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Introduction and Context

Recall:

• MCMC is really really really important.

• Some MCMC algorithms converge much faster than others.

• Can find optimality results from diffusion limits.

• e.g. Gaussian Random-Walk Metropolis: optimal choice has
acceptance rate around 0.234 (how?), and proposal covariance
(2.38)2 d−1 Σt where Σt is the target covariance (unknown).

• So, we have guidance about optimising MCMC in terms of
acceptance rate, target covariance matrix Σt , etc.

• But we don’t know what proposal will lead to a desired
acceptance rate, nor how to compute Σt .

• What to do? Trial and error? (difficult, especially in high
dimension) Or . . .
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Adaptive MCMC

• Suppose have a family {Pγ}γ∈Y of possible Markov chains,
each with stationary distribution π.

• How to choose among them?

• Let the computer decide, on the fly!

• At iteration n, use Markov chain PΓn , where Γn ∈ Y chosen
according to some adaptive rules (depending on history, etc.).

• Simple example: [APPLET]

• e.g. Estimate true target covariance Σt by the empirical
estimate, Σn, based on the observations so far (X1,X2, . . . ,Xn).

• Can this help us to find better Markov chains? (Yes!)

• On the other hand, the Markov property, stationarity, etc. are
all destroyed by using an adaptive scheme.

• Is the resulting algorithm still ergodic? (Sometimes!)
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Example: 100-Dimensional Adaptive Metropolis

Plot of first coord. Takes about 300,000 iterations, then “finds”
good proposal covariance and starts mixing well. Good!

• Similarly Adaptive Componentwise Metropolis, Gibbs, etc.
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But What About the Theory?

• So, adaptive MCMC seems to work well in practice.

• But will it be ergodic, i.e. converge to π? (Converge at all . . .
never mind how quickly . . . )

• Ordinary MCMC algorithms, with fixed choice γ, are
automatically ergodic by standard Markov chain theory (since
they’re irreducible and aperiodic and leave π stationary). But
adaptive algorithms are more subtle, since the Markov property
and stationarity are destroyed by using an adaptive scheme.
• e.g. if the adaption of Γn is such that PΓn usually moves slower

when x is in a certain subset X0 ⊆ X , then the algorithm will tend
to spend much more than π(X0) of the time inside X0, even if
each update on its own preserves stationarity. [APPLET]

• Some previous results, but they require limiting / hard-to-verify
conditions, like bounded state space, or existence of simultaneous
geometric drift conditions, or Doeblin condition, or . . .

• Need more general, easily-verified theorems . . . (5/8)

One Particular Convergence Theorem

• Theorem [Roberts and R., J.A.P. 2007]: Adaptive MCMC will
converge, i.e. limn→∞ supA⊆X ‖P(Xn ∈ A)− π(A)‖ = 0, if:

(a) [Diminishing Adaptation] Adapt less and less as the algorithm
proceeds. Formally, supx∈X ‖PΓn+1(x , ·)− PΓn(x , ·)‖ → 0 in prob.
[Can always be made to hold, since adaption is user controlled.]

(b) [Containment] Times to stationary from Xn, if fix γ = Γn,
remain bounded in probability as n→∞. [Technical condition, to
avoid “escape to infinity”. Holds if e.g. X and Y finite, or
compact, or . . . And always seems to hold in practice.]

(Also guarantees WLLN for bounded functionals. Various other
results about LLN / CLT under stronger assumptions.)

Good, but . . . Containment condition is a pain.

Can we eliminate it?
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What about that “Containment” Condition?

• Recall: adaptive MCMC is ergodic if it satisfied Diminishing
Adaptation (easy: user-controlled) and Containment (technical).

• Is Containment just an annoying artifact of the proof? No!

• Theorem (Latuszynski and R., 2014): If an adaptive algorithm
does not satisfy Containment, then for all ε > 0,

lim
K→∞

lim sup
n→∞

P(Mε(Xn, γn) > K ) > 0 ,

where Mε(x , γ) = inf{n ≥ 1 : ‖Pn
γ (x , ·)− π(·)‖ < ε} is the time to

converge to within ε of stationarity.

That is, an adaptive algorithm without Containment will take
arbitrarily large numbers of steps (K ) to converge. Bad!

• Conclusion: Yay Containment!?!?

• But how to verify it??
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Verifying Containment: “For Everyone”

• Proved general theorems about stability of “adversarial”
Markov chains under various conditions (Craiu, Gray, Latuszynski,
Madras, Roberts, and R., A.A.P. 2015).

• Then applied them to adaptive MCMC, to get a list of
directly-verifiable conditions which guarantee Containment:
⇒ Never move more than some (big) distance D.
⇒ Outside (big) rectangle K , use fixed kernel (no adapting).
⇒ The transition or proposal kernels have continuous densities

wrt Lebesgue measure. (or piecewise continuous: Yang & R. 2015)
⇒ The fixed kernel is bounded, above and below (on compact

regions, for jumps ≤ δ), by constants times Lebesgue measure.
(Easily verified under continuity assumptions.)

• Can directly verify these conditions in practice. So, this can be
used by applied MCMC users. “Adaptive MCMC for everyone!”

• All my papers, applets, software: www.probability.ca
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