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This note is motivated by questions in voting game theory, which concerns itself with

models of how people decide to vote (see e.g. [2, 3, 5] and many other references). A simple

voter model assumes there are two candidates A and B, with nA and nB supporters respec-

tively who each vote independently with probabilities pA and pB respectively. Under such

assumptions, what is the probability that the vote ends in a tie, or within some fixed margin

α? Such questions are directly related to bounds on maximum binomial probabilities (The-

orem 1), which in turn allow us to bound probabilities of differences of pairs of independent

variables (Corollary 5), and of vote margins (Corollary 6). We also extend our results to

assumptions involving the vote size (Propositions 7 and 8 and Corollaries 9, 10, and 11).

To state our results, let f(n, p; k) be the probability that a binomial distribution with

parameters n and p equals the specific value k, i.e.

f(n, p; k) := P[Binomial(n, p) = k] =

(
n

k

)
pk (1− p)n−k =

n!

k! (n− k)!
pk (1− p)n−k .

The mode of f is well-known (e.g. [4], p. 70), but the maximal values of f are less well

studied. Note that f(n, 0; 0) = f(n, 1;n) = 1 for any n ∈ N, so there are no non-trivial

upper bounds in general. However, if p is bounded away from 0 and 1, then we prove:

Theorem 1 To first order as n → ∞, the maximum binomial probability over all ε ≤ p ≤
1− ε equals 1√

2πnε(1−ε)
. More precisely, for any fixed ε ∈ (0, 1/2],

lim
n→∞

supε≤p≤1−ε max0≤k≤n f(n, p; k)
1√

2πnε(1−ε)

= 1 .

In particular, lim
n→∞

sup
ε≤p≤1−ε

max
0≤k≤n

f(n, p; k)→ 0.

We begin the proof of Theorem 1 with some lemmas.

Lemma 2 Let Tn,p = 1
n
b(n + 1)pc. Then Tn,p ≈ p, and f(n, p; ·) is unimodal with mode at

nTn,p. Specifically: (a) |Tn,p − p| ≤ 1
n

, and (b) maxk f(n, p; k) = f(n, p;nTn,p), and (c) if

0 ≤ k1 ≤ k2 ≤ nTn,p or n ≥ k1 ≥ k2 ≥ nTn,p, then f(n, p; k1) ≤ f(n, p; k2).
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Proof. Part (a) is trivial, and parts (b) and (c) follow since f(n, p; k + 1) / f(n, p; k) =

(n− k)p / (k + 1)(1− p), which is > 1 for k < nTn,p and < 1 for k > nTn,p.

Remark. If (n + 1)p is an integer, then there are actually two adjacent modes, but the

one at nTn,p suffices for our purposes.

Lemma 3 For any 0 < p < 1, as n and k and n− k all →∞,

f(n, p; k) =
[
gp(k/n)

]n√
1/2πk[1− (k/n)]

[
1 + o(1)

]
,

where

gp(t) =
(
p

t

)t (1− p
1− t

)1−t
, t ∈ (0, 1) .

Proof. Recall Stirling’s Approximation (e.g. [1], p. 113): as n→∞, n! = (n/e)n
√

2πn [1+

o(1)]. Hence, for any 0 < p < 1, as n and k and n− k all →∞,

f(n, p; k) =
(n/e)n

√
2πn pk(1− p)n−k

(k/e)k
√

2πk [(n− k)/e]n−k
√

2π(n− k)

[
1 + o(1)

]
.

After some cancellation, this gives that

f(n, p; k) =

(
p

k/n

)k (
1− p

1− (k/n)

)n−k√
1/2πk[1− (k/n)]

[
1 + o(1)

]

=
[
gp(k/n)

]n√
1/2πk[1− (k/n)]

[
1 + o(1)

]
.

Lemma 4 Fix p ∈ (0, 1), and let gp(t) be as in Lemma 3. Then (a) gp(t) ≤ 1 for all

t ∈ (0, 1), and (b) gp(p+ r) = 1 +O(r2) as r → 0.

Proof. We compute that

log gp(t) = t log(p)− t log(t) + (1− t) log(1− p)− (1− t) log(1− t) .

Hence,

d

dt
log(gp(t)) = log(p)− log(t)− log(1− p) + log(1− t) = log(

p

1− p
)− log(

t

1− t
) .

This equals 0 when and only when t = p. Furthermore(
d

dt

)2

log(gp(t)) = −1

t
− 1

1− t
= − 1

t(1− t)
≤ −4 < 0 .
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It follows that log gp, and hence also gp, achieves its maximum when t = p. Hence, for all

0 < t < 1, we have gp(t) ≤ gp(p) = 1. Then, taking a Taylor expansion around t = p gives

log gp(p+ r) = log gp(p) + r
d

dt
log gp(t)

∣∣∣
t=p

+
r2

2

(
d

dt

)2

log gp(t)
∣∣∣
t=p

+O(r3)

= 0 + r(0) +
r2

2

(
−1

p
− 1

1− p

)
+ O(r3) = O(r2) .

Hence, gp(p+ r) = exp[O(r2)] = 1 +O(r2), as claimed.

Remark. It follows from the proof of Lemma 4 that gp(t) ≤ exp(−2(t − p)2) for all

t ∈ (0, 1), though we do not use that fact here.

Proof of Theorem 1. Since |Tn,p−p| = O(1/n) by Lemma 2(a), it follows from Lemmas 3

and 4(b) that as n→∞,

f(n, p;nTn,p) =
[
gp(Tn,p)

]n√
1/2πnTn,p[1− Tn,p]

[
1 + o(1)

]
=

[
gp
(
p+O(1/n)

)]n√
1/2πnTn,p[1− Tn,p]

[
1 + o(1)

]
=

[
1 +O(1/n2)

]n √
1/2πnTn,p[1− Tn,p]

[
1 + o(1)

]
= enO(1/n2)

√
1/2πnp[1− p]

[
1 + o(1)

]
.

=
√

1/2πnp[1− p]
[
1 + o(1)

]
.

Hence, using Lemma 2(b),

sup
ε≤p≤1−ε

max
0≤k≤n

f(n, p; k) = sup
ε≤p≤1−ε

f(n, p;nTn,p)

= sup
ε≤p≤1−ε

√
1/2πnp(1− p)

[
1 + o(1)

]
=

√
1/2πnε(1− ε)

[
1 + o(1)

]
,

which gives the result.

Remark. The Central Limit Theorem (CLT) says that the Binomial(n, p) distribution can

be approximated by a normal distribution with mean m = np and variance v = np(1 − p),
with density function 1√

2πv
e−(x−m)2/2v and hence maximal density value 1√

2πv
= 1√

2πnp(1−p)
.

The CLT does not directly imply maximum probabilities, but this maximal density value is

consistent with the maximum probabilities in the proof of Theorem 1.

Theorem 1 has implications for pairs of independent binomial random variables:
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Corollary 5 Let X and Y be two independent random variables having binomial distribu-

tions with parameters nX , pX and nY , pY , respectively. Then for any ε ∈ (0, 1/2] and α <∞,

lim
nX→∞

sup
ε≤pX≤1−ε

sup
nY ∈N

sup
0≤pY ≤1

P(|X − Y | ≤ α) = 0 .

That is, for large nX , if pX is bounded away from 0 and 1, then the probability that X and

Y are within any fixed tolerance α goes to zero regardless of the values of nY and pY .

Proof. Here

P(|X − Y | ≤ α) =
∑
z

∑
|d|≤α

P[Y = z, X = z + d]

=
∑
z

∑
|d|≤α

P[X = z + d] P[Y = z]

≤
∑
z

∑
|d|≤α

(sup
w

P[X = w]) P[Y = z]

≤ (2α + 1) sup
w

P[X = w] ,

and this last quantity goes to 0 as nX →∞ by Theorem 1.

Then, putting this in the context of voting theory, we conclude:

Corollary 6 Suppose nA voters each independently vote for candidate A with probability

pA (otherwise they don’t vote), and similarly nB and pB for candidate B. Let X and Y be

the total votes received by candidates A and B, respectively, so X ∼ Binomial(nA, pA) and

Y ∼ Binomial(nB, pB) are independent. Then for any ε ∈ (0, 1/2] and α <∞,

lim
nA→∞

sup
ε≤pA≤1−ε

sup
nB∈N

sup
pB∈R

P(|X − Y | ≤ α) = 0 .

That is, as nA goes to infinity, if the corresponding vote probability pA is bounded away from 0

and 1, then the probability that the two vote counts are within any fixed finite tolerance α of

each other goes to 0, regardless of the values of nB and pB.

We can also extend Theorem 1 to restrictions on k instead of p:

Proposition 7 For any fixed r ∈ (0, 1/2], as n→∞,

sup
0≤p≤1

max
rn≤k≤(1−r)n

f(n, p; k) =
1√

2πnr(1− r)
[1 + o(1)] → 0 .
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Proof. We consider different ranges of p separately.

For p = 0 or p = 1, clearly maxrn≤k≤(1−r)n f(n, p; k) = 0.

For p ∈ [r, 1− r], we have by Theorem 1 that

max
rn≤k≤(1−r)n

f(n, p; k) ≤ sup
r≤p′≤1−r

max
0≤k≤n

f(n, p′; k) =
1√

2πnr(1− r)
[1 + o(1)] ,

with equality when p = r [and when p = 1− r].
For 0 < p < r, it follows from Lemma 2(c) and Lemma 3 that

max
rn≤k≤(1−r)n

f(n, p; k) = f(n, p; drne) =
[
gp(r)

]n√
1/2πnr(1− r)

[
1 + o(1)

]
.

Hence, by Lemma 4 part (a),

max
rn≤k≤(1−r)n

f(n, p; k) ≤
√

1/2πnr(1− r)
[
1 + o(1)

]
.

Similarly, for 1− r < p < 1,

max
rn≤k≤(1−r)n

f(n, p; k) ≤
√

1/2πnr(1− r)
[
1 + o(1)

]
.

This covers all possible values of p, so the result follows.

Or, instead, to a “mix” of restrictions on p and on k:

Proposition 8 For any fixed ε, r ∈ (0, 1/2], setting m = min(ε, r), as n→∞,

sup
ε≤p≤1

max
0≤k≤(1−r)n

f(n, p; k) = sup
0≤p≤1−ε

max
rn≤k≤n

f(n, p; k) =
1√

2πnm(1−m)
[1+o(1)] → 0 .

Proof. We focus on the first quantity supε≤p≤1 max0≤k≤(1−r)n f(n, p; k); the proof for

the second quantity is symmetric. It follows from Lemma 3 that equality is achieved when

p = m and k = bmnc if ε ≤ r, or when p = 1 −m and k = b(1 −m)nc if r ≤ ε. To show

that no larger value can arise, we again consider different ranges of p ∈ [ε, 1] separately.

For p = 1, clearly max0≤k≤(1−r)n f(n, p; k) = 0.

For p ∈ [ε, 1−m] ⊆ [m, 1−m], by Theorem 1,

max
0≤k≤(1−r)n

f(n, p; k) ≤ sup
m≤p′≤1−m

max
0≤k≤n

f(n, p′; k) =
1√

2πnm(1−m)
[1 + o(1)] .

For p ∈ (1−m, 1), it follows from Lemma 2(c) and Lemma 3 and Lemma 4(a) that

max
0≤k≤(1−r)n

f(n, p; k) = f(n, p; b(1− r)nc) =
[
gp(1− r)

]n√
1/2πnr(1− r)

[
1 + o(1)

]
≤

√
1/2πnr(1− r)

[
1 + o(1)

]
≤

√
1/2πnm(1−m)

[
1 + o(1)

]
since 0 < m ≤ r ≤ 1/2 implies that r(1− r) ≥ m(1−m). This covers all p ∈ [ε, 1].

In the context of voting theory, Proposition 8 gives:
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Corollary 9 In the setup of Corollary 6, for any ε, r ∈ (0, 1),

lim
nA→∞

sup
pA≥ε

sup
nB≤(1−r)nA

sup
0≤pB≤1

P(|X − Y | ≤ α) = 0 .

That is, as nA goes to infinity, if the vote probability pA is bounded away from 0 (but not 1),

and the size nB is no more than a fraction < 1 of nA, then the probability that the two vote

counts are within any fixed finite tolerance α of each other still goes to 0.

Proof. Here

P(|X − Y | ≤ α) =
∑
z

∑
|d|≤α

P[Y = z, X = z + d]

≤ (2α + 1) max
0≤w≤nB

P[X = w] ≤ (2α + 1) max
0≤w≤(1−r)nA

P[X = w]

which → 0 as nA →∞ by Proposition 8 (reducing ε and r to ≤ 1/2 if necessary).

Remark. In Corollaries 6 and 9, the restriction that pA or nB/nA be bounded away from 1

really is necessary, even if nA 6= nB. For example, if nB = nA − 1 and pA = 1− (1/nA) and

pB = 1, then as nA →∞,

P(X = Y ) ≥ P(X = Y = nB) = P(X = nB) P(Y = nB) =

(
nA
nB

)
pnBA (1− pA)1 (1)

= nA [1− (1/nA)]nB(1/nA) = e−nB/nA [1 + o(1)] → 1/e 6= 0 .

Corollary 9 applies when the larger population, nA, has vote probability pA ≥ ε. What

if instead the smaller population nB has pB ≥ ε? If we assume that both nA → ∞ and

nB →∞, then we can strengthen Corollary 9 to assume that just max(pA, pB) ≥ ε, i.e. that

either one of them is bounded away from 0:

Corollary 10 In the setup of Corollary 6, for any ε, r ∈ (0, 1),

lim
nB→∞

sup
nA≥nB/(1−r)

sup
pA,pB∈[0,1]

max(pA,pB)≥ε

P(|X − Y | ≤ α) = 0 .

Proof. Corollary 9 covers the case where pA ≥ ε, so we assume here that pB ≥ ε. Assume

without loss of generality (by reducing ε if necessary) that ε ≤ 1/2. As before,

P(|X − Y | ≤ α) =
∑
z

∑
|d|≤α

P[X = z + d] P[Y = z] . (∗)

Now, if z ≤ εnB, then since pB ≥ ε and ε ≤ 1− ε,

P[Y = z] = f(nB, pB; z) ≤ sup
ε≤p≤1

max
0≤k≤(1−ε)nB

f(nB, p; k) [1 + o(1)] .
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Hence, by Proposition 8 (with r = ε),

P[Y = z] ≤
√

1/2πnBε(1− ε) [1 + o(1)] → 0 .

If instead z ∈ (εnB, nB], then since z →∞ and nA − z ≥ nA − nB ≥ rnB →∞, using that

1− (z/nA) ≥ 1− (nB/nA) ≥ 1− (1− r) = r, it follows from Lemmas 3 and 4(a) that

P[X = z + d] ≤
√

1/2πz[1− (z/nA)] [1 + o(1)] ≤
√

1/2πεnBr [1 + o(1)] → 0 .

Combining these two bounds, we compute from (∗) that

P(|X − Y | ≤ α) ≤
∑

z≤εnB

∑
|d|≤α

P[X = z + d]
√

1/2πnBε(1− ε) [1 + o(1)]

+
∑

z∈(εnB , nB ]

∑
|d|≤α

√
1/2πεnBr P[Y = z] [1 + o(1)]

≤ (2α + 1)
√

1/2πnBε(1− ε) [1 + o(1)] + (2α + 1)
√

1/2πεnBr [1 + o(1)] ,

which converges to 0 as nB →∞, as claimed.

Finally, considering the converse of Corollary 10 gives:

Corollary 11 In the setup of Corollary 6, if nB → ∞ and nA ≥ nB/(1 − r) for some

r ∈ (0, 1), and lim inf P(|X −Y | ≤ α) > 0, then we must have both pA → 0 and pB → 0, i.e.

everyone’s probability of voting must converge to zero as nA, nB →∞.
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