Understanding MCMC: Exercise Solutions

1. (a) We compute that $\sum_{x \in \mathcal{X}}(1 / 3) P(x,\{y\})=1 / 3$ for all $y \in \mathcal{X}$.
(b) It is not reversible since e.g. $\pi\{1\} P(1,\{2\})=(1 / 3)(3 / 4) \neq(1 / 3)(1 / 4)=\pi\{2\} P(2,\{1\})$.
2. (a) Let $h(t)=\frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}$ be the standard normal density. Then if X_{n} has density $h(x)$, then X_{n+1} has density given by $\int_{\mathbf{R}} h(t) h((x-t / 2) / \sqrt{3 / 4}) d t$ which we compute is equal to $h(x)$ for all $x \in \mathbf{R}$, so that X_{n+1} also has density $h(x)$.
(b) If X_{n} and Z_{n+1} are i.i.d. standard normal, then $X_{n} / 2+\sqrt{3 / 4} Z_{n+1}$ is also standard normal.
3. We compute the function $q(x, y)$ as follows. Let $g(z)=x e^{z}$ (for fixed x). Then $Y_{n+1}=g\left(Z_{n+1}\right)$, where $Z_{n+1} \sim N\left(0, \sigma^{2}\right)$ with density f_{Z} (say). Now, $g^{\prime}(z)=x e^{z}$ and $g^{-1}(y)=\log (y / x)$, so $g^{\prime}\left(g^{-1}(y)\right)=x e^{\log (y / x)}=x(y / x)=y$. Hence, by the change-of-variable formula, the density of Y_{n+1} is given by $f_{Y}(y)=f_{Z}\left(g^{-1}(y)\right) \mid g^{\prime}\left(g^{-1}(y) \mid=\right.$ $f_{Z}(\log (y / x)) y$. We conclude that $q(x, y)=f_{Z}(\log (y / x)) y$.
Now, if $C(x, y)=f_{Z}(\log (y / x))$, then $C(x, y)=f_{Z}(\log y-\log x)$, so $C(x, y)=C(y, x)$. Hence,

$$
\alpha(x, y)=\min \left[1, \frac{\pi(y) q(y, x)}{\pi(x) q(x, y)}\right]=\min \left[1, \frac{\pi(y) C(y, x) x}{\pi(x) C(x, y) y}\right]=\min \left[1, \frac{x \pi(y)}{y \pi(x)}\right] .
$$

4. (a) Given X_{n}, propose $Y_{n+1} \sim \operatorname{Uniform}\left[X_{n}-1, X_{n}+1\right]$, then accept (and set $X_{n+1}=$ Y_{n+1}) with probability $\min \left[1, \pi\left(Y_{n+1}\right) / \pi\left(X_{n}\right)\right]$, otherwise reject (and set $X_{n+1}=X_{n}$).
(b) Let λ be Lebesgue measure on \mathbf{R}. Then if $\lambda(A)>0$, we can find $r \in \mathbf{R}$ with $\lambda(A \cap[r, r+1])>0$. Then from $X_{0}=x$, we have positive probability of being inside $[r, r+1]$ after $\geq|x-r|+1$ iterations. From there, we have positive probability of entering A on the next iteration. Hence, the chain is λ-irreducible.
(c) Assume to the contrary that the chain has periodic decomposition $\mathcal{X}=\mathcal{X}_{1} \cup \ldots \cup \mathcal{X}{ }_{d}$ for some $d \geq 2$. Find $r \in \mathbf{R}$ and $A \subseteq \mathcal{X}_{1} \cap[r, r+1]$ with $\lambda(A)>0$. Then for $x \in[r, r+1]$, we have $P(x, A)>0$, contradicting the fact that $P\left(x, \mathcal{X}_{1}\right)=0$ for all $x \in \mathcal{X}_{1}$.
(d) We conclude that $\lim _{n \rightarrow \infty}\left\|P^{n}(x, \cdot)-\pi(\cdot)\right\|=0$ for π-a.e. $x \in \mathcal{X}$.
5. (a) Given x_{2}, the 1 -component update $\left(P_{1}\right)$ replaces x_{1} by a draw from the density on $[0,1]$ given by $f\left(x_{1}\right)=\pi\left(\left(x_{1}, x_{2}\right)\right) / \int_{0}^{1} \pi\left(\left(x_{1}, z\right)\right) d z$. Similarly, the 2-component update $\left(P_{2}\right)$ replaces x_{2} by a draw from the density on $[0,1]$ given by $h\left(x_{2}\right)=\pi\left(\left(x_{1}, x_{2}\right)\right) /$ $\int_{0}^{1} \pi\left(\left(z, x_{2}\right)\right) d z$. The deterministic-scan Gibbs sampler then alternately applies P_{1} and P_{2}, while the random-scan Gibbs sampler repeated chooses one of P_{1} and P_{2} uniformly at random.
(b) Let λ be Lebesgue measure on $\mathcal{X}=[0,1] \times[0,1]$. Then if $\lambda(A)>0$, then (since $\pi(\mathbf{x})>0$ for all $\mathbf{x} \in \mathcal{X})$ the chain can reach A with positive probability in one step of deterministic scan, or two steps of random scan. Hence, the chain is λ-irreducible.
(c) Random-scan Gibbs sampler is always aperiodic (since it might repeat the same update twice). For deterministic-scan, if $\pi(A)>0$, then the chain has positive probability of reaching A in one iteration from anywhere, so it cannot be periodic.
(d) The deterministic-scan Gibbs sampler has transitions which are absolutely continuous (i.e. have density), so it must be Harris recurrent. For random-scan the chain is absolutely continuous as soon as it has updated both components at least once, which must happen eventually with probability 1.
(e) We conclude that $\lim _{n \rightarrow \infty}\left\|P^{n}(x, \cdot)-\pi(\cdot)\right\|=0$ for all $x \in \mathcal{X}$.
6. Let $\rho(A)=\epsilon^{-1} \int_{A}\left(\inf _{x \in C} p(x, y)\right) \nu(d y)$, for $A \subseteq \mathcal{X}$. Then we claim that $P(x, \cdot) \geq$ $\epsilon \rho(\cdot)$, where $\epsilon=\int_{y \in \mathcal{X}}\left(\inf _{x \in C} p(x, y)\right) \nu(d y)$. The proof is that for $x \in \mathcal{X}$ and any $A \subseteq \mathcal{X}$,

$$
P(x, A)=\int_{A} p(x, y) \nu(d y) \geq \int_{A}\left(\inf _{x \in C} p(x, y)\right) \nu(d y)=\epsilon \rho(A) .
$$

7. (a) $P V(x) \equiv \mathbf{E}\left[V\left(X_{n+1} \mid X_{n}=x\right]=1+(x / 2)^{2}+(3 / 4)=x^{2} / 4+7 / 4\right.$.
(b) We verify that $P V(x) \leq(5 / 8) V(x)+(9 / 8) \mathbf{1}_{C}(x)$, i.e. we may take $\lambda=5 / 8$ and $b=9 / 8$.
(c) Here $\inf _{x \in C} p(x, y)=p(\sqrt{3}, y)=h((y-\sqrt{3} / 2) / \sqrt{3 / 4})$ for $y<0$, and $\inf _{x \in C} p(x, y)=$ $p(-\sqrt{3}, y)=h((y-\sqrt{3} / 2) / \sqrt{3 / 4})$ for $y>0$, where again $h(t)=\frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}$ is the standard normal density. Then $\epsilon=\int_{y \in \mathbf{R}}\left(\inf _{x \in C} p(x, y)\right) d y=\int_{-\infty}^{\infty} h((y-\sqrt{3} / 2) / \sqrt{3 / 4})+$
$\int_{0}^{\infty} h((y+\sqrt{3} / 2) / \sqrt{3 / 4})=2 \Phi(-1)>0.31$ (where $\Phi(x)=\int_{-\infty}^{x} h(t) d t$ is the cdf of a standard normal).
(d) To obtain a quantitative bound, apply the above values of $\epsilon=0.31, \lambda=5 / 8, b=9 / 8$, and $d=\sqrt{3}$ to the results on slides 83 and 84 .
8. (a) If $x \geq \delta$, then we can reject only to the right, and

$$
P\left[X_{n+1}=X_{n} \mid X_{n}=x\right]=(2 \delta)^{-1} \int_{x}^{x+\delta}\left(1-e^{x-y}\right) d y=(2 \delta)^{-1}\left(\delta-1+e^{-\delta}\right) .
$$

If $x<\delta$, then we can also reject to the far left, and

$$
P\left[X_{n+1}=X_{n} \mid X_{n}=x\right]=(2 \delta)^{-1}\left(\delta-1+e^{-\delta}+(\delta-x)\right) .
$$

(b) The stationary rejection probability is then given by

$$
R_{\delta}=(2 \delta)^{-1}\left(\delta-1+e^{-\delta}+\int_{0}^{\delta}(\delta-x) e^{-x} d x\right)=1-\left(1-e^{-\delta}\right) / \delta
$$

We should then choose δ so that $1-R_{\delta} \approx 0.234$, which is achieved at $\delta \doteq 4.2$ (though any value close to this is fine too).
9. Here

$$
\begin{gathered}
\mathcal{X}(1)=\{(0,0,0,0,0,0),(0,0,0,0,0,1),(0,0,0,0,1,1),(0,0,0,1,1,1), \\
(0,0,1,1,1,1),(0,1,1,1,1,1),(1,1,1,1,1,1),(1,1,1,1,1,0), \\
(1,1,1,1,0,0),(1,1,1,0,0,0),(1,1,0,0,0,0),(1,0,0,0,0,0)\},
\end{gathered}
$$

while

$$
\begin{gathered}
\mathcal{X}(2)=\{(0,1,0,1,0,1),(0,1,0,1,0,0),(0,1,0,1,1,0),(0,1,0,0,1,0), \\
(0,1,1,0,1,0),(0,0,1,0,1,0),(1,0,1,0,1,0),(1,0,1,0,1,1), \\
(1,0,1,0,0,1),(1,0,1,1,0,1),(1,0,0,1,0,1),(1,1,0,1,0,1)\},
\end{gathered}
$$

and the chain never moves between $\mathcal{X}(1)$ and $\mathcal{X}(2)$. Hence, the chain is not ϕ irreducible. On the other hand, for the uniform distribution on either $\mathcal{X}(1)$ or $\mathcal{X}(2)$, we
have $\mathbf{P}\left[a_{i}=0\right]=\mathbf{P}\left[a_{i}=1\right]=1 / 2$ for each i. Hence, if you used any one-dimensional convergence diagnostic, you would conclude that the chain had converged, even though it was actually stuck in either $\mathcal{X}(1)$ or $\mathcal{X}(2)$.
10. We compute that

$$
p(x, y)=q(y)\left(1 \wedge \frac{\pi(y) q(x)}{\pi(x) q(y)}\right)=\left(q(y) \wedge \frac{\pi(y) q(x)}{\pi(x)}\right) \geq(\beta \pi(y) \wedge \pi(y) \beta)=\beta \pi(y)
$$

It then follows from Theorem 5.7 on slide 57 that $\left\|P^{n}(x, \cdot)-\pi(\cdot)\right\| \leq 2(1-\beta)^{n}$, for all $x \in \mathcal{X}$.
11. We have $\alpha(x, y)=\min [1, \pi(y) / \pi(x)]$ which equals 1 for $y \leq x$ and equals a if $y=x+1$. The computation for $P V(x)$ is then the sum of three terms from either proposing a move right and accepting, proposing a move right and rejecting, and proposing a move left (and therefore accepting). The formula for λ follows by factoring out $V(x)=e^{\beta x}$. For large enough β, we have $a-e^{-\beta}>0$, and then $\lambda<1$.
12. The conditional densities are a standard result about the bivariate normal distribution. Hence the (deterministic-scan) Gibbs sampler sets $Y_{n+1}=\rho X_{n}+\sqrt{1-\rho^{2}} Z_{n+1}$ and then $X_{n+1}=\rho Y_{n+1}+\sqrt{1-\rho^{2}} W_{n+1}=\rho^{2} X_{n}+\rho \sqrt{1-\rho^{2}} Z_{n+1}+\sqrt{1-\rho^{2}} W_{n+1}$ (where $\left\{Z_{n}\right\}$ and $\left\{W_{n}\right\}$ are i.i.d. standard normal). Hence, conditional on X_{n}, the conditional distribution of X_{n+1} is normal with mean $\rho^{2} X_{n}$ and variance $\left(\sqrt{1-\rho^{2}}\right)^{2}+$ $\left(\rho \sqrt{1-\rho^{2}}\right)^{2}=\left(1-\rho^{2}\right)+\left(\rho^{2}\left(1-\rho^{2}\right)\right)=1-\rho^{4}$, as stated. The final statement about X_{n} in terms of X_{0} then follows by induction.

