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Introduction and Context

Recall:
e MCMC is really really really important.

e Some MCMC algorithms converge much faster than others.

e Can find optimality results from diffusion limits.

e e.g. Gaussian Random-Walk Metropolis: optimal choice has
acceptance rate around 0.234 (how?), and proposal covariance
(2.38)2d~1 ¥, where ¥; is the target covariance (unknown).

e So, we have guidance about optimising MCMC in terms of
acceptance rate, target covariance matrix ¢, etc.

e But we don't know what proposal will lead to a desired
acceptance rate, nor how to compute 2 ;.

e What to do? Trial and error? (difficult, especially in high
dimension) Or ...

(2/8)



Adaptive MCMC

e Suppose have a family {P, },cy of possible Markov chains,
each with stationary distribution 7.

e How to choose among them?
e Let the computer decide, on the fly!

e At iteration n, use Markov chain Pr,, where [', € Y chosen
according to some adaptive rules (depending on history, etc.).

e Simple example: [APPLET]

e e.g. Estimate true target covariance 2; by the empirical
estimate, ¥ ,, based on the observations so far (X1, Xo, ..., Xp).

e Can this help us to find better Markov chains? (Yes!)

e On the other hand, the Markov property, stationarity, etc. are
all destroyed by using an adaptive scheme.

e |s the resulting algorithm still ergodic? (Sometimes!)
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Example: 100-Dimensional Adaptive Metropolis

| I I ! I I
0e+00 4e+05 8e+05

Plot of first coord. Takes about 300,000 iterations, then “finds”
good proposal covariance and starts mixing well. Good!

e Similarly Adaptive Componentwise Metropolis, Gibbs, etc.
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But What About the Theory?

e So, adaptive MCMC seems to work well in practice.

e But will it be ergodic, i.e. converge to 77 (Converge at all . ..
never mind how quickly ...)

e Ordinary MCMC algorithms, with fixed choice ~, are
automatically ergodic by standard Markov chain theory (since
they're irreducible and aperiodic and leave 7 stationary). But
adaptive algorithms are more subtle, since the Markov property
and stationarity are destroyed by using an adaptive scheme.

e e.g. if the adaption of I, is such that Pr_ usually moves slower
when x is in a certain subset Xy C X, then the algorithm will tend
to spend much more than 7(AXp) of the time inside Ay, even if
each update on its own preserves stationarity. [APPLET]

e Some previous results, but they require limiting / hard-to-verify
conditions, like bounded state space, or existence of simultaneous
geometric drift conditions, or Doeblin condition, or ...

e Need more general, easily-verified theorems ... (5/8)

One Particular Convergence Theorem

e Theorem [Roberts and R., J.A.P. 2007]: Adaptive MCMC will
converge, i.e. lim, oo supacy ||P(Xn € A) — w(A)]| =0, if:

(a) [Diminishing Adaptation] Adapt less and less as the algorithm
proceeds. Formally, sup,cy || Pr,.,(x,-) — Pr,(x,-)|| = 0 in prob.
[Can always be made to hold, since adaption is user controlled.]

(b) [Containment] Times to stationary from X, if fix v =T,
remain bounded in probability as n — oo. [Technical condition, to
avoid “escape to infinity”. Holds if e.g. X and ) finite, or
compact, or ... And always seems to hold in practice.]

(Also guarantees WLLN for bounded functionals. Various other
results about LLN / CLT under stronger assumptions.)

Good, but ... Containment condition is a pain.

Can we eliminate it?
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What about that “Containment” Condition?

e Recall: adaptive MCMC is ergodic if it satisfied Diminishing
Adaptation (easy: user-controlled) and Containment (technical).

e |s Containment just an annoying artifact of the proof? No!

e Theorem (Latuszynski and R., 2014): If an adaptive algorithm
does not satisfy Containment, then for all € > O,

lim limsup P(M(X,,72) > K) > 0,

K—oo pn—soo

where Mc(x,v) = inf{n > 1:[|P](x,-) — 7(-)|| < €} is the time to
converge to within € of stationarity.

That is, an adaptive algorithm without Containment will take
arbitrarily large numbers of steps (K) to converge. Bad!

e Conclusion: Yay Containment!?!?

e But how to verify it??
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Verifying Containment: “For Everyone”

e Proved general theorems about stability of “adversarial”

Markov chains under various conditions (Craiu, Gray, Latuszynski,
Madras, Roberts, and R., A.A.P. 2015).

e Then applied them to adaptive MCMC, to get a list of
directly-verifiable conditions which guarantee Containment:

= Never move more than some (big) distance D.

= Outside (big) rectangle K, use fixed kernel (no adapting).

= The transition or proposal kernels have continuous densities
wrt Lebesgue measure. (or piecewise continuous: Yang & R. 2015)

= The fixed kernel is bounded, above and below (on compact
regions, for jumps < §), by constants times Lebesgue measure.
(Easily verified under continuity assumptions.)

e Can directly verify these conditions in practice. So, this can be
used by applied MCMC users. “Adaptive MCMC for everyone!”

e All my papers, applets, software: www.probability.ca
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