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In an essay entitled Tradition in Science2, the quantum physicist Werner Heisenberg,

speaking about progress in science generally, suggests that

"...our present problems, our methods, our scientific concepts are, at least partly, the

results of a scientific tradition which accompanies or leads the way of science through

the centuries.  It is therefore natural to ask to what extent our present work is determined

or influenced by tradition...Looking back upon history...we see that we apparently have

little freedom in the selection of our problems.  We are bound up with the historical

process, our lives are parts of this process, and our choice seems to be restricted to the

decision whether or not we want to participate in a development that takes place in our

time...one may say that a fruitful period is characterized by the fact that the problems are

given, that we need not invent them."

Philosopher of science Ian Hacking, more specifically addressing the advent of ideas

contributing to probability theory, writes in his book The Emergence of Probability3,

"I am inclined to think that the preconditions for the emergence of our concept of

probability determined the very nature of this intellectual object 'probability'...The

preconditions for the emergence of probability determined the space of possible theories

about probability.  That means that they determined, in part, the space of possible

interpretations of quantum mechanics, of statistical inference, and of inductive logic."

It is clear of course, that new ideas are necessarily expressed using the methods of

communication which precede them.  Even new symbols must be explained, and to do so,

established forms must be used. It is elementary, however very important. Combined,

                                                          
1 Submitted for STA 4000H under the direction of Professor Jeffrey Rosenthal.
2 Tradition in Science by Werner Heisenberg, Seabury Press, New York 1983.
3 Cambridge University Press, Cambridge 1975
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Heisenberg and Hacking are proposing even more than this. A science such as probability

has as its provenance a set of problems, which are recognized and studied at some point

in time, and in some way define the very nature and development of that science. The

possibility that this is so, is of itself substantial motivation for the historical review of

probability theory.  From a practical perspective, ideas and concepts may be found which

are of relevance to on-going research or suggest avenues which, have not yet been

investigated.  Because of this, an historical overview of the subject is highly relevant.

Additionally, such a review is both interesting and of pedagogical value to the exposition

of fundamental concepts.

As the volume of material relating to the field of probability and statistics is quite

substantial, a methodology for presenting an overview must be proposed.  First, the basic

subject matter must be identified. A survey of the Table of Contents of books relating to

the elementary theory of probability and statistics would present a list of topics similar to

the following:

• random events and the concept of probability

• random variables and probability distributions

• the binomial distribution (and other discrete distributions)

• mathematical expectation

• the normal distribution

• the χ2, t and F distributions

• point and interval estimation

• statistical inference

The historical development of the theory of probability and statistics does to a large

degree follow the order of topics just listed, and it is possible, based upon a review of

historical commentary on the development of probability and statistics, to assemble a set

of writings in which those concepts appear for the first time.  A review of those works

may then provide some insight into the problems being investigated at the time.
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The brief historical overview presented in this paper relates to the development of

probability in Europe, from the 16th century to the 20th century.  Ian Hacking cites

evidence that probability concepts are found in the eastern world (India and the Arabias)

at a much earlier date. In Europe the first “calculations on chance” are recorded in the

15th century in books such as the one by Fra Luca Pacioli on bookkeeping.

That a mathematical theory of probability begins to develop in Europe in the 16th and 17th

centuries, despite considerable evidence that people centuries earlier were aware of

random processes and played games of chance remains a mystery. One suggestion,

favoured by Ian Hacking, is based on the simple observation that even elementary

probability requires the use of arithmetic:

"These [probabilities] are calculations with numbers; when you can do them, you know

quite a lot about probability...these calculations require some facility with figures.  The

Greeks...lacked a perspicuous notation for numerals.  So did their heirs.  Perhaps a

symbolism that makes addition and multiplication easy is a pre-requisite for any rich

concept of probability."

Evidence of the first systematic presentation of a subject related to probability appears to

date back to the mid-sixteenth century.  Gerolamo Cardano, an Italian medical doctor

with an interest in mathematics and gambling, wrote a treatise on games of chance

entitled De Ludo Aleae.  Although this work was not published until 1663, almost 100

years after his death, it may be indicative of the kind of scientific dialogue already

underway in the 16th century.  Cardano’s treatise provides both advice to gamblers and a

theoretical consideration of outcomes in dice and card games.

In the first Chapter of his book, entitled On Kinds of Games, Cardano categorizes games

based on whether they depend on chance or not.  Again, an apparently obvious

distinction, known by people for centuries (Cardano cites evidence that persons in ancient

times played games of chance), however highly relevant.  This is a statement recognizing
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that there are processes, which have random4 outcomes and those, which do not.  The

identification of random processes is fundamental to the development of probability

theory.  It is precisely this category of phenomena, restricted in this case to games of

chance, which is the object of Cardano’s study.

In Chapter 9 of his book, Cardano begins to present the results of his theory on dice, and

with respect to the roll of a die writes:

“...in six casts each point should turn up once; but since some will be repeated, it follows

that others will not turn up.”

The use of “should turn up” in the articulation of this principle suggests that it is based

upon the symmetry of the die, with six sides, each as likely as the other to occur.  It is

(for now) an intuitive concept, and is even used to introduce elementary probability

calculations today. Also, Cardano recognises (likely confirmed by experience), that the

principle is an ideal, and that in practice we will not have each point turn up once in

every six casts.  There is clearly a “long range relative frequency” interpretation of  “in

six casts each point should turn up once”.  In the contemporary language of probability

theory, we would say that we expect in six casts each point should turn up once.

Another important pre-requisite for calculating probabilities is the facility to conduct

counting based on permutations and combinations. In Chapter 11 Cardano discusses the

case of two dice, enumerating the various possible throws:

“…there are six throws with like faces, and fifteen combinations with unlike faces, which

when doubled gives thirty, so that there are thirty-six throws in all, and half of these

possible results is eighteen.”

A statement mirroring the concept of probability can then be made:

                                                          
4 Leaving aside problems in defining “randomness”, and trusting intuition for the present.
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“If therefore, someone should say, ‘I want an ace, a deuce, or a trey’, you know that

there are 27 favourable throws, and since the circuit is 36, the rest of the throws in which

these points will not turn up will be 9; the odds will therefore be 3 to 1.”

The “circuit” is Cardano’s expression of the size of the sample space.  The use of “odds”

and “favourable” convey the sense in which probability is interpreted.

It is even possible that Cardano uses the word “probability” as it would be used today:

“In comparison where the probability is one half, as of even faces with odd…”

Although the use of this sentence perhaps merits more investigation, considering the

treatise was published in 1663, after the word “probability” appears in a text by

Christiaan Huygens.  Whether used by Cardano or not, it is clear that important concepts

have been expressed in De Ludo Aleae, and may have been known within the societies of

learning in 16th  century Italy.  It would not be surprising that probability mathematics

made its appearance in Europe by way of Italy, as Italy maintained close contacts with

the eastern world5.

The earliest published article devoted to explaining observations from a random process

appears to have been written by Galileo Galilei likely between 1613 and 16236.  He wrote

Sopra Le Scoperte dei Dadi in response to a request for an explanation about an

observation concerning the playing of three dice.  While the possible combinations of

dice sides totalling 9, 10, 11, and 12 are the same, in Galileo’s words:

“…it is known that long observation has made dice-players consider 10 and 11 to be

more advantageous than 9 and 12.”

                                                          
5 The story of Leonardo of Pisa is an interesting example of Italian contact with Arabian society.  See
Leonard of Pisa by Joseph and Francis Gies, New Classics Library, Gainesville GA, text copyright 1969.
6 Refer to F.N. David’s Games, Gods and Gambling – A History of Probability and Statistical Ideas, Dover
Publications 1962, page 62.
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Galileo notes in the opening paragraph of his article:

“The fact that in a dice-game certain numbers are more advantageous than others has a

very obvious reason, i.e. that some are more easily and more frequently made than

others…”

Galileo explains the phenomenon by enumerating the possible combinations of the three

numbers composing the sum.  He is able to show that 10 will show up in 27 ways out of

all possible throws (which Galileo does indicate as 216).  Since 9 can be found in 25

ways, this explains why it is at a “disadvantage” to 10 (even though each sum can be

made from 6 different triples).

Galileo’s explanation combines intuition with observation.  Empirical evidence suggests

that the sum 10 is more frequently realized than 9.  As there are more combinations of

numbers summing to 10, this is cited as the likely reason.

Most commonly associated with the advent of probability theory are the ideas presented

in the correspondence between the French mathematicians Pierre de Fermat and Blaise

Pascal between 1654 and 1660.  Of these, Pascal’s letter to Fermat on July 29, 1654 is

especially important.  The famous “problem of points” is solved.  The problem relates to

the equitable distribution of the proceeds for a wager in a game of chance (for example

dice) when the gamblers agree to discontinue play.     For the development of probability

theory this was a significant problem – precisely the kind of problem Werner Heisenberg

alludes to in Tradition in Science.  While the means for computing probabilities were

available much earlier, and as Cardano and Galileo demonstrated, it was possible to

identify more probable events – these were expressions of probability.  Pascal and Fermat

would use probabilistic reasoning to solve more complicated problems.  H.A David and

A.W.F. Edwards note in Annotated Readings in the History of Statistics7:

                                                          
7 Annotated Readings in the History of Statistics, Springer-Verlag 2001.
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“The notion of the expected value of a gamble or of an insurance is as old as those

activities themselves, so that in seeking the origin of “expectation” as it is nowadays

understood it is important to be clear about what is being sought.  Straightforward

enumeration of the fundamental probability set suffices to establish the expected value of

a throw at dice, for example, and Rennaisance gamblers were familiar enough with the

notion of a fair game, in which the expectation of each player is the same so that each

should stake the same amount.  But when more complicated gambles were considered, as

in the Problem of Points, no one was quite sure how to compute the expectation…Pascal

clarified the basic notion [expectation] and used it to solve the problem of points.”

Pascal presents solutions to two specific cases of the problem of points:

1) The case involving a player needing one more point.

2) The case in which a player has acquired the first point.

For the first case, Pascal uses a recursive process to illustrate the solution.  He provides

the example of two players wagering 32 pistoles (gold coins of various denominations)

each, and begins by considering a dice game in which three points are needed. The

players’ numbers have equal chances of turning up.  The following table illustrates

Pascal’s argument:  (the ordered pair notation (a,b) refers to the “state” of the game at

some stage, with player A having thrown a points, and player B, b points; the pair {c,d}

refers to the division of the wager).

State of Game Division if player A's 
number turns up next

Division if player B's 
number turns up next

Division if players 
agree to suspend the 

game

(2,1) {64,0} {32,32} {48,16}

(2,0) {64,0} {48,16}* {56,8}
*this corresponds to 
the state (2,1) shown 

above

(1,0) {56,8}** {32,32} {44,20}
**this corresponds to 
the state (2,0) shown 

above
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The values distributed upon suspension of the game, conform to the expected values.

The argument is an (early) example of the application of a “minimax” principle. Both

players wish to maximize the amount they would receive, and minimize their losses.  The

“motivation” is illustrated by the following “payoff matrix”, with the expected proceeds

for player A indicated under the relevant circumstances:

Player A would like to maximize the row minimums, while player B wishes to minimize

the column maximums.  Both would settle on 48 (for player A).

Pascal then generalizes the result for distributing a wager of 2W (each player providing

W), when one of the players requires one more point, as 2W-W/2n, where n represents the

number of points needed for the game (before play commences).

Pascal suggests that the solution to the second class of problems is more complicated:

“…the proportion for the first game is not so easy to find…[it] can be shown, but with a

great deal of trouble, by combinatorial methods…and I have not been able to

demonstrate it by this other method which I have just explained to you but only by

combinations.”

Player B

Agreement to 
settle the 

wager

No agreement 
to settle the 

wager

Row 
Minimum

Rolls a favourable 
number 48 64 48

Player A
Does not roll a 

favourable number 48 32 32

Column Maximum 48 64
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If each player wagers W, then the distribution of the wager after the first throw is:

W + W(1/2.3/4.5/6.….(2n-1)/2n)

where n is the number of points required (after getting the first point).

Pascal is able to relate the above formula to results involving binomial expansions8.  This

will be an important field of investigation and application in the development of

probability theory.

Christiaan Huygens’ On Reasoning in Games of Chance, is cited in the literature as the

first published mathematical treatise on the subject of probability9.  The work was first

printed in 1657, before the earlier correspondence between Fermat and Pascal was

published, although clearly influenced by the content of those letters10.

The development of the theory is very systematic.  Introducing the subject, Huygen’s

writes:

“Although in games depending entirely upon Fortune, the Success is always uncertain;

yet it may be exactly determined at the same time how much more probability there is

that [one] should lose than win”

Games of chance have outcomes that are (generally) unpredictable.  At the same time,

Huygens claims that it is possible to make meaningful statements, or measurements,

relating to those systems. While the concept of probability, perhaps even the word

                                                          
8 Note that 1/2.3/4.5/6.….(2n-1)/(2n)  =  (2n-1)!/n!(n-1)! . 1/22n-1; (2n-1)!/n!(n-1)! = 1/2. (2n!/n!n!); 22n-1 = 1/2. (1+1)2n

and 
2

2

0

2
1/ 2 (1 1) 1/ 2

n
n

i

n
i=

 
⋅ + = ⋅  

 
∑ .

9 See for example, Ian Hacking’s The Emergence of Probability (Cambridge University Press, 1975), page 92 or William S. Peters’ Counting for Something –

Statistical Principles and Personalities (Springer – Verlag, 1987), page 39.

10 Huygens visited Paris and had contact with associates of Pascal and Fermat.
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itself11, is observed in writings prior to Huygens’, the association of the phenomena

(games of chance) with a relative measure of chance, is comparable to a modern

treatment of the theory by first defining a random system or process, and the concept of

probability.

Huygens’ Propositions I, II and III summarizes the principles for evaluating expectations

(values of wagers):

Proposition I:

“If I expect a or b, and have an equal chance of gaining either of them, my Expectation is

worth (a+b)/2.”

Proposition II extends the first to the case of three prizes, a,b and c, such that x =

(a+b+c)/3 is the value of the expectation; then in the same manner to four prizes, and so

on.

Proposition III:

“If the number of Chances I have to gain a, be p, and the number of Chances I have to

gain b, be q.  Supposing the chances equal; my Expectation will then be worth ap+bq /

p+q.”

In this context “chances” is equivalent to the number of ways a specific outcome can

occur.  Although the quotients  p
p q+

, and q
p q+

 are not named, they are probabilities, and

the proposition describes the additive principle.

                                                          
11 Refer to Gerolamo Cardano’s De Ludo Aleae.
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The multiplicative property of probability is not as clearly seen, however the use of

Propositions I to III do account for this principle.  Consider the solution presented by

Huygens to the following problem

“To find how many Throws one may undertake to throw the Number 6 with a single

Die.”

Huygens reasons that for the simplest case, one throw, there is 1 chance to get a six,

receiving the wager proceeds a, and 5 chances to receive nothing, so that by Proposition

3, the expectation is (1.a + 5.0) / (1+5) = 1/6a.  To compute the expectation for 1 six in

two throws, it is noted that if the six turns up on the first die, the expectation will again be

a.  If not, then referring to the simplest case, there is an expectation of 1/6a.  Using

Proposition 3, there is one way to receive a, and 5 ways to receive the 1/6a (the sides 1 to

5 on the die):

    (1.a + 5. (1/6a)) / (1+5) = 11/36a

This corresponds to the six appearing on the first throw with probability 1/6, or on the

second throw with probability (5/6) . (1/6).    In Huygens system, expectations for simpler

cases are combined using Proposition 3, to solve more complex problems.  

By 1657, the basic characteristics of probability as we apply them today had been

established. The word “probability” has now been introduced, with a meaning

comparable to today’s, however the principal interest remains the computation of

expectations.  The elementary laws of probability are clearly at work in Huygen’s

Propositions, however the probability ratio is a means for computation rather than an

object for investigation itself.

In Huygen’s book solutions to a variety of problems regarding expectations are solved,

and problems are also provided for the reader.  Indeed, this stage of development of

probability theory may be characterized by an investigation into the variety of problems
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(principally relating to games of chance) which can be addressed using methods

developed.  Perhaps representative of this stage of development is Pierre Remond de

Montmort’s Essai d’Analyse sur les Jeux de Hazard, which presents a theory of

combinatorics, discusses certain games of chance with cards and with dice and provides

solutions to various problems including the five problems proposed by Huygens.

Included in this book is an early solution to a problem relating to coincidences or

matches.  Montmort describes a method for computing the expectation of a card being

drawn with value and order drawn considered equivalent.

In 1710, Dr. John Arbuthnott, a friend of Jonathan Swift and Isaac Newton, wrote a paper

entitled An Argument for Divine Providence, taken from the constant Regularity observed

in the Births of both Sexes.  In a history of the appearance of fundamental concepts of

probability and statistics, this paper is important for the following reasons:

• It is one of the first applications of probability to phenomena other than games of

chance.

• It possesses an argument, which has been referred to as the first published test of

significance12.

There are two principal arguments made in the article:

1) It is not by chance that the number of male births is about the same as the number of

female births.

2) It is not by chance that there are more males born than females, and in a constant

proportion.

To support the first proposition, application is made of the binomial expansion relating to

a die with two sides marked M (male) and F (female).  Essentially, (M+F)n is a model for

the possible combinations of male and female children born.  Arbuthnott observes that as

                                                          
12 Ian Hacking, The Emergence of Probability, page 168.
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n increases, the binomial coefficient associated with the term having identical numbers of

M and F, becomes small compared to the sum of the other terms.

Arbuthnott is aware that in reality there is variation between the number of males and

females:

“It is indeed to be confessed that this Equality of Males and Females is not Mathematical

but Physical, which alters much of the foregoing Calculation; for in this Case [the

number of male and female terms] …will lean to one side or the other.”

However, he writes:

“But it is very improbable (if mere Chance governed) that they would never reach as far

as the Extremities…”

While it would be possible to have large differences in the numbers of males and females

(with binomially distributed data having probability 1/2), the probability of this becomes

very small when n is large.  James Bernoulli will present a theorem relevant to this in the

next few years.

The second proposition discounts chance as the cause for the larger number of male

births observed annually.  The form of the argument is interesting, because it is similar to

a test of significance.  Arbuthnott states the Problem:

“A lays against B, that every Year there shall be born more Males than Females: To find

A’s Lot, or the Value of his Expectation.”

A hypothesis is being made in the form of a wager. Arbuthnott notes that the probability

that there are more males than females born must be less than 1 /2 (assuming that there is

an equal chance for a male or female birth).  For this “test” however, he sets the chance at

1 /2 (which would result in a higher probability), and notes that for the number of males

to be larger than the number of females in 82 consecutive years (for which he has data on
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christenings13), the lot would be 1/2 82.  The lot would be even less if the numbers were to

be in “constant proportion”.  Since the data do not support B (in every year from 1629 to

1710, male christenings outnumber female christenings), Arbuthnott reasons:

“From whence it follows, that it is Art, not Chance, that governs.”

The hypothesis of equal probability is rejected, and Arbuthnott attributes the observed

proportions to Divine Providence.

By the late 17th century, the nature of probability and rules for computing results in

processes requiring probability had become quite familiar to the scientific community.

Mathematics relating to binomial expansions was being used, and the methods developed

were being applied to subjects other than gambling.  Dr. Arbuthnott even suggests in an

earlier paper14,

“I believe the Calculation of the Quantity of Probability might be improved to a very useful and

pleasant Speculation, and applied to a great many events which are accidental, besides those of

Games.”

This period also coincides with advances in other fields of mathematics, including the

calculus, limits, sequences, series and series expansions of functions, and approximation

methods for factorials. These would be of considerable importance to the development of

probability theory.

In Dr. Arbuthnott’s article there was a foreshadowing of an idea that would become

central to probability and statistics, and would profit from recent advances made in the

mathematical sciences.  This is the notion of the large sample.  It became apparent that

certain statements could be made about sets of data, which were very large, and it became

necessary to make statements about very large data sets.

                                                          
13 The christenings would likely have been a reasonable proxy for births during that period.  Arbuthnott
presents the data in his paper.
14 In a 1692 translation of Huygens’ De ratiociniis in ludo aleae (1657) entitled Of the Laws of
Chance.
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In 1713 James Bernoulli, a mathematician from Bâle published a book on probability

entitled Artis Conjectandi, which discusses a number of problems requiring probability

mathematics, and considers the nature of probability:

“…probability is a degree of certainty and differs from absolute certainty as a part

differs from the whole.  If, for example, the whole and absolute certainty – which we

designate by the letter a or by the unity symbol 1 – is supposed to consist of five

probbilities or parts, three of which stand for the existence or future existence of some

event, the remaining two standing against its existence or future existence, this event is

said to have 3/5a or 3/5 certainty.”

Bernoulli also suggests that probability is a consequence of uncertainty:

“…those data which are supposed to determine later events (and especially such data

which are in nature) have nevertheless not been learned well enough by us.”

This view is consistent with those of the adherents of “determinism” in the 18th century.

In Chapter IV of Part IV of his text on probability, Artis Conjectandi (published in 1713),

Bernoulli writes:

“Something further must be contemplated here which perhaps no one has thought of

about till now.  It certainly remains to be inquired whether after the number of

observations has been increased, the probability is increased of attaining the true ratio

between the numbers of cases in which some event can happen and in which it cannot

happen, so that the probability finally exceeds any given degree of certainty…”15

The proposed solution to this inquiry, is what would be called the law of large numbers

today.  Bernoulli’s proposition is as follows:

                                                          
15 Translation by Bing Sung (1966). Translations from James Bernoulli. Department of Statistics, Harvard
University, Cambridge, Massachusetts.
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Let the number of favourable cases to the number of unfavourable cases be exactly or

nearly r/s, therefore to all the cases as r/r+s = r/t  - if r+s = t - this last ratio is between

r+1/t and r-1/t.  We can show, as many observations can be taken that it becomes more

probable arbitrarily often (for example, c - times) that the ratio of favourable to all

observations lies in the range with boundaries r+1/t and r-1/t.

This theorem is proven using lemmas relating to properties of binomial expansions, and

the limiting characteristics of quotients of binomial terms and sums.  It is significant as

the first mathematical formalization of the “intuitive” notion relating to long range

relative frequency.

Following this important theorem, in 1718 Abraham DeMoivre published his Doctrine of

Chances, which again addresses a number of practical probability problems.  In an

addendum to his book after 1733, referred to as the Approximatio, DeMoivre derives a

formula for approximating binomial sums or probabilities when the number of trials is

very large.  He was able to do this with the aid of mathematics relating to series

expansions for logarithms and exponentials, as well as approximation methods for

factorials.  DeMoivre shows for a very large number of trials denoted by n,

“… if it was possible to take an infinite number of Experiments, the Probability that an

Event which has an equal number of Chances to happen or fail, shall neither appear

more frequently than 1/2n + 1/2√n times, not more rarely than 1/2n – 1/2√n times, will be

expressed by the double Sum of the number exhibited in the second Corollary, that is by

0.682688…”

This is a result about what would later be called a “normal distribution”.  In addition to

being an early occurrence of this distribution, for practical application, the approximation

is an early illustration of a central limit theorem.  For large n, the middle term (average

value) is associated with a normal distribution, and this value can be limited by a measure
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related to √n. In his book, The Life and Times of the Central Limit Theorem16, William

Adams states:

“De Moivre did not name√n/2, which is what we would today call standard deviation

within the context considered, but … he referred to √n as the Modulus by which we are to

regulate our estimation.”

Again, it is noteworthy that the first appearance of the normal distribution was in relation

to an approximation problem. In the late 18th century and early 19th century, the normal

distribution would be more explicitly recognized and appreciated for its facility in

describing errors of observation.  Here also, the problems were presented to the inquirers,

in this case in the field of astronomy, where errors of observation were of great

importance. Carl F. Gauss and Pierre S. Laplace contributed substantially in this stage of

the growth of probability theory.  Laplace is credited with the first proof of a central limit

theorem.  Jerzy Neyman, in his text First Course in Probability and Statistics17, presents

Laplace’s Theorem (in contemporary notation) as follows:

Whatever be two numbers 1 2t t< , and whatever be the fixed value of the probability of

success p, 0<p<1, if the number n of completely independent trials is indefinitely

increased, then the probability that the corresponding binomial variable X(n) will satisfy

the inequalities

1 2
( )
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X n npt t
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16 Kaedmon Publishing Company, New York 1974,  page 24.
17 First Course in Probability and Statistics, Henry Holt and Company, New York 1950.
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The normal distribution and central limit theorem have considerable application in the

contemporary practice of probability and statistics.

In the 19th century, the precision of estimates was commonly measured using the

“probable error”18.  In an 1876 article by Friedrich Robert Helmert, which was written

with the intention of reporting on an improved method for estimating probable error, it is

shown that u, the sum of squares of observed deviations from the mean is distributed

according to

( )
2

31
2
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2

nn
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n

h u e du
−−

−

−
⋅ ⋅

Γ

where h (referred to as “the precision”) is equal to 1/σ√2.  The result was obtained with

the aid of matrix mathematics and the methods of (multivariate) calculus. From this

result, it is effectively shown that given X1,…,Xn independent N(µ,σ2) random variables, then

2 2 2
1

1
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n
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i

X X σ χ −
=
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that is, the sum of squares of the observed deviations from the mean, are distributed as

(what would be called) a chi-square distribution with n-1 degrees of freedom.  Once again, a

result relating to a distribution widely applied in the practice of probability and statistics, has been

obtained in the process of the investigation of another matter.

By the end of the 19th century, a considerable amount of the theory of probability and

statistics as presented in contemporary elementary texts, had been developed.  Statistics,

which involves the inferring of information relating to population parameters from

sample observations, makes considerable application of results relating to the law of large

numbers, normal distribution, central limit theorem and chi-square distributions.  Not

                                                          
18 Defined as 1 (0.75), where is the standard normal distribution function.σ −Φ Φ  See Annotated Readings…,
page 103.
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reviewed in this paper, however also of considerable importance, is the t distribution,

attributed to W.S. Gosset.  This distribution has application in the use of small samples,

the opposite to the problem presented in the early 18th century.

The last major topic from the list given at the beginning of this paper relates to interval

estimation. In 1930, Ronald Aylmer Fisher wrote a paper entitled Inverse Probability,

which presents a critique of some practices in what is referred to nowadays as Bayesian

estimation.  The second half of the paper introduces the notion of fiducial inference. The

concept is explained in Principles of Statistics, by M.G. Bulmer19 using an example with

sampling from a normal distribution.  If a sample of size n is taken, the quantity

/
x
s n

µ−

(with notation as usually defined in contemporary statistics) follows a t distribution with

n-1 degrees of freedom.  Then 100P per cent of those values would be expected to be less

than tp, or the probability that

       
/ P

x t
s n

µ− ≤

is equal to P.  Fisher notes that the above inequality is equivalent to

 /Px st nµ ≥ −

and reasons that the probability that /Px st nµ ≥ −  is also P.  In this case, µ is a random

variable and x  and s are constants.  By varying tP, the probability that µ is greater than

specific values may be obtained, establishing a fiducial distribution for µ, from which

fiducial intervals may be constructed.  Such intervals would correspond to the confidence

intervals (as defined in contemporary statistics), however are interpreted with µ as a

random variable

                                                          
19 Principles of Statistics by M.G. Bulmer, Dover Publications, Inc., New York 1979, page 177.
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H.A. David and A.W.F. Edwards suggest that Inverse Probability is the first paper clearly

identifying the confidence concept (although similar approximate constructs such as

“probable error” had been in use for some time).  The appearance of fiducial intervals is a

response to the Bayesian approach to estimation.

The brief survey of developments in the history of probability and statistics given in this

paper appears to confirm the statement of Werner Heisenberg.  In each of the centuries

since the advent of a probability theory, problems have been proposed, which have

contributed to advances, even if not always recognized at the time.  The sudden

appearance (in Europe) of probability in the 16th or 17th century may have been related to

modifications in numeric notation, facilitating arithmetic calculations. Also, it is clear

that the theory of probability has its origins in questions on gambling. Games of chance

lend themselves to a mathematical discussion because the universe of possibilities is

(relatively) easily known and computed, at least for simple games.  The availability of

observable and measurable “fundamental probability sets” is perhaps one of the

preconditions alluded to by Ian Hacking, and determines the very nature of probability. It

may also be noted that probability has been defined over the centuries in the sense of long

range relative frequency, and associated at the same time with a degree of belief.  James

Bernoulli discusses both of these characteristics in the Artis Conjectandi, and provides

the first limit theorem, mathematically formalizing the notion of long range relative

frequency in the case of binomial data.  This theorem is itself a probability statement

about probabilities.  Very generally, from the mid-eighteenth century the development of

concepts in probability and statistics proceeds as follows: the need for approximating

binomial sums for very large numbers of trials lead to the discovery of the normal

distribution; the study of astronomical data and errors of observation provided for an

application of the normal distribution, and discovery of a central limit theorem; research

to improve the estimate of the probable error identifies the χ2 distribution, and questions

relating to the application of inverse probability lead to a definition of the confidence

interval.
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In the introduction of D.A.S. Fraser’s book Probability and Statistics20, an observation is

made about the probability of an event:

“…it is a physical phenomenon that the proportion of occurrences for the event tends to

a limit as the number of repetitions increases indefinitely; the limit is called the

probability of the event.  A system with this property is called a stable system or a

random system.  In cases where the proportion behaves systematically or does not tend to

a limit, experience indicates that the input variables have not been controlled or kept

constant; in other words, the system is not random.”

It is perhaps surprising to see random systems described as stable systems.  However, this

is again an important precondition.  The methods of probability and statistics are only

applicable to systems, which have such a nature. In contemporary categories, probability

is usually defined in the following manner21:

Given a sample space Ω with σ field of events Φ, the probability of the event A ∈  Φ,

written P(A), is a set function onto the closed interval [0,1] such that

i) 0 ( ) 1P A≤ ≤ , all A ∈  Φ,

ii) P(Ω) = 1,

iii) 
11

( )j j
jj

P A P A
∞ ∞

==

 
= 

 
∑U

Such an axiomatic definition (attributable to the Russian mathematician A. Kolmogorov),

allows for considerable versatility in practice and research.  It is frequently advisable

however, to check the characteristics of the model with those of the object being

modeled.  In this regard again, an appreciation for the development of probability theory

                                                          
20 Probability and Statistics, Theory and Applications, DAI Press, University of Toronto 1976.
21 From C.R. Heathcote’s Probability, Elements of the Mathematical Theory, Dover Publications Inc.
Mineola 1971.
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may be useful in ensuring consistency with the historical understanding, which has the

benefit of the contribution of many minds through the centuries.
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