Advances and Applications in Statistics
© 2020 Pushpa Publishing House, Prayagraj, India
http://www.pphmj.com
http://dx.doi.org/10.17654/AS064010075
Volume 64, Number 1, 2020, Pages 75-85

MAXIMUM BINOMIAL PROBABILITIES AND
 GAME THEORY VOTER MODELS

Jeffrey S. Rosenthal
Department of Statistics
University of Toronto
Toronto, Ontario, M5S 3G3, Canada
e-mail: jeff@math.toronto.edu

Abstract

We consider the simple voter model where two candidates A and B have n_{A} and n_{B} supporters, who each vote independently with probabilities p_{A} and p_{B}. We provide estimates and bounds on the probability that the vote ends in a tie, or within some fixed margin α. To do this, we derive bounds on the maximum values of certain binomial probabilities, which in turn allow us to bound probabilities of differences of pairs of independent binomial random variables.

This note is motivated by questions in voting game theory, which concerns itself with models of how people decide to vote (see, e.g., $[2,3,5]$ and many other references). A simple voter model assumes that there are two candidates A and B, with n_{A} and n_{B} supporters, respectively, each voting independently with probabilities p_{A} and p_{B}, respectively. Under such assumptions, what is the probability that the vote ends in a tie, or within some fixed margin α ? Such questions are directly related to bounds on
Received: June 2, 2020; Revised: July 9, 2020; Accepted: July 11, 2020
2010 Mathematics Subject Classification: Primary 60E05, 91B12; Secondary 91A05.
Keywords and phrases: binomial distribution, voter model, game theory, tie probability.
maximum binomial probabilities (Theorem 1), which in turn allow us to bound probabilities of differences of pairs of independent variables (Corollary 5), and of vote margins (Corollary 6). We also extend our results to assumptions involving the vote size (Propositions 7 and 8 and Corollaries 9, 10 and 11).

To state our results, let $f(n, p ; k)$ be the probability that a binomial distribution with parameters n and p equals the specific value k, i.e.,

$$
\begin{aligned}
f(n, p ; k) & :=\mathbf{P}[\operatorname{Binomial}(n, p)=k]=\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
\end{aligned}
$$

The mode of f is well-known (e.g., [4, p. 70]), but the maximal values of f are less well studied. Note that $f(n, 0 ; 0)=f(n, 1 ; n)=1$ for any $n \in \mathbf{N}$, so there are no non-trivial upper bounds in general. However, if p is bounded away from 0 and 1 , then we prove:

Theorem 1. To first order as $n \rightarrow \infty$, the maximum binomial probability over all $\varepsilon \leq p \leq 1-\varepsilon$ equals $\frac{1}{\sqrt{2 \pi n \varepsilon(1-\varepsilon)}}$. More precisely, for any fixed $\varepsilon \in(0,1 / 2]$,

$$
\lim _{n \rightarrow \infty} \frac{\sup _{\varepsilon \leq p \leq 1-\varepsilon} \max _{0 \leq k \leq n} f(n, p ; k)}{\frac{1}{\sqrt{2 \pi n \varepsilon(1-\varepsilon)}}}=1
$$

In particular, $\lim _{n \rightarrow \infty} \sup _{\varepsilon \leq p \leq 1-\varepsilon} \max _{0 \leq k \leq n} f(n, p ; k) \rightarrow 0$.
We begin the proof of Theorem 1 with some lemmas.
Lemma 2. Let $T_{n, p}=\frac{1}{n}\lfloor(n+1) p\rfloor$. Then $T_{n, p} \approx p$, and $f(n, p ; \cdot)$ is unimodal with mode at $n T_{n, p}$. Specifically: (a) $\left|T_{n, p}-p\right| \leq \frac{1}{n}$, and (b)
$\max _{k} f(n, p ; k)=f\left(n, p ; n T_{n, p}\right)$, and (c) if $0 \leq k_{1} \leq k_{2} \leq n T_{n, p}$ or $n \geq$ $k_{1} \geq k_{2} \geq n T_{n, p}$, then $f\left(n, p ; k_{1}\right) \leq f\left(n, p ; k_{2}\right)$.

Proof. Part (a) is trivial, and parts (b) and (c) follow since $f(n, p ; k+1) / f(n, p ; k)=(n-k) p /(k+1)(1-p)$, which is >1 for $k<$ $n T_{n, p}$ and <1 for $k>n T_{n, p}$.

Remark. If $(n+1) p$ is an integer, then there are actually two adjacent modes, but the one at $n T_{n, p}$ suffices for our purposes.

Lemma 3. For any $0<p<1$, as n and k and $n-k$ all $\rightarrow \infty$,

$$
f(n, p ; k)=\left[g_{p}(k / n)\right]^{n} \sqrt{1 / 2 \pi k[1-(k / n)]}[1+o(1)],
$$

where

$$
g_{p}(t)=\left(\frac{p}{t}\right)^{t}\left(\frac{1-p}{1-t}\right)^{1-t}, \quad t \in(0,1) .
$$

Proof. Recall Stirling's approximation (e.g., [1, p. 113]): as $n \rightarrow \infty$, $n!=(n / e)^{n} \sqrt{2 \pi n}[1+o(1)]$. Hence, for any $0<p<1$, as n and k and $n-k$ all $\rightarrow \infty$,

$$
f(n, p ; k)=\frac{(n / e)^{n} \sqrt{2 \pi n} p^{k}(1-p)^{n-k}}{\left(k / e e^{k} \sqrt{2 \pi k}[(n-k) / e]^{n-k} \sqrt{2 \pi(n-k)}\right.}[1+o(1)] .
$$

After some cancellation, this gives that

$$
\begin{aligned}
f(n, p ; k) & =\left(\frac{p}{k / n}\right)^{k}\left(\frac{1-p}{1-(k / n)}\right)^{n-k} \sqrt{1 / 2 \pi k[1-(k / n)]}[1+o(1)] \\
& \left.=\left[g_{p}(k / n)\right]^{n} \sqrt{1 / 2 \pi k[1-(k / n)}\right][1+o(1)] .
\end{aligned}
$$

Lemma 4. Fix $p \in(0,1)$, and let $g_{p}(t)$ be as in Lemma 3. Then (a) $g_{p}(t) \leq 1$ for all $t \in(0,1)$, and $(\mathrm{b}) g_{p}(p+r)=1+O\left(r^{2}\right)$ as $r \rightarrow 0$.

Proof. We compute that

$$
\log g_{p}(t)=t \log (p)-t \log (t)+(1-t) \log (1-p)-(1-t) \log (1-t)
$$

Hence,

$$
\begin{aligned}
\frac{d}{d t} \log \left(g_{p}(t)\right) & =\log (p)-\log (t)-\log (1-p)+\log (1-t) \\
& =\log \left(\frac{p}{1-p}\right)-\log \left(\frac{t}{1-t}\right)
\end{aligned}
$$

This equals 0 when and only when $t=p$. Furthermore,

$$
\left(\frac{d}{d t}\right)^{2} \log \left(g_{p}(t)\right)=-\frac{1}{t}-\frac{1}{1-t}=-\frac{1}{t(1-t)} \leq-4<0 .
$$

It follows that $\log g_{p}$, and hence also g_{p}, achieves its maximum when $t=p$. Hence, for all $0<t<1$, we have $g_{p}(t) \leq g_{p}(p)=1$. Then, taking a Taylor expansion around $t=p$ gives

$$
\begin{aligned}
\log g_{p}(p+r)= & \log g_{p}(p)+\left.r \frac{d}{d t} \log g_{p}(t)\right|_{t=p} \\
& +\left.\frac{r^{2}}{2}\left(\frac{d}{d t}\right)^{2} \log g_{p}(t)\right|_{t=p}+O\left(r^{3}\right) \\
= & 0+r(0)+\frac{r^{2}}{2}\left(-\frac{1}{p}-\frac{1}{1-p}\right)+O\left(r^{3}\right)=O\left(r^{2}\right) .
\end{aligned}
$$

Hence, $g_{p}(p+r)=\exp \left[O\left(r^{2}\right)\right]=1+O\left(r^{2}\right)$, as claimed.
Remark. It follows from the proof of Lemma 4 that $g_{p}(t) \leq$ $\exp \left(-2(t-p)^{2}\right)$ for all $t \in(0,1)$, though we do not use that fact here.

Proof of Theorem 1. Since $\left|T_{n, p}-p\right|=O(1 / n)$ by Lemma 2(a), it follows from Lemmas 3 and 4(b) that as $n \rightarrow \infty$,

$$
\begin{aligned}
f\left(n, p ; n T_{n, p}\right) & =\left[g_{p}\left(T_{n, p}\right)\right]^{n} \sqrt{1 / 2 \pi n T_{n, p}\left[1-T_{n, p}\right]}[1+o(1)] \\
& =\left[g_{p}(p+O(1 / n))\right]^{n} \sqrt{1 / 2 \pi n T_{n, p}\left[1-T_{n, p}\right]}[1+o(1)] \\
& =\left[1+O\left(1 / n^{2}\right)\right]^{n} \sqrt{1 / 2 \pi n T_{n, p}\left[1-T_{n, p}\right.}[1+o(1)] \\
& =e^{n O\left(1 / n^{2}\right) \sqrt{1 / 2 \pi n p[1-p]}[1+o(1)]} \\
& =\sqrt{1 / 2 \pi n p[1-p][1+o(1)] .}
\end{aligned}
$$

Hence, using Lemma 2(b),

$$
\begin{aligned}
\sup _{\varepsilon \leq p \leq 1-\varepsilon} \sup _{0 \leq k \leq n} f(n, p ; k) & =\sup _{\varepsilon \leq p \leq 1-\varepsilon} f\left(n, p ; n T_{n, p}\right) \\
& =\sup _{\varepsilon \leq p \leq 1-\varepsilon} \sqrt{1 / 2 \pi n p(1-p)}[1+o(1)] \\
& =\sqrt{1 / 2 \pi n \varepsilon(1-\varepsilon)}[1+o(1)]
\end{aligned}
$$

which gives the result.
Remark 3. The Central Limit Theorem (CLT) says that the $\operatorname{Binomial}(n, p)$ distribution can be approximated by a normal distribution with mean $m=n p$ and variance $v=n p(1-p)$, with density function $\frac{1}{\sqrt{2 \pi v}} e^{-(x-m)^{2} / 2 v}$ and hence maximal density value $\frac{1}{\sqrt{2 \pi v}}=$ $\frac{1}{\sqrt{2 \pi n p(1-p)}}$. The CLT does not directly imply maximum probabilities, but this maximal density value is consistent with the maximum probabilities in the proof of Theorem 1.

Theorem 1 has implications for pairs of independent binomial random variables:

Corollary 5. Let X and Y be two independent random variables having binomial distributions with parameters n_{X}, p_{X} and n_{Y}, p_{Y}, respectively.

Then for any $\varepsilon \in(0,1 / 2]$ and $\alpha<\infty$,

$$
\lim _{n_{X} \rightarrow \infty} \sup _{\varepsilon \leq p_{X} \leq 1-\varepsilon} \sup _{n_{Y} \in \mathbf{N}} \sup _{0 \leq p_{Y} \leq 1} \mathbf{P}(|X-Y| \leq \alpha)=0
$$

That is, for large n_{X}, if p_{X} is bounded away from 0 and 1 , then the probability that X and Y are within any fixed tolerance α goes to zero regardless of the values of n_{Y} and p_{Y}.

Proof. Here

$$
\begin{aligned}
\mathbf{P}(|X-Y| \leq \alpha) & =\sum_{z} \sum_{d \mid \leq \alpha} \mathbf{P}[Y=z, X=z+d] \\
& =\sum_{z} \sum_{d \mid \leq \alpha} \mathbf{P}[X=z+d] \mathbf{P}[Y=z] \\
& \leq \sum_{z} \sum_{d \mid \leq \alpha}\left(\sup _{w} \mathbf{P}[X=w]\right) \mathbf{P}[Y=z] \\
& \leq(2 \alpha+1) \sup \mathbf{P}[X=w],
\end{aligned}
$$

and this last quantity goes to 0 as $n_{X} \rightarrow \infty$ by Theorem 1 .
Then, putting this in the context of voting theory, we conclude:
Corollary 6. Suppose n_{A} voters each independently vote for candidate A with probability p_{A} (otherwise they do not vote), and similarly n_{B} and p_{B} for candidate B. Let X and Y be the total votes received by candidates A and B, respectively, so $X \sim \operatorname{Binomial}\left(n_{A}, p_{A}\right)$ and $Y \sim \operatorname{Binomial}\left(n_{B}, p_{B}\right)$ are independent. Then for any $\varepsilon \in(0,1 / 2]$ and $\alpha<\infty$,

$$
\lim _{n_{A} \rightarrow \infty} \sup _{\varepsilon \leq p_{A} \leq 1-\varepsilon} \sup _{n_{B} \in \mathbf{N}} \sup _{p_{B} \in \mathbf{R}} \mathbf{P}(|X-Y| \leq \alpha)=0 .
$$

That is, as n_{A} goes to infinity, if the corresponding vote probability p_{A} is bounded away from 0 and 1, then the probability that the two vote counts
are within any fixed finite tolerance α of each other goes to 0 , regardless of the values of n_{B} and p_{B}.

We can also extend Theorem 1 to restrictions on k instead of p :
Proposition 7. For any fixed $r \in(0,1 / 2]$, as $n \rightarrow \infty$,

$$
\sup _{0 \leq p \leq 1} \max _{r n \leq k \leq(1-r) n} f(n, p ; k)=\frac{1}{\sqrt{2 \pi n r(1-r)}}[1+o(1)] \rightarrow 0 .
$$

Proof. We consider different ranges of p separately.
For $p=0$ or $p=1$, clearly $\max _{r n \leq k \leq(1-r) n} f(n, p ; k)=0$.
For $p \in[r, 1-r]$, we have by Theorem 1 that

$$
\max _{r n \leq k \leq(1-r) n} f(n, p ; k) \leq \sup _{r \leq p^{\prime} \leq 1-r} \max _{0 \leq k \leq n} f\left(n, p^{\prime} ; k\right)=\frac{1}{\sqrt{2 \pi n r(1-r)}}[1+o(1)],
$$

with equality when $p=r$ (and when $p=1-r$).
For $0<p<r$, it follows from Lemma 2(c) and Lemma 3 that

$$
\max _{r n \leq k \leq(1-r) n} f(n, p ; k)=f(n, p ;\lceil r n\rceil)=\left[g_{p}(r)\right]^{n} \sqrt{1 / 2 \pi n r(1-r)}[1+o(1)] .
$$

Hence, by Lemma 4(a),

$$
\max _{r n \leq k \leq(1-r) n} f(n, p ; k) \leq \sqrt{1 / 2 \pi n r(1-r)}[1+o(1)] .
$$

Similarly, for $1-r<p<1$,

$$
\max _{r n \leq k \leq(1-r) n} f(n, p ; k) \leq \sqrt{1 / 2 \pi n r(1-r)}[1+o(1)] .
$$

This covers all possible values of p, so the result follows.
Or, instead, to a "mix" of restrictions on p and on k :
Proposition 8. For any fixed $\varepsilon, r \in(0,1 / 2]$, setting $m=\min (\varepsilon, r)$, as $n \rightarrow \infty$,

$$
\begin{aligned}
\sup _{\varepsilon \leq p \leq 1} \max _{0 \leq k \leq(1-r) n} f(n, p ; k) & =\sup _{0 \leq p \leq 1-\varepsilon} \max _{r n \leq k \leq n} f(n, p ; k) \\
& =\frac{1}{\sqrt{2 \pi n m(1-m)}}[1+o(1)] \rightarrow 0 .
\end{aligned}
$$

Proof. We focus on the first quantity $\sup _{\varepsilon \leq p \leq 1} \max _{0 \leq k \leq(1-r) n}$ - $f(n, p ; k)$; the proof for the second quantity is symmetric. It follows from Lemma 3 that equality is achieved when $p=m$ and $k=\lfloor m n\rfloor$ if $\varepsilon \leq r$, or when $p=1-m$ and $k=\lfloor(1-m) n\rfloor$ if $r \leq \varepsilon$. To show that no larger value can arise, we again consider different ranges of $p \in[\varepsilon, 1]$ separately.

For $p=1$, clearly $\max _{0 \leq k \leq(1-r) n} f(n, p ; k)=0$.
For $p \in[\varepsilon, 1-m] \subseteq[m, 1-m]$, by Theorem 1,

$$
\begin{aligned}
\max _{0 \leq k \leq(1-r) n} f(n, p ; k) & \leq \sup _{m \leq p^{\prime} \leq 1-m} \max _{0 \leq k \leq n} f\left(n, p^{\prime} ; k\right) \\
& =\frac{1}{\sqrt{2 \pi n m(1-m)}}[1+o(1)] .
\end{aligned}
$$

For $p \in(1-m, 1)$, it follows from Lemma 2(c) and Lemma 3 and Lemma 4(a) that

$$
\begin{aligned}
\max _{0 \leq k \leq(1-r) n} f(n, p ; k) & =f(n, p ;\lfloor(1-r) n\rfloor) \\
& =\left[g_{p}(1-r)\right]^{n} \sqrt{1 / 2 \pi n r(1-r)}[1+o(1)] \\
& \leq \sqrt{1 / 2 \pi n r(1-r)}[1+o(1)] \leq \sqrt{1 / 2 \pi n m(1-m)}[1+o(1)]
\end{aligned}
$$

since $0<m \leq r \leq 1 / 2$ implies that $r(1-r) \geq m(1-m)$. This covers all $p \in[\varepsilon, 1]$.

In the context of voting theory, Proposition 8 gives:

Corollary 9. In the setup of Corollary 6, for any $\varepsilon, r \in(0,1)$,

$$
\lim _{n_{A} \rightarrow \infty} \sup _{p_{A} \geq \varepsilon} \sup _{n_{B} \leq(1-r) n_{A}} \sup _{0 \leq p_{B} \leq 1} \mathbf{P}(|X-Y| \leq \alpha)=0 .
$$

That is, as p_{A} goes to infinity, if the vote probability p_{A} is bounded away from 0 (but not 1), and the size n_{B} is no more than a fraction <1 of n_{A}, then the probability that the two vote counts are within any fixed finite tolerance α of each other still goes to 0 .

Proof. Here

$$
\begin{aligned}
\mathbf{P}(|X-Y| \leq \alpha) & =\sum_{z} \sum_{d \mid \leq \alpha} \mathbf{P}[Y=z, X=z+d] \\
& \leq(2 \alpha+1) \max _{0 \leq w \leq n_{B}} \mathbf{P}[X=w] \\
& \leq(2 \alpha+1) \max _{0 \leq w \leq(1-r) n_{A}} \mathbf{P}[X=w]
\end{aligned}
$$

which $\rightarrow 0$ as $n_{A} \rightarrow \infty$ by Proposition 8 (reducing ε and r to $\leq 1 / 2$ if necessary).

Remark. In Corollaries 6 and 9 , the restriction that p_{A} or n_{B} / n_{A} be bounded away from 1 really is necessary, even if $n_{A} \neq n_{B}$. For example, if $n_{B}=n_{A}-1$ and $p_{A}=1-\left(1 / n_{A}\right)$ and $p_{B}=1$, then as $n_{A} \rightarrow \infty$,

$$
\begin{aligned}
\mathbf{P}(X=Y) & \geq \mathbf{P}\left(X=Y=n_{B}\right)=\mathbf{P}\left(X=n_{B}\right) \mathbf{P}\left(Y=n_{B}\right) \\
& =\binom{n_{A}}{n_{B}} p_{A}^{n_{B}}\left(1-p_{A}\right)^{1} \\
& =n_{A}\left[1-\left(1 / n_{A}\right)\right]^{n_{B}}\left(1 / n_{A}\right)=e^{-n_{B} / n_{A}}[1+o(1)] \rightarrow 1 / e \neq 0 .
\end{aligned}
$$

Corollary 9 applies when the larger population, n_{A}, has vote probability $p_{A} \geq \varepsilon$. What if instead the smaller population n_{B} has $p_{B} \geq \varepsilon$? If we assume that both $n_{A} \rightarrow \infty$ and $n_{B} \rightarrow \infty$, then we can strengthen Corollary

9 to assume that just $\max \left(p_{A}, p_{B}\right) \geq \varepsilon$, i.e., that either one of them is bounded away from 0 :

Corollary 10. In the setup of Corollary 6, for any $\varepsilon, r \in(0,1)$,

$$
\lim _{n_{B} \rightarrow \infty} \sup _{n_{A} \geq n_{B} /(1-r)} \sup _{p_{A}, p_{B} \in[0,1]}^{\max \left(p_{A}, p_{B}\right) \geq \varepsilon}
$$

Proof. Corollary 9 covers the case where $p_{A} \geq \varepsilon$, so we assume here that $p_{B} \geq \varepsilon$. Assume without loss of generality (by reducing ε if necessary) that $\varepsilon \leq 1 / 2$. As before,

$$
\begin{equation*}
\mathbf{P}(|X-Y| \leq \alpha)=\sum_{z} \sum_{d \mid \leq \alpha} \mathbf{P}[X=z+d] \mathbf{P}[Y=z] \tag{*}
\end{equation*}
$$

Now, if $z \leq \varepsilon n_{B}$, then since $p_{B} \geq \varepsilon$ and $\varepsilon \leq 1-\varepsilon$,

$$
\mathbf{P}[Y=z]=f\left(n_{B}, p_{B} ; z\right) \leq \sup _{\varepsilon \leq p \leq 1} \max _{0 \leq k \leq(1-\varepsilon) n_{B}} f\left(n_{B}, p ; k\right)[1+o(1)] .
$$

Hence, by Proposition 8 (with $r=\varepsilon$),

$$
\mathbf{P}[Y=z] \leq \sqrt{1 / 2 \pi n_{B} \varepsilon(1-\varepsilon)}[1+o(1)] \rightarrow 0 .
$$

If instead $z \in\left(\varepsilon n_{B}, n_{B}\right]$, then since $z \rightarrow \infty$ and $n_{A}-z \geq n_{A}-n_{B} \geq$ $r n_{B} \rightarrow \infty$, using that $1-\left(z / n_{A}\right) \geq 1-\left(n_{B} / n_{A}\right) \geq 1-(1-r)=r$, it follows from Lemmas 3 and 4(a) that

$$
\mathbf{P}[X=z+d] \leq \sqrt{1 / 2 \pi z\left[1-\left(z / n_{A}\right)\right]}[1+o(1)] \leq \sqrt{1 / 2 \pi \varepsilon n_{B} r}[1+o(1)] \rightarrow 0 .
$$

Combining these two bounds, we compute from (*) that

$$
\begin{aligned}
\mathbf{P}(|X-Y| \leq \alpha) \leq & \sum_{z \leq \varepsilon n_{B}} \sum_{d \mid \leq \alpha} \mathbf{P}[X=z+d] \sqrt{1 / 2 \pi n_{B} \varepsilon(1-\varepsilon)}[1+o(1)] \\
& +\sum_{z \in\left(\varepsilon n_{B}, n_{B}\right]} \sum_{|d| \leq \alpha} \sqrt{1 / 2 \pi \varepsilon n_{B} r} \mathbf{P}[Y=z][1+o(1)]
\end{aligned}
$$

$$
\begin{aligned}
\leq & (2 \alpha+1) \sqrt{1 / 2 \pi n_{B} \varepsilon(1-\varepsilon)}[1+o(1)] \\
& +(2 \alpha+1) \sqrt{1 / 2 \pi \varepsilon n_{B} r}[1+o(1)],
\end{aligned}
$$

which converges to 0 as $n_{B} \rightarrow \infty$, as claimed.
Finally, considering the converse of Corollary 10 gives:
Corollary 11. In the setup of Corollary 6 , if $n_{B} \rightarrow \infty$ and $n_{A} \geq n_{B} /(1-r)$ for some $r \in(0,1)$, and $\liminf \mathbf{P}(|X-Y| \leq \alpha)>0$, then we must have both $p_{A} \rightarrow 0$ and $p_{B} \rightarrow 0$, i.e., everyone's probability of voting must converge to zero as $n_{A}, n_{B} \rightarrow \infty$.

Acknowledgements

I thank Martin J. Osborne for bringing this problem to my attention, and thank Neal Madras for a helpful comment.

The work is supported in part by NSERC of Canada.

References

[1] K. Knight, Mathematical Statistics, Chapman and Hall/CRC Press, 1999.
[2] M. J. Osborne, An Introduction to Game Theory, Oxford University Press, 2003.
[3] T. R. Palfrey and H. Rosenthal, Voter participation and strategic uncertainty, The American Political Science Review 79(1) (1985), 62-78.
[4] R. B. Schinazi, Probability with Statistical Applications, Birkhäuser, Boston, 2001.
[5] C. R. Taylor and H. Yildirim, A unified analysis of rational voting with private values and group-specific costs, Games and Economic Behavior 70 (2010), 457-471.

