This page discusses two slight generalizations of Theorem 12 in the above paper. It is too late to include them in the published version, hence I mention them here. I thank Charlie Geyer, Gareth Roberts, and Richard Tweedie for helpful comments.

Using Theorem 5, it is very easy to generalize Theorem 12 in various ways, e.g. to values of k_0 other than 1. Setting $h(x, y) = 1 + MV(x) + MV(y)$, $j = rk$, and $C = V_d = \{x \in \mathcal{X} ; V(x) \leq d\}$, Theorem 5 immediately implies

Theorem 12′. Suppose for some $V : \mathcal{X} \to \mathbb{R} \geq 0$, some $\lambda < 1$ and $b < \infty$, some $\epsilon > 0$, some probability measure $Q(\cdot)$ on \mathcal{X}, and some $d > \frac{2b}{1-\lambda}$, we have $E(V(X(1)) \mid X(0) = x) \leq \lambda V(x) + b$ for all $x \in \mathcal{X}$, and also $P^{k_0}(x, \cdot) \geq \epsilon Q(\cdot)$ for all $x \in V_d$. Then for any $0 < r < 1$ and $M > 0$, we have

$$\| \mathcal{L}(X^{(k)}) - \pi \|_{\text{var}} \leq (1-\epsilon)^{[rk/k_0]} + (\alpha A)^{-1} \left(\alpha^{-(1-rk_0)} A^r \right)^k \left(1 + \frac{Mb}{1-\lambda} + ME_{\nu}(V(X_0)) \right),$$

where

$$\alpha^{-1} = \frac{1 + 2Mb + \lambda Md}{1 + Md} < 1; \quad A = 1 + 2(\lambda Md + Mb).$$

For comparison to the work of Meyn & Tweedie (1993b), it is appropriate in the drift condition to assume that $V(x) \geq 1$ for all $x \in \mathcal{X}$, and that the constant term b is multiplied by the indicator function 1_{V_d}. Setting $h(x, y) = \frac{1}{2}(V(x) + V(y))$, this allows us to somewhat relax the condition on d, and leads to

Theorem 12′′. Suppose for some $V : \mathcal{X} \to \mathbb{R} \geq 1$, some $\lambda < 1$ and $b < \infty$, some $\epsilon > 0$, some probability measure $Q(\cdot)$ on \mathcal{X}, and some $d > \frac{b}{1-\lambda}$, we have $E(V(X(1)) \mid X(0) = x) \leq \lambda V(x) + b 1_{V_d}(x)$ for all $x \in \mathcal{X}$, and also $P^{k_0}(x, \cdot) \geq \epsilon Q(\cdot)$ for all $x \in V_d$. Then for any $0 < r < 1$, we have

$$\| \mathcal{L}(X^{(k)}) - \pi \|_{\text{var}} \leq (1-\epsilon)^{[rk/k_0]} + (\alpha A)^{-1} \left(\alpha^{-(1-rk_0)} A^r \right)^k \frac{1}{2} \left(\frac{b}{1-\lambda} + E_{\nu}(V(X_0)) \right),$$

where

$$\alpha^{-1} = \frac{b + \lambda d}{d} < 1; \quad A = \lambda d + b.$$