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Metropolis Algorithm: RGG97

Seminal paper: Roberts, Gelman and Gilks, 1997. (1000
citations)
Target density: i.i.d components

πN(x) =
N∏

i=1

fi(xi) ∝
N∏

i=1

e−gi (xi )

Simple Random walk Proposal:

y = x +
√
` δZN

ZN ∼ No(0, IN).
` - “optimisation” parameter.
δ = δ(N) is the SCALE.
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Traditionally, ....

Study of Mixing times
Time to attain Stationarity
‘Burn in time’
Spectral gap

Hard problems ...

For practical MCMC arguably optimisation questions (find the
best algorithm from a class) are more important



The new perspective in Roberts, Gelman and Gilks,
1997

Study the Markov chain AFTER Stationarity
thus complementing work on convergence, robustness to
starting values etc..

Scale the proposal as a function of the dimension.
Goldilocks Principle (attributed to Rosenthal, J.)
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Acceptance Probability

Acceptance Probability = min(1, π(y)π(x)).

If y ≈ x , π(y) ≈ π(x), and thus acceptance probability is
equal is very high.

If y is far away from x , then π(y)
π(x) � 1!



Goldilock’s Principle; Figure courtesy: Roberts and
Rosenthal, 2001.



Key Technical Idea.

Choose the scale such that

E(acc prob) = O(1)

For large N,
E(acc prob) = a(N) ≈ a

Optimise a, to obtain “best" acceptance probability.



Roberts, Gilks and Gelman, 1997:

Theorem: (for distributions with exponential moments + mild
conditions)

δ = δ(N) = 1
N .

A SINGLE component (rescaled) : xk ⇒ Xt

dXt = −h(`)∇g(Xt )dt +
√

2h(`) dWt

E(acc prob)→ 2Φ(− √̀
2

)

Expected Squared Jumping Distance:

h(`) = E(xk+1 − xk )2 → 2`2Φ(− `√
2

)

Optimal acceptance probability: Maximizes the expected
squared jumping distance:

â = 0.234
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Diffusion limit: Insights

Why maximize E(xk+1 − xk )2?
At stationarity

E(xk+1 − xk )2 = E(xk+1)2 + E(xk )2 − 2Cov(xk+1, xk )

= 2M − 2Cov(xk+1, xk )

Why only lag-1 correlation? Higher orders?
The quantity h(`) is the Speed of the diffusion.
Thus, because of the diffusion limit, maximizing h(`) leads
to minimizing the asymptotic variance.
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Practical Conclusion of Diffusion Limit

Suppose we want to estimate
∫

f (u)π(du).
Given the precision ε, find T and compute

f̂ =
1
T

∫
f (Xt )dt

Diffusion Limit + Optimal Scaling implies that

f̂N =
1
T

bT/δc∑
k=1

f (Xk ) δ = O(N−1)

has the same precision as f̂ .
The mixing time of the RWM is O(N).



Langevin Algorithm

Recall Langevin diffusion: dxt = −∇g(xt )dt +
√

2dWt .
Langevin Proposal:

y = x −∇g(x)` δ +
√

2` δZN

Need a Metropolis Accept/Reject mechanism.
xk is the Langevin Markov chain on RN for iid target.
Theorem (Roberts + Rosenthal 1998): The scale is
δ(N) = N−1/3 and after rescaling the first component of the
Markov chain {xk} converges in distribution to Xt :

dXt = −h1(`)∇g(Xt )dt +
√

2h1(`) dWt .

Optimal Acceptance Probability = 0.574.
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Comparing RWM vs. Langevin

Recall RWM had complexity of O(N)

Langevin has complexity of O(N1/3).
Thus optimal scaling gives a nice way to compare
algorithms.



So far:

Summary:
optimal scaling: tuning proposals.
Diffusion limits for RWM and Langevin
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Infinite Dimensional Result
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Hybrid Monte Carlo

Algorithm from Physics, (Duane et. al. (1987))
Based on Hamiltonian Dynamics, conservation of energy.



Hamiltonian Dynamics

Location x , velocity v ; total energy,

H(x , v) = g(x) +
1
2

v2

Hamiltonian equations

dx
dt

= v ;
dv
dt

= −∇g(x)

They give rise to solution operator

φT : (x0, v0) 7→ (xT , vT )

that preserves total energy.
Equivalently the joint density

exp{−H(x , v)} = exp{−g(x)− 1
2

v2}

is preserved.
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Leapfrog Discretisation

In practice, dynamics are approximated:

φT ≈ φT ,h .

For initial state (x0, v0): Leapfrog Discretisation,

vh/2 = v0 − h
2 ∇g(x0)

xh = x0 + h vh/2

vh = v0 − h
2 ∇g(xh)

φT ,h is obtained by composing T
h leapfrog steps.

The crucial properties of this approach are that it is volume
preserving and reversible.



Acceptance probability

(x0, v0) : Initial position
(xT , vT ): Final position
Accept with probability

1 ∧ exp{H(x0, v0)− H(xT , vT )}

Acceptance probability = 1, if Hamilton’s Differential
Equations can be solved explicitly.
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Lingyu Chen, Zhaohui Qin, Jun S. Liu, 2000 (2001)

"Although HMC has been found useful for Bayesian
computations, many important issues remain open. For
example, how to choose tuning parameters in HMC, e.g., the
step-size and the number of the leapfrog iterations, is still a
difficult problem. A rule of thumb is to maintain an acceptance
rate of nearly 70%. But there seems to be no clear theoretical
basis for this rule. "



Main result

P., Beskos, Roberts, Sanz-Serna, Stuart, 2013.
Target density

πN(x) =
N∏

i=1

e−gi (xi )

Theorem : For any fixed integration length T , the step size
which maximizes the expected squared distance :
h = h(N) = 1

N1/4 .
For any Fixed integration length T, optimal scaling leads to
a complexity of O(N1/4).
For any Volume preserving, time reversible second order
numerical integrator, the optimal acceptance probability is
0.651.
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Complexity of HMC

HMC, the optimal behavior is not Diffusive!

The complexity of HMC is O(N
1
4 ).
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Universality: How general?

This first result was proved for IID targets only.
Empirically seen to be robust well beyond IID case!
What are the challenges for the Non-Product case?

progress made by Roberts, Rosenthal, Sherlock, Neal,
Bedard and others ...
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Infinite Dimensional Distribution

Let H be an infinite dimensional Hilbert space,
π0 ∼ N(0,C).
Our target measure:

π(f ) ∝ exp{−Ψ(f )}π0(f )

For N large, we take N dimensional projection:

πN ≈ π

π is NOT a product measure.



Target Measure: Radon Nikodym Derivative w.r.t to
Gaussian

H Hilbert space, π0 ∼ N(0,C).
Target:

π(f ) ∝ exp{−Ψ(f )}π0(f )

Diffusion bridges. (Girsanov)
Constructive Quantum Field Theory, P(φ4

2) model.
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Infinite Dimensional Result

Recall f is a function, target π measure on H.

π(f ) ∝ exp{−Ψ(f )}π0(f ), π0(f ) ∼ No(0,C)

Proposal y = x + ZN , ZN ∼ No(0,CN).
Mattingly, P., Stuart (Annals of App. Prob., 2012)
{xk} is the Random Walk Metropolis Markov chain on RN .
Theorem: For the scaling δ(N) = 1

N the (rescaled) Markov
chain {xk} converges in distribution to an infinite
dimensional diffusion (SPDE) Xt

dXt = (−Xt − C∇Ψ(Xt ))dt +
√

2C dWt .

Weak Convergence in C([0,T ],H).
Optimal Acceptance Probability = 0.234.
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Weak Convergence to SPDE: Proof Sketch

Decompose the Markov Chain into Drift + Noise

xk+1 = xk + E(xk+1 − xk |xk ) +
√

2`δ Γk .

Obtain Drift and Diffusion Estimates

E(xk+1 − xk |xk ) ≈ −∇Ψ(xk ) δ

Martingale Central Limit Theorem, noise satisfies an
invariance principle.
Continuity of the Ito map : Θ : C([0,T ],H) 7→ C([0,T ],H),
Θ(W ) = X :

dXt = (−Xt − C∇Ψ(Xt ))dt +
√

2C dWt .

Continuous mapping theorem, concludes the proof.
Connection to the Euler-Maruyama Scheme!
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Open problems

Combining behavior at transience + behavior at
stationarity.
Recall that, at stationarity, the scaling for Langevin is
N−1/3.
For RWM, Langevin, before reaching stationarity, the
scaling is N−1 (O.F. Christensen, G.O. Roberts, and J.S.
Rosenthal, 2003.)
Combine spectral gap analysis + optimal scaling.
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Conclusion

Optimal scaling is an important idea, with deep practical
implications.
Lots more to do!
“Dimension" can be different things.



Thank you!

Thanks to:
Gareth O. Roberts
Jeffrey S. Rosenthal
Organizers + Applied Probability Society
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