset of the state space
is to obtain better control on the dependence on n and p for the upper bound.

REMARK 2.9. The last two terms in the upper bound Eq. (10) give an upper bound of the
probability that the Markov chain will visit Rc0 starting from either the initial distribution ν or
the stationary distribution π. Therefore, the proposed method in Theorem 2.6 is a generalized
version of the classic drift-and-minorization method [44] by allowing the drift condition to be
established on a chosen “large set”. Indeed, if we choose R0 =X , then Eq. (10) is almost the
same as Eq. (4), except slightly tighter due to the terms αrk.

REMARK 2.10. One more note about Eq. (10) is that the new bound does not decrease
exponentially with k. For example, the term k π(Rc0) is linear increasing with k for fixed n and
p. We emphasize that we do not aim to prove a Markov chain is geometrically ergodic here.
An upper bound which decreases exponentially with k for fixed n and p does not guarantee
to have a tight complexity order on n and/or p, which has been discussed in [38]. Instead,
our new bound in Eq. (10) is designed for controlling complexity orders of n and/or p for
high-dimensional Markov chains. In Section 3.3, we obtain a tight complexity bound for a
Gibbs sampler of a simple random effect model related to the James–Stein estimator. Previous
unsuccessful attempts for the same Gibbs sampler (see [10]), were focusing on how to obtain
convergence bounds with geometric/polynomial rates as a function of p and n. The successful
analysis of the Gibbs sampler in the current paper implies that complexity bounds can be
obtained even without any particular form of non-deteriorating convergence bounds.

2.3. Complexity Bound. Note that mixing time is often defined uniformly over initial
states, which is difficult to extend to general state spaces. In this paper, the term “mixing time”
is defined depending on the initial state. The formal definition is given in the following.

DEFINITION 2.11. For any 0< c < 1, we define the mixing time Kc,x of a Markov chain
{X(k)} with initial state x by

Kc,x := arg min
k

{
‖L(X(k))− π‖var ≤ c

}
subject to X(0) = x.(11)

The proposed new bound in Theorem 2.6 can be used to obtain complexity bounds in
high-dimensional settings. The key is to balance the complexity orders of k on n and/or p
required for both the first two terms and the last two terms of the upper bound in Eq. (10) to
be small. The complexity order of k on n and/or p for the first two terms to be small can be
controlled by adjusting the “large set”. The “large set” should be kept as large as possible
provided that “bad” states have been ruled out. For the last two terms to be small, we should
determine the growth rate of k as a function of n and p so that

k π(Rc0) +

k∑
i=1

νP i(Rc0)→ 0.(12)
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This may involve (carefully) bounding the tail probability of the transition kernel, depending
on the definition of the “large set” and the complexity order aimed to establish.

We give a direct corollary of Theorem 2.6 on mixing time in terms of p. In general, mixing
time in terms of both n and p can be obtained using Theorem 2.6.

COROLLARY 2.12. Suppose Theorem 2.6 has been established for every dimension p.
Let k̃p and k̂p be sequences of positive integers as functions of p such that both k̃p→∞ and
k̂p→∞ as p→∞. Furthermore, limp→∞ k̃p − k̂p ≥ 0 and

k̃pπ(Rc0) +

k̃p∑
i=1

νP i(Rc0)→ 0(13)

log(2 +Eν [f(x)] + b
1−λ)

− log(1− εQ(R0))

log(αΛ/(1− εQ(R0))

log(α)
=O(k̂p).(14)

Then the mixing time of the MCMC starting from ν has the complexity order O(k̂p).

Using Corollary 2.12, one can plug-in the orders of b, 1− λ, and ε to get the complexity
bound. The following result is directly from Corollary 2.12.

COROLLARY 2.13. Suppose Theorem 2.6 has been established for every dimension p and
c1, · · · , c5 are non-negative constants such that 1

ε =O(pc1), 1
1−λ =O(pc2), and b=O(pc3).

Also, c4 > c1 and

pc4π(Rc0) +

pc4∑
i=1

νP i(Rc0)→ 0.(15)

Furthermore, if Q(Rc0) = o(1) and Eν [f(x)] =O(pc5), then the mixing time starting from ν
has the complexity order O(pc1 log(pc5 + pc2+c3) log(pc2+c3)) =O(pc1(log(p))2).

We will discuss several MCMC examples in Section 3 to demonstrate the use of the fitted
family of drift functions and “large sets” to get complexity bounds.

2.4. Discussions. We finish this section by giving a few more remarks and discussions on
our main results.

• Geometric ergodicity: The Markov chain to be analyzed in Theorem 2.6 does not have to be
geometrically ergodic. The proof of Eq. (10) only implies that, after ruling out “bad” states,
a constructed “restricted” Markov chain defined on the “large set” is geometrically ergodic.
Therefore, the new bound in Eq. (10) can be used to analyze non-geometrically ergodic
high-dimensional Markov chains.

• Relation to spectral gaps: Many approaches in MCMC literature bound the spectral gap of
the corresponding Markov operator [29, 53, 30, 54, 55]. However, on general state spaces,
the spectral gap is zero for Markov chains which are not geometrically ergodic, even if they
do converge to stationarity. Our results do not require the Markov chain to be geometrically
ergodic. Instead, we only require the constructed “restricted” chain on the “large set” in
our proof is geometrically ergodic. Therefore, we cannot connect our results to bounds on
spectral gaps. Furthermore, we do not require the Markov chain to be reversible. So our
results apply even in the non-reversible cases, which makes spectral gaps harder to study or
interpret. For these reasons, we do not present the main results in terms of spectral gaps.
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• Other types of drift condition: In this paper, we use the drift condition of the type in [44].
There is another popular drift condition (e.g., in [43]) and the connection between the two
is well-known (see [25, Lemma 3.1]). Therefore, it is straightforward to establish our main
result using the other drift condition in [43].

• Complexity of MCMC estimators: It would be nice to obtain rate of convergence (or non-
asymptotic bounds) for general MCMC estimators. The proof techniques in the existing
literature on establishing rate of convergence of MCMC estimators [2, 1, 36, 28, 27,
48, 49, 50] requires certain conditions such as geometric/polynomial drift conditions, or
spectral gaps. However, our result doesn’t require establishing a geometric/polynomial drift
condition or a spectral gap. Therefore, it is not clear how to connect our complexity results
to complexity of other MCMC estimators. This is certainly an interesting direction for
future work.

3. Gibbs Sampler Convergence Bound. In this section, we study several examples of
Gibbs sampling to analyze the convergence complexity using the proposed approach. In
Section 3.1 and Section 3.2, we consider a simple Gaussian example and a hierarchical
Poisson example. Simplified versions of both examples for fixed dimensions was originally
studied in [44, Example 1 and Example 2] and the original mixing times have poor complexity
orders in terms of dimensions. We study the extensions of them in the high-dimensional
setting and obtain tight complexity bounds by choosing fitted families of drift functions. In
Section 3.3, we study the MCMC model in [46] which is related to the James–Stein estimator.
We demonstrate how to use both the fitted family of drift functions and the “large sets” to
obtain a tight complexity bound.

Note that although the bound in Theorem 2.6 contains different “admissible" growth
combinations such as of b, 1/(1− λ), and 1/ε (see also Corollary 2.13), the minorization
volume ε relies on the small set which is determined by both b and λ. Furthermore, if b is fairly
large, it is not surprising that λ can be bounded away from 1. Therefore, we can summarize
our general principle in analyzing all the three examples as follows.

1. We first focus on choosing a fitted family of drift functions so that E[f(x)]≤ b where b
has a small order.

2. Next, we establish the drift condition. If λ from the drift condition goes to 1 too fast, we
apply the “large set” to rule out certain states. After the first two steps, we get a generalized
drift condition which leads to a small set with reasonably “size”.

3. Finally, we focus on establishing a (potentially multi-step) minorization condition to obtain
ε which goes to zero slowly (or bounded away from 0).

3.1. A Gaussian Toy Example. A bivariate Gaussian model was studied in [44, Example
1] as a demonstration of the drift-and-minorization approach. In this subsection, we study an
extension of this example to the high-dimensional setting. Suppose our target π is N (µ,Σ),

a 2p-dimensional multivariate Gaussian, where µ=

(
µ1

µ2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
. To sample

from the target distribution, we use a two-step Gibbs sampler as in [44, Example 1]. Writing

X =

(
X1

X2

)
, the conditional distribution can be written as

X1 |X2 = x2 ∼N
(
µ1 + Σ12Σ−1

22 (x2 − µ2),Σ11 −Σ12Σ−1
22 Σ21

)
(16)

and similarly for X2 |X1.
For simplicity, we only consider the setting such that µ1 = µ2 = 0 and Σ11 = Σ22 = Id and

Σ12 = Σ21 = 1
2Id. It is straightforward to extend our analysis to general cases of µ and Σ. The
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corresponding Gibbs sampler is

X
(1)
1 ∼N

(
1

2
X

(0)
2 ,

3

4
Ip

)
(17)

X
(1)
2 ∼N

(
1

2
X

(1)
1 ,

3

4
Ip

)
.(18)

Note that X(0)
1 is not used in the updates.

If we choose a drift function similar to the one used in [44], such as

f old(X) := ‖X2‖2/p.(19)

Then as X(1)
2 ∼ N (1

4X
(0)
2 , 3

4(1 + 1
4)Ip), it can be easily verified that the following drift

condition can be established:

E[f old(X(1))]≤ 1

16
f old(X(0)) + 1.(20)

However, as ‖X2‖2/p concentrates to 1 under stationarity, the drift condition leads to a small
set {X : ‖X2‖2/p = O(1)} in which the states that ‖X2‖2/p is much smaller than 1 are
included.

In our analysis, we choose a fitted family of drift functions which lead to a small set with
much smaller size:

f new(X) :=

(
‖X2‖2

p
− 1

)2

.(21)

We can establish the following drift condition:

E[f new(X(1))]≤ 1

4
f new(X(0)) +O(1/p).(22)

The corresponding small set {X : 1−C/√p≤ ‖X2‖2/p≤ 1 +C/
√
p} for some constant C ,

fits exactly the concentration region of the target as p→∞. Using the above drift condition
and a multi-step minorization condition, we can obtain the mixing time is O(log(p)). Our
main result is in the following.

THEOREM 3.1. For the two-step Gibbs sampler for our multivariate Gaussian model,
suppose the initial state satisfies ‖X(0)

2 ‖2 =O(p), then there exists positive constants C1, C2

such that

‖L(X(n))− π‖var ≤

C1 +

(
‖X(0)

2 ‖2

d
− 1

)2
γk,(23)

where γ < 1 is a fixed constant and number of steps n= bkC2 log(p)c+ 1 where k is any
positive integer.

PROOF. See Appendix F.

This implies the following complexity bound directly.

COROLLARY 3.2. Under the assumptions of Theorem 3.1, the mixing time of the Gibbs
sampler is O(log(p)).
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3.2. A Hierarchical Poisson Model. We study a hierachical Poisson model originally for
analyzing a realistic data set in [17]. A Gibbs sampler for this model has been studied by [17]
and a (numerical) quantitative bound was studied using the drift-and-minorization approach
in [44, Example 2]. In this subsection, we study the Gibbs sampler in the high-dimensional
setting.

Suppose the data has the form {Yi, ti}ni=1 where Yi represents the number of failures
over a time interval ti of n nuclear pumps. One can model the failures as a Poisson process
with parameter λi. Thus, during a observation period of length ti, the number of failures Yi
follows a Poisson distribution of parameters λiti. We are interested in inferring the parameters
λ= (λ1, . . . , λn) from the data {Yi, ti}. We follow a hierarchical Bayesian approach where
we assume that λ1, . . . , λn are conditional independent on a hyperparameter β and follow a
gamma distribution with density

π(λi | β) =
βα−1

Γ(α)
λα−1
i exp(−βλi)(24)

where α is a constant. We assume further that the hyperparameter β follows itself a prior
gamma distribution Ga(ρ, δ) where ρ and δ are fixed constant

π(β) =
δρ−1

Γ(ρ)
βρ−1 exp(−δβ).(25)

For simplicity, in this example we assume the time intervals are unit, that is, ti = 1 for all i.
It is straightforward to extend our analysis to general cases of time intervals.

Overall, the model can be written as

Yi | λ,β ∼ Poisson(λi), i= 1, . . . , n(26)

λi | β ∼indep Ga(α,β), i= 1, . . . , n,(27)

β ∼Ga(ρ, δ).(28)

In this example, we have p= n+ 1 and x= (λ1, . . . , λn, β). The posterior satisfies

π(x | Y1, . . . , Yn)∝ π(β)π(λi | β)

n∏
i=1

λYii
Yi!

exp(−λi).(29)

Note that this multidimensional distribution is rather complicated and it is not obvious how
the rejection sampling or importance sampling could be efficiently used in this context. As
the conditional distributions π(λ1, . . . , λn | β,{Yi}) and π(β | {λi},{Yi}) admit standard
parametric forms, we can write a Gibbs sampler with the following updating order:

π(λ
(k+1)
1 , . . . , λ(k+1)

n | β(k),{Yi}) =

n∏
i=1

π(λ
(k+1)
i | β(k), Yi)(30)

λ
(k+1)
i | β(k), Yi ∼Ga(Yi + α,1 + β(k)), i= 1, . . . , n(31)

β(k+1) | {λ(k+1)
i },{Yi} ∼Ga(ρ+ nα, δ+

n∑
i=1

λ
(k+1)
i ).(32)

Next, we present the main result for this Gibbs sampler. The key step is to use a fitted
family of drift functions:

fn(x) :=

(∑
i λi
nα

− 1

β

)2

.(33)

Our main result for this Gibbs sampler is as follows.
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THEOREM 3.3. Suppose there exists a constant N that for all n≥N the data satisfies
Ȳ := 1

n

∑
i Yi ∈ [l, u] where l and u are two fixed constant such that 0< l < u <∞. Then

there exists a constant C such that for large enough n and for all k, we have

‖L(X(k))− π‖var ≤

C +

(
1
n

∑n
i=1 λ

(0)
i

α
− 1

β(0)

)2
γk,(34)

where γ < 1 is a constant.

PROOF. See Appendix G.

Note that it is very reasonable to make some reasonable assumptions on the observed data
since the posterior depends on the observed data and we are actually studying a sequence of
posteriors for the convergence complexity. In Theorem 3.3, we assume there exists a constant
N that for all n ≥ N the data satisfies Ȳ := 1

n

∑
i Yi ∈ [l, u] where l and u are two fixed

constant such that 0< l < u<∞. This assumption is quite weak. For example, it holds if the
data is indeed generated from the model with some “true” parameters.

Theorem 3.3 implies the following complexity bound directly.

COROLLARY 3.4. Under the assumptions of Theorem 3.3, if the initial state satisfies
1
n

∑n
i=1 λ

(0)
i =O(1) and 1/β(0) =O(1), the mixing time of the Gibbs sampler is O(1).

3.3. A Random Effect Model related to the James–Stein Estimator. In this subsection, we
concentrate on a particular MCMC model, which is related to the James–Stein estimator [46]:

Yi | θi ∼N (θi, σ
2
V ), 1≤ i≤ n,

θi | µ,σ2
A ∼N (µ,σ2

A), 1≤ i≤ n,

µ∼ flat prior on R,

σ2
A ∼ IG(a, b),

(35)

where σ2
V is assumed to be known, (Y1, . . . , Yn) is the observed data, and x= (σ2

A, µ, θ1, . . . , θn)
are parameters. Note that we have the number of parameters p= n+ 2 in this example. For
simplicity, we will not mention p but only refer to n for this model. The posterior distribution
satisfies

L(σ2
A, µ, θ1, . . . , θn | Y1, . . . , Yn)

∝ ba

Γ(a)
(σ2
A)−a−1e−b/σ

2
A

n∏
i=1

1√
2πσ2

A

e
− (θi−µ)

2

2σ2
A

1√
2πσ2

V

e
− (Yi−θi)

2

2σ2
V .

(36)

A Gibbs sampler for the posterior distribution of this model has been originally analyzed
in [46]. A quantitative bound has been derived by [46] using the drift-and-minorization
method with a drift function f(x) =

∑n
i=1(θi − Ȳ )2 where Ȳ = 1

n

∑n
i=1 Yi. We first observe

that this drift function doesn’t lead to a fitted family of drift functions in high-dimensional
setting. For example, select a “typical” state x̃ = (σ̃2

A, µ̃, θ̃1, . . . , θ̃n) such that θ̃i = Yi, we
get f(x̃) =

∑n
i=1(Yi − Ȳ )2. Under reasonable assumptions on the observed data {Yi}, we

can get the properly scaled drift function 1
nf(x̃) = 1

n

∑n
i=1(Yi − Ȳ )2 = Θ(1). Then b/n=

1
n

∑n
i=1(Yi − Ȳ )2 + n+1/4

n σ2
V = Θ(1) in [46]. Therefore, the definition of fitted family of

drift functions is not satisfied. Furthermore, the established λ in [46] converges to 1 very
fast, satisfying 1/(1− λ) = Ω(n). Therefore, if we translate the quantitative bound in [46]
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into complexity orders, it requires the size of the “small set” to be Ω(n2), which makes the
minorization volume ε be exponentially small. This leads to upper bounds on the distance
to stationarity which require exponentially large number of iterations to become small. This
result also coincides with the observations by [38] when translating the work of [26, 6].

REMARK 3.5. When the dimension of the state space is fixed, [23, Appendix C] states a
way to use rejection sampler to obtain samples from the posterior of this model. However, it
is easy to show that the acceptance probability of the rejection sampler in [23, Appendix C]
decreases very fast as the dimension increases. See Appendix H for more details. As we will
show the mixing time of our Gibbs sampler for this model is O(1), the rejection sampler in
[23, Appendix C] is not as efficient in high dimensions as our Gibbs sampler.

We demonstrate the use of the modified drift-and-minorization approach by analyzing a
Gibbs sampler for this MCMC model. Defining x(k) = ((σ2

A)(k), µ(k), θ
(k)
1 , . . . , θ

(k)
n ) to be

the state of the Markov chain at the k-th iteration, we consider the following order of Gibbs
sampling for computing the posterior distribution:

µ(k+1) ∼N

(
θ̄(k),

(σ2
A)(k)

n

)
,

θ
(k+1)
i ∼N

(
µ(k+1)σ2

V + Yi(σ
2
A)(k)

σ2
V + (σ2

A)(k)
,

(σ2
A)(k)σ2

V

σ2
V + (σ2

A)(k)

)
, i= 1, . . . , n,

(σ2
A)(k+1) ∼ IG

(
a+

n− 1

2
, b+

1

2

n∑
i=1

(θ
(k+1)
i − θ̄(k+1))2

)
.

(37)

Note that, in the language of [22], this is an “out-of-order” block Gibbs sampler, so
inferences for the posterior distribution should be based on a “shifted” output sample
((σ2

A)(k), µ(k+1),{θ(k+1)
i }). In any case, it still has the same rate of convergence [22, Proposi-

tion 3] so our convergence analysis applies to both our version and the original block Gibbs
version of [46].

We prove that convergence of the Gibbs sampler is actually very fast: the number of
iterations required is O(1). More precisely, we first make the following assumptions on the
observed data {Yi}: there exists δ > 0, σ̄2

V <∞, and a positive integer N0, such that, almost
surely with respect to the randomness of {Yi}:

σ2
V + δ ≤

∑n
i=1(Yi − Ȳ )2

n− 1
≤ σ̄2

V , ∀n≥N0.(38)

The assumption in Eq. (38) is quite natural. For example, if the data is indeed generated
from the model with a “true” variance σ2

A > 0 then Eq. (38) obviously holds. More generally,
the upper bound is just to ensure

∑n
i=1(Yi − Ȳ )2 =O(n). For the lower bound, note that our

MCMC model implies that the variance of Yi is larger than σ2
V because of the uncertainty

of θi. Actually, under the MCMC model, conditional on the parameter σ2
A, the variance of

the data {Yi} equals σ2
V + σ2

A. Therefore, the assumption in Eq. (38) is just to assume the
observed data is not abnormal under the MCMC model when n is large enough. Note that only
the existence of δ is required for establishing our main results. More precisely, the existence of
δ is needed to obtain an upper bound for π(Rc0). If such δ does not exist, the MCMC model is
(seriously) misspecified so the posterior distribution of the parameter σ2

A, which corresponds
to the variance of a Normal distribution, may concentrate on 0. In that case, our upper bound
on π(Rc0) does not hold.
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Then we show that, under the assumption Eq. (38), with initial state

θ̄(0) = Ȳ , (σ2
A)(0) =

{ ∑n
i=1(Yi−Ȳ )2

n−1 − σ2
V , if

∑n
i=1(Yi−Ȳ )2

n−1 > σ2
V ,∑n

i=1(Yi−Ȳ )2

n−1 , otherwise,
(39)

and µ(0) arbitrary (since µ(0) will be updated in the first step of the Gibbs sampler), the mixing
time of the Gibbs sampler to guarantee small total variation distance to stationarity is bounded
by some constant when n is large enough.

3.3.1. Main Results. First, we obtain a quantitative bound for large enough n, which is
given in the following theorem.

THEOREM 3.6. Under the assumption Eq. (38), with initial state Eq. (39), there exists a
positive integer N which does not depend on k, some constants C1 > 0,C2 > 0,C3 > 0 and
0< γ < 1, such that for all n≥N and for all k, we have

‖L(X(k))− π‖var ≤C1γ
k +C2

k(1 + k)

n
+C3

k√
n
.(40)

PROOF. Let ∆ =
∑n

i=1(Yi − Ȳ )2 and x= (σ2
A, µ, θ1, . . . , θn). Define the fitted family of

drift functions {fn(x)} by

fn(x) := n(θ̄− Ȳ )2 + n

[(
∆

n− 1
− σ2

V

)
− σ2

A

]2

.(41)

Let x(k) = ((σ2
A)(k), µ(k), θ

(k)
1 , . . . , θ

(k)
n ) be the state of the Markov chain at the k-th iteration,

then we show in Lemma C.1 (see Appendix C) that

E[fn(x(k+1)) |x(k)]≤

(
(σ2
V )2 + 2σ2

V (σ2
A)(k)

(σ2
V )2 + 2σ2

V (σ2
A)(k) + ((σ2

A)(k))2

)2

fn(x(k)) + b, ∀x(k) ∈ X

(42)

where b=O(1).

Note that in Eq. (42), the term
(

(σ2
V )2+2σ2

V (σ2
A)(k)

(σ2
V )2+2σ2

V (σ2
A)(k)+((σ2

A)(k))2

)2
depends on the coordinate

A(k) of the state x(k) and is not bounded away from 1, since (σ2
A)(k) can be arbitrarily close to

0. Therefore,
(

(σ2
V )2+2(σ2

V )(σ2
A)(k)

V 2+2σ2
V (σ2

A)(k)+((σ2
A)(k))2

)2
cannot be bounded by some λ such that 0< λ< 1

and we cannot directly establish the traditional drift condition Eq. (2) by Eq. (42). In the
following, we establish the generalized drift condition Definition 2.3 using a “large set”.

According to Eq. (38), for large enough n, we have ∆
n−1 > σ2

V . Then, we choose a
threshold T such that, for large enough n, we have 0 < T < ∆

n−1 − σ
2
V . Defining λT :=(

(σ2
V )2+2σ2

V T
(σ2
V )2+2σ2

V T+T 2

)2
< 1, we get

E[fn(x(k+1)) |x(k)]≤ λT fn(x(k)) + b, ∀x ∈RT .(43)

where the “large set”, RT , is defined by

RT :=

{
x ∈ X :

[(
∆

n− 1
− σ2

V

)
− σ2

A

]2

≤
[(

∆

n− 1
− σ2

V

)
− T

]2
}
.(44)

In order to satisfy the new drift condition in Definition 2.3, we verify (C1’). Note that in
our example the transition kernel of the Gibbs sampler can be written as a composition of
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reversible steps and only the last step of the Gibbs sampler updates the parameter σ2
A which is

used for defining the “large set” RT . Therefore, in order to verify Eq. (8), it suffices to check
the last step if the value of the drift function increases by updating x(k) ∈RT to x(k+1) ∈RcT .
By the definition of RT , we have[(

∆

n− 1
− σ2

V

)
− (σ2

A)(k)

]2

≤
[(

∆

n− 1
− σ2

V

)
− T

]2

, ∀x(k) ∈RT[(
∆

n− 1
− σ2

V

)
− (σ2

A)(k+1)

]2

>

[(
∆

n− 1
− σ2

V

)
− T

]2

, ∀x(k+1) /∈RT .
(45)

This implies the value of fn(x) increases if the Markov chain is outside of the “large set” after
updating σ2

A. Therefore, the generalized drift condition in Definition 2.3 is satisfied.
Now we can use Theorem 2.6 to derive a quantitative bound for the Gibbs sampler. We first

show in Lemma D.1 (see Appendix D) that if T = Θ(1), by choosing the size of the “small
set” R= {x ∈ X : fn(x)≤ d} to satisfy d=O(1) and d > b

1−λT , there exists a probability
measure Q(·) such that the Markov chain satisfies a minorization condition in Eq. (9) with the
minorization volumne ε= Θ(1).

Next, we show in Lemma E.1 (see Appendix E) that with the initial state given by Eq. (39),
there exists a positive integer N , which does not depend on k, such that for all n≥N , we
have

k π(RcT ) +

k∑
i=1

P i(x(0),RcT )

≤ k√
n

√
b(2σ2

V /δ + 1)∣∣∣( ∆
n−1 − σ

2
V

)
− T

∣∣∣ +
k(1 + k)

2n

b[(
∆
n−1 − σ

2
V

)
− T

]2 .

(46)

Now we derive a quantitative bound for the Gibbs sampler for large enough n by combing

results together. First, from Eq. (42), we have b=O(1). Recall that λT =
(

(σ2
V )2+2σ2

V T
(σ2
V )2+2σ2

V T+T 2

)2
.

We obtain b
1−λT = O(1) by choosing T = Θ(1). Since d > b

1−λT , we can choose the
size of small set to be d = O(1). Then we have shown that the minorization volume
ε= Θ(1). For Q(RT ), we know that P (x(0),RcT ) =O(1/n), where x(0) ∈R. This implies
that εQ(RcT ) =O(1/n). Since ε= Θ(1), we have εQ(RT ) = ε− εQ(RcT ) = Θ(1). Further-
more, by definition α−1 = 1+2b+λT d

1+d < 1, it can be verified that α−1 is bounded away from
0 when T = Θ(1) and d = O(1). Next, since Λ = 1 + 2(λTd + b) = Θ(1), ignoring the
term αrk in Eq. (10), we choose r = log(α)/ log(αΛ/(1− εQ(RT ))) to balance the order
of (1 − εQ(RT ))r and α−1(αΛ)r and define γ := (1 − εQ(RT ))r = α−1(αΛ)r. Then we
have γ = Θ(1) and 0 < γ < 1. Furthermore, since fn(x(0)) = 0 for large enough n and
b

1−λT =O(1), we can pick a constant C1 such that C1 ≥ 2 + b
1−λT for large enough n. Finally,

we have kπ(RcT ) +
∑k

i=1P
i(x(0),RcT )≤C2

k(1+k)
n +C3

k√
n

by Eq. (46), then Theorem 3.6
follows from Theorem 2.6.

Next, we translate the quantitative bound in Theorem 3.6 into the convergence complexity
in terms of mixing time using similar arguments as Corollary 2.12 and Corollary 2.13. We
show the convergence complexity is O(1). Intuitively, to make the term C1γ

k in Eq. (40)
arbitrarily small, k needs to have a complexity order of O(1) since γ does not depend on
n. The residual terms C2

k(1+k)
n +C3

k√
n
→ 0 when k = o(

√
n). Therefore, the complexity

bound on the mixing time of the Gibbs sampler equals the smaller complexity order between
O(1) and o(

√
n), which is O(1). The formal result is given in the following.
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THEOREM 3.7. For any 0< c < 1, recall the definition of the mixing time Kc,x in Defini-
tion 2.11. We write Kc,x as Kc,x(n) to emphasize its dependence on n. Under the assumptions
of Theorem 3.6, with initial state x(0) given by Eq. (39), there existsNc = Θ(1) and K̄c = Θ(1)
such that

Kc,x(0)(n)≤ K̄c, ∀n≥Nc.(47)

PROOF. See Appendix B.

3.3.2. Initial state. The main results in Theorem 3.6 and Theorem 3.7 hold for a particular
initial state given in Eq. (39). We discuss other initial states than the one given in Eq. (39).
Note that the new bound in Lemma C.1 holds for any initial state that is in the “large set”.
Therefore, we can extend the results in Theorem 3.6 to get bounds when the Markov chain
starts from some other initial states in the “large set”. Recall the assumption on the observed
data {Yi} in Eq. (38), we have assumed there exists δ > 0 such that

∑n
i=1(Yi−Ȳ )2

n−1 ≥ σ2
V + δ

for large enough n. Note that the existence of such δ is sufficient to obtain the results in
Theorem 3.6 and Theorem 3.7. In order to get bounds when the MCMC algorithm starts from
other initial states, we assume δ is known and establish upper bounds using δ explicitly. We
define the “large set” Eq. (44) using T = δ and the extension of Theorem 3.6 is given in the
following.

THEOREM 3.8. Let ∆ =
∑n

i=1(Yi − Ȳ )2. Under the assumption Eq. (38), if the Markov
chain starts with any initial state x(0) ∈Rδ (defined in Eq. (44) with T = δ), there exists a
positive integer N , which does not depend on k, some constants C1 > 0,C2 > 0,C3 > 0,C4 >
0 and 0< γ < 1, such that for all n≥N and for all k, we have

‖L(X(k))− π‖var ≤ [C1 + fn(x(0))]γk +C2
k(1 + k)

n
+C3

k√
n

+C4fn(x(0))
k

n
,(48)

where fn(·) is the fitted family of drift functions defined in Eq. (41).

PROOF. Following the same proof of Theorem 3.6 by keeping the term fn(x(0)), the
first two terms of the upper bound given in Eq. (10) can be replaced by [C1 + fn(x(0))]γk

and the last term of the upper bound in Eq. (10) can be replaced by
∑k

i=1P
i(x(0),Rcδ) ≤

C2
k(1+k)
n +C4fn(x(0)) kn .

From Theorem 3.8, using similar arguments as Corollary 2.12, we can immediately obtain
a complexity bound when the Markov chain starts within a subset of the “large set”, which is
given in the following. This result suggests that if the Markov chain starts from an initial state
which is not “too far” from the state given in Eq. (39), the Markov chain still mixes fast. The
mixing time becomes O(logn) instead of O(1).

COROLLARY 3.9. Under the assumption Eq. (38), if the initial state of the Markov chain
satisfies x(0) ∈ {x ∈Rδ : fn(x) = o(n/ logn)}, the mixing time of the Gibbs sampler satisfies
Kc,x(0) =O(logn) for any given 0< c < 1.

Note that {x ∈Rδ : fn(x) = o(n/ logn)} defines a subset of the “large set” Rδ , and the
above result shows that the mixing time is O(logn) if the initial state is in this subset. The
order o(n/ logn) comes from a balance between fn(x(0))γk and fn(x(0)) kn . We conjecture
the same complexity order of O(logn) on the mixing time may hold even if the initial state
is in a larger subset, for example

{
x(0) ∈Rδ : fn(x(0)) = Θ(n)

}
. However, in order to prove
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this, we need to derive tighter upper bound of
∑k

i=1P
i(x(0),Rcδ) which is a non-trivial task.

We therefore leave it as an open problem.
Finally, we do not have upper bounds for the Markov chain when the initial state is outside

of the “large set” since the new bound in Theorem 2.6 requires the Markov chain starts within
the “large set”. For this particular Gibbs sampler example, numerical experiments suggest
that, if the Markov chain starts from a “bad” state, the number of iterations required for the
Markov chain to mix can be much larger than O(logn). In high-dimensional settings, when
the dimension of the state space goes to infinity, the Markov chain may not mix fast starting
from any state. This observation is loosely consistent with various observations in [20].

3.3.3. Discussions. We end this section by giving some further remarks and comments
on the analysis of the Gibbs sampler.

• Drift function: In the proof of Theorem 3.6, we actually used a fitted family of drift
functions if we scale the drift functions in Eq. (41) by 1/n. To check this, we select a
“typical” state x̃ = (σ̃2

A, µ̃, θ̃1, . . . , θ̃n) such that θ̃i = Yi and σ̃2
A =

∑n
i=1(Yi−Ȳ )2

n−1 then the
scaled drift function fn(x̃)/n= n(σ2

V )2/n= Θ(1). We then hope to establish b such that
b/n= o(1), or equivalently, b= o(n). Indeed, the established generalized drift condition
has b = O(1) = o(n), which implies the definition of fitted family of drift functions is
satisfied for {fn(x)/n}.

• “Large set”: The result in Eq. (42) implies that those states whose value of σ2
A are close to

zero are “bad” states. Therefore, the goal of choosing the “large set” in Eq. (44) is to ruling
out those states. Note that we have applied the trick that ruling more states with “high energy”
could make Eq. (8) easier to establish. In the “large set”RT defined by Eq. (44), we have also
ruled out the states x whose value of σ2

A are larger than
∣∣∣( ∆

n−1 − σ
2
V

)
− T

∣∣∣+( ∆
n−1 − σ

2
V

)
.

Note that these states are not “bad” states. However, by ruling them out, it is easy to establish
Eq. (8) as shown in the proof of Theorem 3.6.

• The upper bound in Eq. (46): Although the upper bound of k π(RcT ) +
∑k

i=1P
i(x(0),RcT )

shown in Eq. (46) is loose, it is already enough for showing the mixing time of the
Gibbs sampler is O(1). The proof of Lemma E.1 only makes use of the form of drift
function and the definition of “large set”, and does not depend on the particular form of
the transition kernel of the Gibbs sampler. We expect that, in general, tighter upper bounds
on k π(RcT ) +

∑k
i=1P

i(x(0),RcT ) could be obtained, depending on the choice of “large set”
and the MCMC algorithm to be analyzed. This may involve carefully bounding the tail
probability of the transition kernel.

• The constants in Theorem 3.6: In Theorem 3.6, we do not compute the constants N , C1, C2,
and C3 explicitly. Actually, C2 is given explicitly in Lemma E.1. C3 is given in Lemma E.1
but it depends on the unknown constant δ > 0 from the assumption Eq. (38). Furthermore,
C1 can be explicitly computed under much more tedious computations. Finally, N depends
on the unknown constant N0 in Eq. (38) and the resulting concentration property of
the posterior distribution for parameter σ2

A by Eq. (38). Therefore, if we make stronger
assumptions on the observed data {Yi}, it is then possible to compute all the constants in
Theorem 3.6 explicitly under tedious computations, though we do not pursue that here.

APPENDIX A: PROOF OF THEOREM 2.6

Recall that R denotes the “small set” and R0 denotes the “large set”. We first construct
a transition kernel for a “restricted” chain define on R0, P̃ (x, ·),∀x ∈R0. One goal of this
construction is that the stationary distribution of the kernel P̃ equals to the π(·) restricted
on the “large set” R0, i.e., π′(dx) := π(dx)/π(R0),∀x ∈ R0. We consider two different
constructions depending on (C1) or (C1’) in Definition 2.3 holds.
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• If (C1) in Definition 2.3 holds, then we define the kernel P̃ as the transition kernel of the
“trace chain” constructed as follows. Let X(m) be a Markov chain with kernel P , we define
a sequence of random entrance time {mi}i∈N by m0 := min{m≥ 0 :X(m) ∈R0}, mi :=
min{m>mi−1 : X(m) ∈ R0}. Then {X(mi)}i∈N is the “trace chain” and the transition
kernel P̃ (x,B) := P(X(m1) ∈B |X(m0) = x),∀x ∈R0. It is clear that the “trace chain” is
obtained by “stopping the clock” when the original chain is outside R0, the constructed P̃
is a valid transition kernel. It can be verified that the stationary distribution of this “trace
chain” is π′.

• If (C1’) in Definition 2.3 holds, then we construct the “restricted chain” using the ker-
nel P̃ =

∏I
i=1 P̃i where P̃i(x,dy) := Pi(x,dy) for x, y ∈ R0, x 6= y, and P̃i(x,x) :=

1 − Pi(x,R0\{x}),∀x ∈ R0. Note that since each Pi is reversible, one can easily ver-
ify that each P̃i is also reversible and the stationary distribution of P̃ is π′.

Suppose that X(m) and Y (m) are two realizations of the Markov chain, where X(m) starts
with the initial distribution ν(·) and Y (m) starts with the stationary distribution π(·). We
define X̃(m) and Ỹ (m) to be two realizations of a constructed “restricted” Markov chain
on the “large set” with the transition kernel P̃ (x, ·),∀x ∈R0. We assume X̃(m) starts with
the same initial distribution ν(·) as X(m) and Ỹ (m) starts with π′(·). Since ν(R0) = 1, we
assume X(0) = X̃(0). This rest of the proof is a modification of the original proof of the
drift-and-minorization method using coupling in [44].

We define the hitting times of (X̃(m), Ỹ (m)) to R×R as follows.

t1 : = inf{m≥ 0 : (X̃(m), Ỹ (m)) ∈R×R},

ti : = inf{m≥ ti−1 + 1 : (X̃(m), Ỹ (m)) ∈R×R}, ∀i > 1.
(49)

Let Nk := max{i : ti < k}. Then Nk denotes the number of (X̃(m), Ỹ (m)) to hit R×R in
the first k iterations. The following result gives an upper bound for ‖L(X(k))−L(Y (k))‖var.

LEMMA A.1. When the Markov chain satisfies the minorization condition in Eq. (9), for
any j > 0, we have

‖L(X(k))−L(Y (k))‖var ≤(1− εQ(R0))j + P(Nk < j)

+ k π(Rc0) +

k∑
i=1

νP i(Rc0).
(50)

PROOF. First, by triangle inequality

‖L(X(k))−L(Y (k))‖var ≤ ‖L(X̃(k))−L(Ỹ (k))‖var + ‖L(X(k))−L(X̃(k))‖var

+ ‖L(Y (k))−L(Ỹ (k))‖var.
(51)

By the coupling inequality ‖L(X(k))−L(X̃(k))‖var ≤ P(X(k) 6= X̃(k))≤
∑k

m=1 P(X(m) /∈
R0), we have

‖L(Y (k))−L(Ỹ (k))‖var + ‖L(X(k))−L(X̃(k))‖var

≤
k∑

m=1

P
(
Y (m) /∈R0

)
+

k∑
m=1

P
(
X(m) /∈R0

)

≤ k π(Rc0) +

k∑
i=1

νP i(Rc0).

(52)
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Finally, the Markov chain with kernel P̃ (x, ·) satisfies both drift condition

E(f(X̃(1)) | X̃(0) = x)≤ λf(x) + b, ∀x ∈R0,(53)

and minorization condition

P̃ (x,dy)≥ [εQ(R0)]
Q(dy)

Q(R0)
, ∀x, y ∈R0.(54)

Using the result from [44, Theorem 1], we have

‖L(X̃(k))−L(Ỹ (k))‖var ≤ (1− εQ(R0))j + P(Nk < j).(55)

Next, we further upper bound the term P(Nk < j) slightly tighter than [44]. Define the i-th
gap of return times by ri := ti − ti−1,∀i > 1, then

LEMMA A.2. For any α> 1 and j > 0, and k > j,

P(Nk < j)≤ 1

αk − αj

[
E

(
j∏
i=1

αri

)
− αj

]
.(56)

PROOF. Note that {Nk < j}= {tj ≥ k}= {r1 + · · ·+ rj ≥ k} and r1 + · · ·+ rj ≥ j by
definition. Then the result comes from Markov’s inequality

P(Nk < j) = P(r1 + · · ·+ rj ≥ k)

= P(αr1+···+rj − αj ≥ αk − αj)

≤ 1

αk − αj

[
E

(
j∏
i=1

αri

)
− αj

]
.

(57)

Next, we bound E
(∏j

i=1α
ri
)

following the exact same arguments as in [44, Proof of
Lemma 4 and Theorem 12], which gives

E

(
j∏
i=1

αri

)
≤ (αΛ)j−1 [1 +Eν(f(x)) +Eπ′(f(x))] .(58)

By the drift condition for P̃ (x, ·) in Eq. (53), taking expectations on both sides of Eq. (53)
leads to Eπ′(f(x))≤ b

1−λ . Therefore, setting j = rk+ 1 and combining all results together
yields

‖L(X(k))− π‖var ≤ (1− εQ(R0))rk+1 +
(αΛ)rk

[
1 +Eν(f(x)) + b

1−λ

]
− αrk+1

αk − αrk+1

+ k π(Rc0) +

k∑
i=1

νP i(Rc0).

(59)

Finally, we slightly relax the upper bound by replacing αrk+1 with αrk in both the denominator
and numerator. Then Theorem 2.6 is proved by further relaxing (1− ε)rk+1 to (1− ε)rk.
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APPENDIX B: PROOF OF THEOREM 3.7

Using Theorem 3.6, one sufficient condition for

‖L(X(k))− π‖var ≤ c(60)

is that n≥N and

C1γ
k ≤ c

3
, C2

(1 + k)2

n
≤ c

3
, C3

k√
n
≤ c

3
.(61)

This requires the number of iterations, k, satisfies

log(C1)− log(c/3)

log(1/γ)
≤ k ≤min


√
c/3

C3

√
n− 1,

c/3

C3

√
n

 .(62)

Note that any k (if exists) satisfying the above equation provides an upper bound for the
mixing time Kc,x(0)(n).

That is, for any n≥N such that

log(C1)− log(c/3)

log(1/γ)
≤min


√
c/3

C3

√
n− 1,

c/3

C3

√
n

 ,(63)

which is equivalent to

n≥max

N,
[
K̄c

3C3

c

]2

,

[(
K̄c + 1

)√3C3

c

]2
=:Nc,(64)

we have K̄c := log(C1)−log(c)+log(3)
log(1/γ) is an upper bound of the mixing time.

Finally, it can be seen that both K̄c = Θ(1) and Nc = Θ(1).

APPENDIX C: PROOF OF LEMMA C.1

LEMMA C.1. Under the assumptions of Theorem 3.6, let ∆ =
∑n

i=1(Yi − Ȳ )2 and
x= (σ2

A, µ, θ1, . . . , θn). Define the fitted family of drift functions {fn(x)} by

fn(x) := n(θ̄− Ȳ )2 + n

[(
∆

n− 1
− σ2

V

)
− σ2

A

]2

.(65)

Let x(k) = ((σ2
A)(k), µ(k), θ

(k)
1 , . . . , θ

(k)
n ) be the state of the Markov chain at the k-th iteration,

then we have

E[fn(x(k+1)) |x(k)]≤

(
(σ2
V )2 + 2σ2

V (σ2
A)(k)

(σ2
V )2 + 2σ2

V (σ2
A)(k) + ((σ2

A)(k))2

)2

fn(x(k)) + b, ∀x(k) ∈ X

(66)

where b=O(1).
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PROOF. In this proof, we write fn(x) as f(x) for simplicity. Recall that the order of Gibbs
sampling for computing the first scan is:

µ(1) ∼N

(
θ̄(0),

(σ2
A)(0)

n

)
,

θ
(1)
i ∼N

(
µ(1)σ2

V + Yi(σ
2
A)(0)

σ2
V + (σ2

A)(0)
,

(σ2
A)(0)σ2

V

σ2
V + (σ2

A)(0)

)
,

(σ2
A)(1) ∼ IG

(
a+

n− 1

2
, b+

1

2

n∑
i=1

(θ
(1)
i − θ̄

(1))2

)
.

(67)

It suffices to show that for ∆ =
∑n

i=1(Yi − Ȳ )2 and

f(x) = n(θ̄− Ȳ )2 + n

[(
∆

n− 1
− σ2

V

)
− σ2

A

]2

,(68)

we have

E[f(x(1)) |x(0)]≤

(
(σ2
V )2 + 2σ2

V (σ2
A)(0)

(σ2
V )2 + 2σ2

V (σ2
A)(0) + ((σ2

A)(0))2

)2

f(x(0)) + b,(69)

where b=O(1).
Note that we can compute the expectation in E[f(x(1)) |x(0)] by three steps, according to

the reverse order of the Gibbs sampling. To simplify the notation, we define σ-algebras that
we condition on:

GA : = σ((σ2
A)(0),{θ(1)

i }, µ
(1)),

Gθ : = σ((σ2
A)(0),{θ(0)

i }, µ
(1)),

Gµ : = σ((σ2
A)(0),{θ(0)

i }, µ
(0)).

(70)

Then we have

E[f(x(1)) |x(0)] = E[f(x(1)) | Gµ] = E[E[E[f(x(1)) | GA] | Gθ] | Gµ].(71)

The three steps are as follows:

1. Compute the expectation over (σ2
A)(1) given {θ(1)

i } and µ(1). This is to compute the
conditional expectation

f ′(x(1)) := E[f(x(1)) | GA],(72)

where we write E[· | GA] to denote the the expectation is over (recall that a and b are
constants from the prior IG(a, b))

(σ2
A)(1) ∼ IG

(
a+

n− 1

2
, b+

1

2

n∑
i=1

(θ
(1)
i − θ̄

(1))2

)
(73)

for given θ(1) and µ(1).
2. Compute the expectation over {θ(1)

i } given µ(1). This is to compute the conditional expec-
tation

f ′′(x(1)) := E[f ′(x(1)) | Gθ],(74)



COMPLEXITY RESULTS FOR MCMC DERIVED FROM QUANTITATIVE BOUNDS 23

where we use E[· | Gθ] to denote the expectation is over

θ
(1)
i ∼N

(
µ(1)σ2

V + Yi(σ
2
A)(0)

σ2
V + (σ2

A)(0)
,

(σ2
A)(0)σ2

V

σ2
V + (σ2

A)(0)

)
, i= 1, . . . , n,(75)

for given µ(1) and (σ2
A)(0).

3. Compute the expectation over µ(1). This is to compute the conditional expectation

E[f(x(1)) |x(0)] = E[f ′′(x(1)) | Gµ],(76)

where we have used E[· | Gµ] to denote the expectation is over

µ(1) ∼N

(
θ̄(0),

(σ2
A)(0)

n

)
(77)

for given {θ(0)
i } and (σ2

A)(0).

In the following, we compute the three steps, respectively. We use O(1) to denote terms that
can be upper bounded by some constant that does not depend on the state.

C.1. Compute f ′(x(1)) = E[f(x(1)) | GA]. The first term of f(x(1)) is n(θ̄(1) − Ȳ )2,
which is GA-measurable by construction. Thus, E[n(θ̄(1) − Ȳ )2 | GA] = n(θ̄(1) − Ȳ )2. Then

f ′(x(1)) = E[f(x(1)) | GA]

= n(θ̄(1) − Ȳ )2 + nE

{[(
∆

n− 1
− σ2

V

)
− (σ2

A)(1)

]2

| GA

}
.

(78)

Note that

nE

{[(
∆

n− 1
− σ2

V

)
− (σ2

A)(1)

]2

| GA

}

= n

(
∆

n− 1
− σ2

V

)2

+ nE[((σ2
A)(1))2 | GA]− 2n

(
∆

n− 1
− σ2

V

)
E[(σ2

A)(1) | GA].

(79)

Recall that E[· | GA] denotes that the expectation is over

(σ2
A)(1) ∼ IG

(
a+

n− 1

2
, b+

1

2

n∑
i=1

(θ
(1)
i − θ̄

(1))2

)
,(80)

where a and b are constants from the prior IG(a, b). The mean and variance of (σ2
A)(1) can be

written in closed forms since (σ2
A)(1) follows from an inverse Gamma distribution. Denoting

S :=
∑
i(θ

(1)
i −θ̄(1))2
n−1 , we can write the mean of (σ2

A)(1) using S as follows:

E[(σ2
A)(1) | GA] =

∑
i(θ

(1)
i − θ̄(1))2 + 2b

n− 1 + 2(a− 1)

=

∑
i(θ

(1)
i − θ̄(1))2

n− 1
+

2b

n− 1 + 2(a− 1)

−

(∑
i(θ

(1)
i − θ̄(1))2

n− 1

)(
2(a− 1)

n− 1 + 2(a− 1)

)
= S +O(1/n) +O(1/n)S.

(81)
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Similarly, the variance of (σ2
A)(1) can be written in terms of S as well:

var[(σ2
A)(1) | GA] =

(
∑

i(θ
(1)
i − θ̄(1))2/2 + b)2

[(n− 1)/2 + (a− 1)]2[(n− 1)/2 + (a− 2)]

=
1

(n− 1)/2 + (a− 2)

(
E[(σ2

A)(1) | GA]
)2

=O(1/n) (S +O(1/n) +O(1/n)S)2

=O(1/n)S2 +O(1/n2)S +O(1/n3).

(82)

Substituting the mean and variance of (σ2
A)(1) in terms of S, we have

f ′(x(1)) = E[f(x(1)) | GA]

= n(θ̄(1) − Ȳ )2 + n

(
∆

n− 1
− σ2

V

)2

+ nS2 − 2n

(
∆

n− 1
− σ2

V

)
S

+O(1) +O(1)S +O(1)S2.

(83)

C.2. Compute f ′′(x(1)) = E[f ′(x(1)) | Gθ]. Note that the terms in f ′(x(1)) involving

{θ(1)
i } are (θ̄(1) − Ȳ )2 and S =

∑
i(θ

(1)
i −θ̄(1))2
n−1 . Then

f ′′(x(1)) = E[f ′(x(1)) | Gθ]

= nE
[
(θ̄(1) − Ȳ )2 | Gθ

]
+ n

(
∆

n− 1
− σ2

V

)2

+ nE[S2 | Gθ]− 2n

(
∆

n− 1
− σ2

V

)
E[S | Gθ]

+O(1) +O(1)E[S | Gθ] +O(1)E[S2 | Gθ].

(84)

Therefore, it suffices to compute the following terms

E
[
(θ̄(1) − Ȳ )2 | Gθ

]
, E[S | Gθ], E[S2 | Gθ].(85)
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Note that {θ(1)
i } are independent (but not identically distributed) conditional on Gθ . For the

first term E
[
(θ̄(1) − Ȳ )2 | Gθ

]
, we have

E
[
(θ̄(1) − Ȳ )2 | Gθ

]
= E

(θ̄(1) −
µ(1)σ2

V + Ȳ (σ2
A)(0)

σ2
V + (σ2

A)(0)
+
µ(1)σ2

V + Ȳ (σ2
A)(0)

σ2
V + (σ2

A)(0)
− Ȳ

)2

| Gθ


= E

(θ̄(1) −
µ(1)σ2

V + Ȳ (σ2
A)(0)

σ2
V + (σ2

A)(0)

)2

| Gθ

+

(
µ(1)σ2

V + Ȳ (σ2
A)(0)

σ2
V + (σ2

A)(0)
− Ȳ

)2

+ 2

(
µ(1)σ2

V + Ȳ (σ2
A)(0)

σ2
V + (σ2

A)(0)
− Ȳ

)
E

[(
θ̄(1) −

µ(1)σ2
V + Ȳ (σ2

A)(0)

σ2
V + (σ2

A)(0)

)
| Gθ

]

= var[θ̄(1) | Gθ] +

(
σ2
V

σ2
V + (σ2

A)(0)

)2 (
µ(1) − Ȳ

)2

=
1

n

(σ2
A)(0)σ2

V

σ2
V + (σ2

A)(0)
+

(
σ2
V

σ2
V + (σ2

A)(0)

)2 (
µ(1) − Ȳ

)2

(86)

For the other two terms involving S, we have the following lemma.

LEMMA C.2. For S =
∑
i(θ

(1)
i −θ̄(1))2
n−1 , we have

E[S | Gθ] =
(σ2
A)(0)σ2

V

σ2
V + (σ2

A)(0)
+

(
(σ2
A)(0)

σ2
V + (σ2

A)(0)

)2
∆

n− 1
, var[S | Gθ] =O(1/n).(87)

PROOF. Define ηi := θ
(1)
i −

Yi(σ2
A)(0)

σ2
V +(σ2

A)(0) then η̄ = θ̄(1)− Ȳ (σ2
A)(0)

σ2
V +(σ2

A)(0) . Note that {ηi} are i.i.d.
conditional on Gθ with

ηi ∼N

(
µ(1)σ2

V

σ2
V + (σ2

A)(0)
,

(σ2
A)(0)σ2

V

σ2
V + (σ2

A)(0)

)
, η̄ ∼N

(
µ(1)σ2

V

σ2
V + (σ2

A)(0)
,

1

n

(σ2
A)(0)σ2

V

σ2
V + (σ2

A)(0)

)
.

(88)

Next, we decompose
∑n

i=1(θ
(1)
i − θ̄(1))2 by

n∑
i=1

(θ
(1)
i − θ̄

(1))2 =

n∑
i=1

(
ηi +

Yi(σ
2
A)(0)

σ2
V + (σ2

A)(0)
− η̄−

Ȳ (σ2
A)(0)

σ2
V + (σ2

A)(0)

)2

=

n∑
i=1

(ηi − η̄)2 +

(
(σ2
A)(0)

σ2
V + (σ2

A)(0)

)2

(Yi − Ȳ )2 +
2(ηi − η̄)(Yi − Ȳ )(σ2

A)(0)

σ2
V + (σ2

A)(0)

 .

(89)
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Then we can obtain E[S | Gθ] by

E[S | Gθ] = E

{[∑
i(θ

(1)
i − θ̄(1))2

n− 1

]
| Gθ

}

= E
{[∑

i(ηi − η̄)2

n− 1

]
| Gθ
}

+

(
(σ2
A)(0)

σ2
V + (σ2

A)(0)

)2 ∑n
i=1(Yi − Ȳ )2

n− 1

=
(σ2
A)(0)σ2

V

σ2
V + (σ2

A)(0)
+

(
(σ2
A)(0)

σ2
V + (σ2

A)(0)

)2
∆

n− 1
.

(90)

For var[S | Gθ], using the Cauchy-Schwartz inequality

var[S | Gθ] = E
[
(S −E[S | Gθ])2 | Gθ

]
= E

(∑n
i=1(ηi − η̄)2

n− 1
−E{ηi}

[∑
i(ηi − η̄)2

n− 1

]
+ 2

(σ2
A)(0)

σ2
V + (σ2

A)(0)

∑n
i=1(ηi − η̄)(Yi − Ȳ )

n− 1

)2

| Gθ


≤ 2var

[∑
i(ηi − η̄)2

n− 1
| Gθ
]

+ 8

(
(σ2
A)(0)

σ2
V + (σ2

A)(0)

)2 E
{[∑

i(ηi − η̄)(Yi − Ȳ )
]2 | Gθ}

(n− 1)2
.

(91)

Note that {ηi} are i.i.d conditional on Gθ , we know

E

{[∑
i(ηi − η̄)2

n− 1

]2

| Gθ

}
=

{
E
[∑

i(ηi − η̄)2

n− 1
| Gθ
]}2

+O(1/n).(92)

That is, var
[∑

i(ηi−η̄)2

n−1 | Gθ
]

=O(1/n). Finally, the term

E
{[∑

i(ηi − η̄)(Yi − Ȳ )
]2 | Gθ}

(n− 1)2

=
E
{[∑

i(ηi − η̄)2(Yi − Ȳ )2
]
| Gθ
}

+E[η̄2 | Gθ]
∑

i 6=j(Yi − Ȳ )(Yj − Ȳ )

(n− 1)2

=

∑
i(Yi − Ȳ )2

(n− 1)2
E
[
(η1 − η̄)2 | Gθ

]
+O(1/n)

=
∆

(n− 1)2

(n− 1) (σ2
A)(0)σ2

V

σ2
V +(σ2

A)(0)

n
+O(1/n) =O(1/n).

(93)

Therefore, we have var[S | Gθ] =O(1/n).

Next, using the following results

E[S | Gθ] =
(σ2
A)(0)σ2

V

σ2
V + (σ2

A)(0)
+

(
(σ2
A)(0)

σ2
V + (σ2

A)(0)

)2
∆

n− 1

≤ σ2
V +

(
(σ2
A)(0)

σ2
V + (σ2

A)(0)

)2
∆

n− 1
=O(1),

E[S2 | Gθ] = (E[S | Gθ])2 +O(1/n) =O(1),

(94)
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we can first write f ′′(x(1)) by

f ′′(x(1)) =nE
[
(θ̄(1) − Ȳ )2 | Gθ

]
+ n

(
∆

n− 1
− σ2

V

)2

+ nE[S2 | Gθ]− 2n

(
∆

n− 1
− σ2

V

)
E[S | Gθ] +O(1).

(95)

Then, using

nE
[
(θ̄(1) − Ȳ )2 | Gθ

]
=

(σ2
A)(0)σ2

V

σ2
V + (σ2

A)(0)
+ n

(
σ2
V

σ2
V + (σ2

A)(0)

)2 (
µ(1) − Ȳ

)2

≤ σ2
V +

n(σ2
V )2

(
µ(1) − Ȳ

)2
(σ2
V + (σ2

A)(0))2

(96)

we further bound the terms

nE
[
(θ̄(1) − Ȳ )2 | Gθ

]
+ n

(
∆

n− 1
− σ2

V

)2

+ nE[S2 | Gθ]− 2n

(
∆

n− 1
− σ2

V

)
E[S | Gθ]

≤
n(σ2

V )2
(
µ(1) − Ȳ

)2
(σ2
V + (σ2

A)(0))2
+ n

[(
∆

n− 1
− σ2

V

)
−E[S | Gθ]

]2

=
n(σ2

V )2
(
µ(1) − Ȳ

)2
(σ2
V + (σ2

A)(0))2
+ n

 (σ2
A)(0)σ2

V

σ2
V + (σ2

A)(0)
+

(
(σ2
A)(0)

σ2
V + (σ2

A)(0)

)2
∆

n− 1
−
(

∆

n− 1
− σ2

V

)2

=
n(σ2

V )2
(
µ(1) − Ȳ

)2
(σ2
V + (σ2

A)(0))2
+ n

 ∆

n− 1

( (σ2
A)(0)

σ2
V + (σ2

A)(0)

)2

− 1

+

(
(σ2
A)(0)σ2

V

σ2
V + (σ2

A)(0)
+ σ2

V

)2

=
n(σ2

V )2
(
µ(1) − Ȳ

)2
(σ2
V + (σ2

A)(0))2
+ n

(
(σ2
A)(0)

σ2
V + (σ2

A)(0)
+ 1

)2 [
∆

n− 1

(
−σ2

V

σ2
V + (σ2

A)(0)

)
+ σ2

V

]2

=
n(σ2

V )2
(
µ(1) − Ȳ

)2
(σ2
V + (σ2

A)(0))2
+
n(σ2

V )2(σ2
V + 2(σ2

A)(0))2

(σ2
V + (σ2

A)(0))4

[
∆

n− 1
− ((σ2

A)(0) + σ2
V )

]2

.

(97)

Finally, combing all the results yields

f ′′(x(1)) =
n(σ2

V )2
(
µ(1) − Ȳ

)2
(σ2
V + (σ2

A)(0))2
+
n(σ2

V )2(σ2
V + 2(σ2

A)(0))2

(σ2
V + (σ2

A)(0))4

[
∆

n− 1
− ((σ2

A)(0) + σ2
V )

]2

+O(1).

(98)

C.3. Compute E[f(x(1)) |x(0)] = E[f ′′(x(1)) | Gµ]. Recall that the expectation
E[· | Gµ] is over

µ(1) ∼N

(
θ̄(0),

(σ2
A)(0)

n

)
.(99)
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In the obtained expression of f ′′(x(1)) from previous step, the only term involves µ(1) is
n(σ2

V )2(µ(1)−Ȳ )
2

(σ2
V +(σ2

A)(0))2 . Since

E
[
(µ(1) − Ȳ )2 | Gµ

]
= (θ̄(0) − Ȳ )2 + (σ2

A)(0)/n,(100)

we have

E[f(x(1)) |x(0)] = E[f ′′(x(1)) | Gµ]

≤
n(σ2

V )2

(σ2
V + (σ2

A)(0))2

(
(θ̄(0) − Ȳ )2 +

(σ2
A)(0)

n

)

+
n(σ2

V )2(σ2
V + 2(σ2

A)(0))2

(σ2
V + (σ2

A)(0))4

[
∆

n− 1
− ((σ2

A)(0) + σ2
V )

]2

+O(1)

=
n(σ2

V )2(θ̄(0) − Ȳ )2

(σ2
V + (σ2

A)(0))2

+
n(σ2

V )2(σ2
V + 2(σ2

A)(0))2

(σ2
V + (σ2

A)(0))4

[
∆

n− 1
− ((σ2

A)(0) + σ2
V )

]2

+O(1).

(101)

Finally, we complete the proof by

n(σ2
V )2(θ̄(0) − Ȳ )2

(σ2
V + (σ2

A)(0))2
+
n(σ2

V )2(σ2
V + 2(σ2

A)(0))2

(σ2
V + (σ2

A)(0))4

[
∆

n− 1
− ((σ2

A)(0) + σ2
V )

]2

+O(1)

=
n(σ2

V )2(σ2
V + 2(σ2

A)(0))2

(σ2
V + (σ2

A)(0))4

{
(σ2
V + (σ2

A)(0))2

(σ2
V + 2(σ2

A)(0))2
(θ̄(0) − Ȳ )2 +

[
∆

n− 1
− ((σ2

A)(0) + σ2
V )

]2
}

+O(1)

≤
(σ2
V )2(σ2

V + 2(σ2
A)(0))2

(σ2
V + (σ2

A)(0))4

{
n(θ̄(0) − Ȳ )2 + n

[
∆

n− 1
− ((σ2

A)(0) + σ2
V )

]2
}

+O(1)

=

( (σ2
V )2 + 2σ2

V (σ2
A)(0)

(σ2
V )2 + 2σ2

V (σ2
A)(0) + ((σ2

A)(0))2

)2
f(x(0)) +O(1).

(102)

APPENDIX D: PROOF OF LEMMA D.1

LEMMA D.1. Under the assumptions of Theorem 3.6, recall the “large set” defined in
the proof of Theorem 3.6. If T = Θ(1), by choosing the size of the “small set” R = {x ∈
X : fn(x) ≤ d} to satisfy d =O(1) and d > b

1−λT , there exists a probability measure Q(·)
such that the Markov chain satisfies a minorization condition in Eq. (9) with the minorization
volumne ε= Θ(1).

PROOF. Throughout the proof, we write fn(x) as f(x) for simplicity. Recall that the small
set is defined by R= {x ∈ X : f(x)≤ d} where d > 2b/(1−λT ) and x= (σ2

A, µ, θ1, . . . , θn).
When b=O(1) and λT = Θ(1), we can choose d=O(1). Our goal is to show the minoriza-
tion volume ε satisfying

P (x, ·)≥ εQ(·), ∀x ∈R,(103)
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is asymptotically bounded away from 0. Denoting σ̂2
A := ∆

n−1 − σ
2
V , we have

R=

{
x ∈ X : n(θ̄− Ȳ )2 + n

[(
∆

n− 1
− σ2

V

)
− σ2

A

]2

≤ d

}

⊆

{
x ∈ X : |θ̄− Ȳ | ≤

√
d

n

}⋂{
x ∈ X : |σ2

A − σ̂2
A| ≤

√
d

n

}(104)

Denoting

R′ :=

{
x ∈ X : |θ̄− Ȳ | ≤

√
d

n
, |σ2

A − σ̂2
A| ≤

√
d

n

}
(105)

since R⊆R′, it suffices to show the minorization volume ε satisfying

P (x(0), ·)≥ εQ(·), ∀x(0) ∈R′,(106)

is asymptotically bounded away from 0. One common technique to obtain ε is by integrating
the infimum of densities of P (x(0), ·) where in our case the infimum is over all θ̄(0) and

(σ2
A)(0) such that |θ̄(0) − Ȳ | ≤

√
d
n and |(σ2

A)(0) − σ̂2
A| ≤

√
d
n .

Note that the intuition behind the proof is: since R′ is determined by |θ̄(0) − Ȳ | ≤
√

d
n

and |(σ2
A)(0) − σ̂2

A| ≤
√

d
n . The size of uncertainties of the initial θ̄(0) and (σ2

A)(0) is of order

O(1/
√
n). Therefore, for any fixed initial state x(0) ∈R′, if the transition kernel P (x(0), ·)

concentrates at a rate of Ω(1/
√
n) then ε is bounded away from 0.

For the density function of the Markov transition kernel P (x(0), ·), recall the order of Gibbs
sampler

µ(1) ∼N

(
θ̄(0),

(σ2
A)(0)

n

)
,

θ
(1)
i ∼N

(
µ(1)σ2

V + Yi(σ
2
A)(0)

σ2
V + (σ2

A)(0)
,

(σ2
A)(0)σ2

V

σ2
V + (σ2

A)(0)

)
, i= 1, . . . , n

(σ2
A)(1) ∼ IG

(
a+

n− 1

2
, b+

1

2

n∑
i=1

(θ
(1)
i − θ̄

(1))2

)
.

(107)

Then ε can be computed using the three steps of integration according to the reverse order of
the Gibbs sampler:

1. For given µ(1) and {θ(1)
i }, integrating the infimum of the density of (σ2

A)(1). Note that the
infimum is over a subset of θ̄(0) and (σ2

A)(0). However,

(σ2
A)(1) ∼ IG

(
a+

n− 1

2
, b+

1

2

n∑
i=1

(θ
(1)
i − θ̄

(1))2

)
(108)

does not depend on θ̄(0) and (σ2
A)(0). Therefore, the integration of the infimum of the

density in this step always equals one;
2. For given µ(1), integrating the infimum of the densities of {θ(1)

i }. We first note that

{θ(1)
i } appear in the densities only in the forms of θ̄(1) and S =

∑
i(θ

(1)
i −θ̄(1))2
n−1 . Therefore,

instead of integrating over (θ
(1)
1 , . . . , θ

(1)
n ) we can integrate over θ̄(1) and S. Furthermore,
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we have shown θ̄(1) is conditional independent with S given (σ2
A)(0) in the proof of

Lemma C.2, we can integrate them separately. Finally, we note that the infimum is over{
(σ2
A)(0) : |(σ2

A)(0) − σ̂2
A| ≤

√
d
n

}
. Overall, we need to show g̃n(µ(1)) is lower bounded

away from 0, which is defined by

g̃n(µ(1)) :=

∫
dSdθ̄ inf

x(0)∈R′

{
fS((σ2

A)(0), n;S)N

(
µ(1)σ2

V + Ȳ (σ2
A)(0)

σ2
V + (σ2

A)(0)
,

(σ2
A)(0)σ2

V

n(σ2
V + (σ2

A)(0))
; θ̄

)}

≥
[∫

dS inf
x(0)∈R′

fS((σ2
A)(0), n;S)

]

·

[∫
dθ̄ inf

x(0)∈R′
N

(
µ(1)σ2

V + Ȳ (σ2
A)(0)

σ2
V + (σ2

A)(0)
,

(σ2
A)(0)σ2

V

n(σ2
V + (σ2

A)(0))
; θ̄

)]
,

(109)

where fS((σ2
A)(0), n;S) denotes the density function of S =

∑
i(θi−θ̄)2
n−1 for given (σ2

A)(0),
with

θi ∼N

(
µ(1)σ2

V + Yi(σ
2
A)(0)

σ2
V + (σ2

A)(0)
,

(σ2
A)(0)σ2

V

σ2
V + (σ2

A)(0)

)
, i= 1, . . . , n,(110)

and N
(
µ(1)σ2

V +Ȳ (σ2
A)(0)

σ2
V +(σ2

A)(0) , (σ2
A)(0)σ2

V

n(σ2
V +(σ2

A)(0)) ; θ̄
)

denotes the density function of

θ̄ ∼N

(
µ(1)σ2

V + Ȳ (σ2
A)(0)

σ2
V + (σ2

A)(0)
,

(σ2
A)(0)σ2

V

n(σ2
V + (σ2

A)(0))

)
.(111)

3. Finally, we integrate the infimum of the densities of µ(1) to get ε. That is,

ε=

∫
dµ

{
g̃n(µ) inf

x(0)∈R′
N

(
θ̄(0),

(σ2
A)(0)

n
;µ

)}
.(112)

In the following, we show ε is lower bounded away from 0 in three steps.
First, it is easy to see that the density of S does not depend on µ(1). We show∫

dS inf
x(0)∈R′

fS((σ2
A)(0), n;S) = Θ(1).(113)

Second, we show

∫
dθ̄ inf

x(0)∈R′
N

(
µ(1)σ2

V + Ȳ (σ2
A)(0)

σ2
V + (σ2

A)(0)
,

(σ2
A)(0)σ2

V

n(σ2
V + (σ2

A)(0))
; θ̄

)
≥ 1− erf

(
C|µ|+C ′√

2

)(114)

where erf(z) := 2√
π

∫ z
0 e
−t2dt and C and C ′ are some constants.

Finally, we complete the proof by showing∫
dµ

{(
1− erf(

C|µ|+C ′√
2

)

)
inf

x(0)∈R′
N

(
θ̄(0),

(σ2
A)(0)

n
;µ

)}
= Θ(1).(115)
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D.1. Proof of Eq. (113). We omit the superscripts for simplicity. That is, we show∫
dS inf{

σ2
A:|σ2

A−σ̂2
A|≤
√

d

n

}fS(σ2
A, n;S) = Θ(1).(116)

Following the proof of Lemma C.2 from Eq. (89) to Eq. (93), defining

ηi := θi −
Yiσ

2
A

σ2
V + σ2

A

∼N
(

µσ2
V

σ2
V + σ2

A

,
σ2
Aσ

2
V

σ2
V + σ2

A

)
,(117)

we know

E

∣∣∣∣∣S −
∑

i(ηi − η̄)2

n− 1
−
(

σ2
A

σ2
V + σ2

A

)2
∆

n− 1

∣∣∣∣∣
2
=O(1/n).(118)

Therefore, defining

S′ :=

∑
i(ηi − η̄)2

n− 1
+

(
σ2
A

σ2
V + σ2

A

)2
∆

n− 1
(119)

and denoting f ′S′(σ
2
A, n;S′) as the density of S′, it suffices to show∫

dS′ inf{
σ2
A:|σ2

A−σ̂2
A|≤
√

d

n

}f ′S′(σ2
A, n;S′) = Θ(1).(120)

Furthermore, note that under |σ2
A− σ̂2

A| ≤
√

d
n , we have σ2

V +σ2
A

σ2
Aσ

2
V

= σ2
V +σ̂2

A

σ̂2
Aσ

2
V

+O(1/
√
n) = Θ(1).

Then it suffices to show∫
dS′′ inf{

σ2
A:|σ2

A−σ̂2
A|≤
√

d

n

}f ′′S′′(σ2
A, n;S′′) = Θ(1),(121)

where

S′′ : =
σ2
V + σ2

A

σ2
Aσ

2
V

S′ =
σ2
V + σ2

A

σ2
Aσ

2
V

∑
i(ηi − η̄)2

n− 1
+

1

σ2
V

(
σ2
A

σ2
V + σ2

A

)
∆

n− 1
(122)

and f ′′S′′(σ
2
A, n;S′′) is the density function of S′′.

Next, note that σ
2
V +σ2

A

σ2
Aσ

2
V

∑
i(ηi − η̄)2 ∼ χ2

n−1, we have

σ2
V +σ2

A

σ2
Aσ

2
V

∑
i(ηi − η̄)2 − (n− 1)√

2(n− 1)

d−→N (0,1),(123)

which does not depend on n. We define f̃(z,σ2
A;x),∀z ∈ R as the density function of a

random variable

X̃z,σ2
A

:= z +

σ2
V +σ2

A

σ2
Aσ

2
V

∑
i(ηi − η̄)2 − (n− 1)√

2(n− 1)
,(124)

then we know X̃z,σ2
A

d−→N (z,1).
The rest of the proof is first to lower bound

∫
dS′′ inf{

σ2
A:|σ2

A−σ̂2
A|≤
√

d

n

} f ′′S′′(σ2
A, n;S′′)

using the density function f̃(z,σ2
A;x) and then show it is asymptotically lower bounded away

from 0.
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Notice that 1
σ2
V

(
σ2
A

σ2
V +σ2

A

)
∆
n−1 is not random, and there exists a constant C0 such that(

max
{σ2
A:|σ2

A−σ̂2
A|≤
√
d/n}

σ2
A

σ2
V + σ2

A

− min
{σ2
A:|σ2

A−σ̂2
A|≤
√
d/n}

σ2
A

σ2
V + σ2

A

)
∆/σ2

V

n− 1
≤ C0√

n− 1
.(125)

Finally we have∫
dS′′ inf{

σ2
A:|σ2

A−σ̂2
A|≤
√

d

n

}f ′′S′′(σ2
A, n;S′′)

≥ inf{
σ2
A:|σ2

A−σ̂2
A|≤
√

d

n

}
∫

dxmin

{
f̃

(
−C0√

2
, σ2
A;x

)
, f̃

(
+
C0√

2
, σ2
A;x

)}

= 1− sup
{σ2
A:|σ2

A−σ̂2
A|≤
√
d/n}

∫ √2C0

−
√

2C0

dxf̃(0, σ2
A;x)

= 1− sup
{σ2
A:|σ2

A−σ̂2
A|≤
√
d/n}

P(−
√

2C0 ≤ X̃0,σ2
A
≤
√

2C0)

→ 1−
∫ √2C0

−
√

2C0

dxN (0,1;x) = Θ(1).

(126)

D.2. Proof of Eq. (114). We again omit the subscripts for simplicity. The goal is to lower
bound ∫

dθ̄ inf{
σ2
A:|σ2

A−σ̂2
A|≤
√

d

n

}N
(
µσ2

V + Ȳ σ2
A

σ2
V + σ2

A

,
σ2
Aσ

2
V

n(σ2
V + σ2

A)
; θ̄

)
(127)

Note that there exists some constants C1 and C2 such that

max{
σ2
A:|σ2

A−σ̂2
A|≤
√

d

n

} µσ2
V + Ȳ σ2

A

σ2
V + σ2

A

− min{
σ2
A:|σ2

A−σ̂2
A|≤
√

d

n

} µσ2
V + Ȳ σ2

A

σ2
V + σ2

A

≤ C1|µ|+C2√
n

,(128)

and another constant C3 such that

min{
σ2
A:|σ2

A−σ̂2
A|≤
√

d

n

} σ2
Aσ

2
V

n(σ2
V + σ2

A)
≥ C3

n
.(129)

Therefore, we have∫
dθ̄ inf{

σ2
A:|σ2

A−σ̂2
A|≤
√

d

n

}N
(
µσ2

V + Ȳ σ2
A

σ2
V + σ2

A

,
σ2
Aσ

2
V

n(σ2
V + σ2

A)
; θ̄

)

≥ 2

∫ ∞
(C1|µ|+C2)/

√
n

dxN (0,C3/n;x)

= 2

∫ ∞
C4|µ|+C5

dxN (0,1;x)

= 1− erf
(
C4|µ|+C5√

2

)
,

(130)

where C4 := C1√
C3

and C5 := C2√
C3

.
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D.3. Proof of Eq. (115). We omit the subscripts for simplicity. We show the following is
asymptotically bounded away from 0:∫

dµ

{(
1− erf

(
C4|µ|+C5√

2

))
inf
x∈R′
N
(
θ̄,
σ2
A

n
;µ

)}
(131)

Note that there exists (σ2
A)′n ∈ [σ̂2

A −
√
d/n, σ̂2

A +
√
d/n] such that

inf{
(θ̄,σ2

A):|θ̄−Ȳ |≤
√

d

n
,|σ2

A−σ̂2
A|≤
√

d

n

}N
(
θ̄,
σ2
A

n
;µ

)

= min

{
N

(
Ȳ −

√
d

n
,
(σ2
A)′n
n

;µ

)
,N

(
Ȳ +

√
d

n
,
(σ2
A)′n
n

;µ

)}(132)

Therefore, we have

∫ ∞
−∞

dµ


(

1− erf
(
C4|µ|+C5√

2

))
inf{

(θ̄,σ2
A):|θ̄−Ȳ |≤

√
d

n
,|σ2

A−σ̂2
A|≤
√

d

n

}N
(
θ̄,
σ2
A

n
;µ

)
≥
∫ 2Ȳ

0
dµ


(

1− erf
(
C4|µ|+C5√

2

))
inf{

(θ̄,σ2
A):|θ̄−Ȳ |≤

√
d

n
,|σ2

A−σ̂2
A|≤
√

d

n

}N
(
θ̄,
σ2
A

n
;µ

)
≥
(

1− erf
(
C4|2Ȳ |+C5√

2

))∫ 2Ȳ

0
dµ inf{

(θ̄,σ2
A):|θ̄−Ȳ |≤

√
d

n
,|σ2

A−σ̂2
A|≤
√

d

n

}N
(
θ̄,
σ2
A

n
;µ

)

=

(
1− erf

(
C4|2Ȳ |+C5√

2

))

·

[∫ Ȳ

0
dµN

(
Ȳ +

√
d

n
,
(σ2
A)′n
n

;µ

)
+

∫ 2Ȳ

Ȳ
dµN

(
Ȳ −

√
d

n
,
(σ2
A)′n
n

;µ

)]

=

(
1− erf

(
C4|2Ȳ |+C5√

2

))

·

[∫ 0

−Ȳ
dµN

(√
d

n
,
(σ2
A)′n
n

;µ

)
+

∫ Ȳ

0
dµN

(
−
√
d

n
,
(σ2
A)′n
n

;µ

)]

(133)

Finally, we show∫ 0

−Ȳ
dµN

(√
d

n
,
(σ2
A)′n
n

;µ

)
+

∫ Ȳ

0
dµN

(
−
√
d

n
,
(σ2
A)′n
n

;µ

)
(134)
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is asymptotically bounded away from 0. Note that when n→∞, we have (σ2
A)′n→ σ̂2

A. So

the density functions N
(
±
√

d
n ,

(σ2
A)′n
n ;µ

)
concentrate on 0. Therefore

∫ 0

−Ȳ
dµN

(√
d

n
,
(σ2
A)′n
n

;µ

)
+

∫ Ȳ

0
dµN

(
−
√
d

n
,
(σ2
A)′n
n

;µ

)

→
∫ 0

−∞
dµN

(√
d

n
,
σ̂2
A

n
;µ

)
+

∫ ∞
0

dµN

(
−
√
d

n
,
σ̂2
A

n
;µ

)

= 1−
∫ √d/n
−
√
d/n

dxN
(

0,
σ̂2
A

n
;x

)

= 1−
∫ √d
−
√
d

dxN (0, σ̂2
A;x) = Θ(1).

(135)

APPENDIX E: PROOF OF LEMMA E.1

LEMMA E.1. Under the assumptions of Theorem 3.6, recall the definition of drift function
and “large set” in the proof of Theorem 3.6. With the initial state x(0) given by Eq. (39), there
exists a positive integer N , which does not depend on k, such that for all n≥N , we have

k π(RcT ) +

k∑
i=1

P i(x(0),RcT )

≤ k√
n

√
b(2σ2

V /δ + 1)∣∣∣( ∆
n−1 − σ

2
V

)
− T

∣∣∣ +
k(1 + k)

2n

b[(
∆
n−1 − σ

2
V

)
− T

]2 .

(136)

PROOF. In this proof, we write fn(x) as f(x) for simplicity. We first consider a Markov
chain starting from initial state x(0) defined by Eq. (39). By Eq. (38), we have (σ2

A)(0) =∑n
i=1(Yi−Ȳ )2

n−1 −σ2
V for large enough n, which implies f(x(0)) = 0. Therefore, for large enough

n, we have E(f(x(1))) ≤ b from Lemma C.1. Furthermore, we can continue to get upper
bounds E(f(x(i)))≤ ib for all i= 1, . . . , k. This implies

E

[((
∆

n− 1
− σ2

V

)
− (σ2

A)(i)

)2
]
≤ i b

n
, i= 1, . . . , k.(137)

By the Markov’s inequality, we have

P
(∣∣∣∣(σ2

A)(i) −
(

∆

n− 1
− σ2

V

)∣∣∣∣≥ ∣∣∣∣T −( ∆

n− 1
− σ2

V

)∣∣∣∣)≤ i

n

b[
T −

(
∆
n−1 − σ

2
V

)]2 ,

(138)

for i= 1, . . . , k. Therefore, we have

k∑
i=1

P i(x(0),RcT )≤ b[
T −

(
∆
n−1 − σ

2
V

)]2

k∑
i=1

i

n
=
k(1 + k)

2n

b[
T −

(
∆
n−1 − σ

2
V

)]2 .(139)
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Next, we consider a Markov chain starting from π. According to Lemma C.1, we have

Eπ

[(
1−

(
(σ2
V )2 + 2σ2

V σ
2
A

(σ2
V )2 + 2σ2

V σ
2
A + (σ2

A)2

)2
)
f(x)

]

= Eπ
[(

1 +
(σ2
V )2 + 2σ2

V σ
2
A

(σ2
V )2 + 2σ2

V σ
2
A + (σ2

A)2

)(
1−

(σ2
V )2 + 2σ2

V σ
2
A

(σ2
V )2 + 2σ2

V σ
2
A + (σ2

A)2

)
f(x)

]

= Eπ

[(
1 +

(σ2
V )2 + 2σ2

V σ
2
A

(σ2
V )2 + 2σ2

V σ
2
A + (σ2

A)2

)(
σ2
A

σ2
V + σ2

A

)2

f(x)

]
≤ b,

(140)

where Eπ[·] denotes the expectation is over x∼ π(·). Note that by Hölder’s inequality (in the
reverse way)

Eπ

[(
1 +

(σ2
V )2 + 2σ2

V σ
2
A

(σ2
V )2 + 2σ2

V σ
2
A + (σ2

A)2

)(
σ2
A

σ2
V + σ2

A

)2

f(x)

]

≥ Eπ

[(
σ2
A

σ2
V + σ2

A

)2

f(x)

]

≥ [Eπ(f(x)
1

2 )]2

{
Eπ

[(
σ2
A

σ2
V + σ2

A

)−2
]}−1

= [Eπ(f(x)
1

2 )]2/Eπ[(1 + σ2
V /σ

2
A)2].

(141)

Therefore, we have

Eπ(f(x)
1

2 )≤
√
b
√

1 + 2σ2
V Eπ(1/σ2

A) + (σ2
V )2Eπ(1/(σ2

A)2).(142)

Next, according to Lemma E.2, we know that Eπ(1/σ2
A)≤ 2/δ and Eπ(1/(σ2

A)2)≤ 2/δ2 for
large enough n.

More specifically, by Lemma E.2, we have
√

1 + 2σ2
V Eπ(1/σ2

A) + (σ2
V )2Eπ(1/(σ2

A)2)≤
1 + 2σ2

V /δ for large enough n. Therefore, we get

Eπ
(∣∣∣∣( ∆

n− 1
− σ2

V

)
− σ2

A

∣∣∣∣)≤
√
b

n
(2σ2

V /δ + 1).(143)

Thus, by the Markov’s inequality

π(RcT ) = Pπ
(∣∣∣∣( ∆

n− 1
− σ2

V

)
− σ2

A

∣∣∣∣≥ ∣∣∣∣( ∆

n− 1
− σ2

V

)
− T

∣∣∣∣)

≤

√
b
n(2σ2

V /δ + 1)∣∣∣( ∆
n−1 − σ

2
V

)
− T

∣∣∣ .
(144)

Finally, we have

k π(RcT ) +

k∑
i=1

P i(x(0),RcT )

≤ k√
n

√
b(2σ2

V /δ + 1)∣∣∣( ∆
n−1 − σ

2
V

)
− T

∣∣∣ +
k(1 + k)

2n

b[
T −

(
∆
n−1 − σ

2
V

)]2 .

(145)
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LEMMA E.2. There exists a positive integer N , which only depends on a, b, σ2
V , and δ,

such that for all n≥N , we have

Eπ(1/σ2
A)≤ 2/δ, Eπ(1/(σ2

A)2)≤ 2/δ2.(146)

PROOF. The posterior distribution can be written as

π(x |Y1, . . . , Yn) =
fa(x,Y1, . . . , Yn)∫
fa(x,Y1, . . . , Yn)dx

,(147)

where we use fa(x,Y1, . . . , Yn) to denote the joint distribution of x and {Yi} when IG(a, b)
is used as the prior for σ2

A. That is,

fa(x,Y1, . . . , Yn)

=
ba

Γ(a)
(σ2
A)−a−1e−b/σ

2
A

n∏
i=1

1√
2πσ2

A

e
− (θi−µ)

2

2σ2
A

1√
2π
e
− (Yi−θi)

2

2σ2
V

=
1

(2π)n
ba

Γ(a)
(σ2
A)−a−1−n

2 e−b/σ
2
A exp

[
−

n∑
i=1

(
(θi − µ)2

2σ2
A

+
(Yi − θi)2

2σ2
V

)]
.

(148)

Now using 1
σ2
A
fa(x,Y1, . . . , Yn) = a

b fa+1(x,Y1, . . . , Yn), we have

Eπ(1/σ2
A) =

a

b

∫
fa+1(x,Y1, . . . , Yn)dx∫
fa(x,Y1, . . . , Yn)dx

, Eπ(1/(σ2
A)2) =

a2

b2

∫
fa+2(x,Y1, . . . , Yn)dx∫
fa(x,Y1, . . . , Yn)dx

.

(149)

Therefore, it suffices to show the ratios
∫
fa+1(x,Y1,...,Yn)dx∫
fa(x,Y1,...,Yn)dx

and
∫
fa+2(x,Y1,...,Yn)dx∫
fa(x,Y1,...,Yn)dx

are (asymp-
totically) bounded. Next, we focus on the first ratio. The second ratio can be proved using a
similar argument.

Using the fact that∫
exp

[
−
(
σ2
V (θi − µ)2 + σ2

A(Yi − θi)2

2σ2
Aσ

2
V

)]
dθi

=

∫ exp

−
(
θ− σ2

V µ+Y σ2
A

σ2
A+σ2

V

)2

2σ2
Aσ

2
V

σ2
A+σ2

V

dθi

(exp

[
− (Yi − µ)2

2(σ2
V + σ2

A)

])

=

√
2π

2σ2
Aσ

2
V

σ2
V + σ2

A

exp

[
− (Yi − µ)2

2(σ2
V + σ2

A)

]
,

(150)

and ∫
exp

[
−
∑n

i=1(Yi − µ)2

2(σ2
V + σ2

A)

]
dµ

=

(∫
exp

[
− (µ− Ȳ )2

2(σ2
V + σ2

A)/n

]
dµ

)(
exp

[
−
∑

i Y
2
i − nȲ 2

2(σ2
V + σ2

A)

])

= exp

[
−
∑n

i=1(Yi − Ȳ )2

2(σ2
V + σ2

A)

]√
2π

2(σ2
V + σ2

A)

n
,

(151)
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we can write Eπ(1/σ2
A) as a function of ∆ =

∑
i(Yi − Ȳ )2. Denote hn(∆) := Eπ(1/σ2

A),
then we have

hn(∆) :=

∫
(σ2
A)−a−2e−b/σ

2
A(σ2

V + σ2
A)
−n+1

2 exp
[
− ∆

2(σ2
V +σ2

A)

]
dσ2

A∫
(σ2
A)−a−1e−b/σ

2
A(σ2

V + σ2
A)
−n+1

2 exp
[
− ∆

2(σ2
V +σ2

A)

]
dσ2

A

.(152)

Next, we show hn((n− 1)(c+ σ2
V )) is (asymptotically) bounded for any fixed c > 0. Note

that ∫
(σ2
A)−a−1e−b/σ

2
A(σ2

V + σ2
A)
−n+1

2 exp

[
− ∆

2(σ2
V + σ2

A)

]
dσ2

A

=

∫
(σ2
A)−a−1e−b/σ

2
A

 1√
σ2
V + σ2

A

exp

[
−

∆
n−1

2(σ2
V + σ2

A)

]
n−1

dσ2
A.

(153)

We change variable y = 1√
σ2
V +σ2

A

and apply the Laplace approximation. Note that for any

c > 0, let y0 = arg maxy

[
y exp

(
− c+σ2

V

2 y2
)]

, then y0 = 1√
c+σ2

V

. Therefore, by the Laplace

approximation [58, Thm. 1, Chp. 19.2.4], we have

hn((n− 1)(c+ σ2
V )) =

c−a−2e−b/c
[
y0 exp

(
− c+σ2

V

2 y2
0

)]n−1
(1 +O(n−

1

2 ))

c−a−1e−b/c
[
y0 exp

(
− c+σ2

V

2 y2
0

)]n−1
(1 +O(n−

1

2 ))

=
1

c
(1 +O(n−1/2)),

(154)

where the term O((n−1/2) only depends on constants a, b, and σ2
V . Finally, since for all

n ≥ N0 we have ∆ ≥ (n− 1)(σ2
V + δ), this implies hn(∆) ≤ 1

δ (1 +O(n−1/2)),∀n ≥ N0.
Therefore, there exists large enough positive integer N0, which only depends on a, b, σ2

V , and
δ, such that for all n≥N0, we have Eπ(1/σ2

A) = hn(∆)≤ 1
δ (1 +O(n−1/2))≤ 2

δ .
For Eπ(1/(σ2

A)2), we can follow a similar argument to show that Eπ(1/(σ2
A)2)≤ 2

δ2 for
large enough n. Therefore, we can conclude that there exists large enough positive integer N ,
which only depends on a, b, σ2

V , and δ, such that for all n≥N , we have both Eπ(1/σ2
A)≤ 2

δ

and Eπ(1/(σ2
A)2)≤ 2

δ2 .

APPENDIX F: PROOF OF THEOREM 3.1

The key step is to establish the following drift condition:

E[f new(X(1))]≤ 1

4
f new(X(0)) +O(1/p).(155)

It suffices to show

E

(‖X(1)
1 ‖2

p
− 1

)2

|X(0)
2

≤ λ(‖X(0)
2 ‖2

p
− 1

)2

+ b,(156)

where λ= 1
2 and b=O(1/p).

Writing X(0)
2 = x and X(1)

1 = 1
2x+Z where Z ∼N (0, 3

4Ip), we have

E

(‖X(1)
1 ‖2

p
− 1

)2

|X(0)
2 = x

(157)
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=

(
‖x‖2

4p
− 1

)2

+ 2

(
‖x‖2

4p
− 1

)
E
[
‖Z‖2

p

]
+E

[(
‖Z‖2 +ZTx

p

)2
]

(158)

=

(
‖x‖2

4p
− 1

)2

+ 2

(
‖x‖2

4p
− 1

)
3

4
+

(
9

16
+

9

8p
+

3

4p

‖x‖2

p

)
(159)

=
1

4

(
‖x‖2

p
− 1 +

6

p

)2

+O(
1

p
)(160)

=
1

2

(
‖x‖2

p
− 1

)2

+O(
1

p
),(161)

where the last step is by(
‖x‖2

p
− 1 +

6

p

)2

≤ 2

[(
‖x‖2

p
− 1

)2

+
36

p2

]
.(162)

To complete the proof, we still need to show a multi-step minorization condition with ε
bounded away from zero. Note that the 1-step drift condition directly implies a k-step drift
condition with λ= 1

2k and b=O(1/p). Next, note that

X
(k)
2 |X(0)

2 = x2 ∼N (
1

4k
x2, (1−

1

4k+1
)Ip).(163)

Therefore, according to the k-step drift condition, for all the states x in the small set, we have
c
√
p≤ ‖x2‖ ≤C

√
p for some positive constant c < 1 and C > 1. Then we choose k such that

‖x2‖/4k =O(1/p) so that the integral of the minimum of the two one-dimensional densities
N ( 1

4kC
√
p, (1− 1

4k+1 )) and N (− 1
4kC
√
p, (1− 1

4k+1 )) is 1−O(1/p). Then by writing the
multivariate Gaussian density as product of one-dimensional densities, the total minimization
volume can be controlled so that ε = (1−O(1/p))p > 0 and bounded away from zero as
p→∞. Therefore, we can choose k = bC log(p)c+ 1 a large enough constant C . Overall,
we have proven that for a k-step drift condition and the corresponding minimization condition
gives ε which is asymptotically bounded away from zero, which completes the proof.

APPENDIX G: PROOF OF THEOREM 3.3

We analyze this model by choosing a drift function

fn(x) =

(
λ̄

α
− 1

β

)2

(164)

where λ̄= 1
n

∑
i λi. The key step of the proof is to show the following drift condition

E[fn(X(k+1)) | x(k)]≤ b,(165)

where b=O(1/n). For simplicity of notation, we omit the index k in the rest of the proof.
The computation of E[fn(X(k+1)) | x(k)] have two steps. We first compute the conditional
expectation over β | λ∼Ga(ρ+ nα, δ+ nλ̄). Using the fact that 1/β has an inverse gamma
distribution, we have

Eβ|λ

[(
λ̄

α
− 1

β

)2
]

=

(
λ̄

α

)2

− 2

(
λ̄

α

)( δ
n + λ̄
ρ−1
n + α

)
+

(
δ
n + λ̄

)2(
ρ−1
n + α

)(
ρ−2
n + α

)(166)
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Next, we compute the conditional expectation over λ given β. Note that by summing (condi-
tional) independent Gamma distribution we know

nλ̄ | β ∼Ga(n(Ȳ + α),1 + β)(167)

which gives

Eλ|β[λ̄] =
Ȳ + α

1 + β
, Eλ|β[λ̄2] =

(Ȳ + α)(Ȳ + α+ 1
n)

(1 + β)2
.(168)

Using the assumption on Ȳ and the fact that 1
1+β ∈ (0,1], we have

Eλ|β

( λ̄
α

)2

− 2

(
λ̄

α

)( δ
n + λ̄
ρ−1
n + α

)
+

(
δ
n + λ̄

)2(
ρ−1
n + α

)(
ρ−2
n + α

)
(169)

= Eλ|β

( λ̄
α
−

δ
n + λ̄
ρ−1
n + α

)2

+
1
n

(
δ
n + λ̄

)2(
ρ−1
n + α

)2 (
ρ−2
n + α

)
=O(

1

n2
) +O(

1

n
).(170)

Therefore, we established the drift condition E[fn(X(k+1)) | x(k)]≤ b where b=O(1/n).
Now the proof can be completed by verifying the Gibbs sampler satisfies the minorization

condition: P (x, ·)≥ εQ(·) for all x in the small set
{∣∣∣λ̄− α

β

∣∣∣=O(1/
√
n)
}

. We only need
to show that ε is asymptotically bounded away from 0 as n→∞. Note that the last step of
updating β in the Gibbs sampler doesn’t depend on the previous state, it then suffices to derive
the minorization condition for the step nλ̄ | β ∼Ga(n(Ȳ + α),1 + β) for all β in the small
set. Let βmax and βmin be the maximum and minimum value of β in the small set. Then from
the explicit form of the density of λ̄, on can see that ε must be asymptotically bounded away
from 0 if 1/(1 + βmin)− 1/(1 + βmax) =O(1/

√
n), which is satisfied by the small set. This

completes the proof.

APPENDIX H: PROOF OF REMARK 3.5

[23, Appendix C] states another way to obtain samples from the posterior of the MCMC
model related to James–Stein estimator. More specifically, recall that the model

Yi | θi ∼N (θi, σ
2
V ), 1≤ i≤ n,

θi | µ,σ2
A ∼N (µ,σ2

A), 1≤ i≤ n,

µ∼ flat prior on R,

σ2
A ∼ IG(a, b),

(171)

where σ2
V is assumed to be known, Y = (Y1, . . . , Yn) is the observed data, and x =

(σ2
A, µ, θ1, . . . , θn) are parameters. Then the posterior can be written as

π(θ,µ,σ2
A | Y ) = π(θ | µ,σ2

A, Y )π(µ | σ2
A, Y )π(σ2

A | Y ),(172)

where π(θ | µ,σ2
A, Y ) is a product of independent univariate normal densities

θi ∼N
(
σ2
AYi + σ2

V µ

σ2
V + σ2

A

,
σ2
Aσ

2
V

σ2
A + σ2

V

)
(173)

and π(µ | σ2
A, Y ) is a normal distribution

µ | σ2
A, Y ∼N

(
Ȳ ,

σ2
A + σ2

V

n

)
(174)



40

Therefore, one can use a rejection sampler with proposal from IG(a, b) to obtain independent
samples from π(σ2

A | Y ). However, we show that the acceptance probability of this rejection
sampler decreases (typically exponentially) fast with n. To see this, note that

π(σ2
A | Y )∝ 1

(σ2
A)a+1(σ2

A + σ2
V )(n−1)/2

exp(−1

b
−
∑n

i=1(Yi − Ȳ )2

2(σ2
A + σ2

V )
).(175)

We let g(σ2
A) be the density of IG(a, b), then using the fact

π(σ2
A | Y )

g(σ2
A)

∝ 1

(σ2
A)a+1(σ2

A + σ2
V )(n−1)/2

exp(−1

b
−
∑n

i=1(Yi − Ȳ )2

2(σ2
A + σ2

V )
)/g(σ2

A)(176)

= (σ2
A + σ2

V )(1−n)/2 exp(−
n∑
i=1

(Yi − Ȳ )2/2(σ2
A + σ2

V ))(177)

≤M :=

(∑n
i=1(Yi − Ȳ )2

n− 1

)(1−n)/2

e−
n−1

2(178)

where the upper bound M is achieved when σ2
A =

∑n
i=1(Yi−Ȳ )2

n−1 − σ2
V . Then the acceptance

probability of the rejection sampler is

Eσ2
A∼IG(a,b)

[
(σ2
A + σ2

V )(1−n)/2 exp(−
∑n

i=1(Yi − Ȳ )2/2(σ2
A + σ2

V ))

M

]
(179)

= Eσ2
A∼IG(a,b)


 σ2

A + σ2
V∑n

i=1(Yi−Ȳ )2

n−1

(1−n)/2

exp

∑n
i=1(Yi−Ȳ )2

n−1

σ2
A + σ2

V

− 1

(1−n)/2
(180)

= Eσ2
A∼IG(a,b)


 σ2

A + σ2
V∑n

i=1(Yi−Ȳ )2

n−1

(1−n)/2

exp

∑n
i=1(Yi−Ȳ )2

n−1

σ2
A + σ2

V

− 1

(1−n)/2
 .(181)

Therefore, the acceptance probability of the rejection sampler equals to E[Z(n−1)/2] where

Z :=

 σ2
A + σ2

V∑n
i=1(Yi−Ȳ )2

n−1

−1

exp

1−

∑n
i=1(Yi−Ȳ )2

n−1

σ2
A + σ2

V

≤ 1,(182)

where the last inequality comes from exp(x− 1)≥ x.
We can see that under mild conditions such that

∑n
i=1(Yi−Ȳ )2

n−1 converges to a constant, the
acceptance probability of the rejection sampler goes to zero, E[Z(n−1)/2]→ 0, very fast.
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