
Understanding MCMC: Exercise Solutions

1. (a) We compute that
∑

x∈X (1/3) P (x, {y}) = 1/3 for all y ∈ X .

(b) It is not reversible since e.g. π{1}P (1, {2}) = (1/3)(3/4) 6= (1/3)(1/4) = π{2}P (2, {1}).

2. (a) Let h(t) = 1√
2π

e−t2/2 be the standard normal density. Then if Xn has density h(x),

then Xn+1 has density given by
∫
R

h(t) h
(
(x − t/2)/

√
3/4

)
dt which we compute is

equal to h(x) for all x ∈ R, so that Xn+1 also has density h(x).

(b) If Xn and Zn+1 are i.i.d. standard normal, then Xn/2 +
√

3/4 Zn+1 is also standard

normal.

3. We compute the function q(x, y) as follows. Let g(z) = xez (for fixed x). Then

Yn+1 = g(Zn+1), where Zn+1 ∼ N(0, σ2) with density fZ (say). Now, g′(z) = xez and

g−1(y) = log(y/x), so g′(g−1(y)) = xelog(y/x) = x(y/x) = y. Hence, by the change-

of-variable formula, the density of Yn+1 is given by fY (y) = fZ(g−1(y)) |g′(g−1(y)| =

fZ(log(y/x)) y. We conclude that q(x, y) = fZ(log(y/x)) y.

Now, if C(x, y) = fZ(log(y/x)), then C(x, y) = fZ(log y− log x), so C(x, y) = C(y, x).

Hence,

α(x, y) = min
[
1,

π(y)q(y, x)
π(x)q(x, y)

]
= min

[
1,

π(y)C(y, x) x

π(x)C(x, y) y

]
= min

[
1,

x π(y)
yπ(x)

]
.

4. (a) Given Xn, propose Yn+1 ∼ Uniform[Xn − 1, Xn + 1], then accept (and set Xn+1 =

Yn+1) with probability min[1, π(Yn+1)/π(Xn)], otherwise reject (and set Xn+1 = Xn).

(b) Let λ be Lebesgue measure on R. Then if λ(A) > 0, we can find r ∈ R with

λ(A ∩ [r, r + 1]) > 0. Then from X0 = x, we have positive probability of being inside

[r, r + 1] after ≥ |x − r| + 1 iterations. From there, we have positive probability of

entering A on the next iteration. Hence, the chain is λ-irreducible.

(c) Assume to the contrary that the chain has periodic decomposition X = X1 ∪ . . . ∪Xd

for some d ≥ 2. Find r ∈ R and A ⊆ X1 ∩ [r, r + 1] with λ(A) > 0. Then for

x ∈ [r, r + 1], we have P (x, A) > 0, contradicting the fact that P (x,X1) = 0 for all

x ∈ X1.
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(d) We conclude that limn→∞ ‖Pn(x, ·)− π(·)‖ = 0 for π-a.e. x ∈ X .

5. (a) Given x2, the 1-component update (P1) replaces x1 by a draw from the density on [0, 1]

given by f(x1) = π((x1, x2))
/ ∫ 1

0
π((x1, z)) dz. Similarly, the 2-component update

(P2) replaces x2 by a draw from the density on [0, 1] given by h(x2) = π((x1, x2))
/∫ 1

0
π((z, x2)) dz. The deterministic-scan Gibbs sampler then alternately applies P1

and P2, while the random-scan Gibbs sampler repeated chooses one of P1 and P2

uniformly at random.

(b) Let λ be Lebesgue measure on X = [0, 1] × [0, 1]. Then if λ(A) > 0, then (since

π(x) > 0 for all x ∈ X ) the chain can reach A with positive probability in one step of

deterministic scan, or two steps of random scan. Hence, the chain is λ-irreducible.

(c) Random-scan Gibbs sampler is always aperiodic (since it might repeat the same update

twice). For deterministic-scan, if π(A) > 0, then the chain has positive probability of

reaching A in one iteration from anywhere, so it cannot be periodic.

(d) The deterministic-scan Gibbs sampler has transitions which are absolutely continuous

(i.e. have density), so it must be Harris recurrent. For random-scan the chain is

absolutely continuous as soon as it has updated both components at least once, which

must happen eventually with probability 1.

(e) We conclude that limn→∞ ‖Pn(x, ·)− π(·)‖ = 0 for all x ∈ X .

6. Let ρ(A) = ε−1
∫

A

(
infx∈C p(x, y)

)
ν(dy), for A ⊆ X . Then we claim that P (x, ·) ≥

ε ρ(·), where ε =
∫

y∈X
(
infx∈C p(x, y)

)
ν(dy). The proof is that for x ∈ X and any

A ⊆ X ,

P (x, A) =
∫

A

p(x, y) ν(dy) ≥
∫

A

(
inf
x∈C

p(x, y)
)
ν(dy) = ε ρ(A) .

7. (a) PV (x) ≡ E[V (Xn+1 |Xn = x] = 1 + (x/2)2 + (3/4) = x2/4 + 7/4.

(b) We verify that PV (x) ≤ (5/8) V (x) + (9/8)1C(x), i.e. we may take λ = 5/8 and

b = 9/8.

(c) Here infx∈C p(x, y) = p(
√

3, y) = h((y−
√

3/2)/
√

3/4) for y < 0, and infx∈C p(x, y) =

p(−
√

3, y) = h((y−
√

3/2)/
√

3/4) for y > 0, where again h(t) = 1√
2π

e−t2/2 is the stan-

dard normal density. Then ε =
∫

y∈R

(
infx∈C p(x, y)

)
dy =

∫∞
−∞ h((y−

√
3/2)/

√
3/4)+
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∫∞
0

h((y +
√

3/2)/
√

3/4) = 2 Φ(−1) > 0.31 (where Φ(x) =
∫ x

−∞ h(t) dt is the cdf of a

standard normal).

(d) To obtain a quantitative bound, apply the above values of ε = 0.31, λ = 5/8, b = 9/8,

and d =
√

3 to the results on slides 83 and 84.

8. (a) If x ≥ δ, then we can reject only to the right, and

P [Xn+1 = Xn |Xn = x] = (2δ)−1

∫ x+δ

x

(1− ex−y)dy = (2δ)−1(δ − 1 + e−δ) .

If x < δ, then we can also reject to the far left, and

P [Xn+1 = Xn |Xn = x] = (2δ)−1(δ − 1 + e−δ + (δ − x)) .

(b) The stationary rejection probability is then given by

Rδ = (2δ)−1
(
δ − 1 + e−δ +

∫ δ

0

(δ − x)e−xdx
)

= 1− (1− e−δ) / δ .

We should then choose δ so that 1−Rδ ≈ 0.234, which is achieved at δ
.= 4.2 (though

any value close to this is fine too).

9. Here

X (1) = {(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 1, 1), (0, 0, 0, 1, 1, 1),

(0, 0, 1, 1, 1, 1), (0, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 0),

(1, 1, 1, 1, 0, 0), (1, 1, 1, 0, 0, 0), (1, 1, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0)} ,

while

X (2) = {(0, 1, 0, 1, 0, 1), (0, 1, 0, 1, 0, 0), (0, 1, 0, 1, 1, 0), (0, 1, 0, 0, 1, 0),

(0, 1, 1, 0, 1, 0), (0, 0, 1, 0, 1, 0), (1, 0, 1, 0, 1, 0), (1, 0, 1, 0, 1, 1),

(1, 0, 1, 0, 0, 1), (1, 0, 1, 1, 0, 1), (1, 0, 0, 1, 0, 1), (1, 1, 0, 1, 0, 1)} ,

and the chain never moves between X (1) and X (2). Hence, the chain is not φ-

irreducible. On the other hand, for the uniform distribution on either X (1) or X (2), we

3



have P[ai = 0] = P[ai = 1] = 1/2 for each i. Hence, if you used any one-dimensional

convergence diagnostic, you would conclude that the chain had converged, even though

it was actually stuck in either X (1) or X (2).

10. We compute that

p(x, y) = q(y)
(
1 ∧ π(y)q(x)

π(x)q(y)

)
=

(
q(y) ∧ π(y)q(x)

π(x)

)
≥

(
βπ(y) ∧ π(y)β

)
= βπ(y) .

It then follows from Theorem 5.7 on slide 57 that ‖Pn(x, ·) − π(·)‖ ≤ 2(1 − β)n, for

all x ∈ X .

11. We have α(x, y) = min[1, π(y)/π(x)] which equals 1 for y ≤ x and equals a if y = x+1.

The computation for PV (x) is then the sum of three terms from either proposing a

move right and accepting, proposing a move right and rejecting, and proposing a move

left (and therefore accepting). The formula for λ follows by factoring out V (x) = eβx.

For large enough β, we have a− e−β > 0, and then λ < 1.

12. The conditional densities are a standard result about the bivariate normal distribu-

tion. Hence the (deterministic-scan) Gibbs sampler sets Yn+1 = ρXn +
√

1− ρ2 Zn+1

and then Xn+1 = ρYn+1 +
√

1− ρ2 Wn+1 = ρ2Xn + ρ
√

1− ρ2 Zn+1 +
√

1− ρ2 Wn+1

(where {Zn} and {Wn} are i.i.d. standard normal). Hence, conditional on Xn, the con-

ditional distribution of Xn+1 is normal with mean ρ2Xn and variance
(√

1− ρ2
)2

+(
ρ
√

1− ρ2
)2

= (1− ρ2)+ (ρ2(1− ρ2)) = 1− ρ4, as stated. The final statement about

Xn in terms of X0 then follows by induction.
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