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Abstract

We consider the simple voter model where two candidates A and B

have An  and Bn  supporters, who each vote independently with

probabilities Ap  and .Bp  We provide estimates and bounds on the

probability that the vote ends in a tie, or within some fixed margin .

To do this, we derive bounds on the maximum values of certain

binomial probabilities, which in turn allow us to bound probabilities

of differences of pairs of independent binomial random variables.

This note is motivated by questions in voting game theory, which

concerns itself with models of how people decide to vote (see, e.g., [2, 3, 5]

and many other references). A simple voter model assumes that there are two

candidates A and B, with An  and Bn  supporters, respectively, each voting

independently with probabilities Ap  and ,Bp  respectively. Under such

assumptions, what is the probability that the vote ends in a tie, or within

some fixed margin ?  Such questions are directly related to bounds on
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maximum binomial probabilities (Theorem 1), which in turn allow us to

bound probabilities of differences of pairs of independent variables

(Corollary 5), and of vote margins (Corollary 6). We also extend our results

to assumptions involving the vote size (Propositions 7 and 8 and Corollaries

9, 10 and 11).

To state our results, let  kpnf ;,  be the probability that a binomial

distribution with parameters n and p equals the specific value k, i.e.,
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The mode of f is well-known (e.g., [4, p. 70]), but the maximal values of f are

less well studied. Note that     1;1,0;0,  nnfnf  for any ,Nn  so

there are no non-trivial upper bounds in general. However, if p is bounded

away from 0 and 1, then we prove:

Theorem 1. To first order as ,n  the maximum binomial

probability over all  1p  equals
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More precisely,

for any fixed  ,21,0
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In particular,   .0;,maxsuplim
01




kpnf
nkpn

We begin the proof of Theorem 1 with some lemmas.

Lemma 2. Let   .1
1

, pn
n

T pn   Then ,, pT pn  and  ;, pnf  is

unimodal with mode at ., pnnT Specifically: (a) ,
1

, n
pT pn   and (b)
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   ,;,;,max , pnk nTpnfkpnf   and (c) if pnnTkk ,210  or n

,,21 pnnTkk  then    .;,;, 21 kpnfkpnf 

Proof. Part (a) is trivial, and parts (b) and (c) follow since

         ,11;,1;, pkpknkpnfkpnf  which is 1  for k

pnnT , and 1  for ., pnnTk  

Remark. If   pn 1 is an integer, then there are actually two adjacent

modes, but the one at pnnT ,  suffices for our purposes.

Lemma 3. For any ,10  p as n and k and kn  all ,
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Proof. Recall Stirling’s approximation (e.g., [1, p. 113]): as ,n

    .112! onenn n   Hence, for any ,10  p  as n and k and kn 
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After some cancellation, this gives that
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Lemma 4. Fix  ,1,0p  and let  tg p  be as in Lemma 3. Then (a)

  1tg p  for all  ,1,0t  and (b)    21 rOrpg p   as .0r
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Proof. We compute that

             .1log11log1logloglog ttptttpttg p 

Hence,

          tptptg
dt
d

p  1log1loglogloglog

.
1

log
1

log 


















t

t
p

p

This equals 0 when and only when .pt   Furthermore,
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It follows that ,log pg  and hence also ,pg  achieves its maximum when

.pt  Hence, for all ,10  t  we have     .1 pgtg pp  Then, taking

a Taylor expansion around pt   gives

      ptppp tg
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Hence,       ,1exp 22 rOrOrpg p   as claimed. 

Remark. It follows from the proof of Lemma 4 that   tg p

   22exp pt   for all  ,1,0t  though we do not use that fact here.

Proof of Theorem 1. Since  nOpT pn 1,   by Lemma 2(a), it

follows from Lemmas 3 and 4(b) that as ,n
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Hence, using Lemma 2(b),
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which gives the result. 

Remark 3. The Central Limit Theorem (CLT) says that the

 pnBinomial ,  distribution can be approximated by a normal distribution

with mean npm   and variance  ,1 pnpv  with density function

  vmxe
v
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and hence maximal density value 

v2

1
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pnp 
The CLT does not directly imply maximum probabilities,

but this maximal density value is consistent with the maximum probabilities

in the proof of Theorem 1.

Theorem 1 has implications for pairs of independent binomial random

variables:

Corollary 5. Let X and Y be two independent random variables having

binomial distributions with parameters XX pn , and ,, YY pn  respectively.
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Then for any  21,0  and ,

  .0supsupsuplim
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That is, for large ,Xn if Xp  is bounded away from 0 and 1, then the

probability that X and Y are within any fixed tolerance  goes to zero

regardless of the values of Yn and .Yp

Proof. Here

    



z d

dzXzYYX ,PP
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and this last quantity goes to 0 as Xn  by Theorem 1. 

Then, putting this in the context of voting theory, we conclude:

Corollary 6. Suppose An  voters each independently vote for candidate

A with probability Ap (otherwise they do not vote), and similarly Bn  and

Bp  for candidate B. Let X and Y be the total votes received by candidates A

and B, respectively, so  AA pnBinomialX ,~  and  BB pnBinomialY ,~

are independent. Then for any  21,0 and ,

  .0supsupsuplim
1




YX
BBAA pnpn

P
RN

That is, as An  goes to infinity, if the corresponding vote probability Ap is

bounded away from 0 and 1, then the probability that the two vote counts
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are within any fixed finite tolerance  of each other goes to 0, regardless of

the values of Bn  and .Bp

We can also extend Theorem 1 to restrictions on k instead of p:

Proposition 7. For any fixed  ,21,0r  as ,n
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Proof. We consider different ranges of p separately.

For 0p or ,1p  clearly     .0;,max 1  kpnfnrkrn

For  ,1, rrp   we have by Theorem 1 that
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with equality when  .1whenand rprp 

For ,0 rp   it follows from Lemma 2(c) and Lemma 3 that
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Hence, by Lemma 4(a),
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Similarly, for ,11  pr

 
      .11121;,max

1
ornrkpnf

nrkrn




This covers all possible values of p, so the result follows. 

Or, instead, to a “mix” of restrictions on p and on k:

Proposition 8. For any fixed  ,21,0,  r  setting  ,,min rm   as

,n
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Proof. We focus on the first quantity  nrkp  101 maxsup

 ;;, kpnf  the proof for the second quantity is symmetric. It follows from

Lemma 3 that equality is achieved when mp   and  mnk   if ,r  or

when mp  1 and   nmk  1  if .r  To show that no larger value

can arise, we again consider different ranges of  1,p  separately.

For ,1p  clearly     .0;,max 10  kpnfnrk

For    ,1,1, mmmp   by Theorem 1,
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For  ,1,1 mp   it follows from Lemma 2(c) and Lemma 3 and

Lemma 4(a) that
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since 210  rm  implies that    .11 mmrr   This covers all

 .1,p 

In the context of voting theory, Proposition 8 gives:



Maximum Binomial Probabilities and Game Theory Voter Models 83

Corollary 9. In the setup of Corollary 6, for any  ,1,0,  r
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That is, as Ap  goes to infinity, if the vote probability Ap is bounded away

from 0 (but not 1), and the size Bn is no more than a fraction 1 of ,An

then the probability that the two vote counts are within any fixed finite

tolerance  of each other still goes to 0.

Proof. Here
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which 0  as An  by Proposition 8 (reducing  and r to 21  if

necessary). 

Remark. In Corollaries 6 and 9, the restriction that Ap  or AB nn  be

bounded away from 1 really is necessary, even if .BA nn   For example, if

1 AB nn  and  AA np 11   and ,1Bp  then as ,An

       BBB nYnXnYXYX  PPPP
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Corollary 9 applies when the larger population, ,An  has vote probability

.Ap What if instead the smaller population Bn  has ?Bp  If we

assume that both An  and ,Bn  then we can strengthen Corollary
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9 to assume that just   ,,max BA pp  i.e., that either one of them is

bounded away from 0:

Corollary 10. In the setup of Corollary 6, for any  ,1,0,  r
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Proof. Corollary 9 covers the case where ,Ap  so we assume here

that .Bp  Assume without loss of generality (by reducing  if necessary)

that .21  As before,
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Now, if ,Bnz   then since Bp  and ,1 
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Hence, by Proposition 8  ,with r

       .011121  onzY BP

If instead  ,, BB nnz   then since z  and  BAA nnzn

,Brn  using that       ,1111 rrnnnz ABA   it follows

from Lemmas 3 and 4(a) that

           .0112111121  ornonzzdzX BAP

Combining these two bounds, we compute from () that
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      1112112 onB 

    ,112112 ornB 

which converges to 0 as ,Bn  as claimed. 

Finally, considering the converse of Corollary 10 gives:

Corollary 11. In the setup of Corollary 6, if Bn and

 rnn BA  1 for some  ,1,0r  and   ,0inflim  YXP

then we must have both 0Ap  and ,0Bp i.e., everyone’s probability

of voting must converge to zero as ., BA nn

Acknowledgements

I thank Martin J. Osborne for bringing this problem to my attention, and

thank Neal Madras for a helpful comment.

The work is supported in part by NSERC of Canada.

References

[1] K. Knight, Mathematical Statistics, Chapman and Hall/CRC Press, 1999.

[2] M. J. Osborne, An Introduction to Game Theory, Oxford University Press, 2003.

[3] T. R. Palfrey and H. Rosenthal, Voter participation and strategic uncertainty, The

American Political Science Review 79(1) (1985), 62-78.

[4] R. B. Schinazi, Probability with Statistical Applications, Birkhäuser, Boston,

2001.

[5] C. R. Taylor and H. Yildirim, A unified analysis of rational voting with private

values and group-specific costs, Games and Economic Behavior 70 (2010),

457-471.


