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Abstract

We consider the simple voter model where two candidates A and B
have n, and ng supporters, who each vote independently with
probabilities p, and pg. We provide estimates and bounds on the

probability that the vote ends in atie, or within some fixed margin o.
To do this, we derive bounds on the maximum values of certain
binomia probabilities, which in turn alow us to bound probabilities
of differences of pairs of independent binomia random variables.

This note is motivated by questions in voting game theory, which
concerns itself with models of how people decide to vote (see, e.g., [2, 3, 5]
and many other references). A simple voter model assumes that there are two
candidates A and B, with ny and ng supporters, respectively, each voting
independently with probabilities p, and pg, respectively. Under such
assumptions, what is the probability that the vote ends in a tie, or within
some fixed margin a? Such questions are directly related to bounds on
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maximum binomial probabilities (Theorem 1), which in turn allow us to
bound probabilities of differences of pairs of independent variables
(Corollary 5), and of vote margins (Corollary 6). We also extend our results
to assumptions involving the vote size (Propositions 7 and 8 and Corollaries
9, 10 and 11).

To state our results, let f(n, p; k) be the probability that a binomial

distribution with parameters n and p equals the specific valuek, i.e.,
n _
jpk(l— p)"

f(n, p; k) = P[Binomia(n, p) = k] = (k

nl

= K(n—K) Pk(l— p)n_k-

The mode of f iswell-known (e.g., [4, p. 70]), but the maximal values of f are
less well studied. Note that f(n, 0; 0) = f(n, L, n)=1 forany ne N, so
there are no non-trivial upper bounds in general. However, if p is bounded
away from 0 and 1, then we prove:

Theorem 1. To first order as n — o, the maximum binomial

probability over all ¢ < p<1-¢ equals . More precisdly,

1
NJ2nne(1-¢)

for any fixed ¢ € (0, 1/2],

lim SUPg< p<1-¢ MaXo<k<n f(N, P; K) _1
N—0 1

N2nne(l-¢)

Inparticular, lim sup max f(n, p; k) = 0.
N—oo e< pS].*S 0<k<n

We begin the proof of Theorem 1 with some lemmas.

Lemma 2. Let T, , = %L(n+1) pJ. Then T, ~ p, and f(n, p; -) is

S|

unimodal with mode at nT,, ,. Specifically: (&) [T, p — p|< =, and (b)
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maxy f(n, p; k) = f(n, p; nTy, ), and (¢) if 0 < ky < kp < nT, p or n >
ky 2 ko > nTy , then f(n, p; k) < f(n, p; ko).

Proof. Part (a) is trivial, and parts (b) and (c) follow since
f(n, p; k+1)/f(n, p; k) =(n-k)p/(k +1)(1- p), whichis >1 for k <
nTp, p and < 1 for k > nTj, . O

Remark. If (n+1)p isan integer, then there are actually two adjacent

modes, but the one at nT,, , sufficesfor our purposes.

Lemma3.Forany 0< p<1 asnandkand n—k all —» o,

t(n, p; k) = [gp(k/m)]"vY2rk[L - (k/n)] [1+ o(D)],

where

gp(t) = (Tp)t(ll%fjl_t, t (0 1)

Proof. Recall Stirling’s approximation (e.g., [1, p. 113]): as n — oo,
n'= (n/e)"v2rn[1+ o(1)]. Hence, forany 0< p <1, asnandkand n -k
al — o,

(n/e)"v2rnpX(a- p)"*

(k/e)*~2rk [(n - k)/e]" K \2r(n — k) [+ o)

f(n, p; k) =
After some cancellation, this gives that
(o e = () (12 | ¥R i+ o)
- [9p(k/ TR~ (K] [1+ o) =

Lemma 4. Fix p e (0,1), and let g,(t) be asin Lemma 3. Then (a)

gp(t)<lforal te(01), and(b) gp(p+r)=1+ O(r?) asr — 0.
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Proof. We compute that

log gp(t) = tlog(p) —tlog(t) + (1 -t)log(l - p) - (1—t)log(1-t).

Hence,

%Iog(gp(t)) = log(p) - log(t) — log(1 - p) + log(1 - 1)

o2, )

This equals 0 when and only when t = p. Furthermore,

2
(%j 100(0p(t) = ¢ - ¢ = o = 4 <0

It follows that loggp, and hence also g,, achieves its maximum when
t = p. Hence, for al 0 <t <1, wehave g,(t) < gp(p) = 1. Then, taking

aTaylor expansion around t = p gives
d
loggp(p +1) =109gp(p) + 1 109 9p(t)lt=p
2

r(d 2| o(r3
Y5l 0g gp(t)t=p + O(r>)

_ o+ r(o>+§(—%—ﬁj+ o(r®) = o(r?).

Hence, gp(p+r1) = exp[O(r?)] = 1+ O(r?), asclaimed. O
Remark. It follows from the proof of Lemma 4 that gp(t) <

exp(—2(t — p)z) forall t € (0, 1), though we do not use that fact here.

Proof of Theorem 1. Since [Ty, , — p| = O(/n) by Lemma 2(a), it

follows from Lemmas 3 and 4(b) that as n — oo,
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f(n, p; nTy, p) = [9p(Th, p)]n\/]/znnTn, pld—Th, pl[1+0(D)]

= [gp(p+ O(l/n))]”\/]/ZnnTn, plL =T, p] [1+ 0(2)]

= [1+ O@/n®)" fi/2enT, o[- T, p] [+ o(D)]

_ e"0Wn®), [if3rnp— pl[L+ o(L)]
= JY/2mnp[1- p] [1+ o(1)].

Hence, using Lemma 2(b),

sup sup f(n, p;k)= sup f(n, p; nTn’p)

< p<l-g 0<k<n e<p<l-¢
= sup 1/2nnp(l - p) [L+ o(2)]
g<p<l-e
= J12rne(L - €) [L+ o(D)],
which gives the result. O

Remark 3. The Centra Limit Theorem (CLT) says that the
Binomial (n, p) distribution can be approximated by a normal distribution

with mean m=np and variance v =np(l- p), with density function

1 —(x— m)2/2v : : 1
——0e and hence maximal densit value =
21V y 2nv

1

—— . The CLT does not directly imply maximum probabilities,
v 2rnp(1- p)
but this maximal density value is consistent with the maximum probabilities
in the proof of Theorem 1.

Theorem 1 has implications for pairs of independent binomia random
variables:

Corollary 5. Let X and Y be two independent random variables having
binomial distributions with parameters ny, px and ny, py, respectively.
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Then for any ¢ € (0, /2] and o < o,

lim sup  sup sup P(|X-Y|<a)=0.
NX =% g<py <l-¢ nyeN 0<py<l
That is, for large ny, if pyx is bounded away from O and 1, then the

probability that X and Y are within any fixed tolerance o goes to zero
regardless of the valuesof ny and py.

Proof. Here
P(X-Y[<a)=) > PY=zX=z+d]

z |d|<a

=> > PIX=z+d]P[Y = 7]
z |d|<a

<> > (supP[X = w)P[Y = 7]
z |d|ga W

< (20 +)supP[X = w],

w
and this last quantity goesto O as ny — oo by Theorem 1. O

Then, putting thisin the context of voting theory, we conclude:

Corollary 6. Suppose np voters each independently vote for candidate
A with probability pa (otherwise they do not vote), and similarly ng and
pg for candidate B. Let X and Y be the total votes received by candidates A
and B, respectively, so X ~ Binomial(np, pa) and Y ~ Binomial (ng, pg)
areindependent. Then for any ¢ e (0, /2] and o < o,

lim sup  sup sup P(|X-Y|<a)=0.
NA—® g<pp<l-¢ ngeN pgeR

That is, as na goes to infinity, if the corresponding vote probability pa is
bounded away from 0 and 1, then the probability that the two vote counts
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are within any fixed finite tolerance o of each other goes to O, regardless of
the values of ng and pg.

We can also extend Theorem 1 to restrictions on k instead of p:

Proposition 7. For any fixed r € (0, 1/2], as n — oo,

sup max

1
f(n p; k) =—=—r——
ogpglrnsks(l—r)n( Pi k) N2rnr(1-r)

Proof. We consider different ranges of p separately.

[1+0(1)] — O.

For p=0or p =1 clearly maX;nck<(i-ryn f(n, p; k) = 0.

For p € [r, 1- r], we have by Theorem 1 that

max f(n, p;k)< sup  max f(n, p;k)= ;[14- o(1)],
rn<k<(1-r)n r<p<i—r O<ksn 2rnr(1—r)

with equality when p=r (and when p=1-r).

For 0 < p < r, itfollowsfrom Lemma 2(c) and Lemma 3 that

max  f(n, p; k)= f(n, p;[rn]) = [gp(r)]”«/J/Znnr(l— r)[1+ o(1)].

rn<k<(1-r)n

Hence, by Lemma4(a),

max  f(n, p; k) <{Y2rnr(1-r)[1+ o(D)].

rn<k<(1-r)n

Similarly,for 1-r < p<1,

max  f(n, p; k) < {Y2rnr(1-r)[1+ o(1)].

rn<k<(1-r)n
This coversall possible values of p, so the result follows. O

Or, instead, to a “mix” of restrictions on p and on k:

Proposition 8. For any fixed ¢, r e (0, 1/2], setting m = min(g, r), as
n — oo,
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sup max f(n, p; k)= sup

max f(n, p; k)
e<p<l 0<k<(1-r)n

0< p<l-¢ rn<ksn

1
———[1+0@)]—>0.
v 2rnm(1— m) [1+ o)
Proof. We focus on the first quantity Sup;<p<)MaXo<k<(1-r)n

- f(n, p; k); the proof for the second quantity is symmetric. It follows from

Lemma 3 that equality is achieved when p=mand k=|mn| if e <r, or

when p=1-mand k =|(1-m)n] if r <& To show that no larger value

can arise, we again consider different rangesof p e [g, 1] separately.
For p =1, clearly maxo<k<(1-r)n f(n, p; k) = 0.
For p € [e,1- m] < [m, 1— m], by Theorem 1,

f 1 k) < f K
0Ty F(M PR < s o, TPk
=;[1+ o(2)].
N 2mnm(1 - m)

For pe(1-m,1), it follows from Lemma 2(c) and Lemma 3 and
Lemma 4(a) that

o< e f(n, pr k)= f(n, p;[L-r)n])

= [gp(1— )"V 2zmr(@- DL+ (D)

<VY2mnr(1-r)[1+ o(1)] < /1/2rnm(1— m) [1+ o(2)]

since 0<m<r <12 implies that r(1-r) > m(1-m). This covers dl

p €[ 1]. O

In the context of voting theory, Proposition 8 gives:
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Corollary 9. Inthe setup of Corollary 6, for any ¢, r € (0, 1),

lim sup sup sup P(|X-Y|<a)=0.
NA=® paze ng<(l-r)np 0<pgs<l

That is, as pa goes to infinity, if the vote probability pa is bounded away
from O (but not 1), and the size ng is no more than a fraction <1 of np,

then the probability that the two vote counts are within any fixed finite
tolerance o of each other still goesto 0.

Proof. Here

P(X-Y[<a)=) > PY=2zX=z+d]

z |d|<a

<(200+1) max P[X =w]

O<ws< ng

<(200+1) max P[X =w]
0<w<(1-r)np

which — 0 as np — o by Proposition 8 (reducing ¢ and r to < 1/2 if

necessary). O

Remark. In Corollaries 6 and 9, the restriction that pa or ng/np be
bounded away from 1 really is necessary, even if np # ng. For example, if

ng =nA—land pA:l—(l/nA) and P =1 then as Np — o,

P(X =Y) = P(X =Y = ng) = P(X = ng)P(Y = ng)
[ Joiea- par

= nall- ()8 (Wna) = e "8/MA[L+ o(1)] > Ve = 0.

Corollary 9 applies when the larger population, np, has vote probability
pa = & What if instead the smaller population ng has pg > ¢? If we

assume that both ny — «© and ng — o, then we can strengthen Corollary



84 Jeffrey S. Rosenthal

9 to assume that just max(pa, pg) = ¢, i.e, that either one of them is

bounded away from O:
Corollary 10. In the setup of Coroallary 6, for any ¢, r € (0, 1),

lim sup sup P(|X-Y|<a)=0.
NB—% na>ng/(1-r) Pa, Pe<[0,1]
max(pa, Pg)¢

Proof. Corollary 9 covers the case where pp > g, SO we assume here
that pg > . Assume without loss of generality (by reducing ¢ if necessary)
that ¢ < 1/2. Asbefore,

p(|)(_Y|ga):z Z P[X = z+d]P[Y = Z]. (*)

z |d|<a
Now, if z < eng, thensince pg > ¢ and ¢ <1-c¢,

PlY = z] = f(ng, pg; 2) < sup max  f(ng, p; kK)[1+ o(1)].
e<p<1 0<k<(l-¢)ng

Hence, by Proposition 8 (with r = ¢),

PlY = z] < {1/ 2rnge(1 - ¢) [1+ o(1)] - O.

If instead z € (eng, ng], then since z—> c and Ny —z>np —ng =
rng — o, usingthat 1—(z/np) > 1-(ng/na) =1-(1-r) =r, itfollows
from Lemmas 3 and 4(a) that

P[X = z+d] < Y271 - (z/np)] [1 + 0(1)] < Yl 2 mengr [1+ o(1)] — O.

Combining these two bounds, we compute from (*) that

P(X-Y[<a)< > > P[X =z+d]J/2mge(l—¢) [1+ o(1)]

Z<eng ‘ d ‘SOL

+ > > JY2mengr P[Y = Z][1+ o(1)]

ZE(SnB, nB] ‘ d ‘SOL
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< (20 + 1)1/ 2rnge(1 - &) [1+ o(2)]
+ (20 + 1) Y2 mengr [1+ o(2)],

which convergesto 0 as ng — o, as claimed. O

Finally, considering the converse of Corollary 10 gives:

Corollary 11. In the setup of Corollary 6, if ng — « and
na = ng/(l-r) for some r e (0,1), and liminf P( X -Y|< a)> 0,
then we must have both py — 0 and pg — 0, i.e., everyone’s probability

of voting must convergeto zero as np, ng — .
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