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Abstract

We consider the simple voter model where two candidates A and B

have An  and Bn  supporters, who each vote independently with

probabilities Ap  and .Bp  We provide estimates and bounds on the

probability that the vote ends in a tie, or within some fixed margin .

To do this, we derive bounds on the maximum values of certain

binomial probabilities, which in turn allow us to bound probabilities

of differences of pairs of independent binomial random variables.

This note is motivated by questions in voting game theory, which

concerns itself with models of how people decide to vote (see, e.g., [2, 3, 5]

and many other references). A simple voter model assumes that there are two

candidates A and B, with An  and Bn  supporters, respectively, each voting

independently with probabilities Ap  and ,Bp  respectively. Under such

assumptions, what is the probability that the vote ends in a tie, or within

some fixed margin ?  Such questions are directly related to bounds on
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maximum binomial probabilities (Theorem 1), which in turn allow us to

bound probabilities of differences of pairs of independent variables

(Corollary 5), and of vote margins (Corollary 6). We also extend our results

to assumptions involving the vote size (Propositions 7 and 8 and Corollaries

9, 10 and 11).

To state our results, let  kpnf ;,  be the probability that a binomial

distribution with parameters n and p equals the specific value k, i.e.,

       knk pp
k

n
kpnkpnf 



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The mode of f is well-known (e.g., [4, p. 70]), but the maximal values of f are

less well studied. Note that     1;1,0;0,  nnfnf  for any ,Nn  so

there are no non-trivial upper bounds in general. However, if p is bounded

away from 0 and 1, then we prove:

Theorem 1. To first order as ,n  the maximum binomial

probability over all  1p  equals
 

.
12

1
n

More precisely,

for any fixed  ,21,0
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In particular,   .0;,maxsuplim
01




kpnf
nkpn

We begin the proof of Theorem 1 with some lemmas.

Lemma 2. Let   .1
1

, pn
n

T pn   Then ,, pT pn  and  ;, pnf  is

unimodal with mode at ., pnnT Specifically: (a) ,
1

, n
pT pn   and (b)
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   ,;,;,max , pnk nTpnfkpnf   and (c) if pnnTkk ,210  or n

,,21 pnnTkk  then    .;,;, 21 kpnfkpnf 

Proof. Part (a) is trivial, and parts (b) and (c) follow since

         ,11;,1;, pkpknkpnfkpnf  which is 1  for k

pnnT , and 1  for ., pnnTk  

Remark. If   pn 1 is an integer, then there are actually two adjacent

modes, but the one at pnnT ,  suffices for our purposes.

Lemma 3. For any ,10  p as n and k and kn  all ,

          ,11121;, onkknkgkpnf n
p 

where
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Proof. Recall Stirling’s approximation (e.g., [1, p. 113]): as ,n

    .112! onenn n   Hence, for any ,10  p  as n and k and kn 

all ,

     
      

  .11
22

12
;, o

kneknkek

ppnen
kpnf

knk

knkn





 



After some cancellation, this gives that
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        .11121 onkknkg n
p  

Lemma 4. Fix  ,1,0p  and let  tg p  be as in Lemma 3. Then (a)

  1tg p  for all  ,1,0t  and (b)    21 rOrpg p   as .0r
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Proof. We compute that

             .1log11log1logloglog ttptttpttg p 

Hence,

          tptptg
dt
d

p  1log1loglogloglog
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This equals 0 when and only when .pt   Furthermore,
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It follows that ,log pg  and hence also ,pg  achieves its maximum when

.pt  Hence, for all ,10  t  we have     .1 pgtg pp  Then, taking

a Taylor expansion around pt   gives

      ptppp tg
dt
d

rpgrpg  logloglog

   3
22

log
2

rOtg
dt
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ptp 
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Hence,       ,1exp 22 rOrOrpg p   as claimed. 

Remark. It follows from the proof of Lemma 4 that   tg p

   22exp pt   for all  ,1,0t  though we do not use that fact here.

Proof of Theorem 1. Since  nOpT pn 1,   by Lemma 2(a), it

follows from Lemmas 3 and 4(b) that as ,n
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         11121;, ,,,, oTnTTgnTpnf pnpn
n

pnppn 

        111211 ,, oTnTnOpg pnpn
n

p 

       1112111 ,,
2 oTnTnO pnpn

n 

      11121
21 opnpe nnO 

    .11121 opnp 

Hence, using Lemma 2(b),

   pn
pnkp

nTpnfkpnf ,
101

;,sup;,supsup




    11121sup
1

opnp
p




    ,11121 on 

which gives the result. 

Remark 3. The Central Limit Theorem (CLT) says that the

 pnBinomial ,  distribution can be approximated by a normal distribution

with mean npm   and variance  ,1 pnpv  with density function

  vmxe
v

22

2

1 


and hence maximal density value 

v2

1

 
.

12

1

pnp 
The CLT does not directly imply maximum probabilities,

but this maximal density value is consistent with the maximum probabilities

in the proof of Theorem 1.

Theorem 1 has implications for pairs of independent binomial random

variables:

Corollary 5. Let X and Y be two independent random variables having

binomial distributions with parameters XX pn , and ,, YY pn  respectively.
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Then for any  21,0  and ,

  .0supsupsuplim
101




YX
YYXX pnpn

P
N

That is, for large ,Xn if Xp  is bounded away from 0 and 1, then the

probability that X and Y are within any fixed tolerance  goes to zero

regardless of the values of Yn and .Yp

Proof. Here

    



z d

dzXzYYX ,PP

    



z d

zYdzX PP

     



z d w

zYwX PPsup

   ,sup12 wX
w

 P

and this last quantity goes to 0 as Xn  by Theorem 1. 

Then, putting this in the context of voting theory, we conclude:

Corollary 6. Suppose An  voters each independently vote for candidate

A with probability Ap (otherwise they do not vote), and similarly Bn  and

Bp  for candidate B. Let X and Y be the total votes received by candidates A

and B, respectively, so  AA pnBinomialX ,~  and  BB pnBinomialY ,~

are independent. Then for any  21,0 and ,

  .0supsupsuplim
1




YX
BBAA pnpn

P
RN

That is, as An  goes to infinity, if the corresponding vote probability Ap is

bounded away from 0 and 1, then the probability that the two vote counts
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are within any fixed finite tolerance  of each other goes to 0, regardless of

the values of Bn  and .Bp

We can also extend Theorem 1 to restrictions on k instead of p:

Proposition 7. For any fixed  ,21,0r  as ,n

 
 

 
   .011

12

1
;,maxsup

110






o

rnr
kpnf

nrkrnp

Proof. We consider different ranges of p separately.

For 0p or ,1p  clearly     .0;,max 1  kpnfnrkrn

For  ,1, rrp   we have by Theorem 1 that

 
   

 
  ,11

12

1
;,maxsup;,max

011
o

rnr
kpnfkpnf

nkrprnrkrn







with equality when  .1whenand rprp 

For ,0 rp   it follows from Lemma 2(c) and Lemma 3 that

 
            .11121;,;,max

1
ornrrgrnpnfkpnf n

p
nrkrn




Hence, by Lemma 4(a),

 
      .11121;,max

1
ornrkpnf

nrkrn




Similarly, for ,11  pr

 
      .11121;,max

1
ornrkpnf

nrkrn




This covers all possible values of p, so the result follows. 

Or, instead, to a “mix” of restrictions on p and on k:

Proposition 8. For any fixed  ,21,0,  r  setting  ,,min rm   as

,n
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 
   kpnfkpnf

nkrnpnrkp
;,maxsup;,maxsup

10101 


 
   .011

12

1



 o

mnm

Proof. We focus on the first quantity  nrkp  101 maxsup

 ;;, kpnf  the proof for the second quantity is symmetric. It follows from

Lemma 3 that equality is achieved when mp   and  mnk   if ,r  or

when mp  1 and   nmk  1  if .r  To show that no larger value

can arise, we again consider different ranges of  1,p  separately.

For ,1p  clearly     .0;,max 10  kpnfnrk

For    ,1,1, mmmp   by Theorem 1,

 
   kpnfkpnf

nkmpmnrk
;,maxsup;,max

0110




 
  .11

12
1

o
mnm






For  ,1,1 mp   it follows from Lemma 2(c) and Lemma 3 and

Lemma 4(a) that

 
     nrpnfkpnf

nrk



1;,;,max

10

       111211 ornrrg n
p 

         1112111121 omnmornr 

since 210  rm  implies that    .11 mmrr   This covers all

 .1,p 

In the context of voting theory, Proposition 8 gives:



Maximum Binomial Probabilities and Game Theory Voter Models 83

Corollary 9. In the setup of Corollary 6, for any  ,1,0,  r

 
  .0supsupsuplim

101



YX

BABAA pnrnpn
P

That is, as Ap  goes to infinity, if the vote probability Ap is bounded away

from 0 (but not 1), and the size Bn is no more than a fraction 1 of ,An

then the probability that the two vote counts are within any fixed finite

tolerance  of each other still goes to 0.

Proof. Here

    



z d

dzXzYYX ,PP

   wX
Bnw




P
0

max12

 
 

 wX
Anrw




P
10

max12

which 0  as An  by Proposition 8 (reducing  and r to 21  if

necessary). 

Remark. In Corollaries 6 and 9, the restriction that Ap  or AB nn  be

bounded away from 1 really is necessary, even if .BA nn   For example, if

1 AB nn  and  AA np 11   and ,1Bp  then as ,An

       BBB nYnXnYXYX  PPPP

 11 A
n
A

B

A pp
n

n
B 








        .0111111   eoennn ABB nn
A

n
AA

Corollary 9 applies when the larger population, ,An  has vote probability

.Ap What if instead the smaller population Bn  has ?Bp  If we

assume that both An  and ,Bn  then we can strengthen Corollary
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9 to assume that just   ,,max BA pp  i.e., that either one of them is

bounded away from 0:

Corollary 10. In the setup of Corollary 6, for any  ,1,0,  r

   
 

  .0supsuplim

,max

1,01 ,






YX

BA

BABAB

pp

pprnnn
P

Proof. Corollary 9 covers the case where ,Ap  so we assume here

that .Bp  Assume without loss of generality (by reducing  if necessary)

that .21  As before,

      



z d

zYdzXYX .PPP ()

Now, if ,Bnz   then since Bp  and ,1 

   
 

    .11;,maxsup;,
101

okpnfzpnfzY B
nkp

BB
B




P

Hence, by Proposition 8  ,with r

       .011121  onzY BP

If instead  ,, BB nnz   then since z  and  BAA nnzn

,Brn  using that       ,1111 rrnnnz ABA   it follows

from Lemmas 3 and 4(a) that

           .0112111121  ornonzzdzX BAP

Combining these two bounds, we compute from () that

         
 


Bnz d

B ondzXYX 11121PP

    
 
 
 


BB nnz d

B ozYrn
,

1121 P
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      1112112 onB 
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which converges to 0 as ,Bn  as claimed. 

Finally, considering the converse of Corollary 10 gives:

Corollary 11. In the setup of Corollary 6, if Bn and

 rnn BA  1 for some  ,1,0r  and   ,0inflim  YXP

then we must have both 0Ap  and ,0Bp i.e., everyone’s probability

of voting must converge to zero as ., BA nn
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